URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [cp/] [tree.c] - Rev 333
Go to most recent revision | Compare with Previous | Blame | View Log
/* Language-dependent node constructors for parse phase of GNU compiler. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "cp-tree.h" #include "flags.h" #include "real.h" #include "rtl.h" #include "toplev.h" #include "insn-config.h" #include "integrate.h" #include "tree-inline.h" #include "debug.h" #include "target.h" #include "convert.h" #include "tree-flow.h" #include "cgraph.h" static tree bot_manip (tree *, int *, void *); static tree bot_replace (tree *, int *, void *); static int list_hash_eq (const void *, const void *); static hashval_t list_hash_pieces (tree, tree, tree); static hashval_t list_hash (const void *); static cp_lvalue_kind lvalue_p_1 (const_tree); static tree build_target_expr (tree, tree); static tree count_trees_r (tree *, int *, void *); static tree verify_stmt_tree_r (tree *, int *, void *); static tree build_local_temp (tree); static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *); static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *); static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *); /* If REF is an lvalue, returns the kind of lvalue that REF is. Otherwise, returns clk_none. */ static cp_lvalue_kind lvalue_p_1 (const_tree ref) { cp_lvalue_kind op1_lvalue_kind = clk_none; cp_lvalue_kind op2_lvalue_kind = clk_none; /* Expressions of reference type are sometimes wrapped in INDIRECT_REFs. INDIRECT_REFs are just internal compiler representation, not part of the language, so we have to look through them. */ if (TREE_CODE (ref) == INDIRECT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == REFERENCE_TYPE) return lvalue_p_1 (TREE_OPERAND (ref, 0)); if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE) { /* unnamed rvalue references are rvalues */ if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref)) && TREE_CODE (ref) != PARM_DECL && TREE_CODE (ref) != VAR_DECL && TREE_CODE (ref) != COMPONENT_REF) return clk_rvalueref; /* lvalue references and named rvalue references are lvalues. */ return clk_ordinary; } if (ref == current_class_ptr) return clk_none; switch (TREE_CODE (ref)) { case SAVE_EXPR: return clk_none; /* preincrements and predecrements are valid lvals, provided what they refer to are valid lvals. */ case PREINCREMENT_EXPR: case PREDECREMENT_EXPR: case TRY_CATCH_EXPR: case WITH_CLEANUP_EXPR: case REALPART_EXPR: case IMAGPART_EXPR: return lvalue_p_1 (TREE_OPERAND (ref, 0)); case COMPONENT_REF: op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0)); /* Look at the member designator. */ if (!op1_lvalue_kind) ; else if (is_overloaded_fn (TREE_OPERAND (ref, 1))) /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some situations. If we're seeing a COMPONENT_REF, it's a non-static member, so it isn't an lvalue. */ op1_lvalue_kind = clk_none; else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL) /* This can be IDENTIFIER_NODE in a template. */; else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1))) { /* Clear the ordinary bit. If this object was a class rvalue we want to preserve that information. */ op1_lvalue_kind &= ~clk_ordinary; /* The lvalue is for a bitfield. */ op1_lvalue_kind |= clk_bitfield; } else if (DECL_PACKED (TREE_OPERAND (ref, 1))) op1_lvalue_kind |= clk_packed; return op1_lvalue_kind; case STRING_CST: case COMPOUND_LITERAL_EXPR: return clk_ordinary; case CONST_DECL: /* CONST_DECL without TREE_STATIC are enumeration values and thus not lvalues. With TREE_STATIC they are used by ObjC++ in objc_build_string_object and need to be considered as lvalues. */ if (! TREE_STATIC (ref)) return clk_none; case VAR_DECL: if (TREE_READONLY (ref) && ! TREE_STATIC (ref) && DECL_LANG_SPECIFIC (ref) && DECL_IN_AGGR_P (ref)) return clk_none; case INDIRECT_REF: case ARRAY_REF: case PARM_DECL: case RESULT_DECL: if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE) return clk_ordinary; break; /* A currently unresolved scope ref. */ case SCOPE_REF: gcc_unreachable (); case MAX_EXPR: case MIN_EXPR: /* Disallow <? and >? as lvalues if either argument side-effects. */ if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0)) || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1))) return clk_none; op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0)); op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1)); break; case COND_EXPR: op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1) ? TREE_OPERAND (ref, 1) : TREE_OPERAND (ref, 0)); op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2)); break; case MODIFY_EXPR: return clk_ordinary; case COMPOUND_EXPR: return lvalue_p_1 (TREE_OPERAND (ref, 1)); case TARGET_EXPR: return clk_class; case VA_ARG_EXPR: return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none); case CALL_EXPR: /* Any class-valued call would be wrapped in a TARGET_EXPR. */ return clk_none; case FUNCTION_DECL: /* All functions (except non-static-member functions) are lvalues. */ return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref) ? clk_none : clk_ordinary); case BASELINK: /* We now represent a reference to a single static member function with a BASELINK. */ /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns its argument unmodified and we assign it to a const_tree. */ return lvalue_p_1 (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref))); case NON_DEPENDENT_EXPR: /* We must consider NON_DEPENDENT_EXPRs to be lvalues so that things like "&E" where "E" is an expression with a non-dependent type work. It is safe to be lenient because an error will be issued when the template is instantiated if "E" is not an lvalue. */ return clk_ordinary; default: break; } /* If one operand is not an lvalue at all, then this expression is not an lvalue. */ if (!op1_lvalue_kind || !op2_lvalue_kind) return clk_none; /* Otherwise, it's an lvalue, and it has all the odd properties contributed by either operand. */ op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind; /* It's not an ordinary lvalue if it involves any other kind. */ if ((op1_lvalue_kind & ~clk_ordinary) != clk_none) op1_lvalue_kind &= ~clk_ordinary; /* It can't be both a pseudo-lvalue and a non-addressable lvalue. A COND_EXPR of those should be wrapped in a TARGET_EXPR. */ if ((op1_lvalue_kind & (clk_rvalueref|clk_class)) && (op1_lvalue_kind & (clk_bitfield|clk_packed))) op1_lvalue_kind = clk_none; return op1_lvalue_kind; } /* Returns the kind of lvalue that REF is, in the sense of [basic.lval]. This function should really be named lvalue_p; it computes the C++ definition of lvalue. */ cp_lvalue_kind real_lvalue_p (tree ref) { cp_lvalue_kind kind = lvalue_p_1 (ref); if (kind & (clk_rvalueref|clk_class)) return clk_none; else return kind; } /* This differs from real_lvalue_p in that class rvalues are considered lvalues. */ bool lvalue_p (const_tree ref) { return (lvalue_p_1 (ref) != clk_none); } /* This differs from real_lvalue_p in that rvalues formed by dereferencing rvalue references are considered rvalues. */ bool lvalue_or_rvalue_with_address_p (const_tree ref) { cp_lvalue_kind kind = lvalue_p_1 (ref); if (kind & clk_class) return false; else return (kind != clk_none); } /* Test whether DECL is a builtin that may appear in a constant-expression. */ bool builtin_valid_in_constant_expr_p (const_tree decl) { /* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing in constant-expressions. We may want to add other builtins later. */ return DECL_IS_BUILTIN_CONSTANT_P (decl); } /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */ static tree build_target_expr (tree decl, tree value) { tree t; #ifdef ENABLE_CHECKING gcc_assert (VOID_TYPE_P (TREE_TYPE (value)) || TREE_TYPE (decl) == TREE_TYPE (value) || useless_type_conversion_p (TREE_TYPE (decl), TREE_TYPE (value))); #endif t = build4 (TARGET_EXPR, TREE_TYPE (decl), decl, value, cxx_maybe_build_cleanup (decl), NULL_TREE); /* We always set TREE_SIDE_EFFECTS so that expand_expr does not ignore the TARGET_EXPR. If there really turn out to be no side-effects, then the optimizer should be able to get rid of whatever code is generated anyhow. */ TREE_SIDE_EFFECTS (t) = 1; return t; } /* Return an undeclared local temporary of type TYPE for use in building a TARGET_EXPR. */ static tree build_local_temp (tree type) { tree slot = build_decl (input_location, VAR_DECL, NULL_TREE, type); DECL_ARTIFICIAL (slot) = 1; DECL_IGNORED_P (slot) = 1; DECL_CONTEXT (slot) = current_function_decl; layout_decl (slot, 0); return slot; } /* Set various status flags when building an AGGR_INIT_EXPR object T. */ static void process_aggr_init_operands (tree t) { bool side_effects; side_effects = TREE_SIDE_EFFECTS (t); if (!side_effects) { int i, n; n = TREE_OPERAND_LENGTH (t); for (i = 1; i < n; i++) { tree op = TREE_OPERAND (t, i); if (op && TREE_SIDE_EFFECTS (op)) { side_effects = 1; break; } } } TREE_SIDE_EFFECTS (t) = side_effects; } /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE, FN, and SLOT. NARGS is the number of call arguments which are specified as a tree array ARGS. */ static tree build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs, tree *args) { tree t; int i; t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3); TREE_TYPE (t) = return_type; AGGR_INIT_EXPR_FN (t) = fn; AGGR_INIT_EXPR_SLOT (t) = slot; for (i = 0; i < nargs; i++) AGGR_INIT_EXPR_ARG (t, i) = args[i]; process_aggr_init_operands (t); return t; } /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its target. TYPE is the type to be initialized. Build an AGGR_INIT_EXPR to represent the initialization. This function differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used to initialize another object, whereas a TARGET_EXPR can either initialize another object or create its own temporary object, and as a result building up a TARGET_EXPR requires that the type's destructor be callable. */ tree build_aggr_init_expr (tree type, tree init) { tree fn; tree slot; tree rval; int is_ctor; /* Make sure that we're not trying to create an instance of an abstract class. */ abstract_virtuals_error (NULL_TREE, type); if (TREE_CODE (init) == CALL_EXPR) fn = CALL_EXPR_FN (init); else if (TREE_CODE (init) == AGGR_INIT_EXPR) fn = AGGR_INIT_EXPR_FN (init); else return convert (type, init); is_ctor = (TREE_CODE (fn) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0))); /* We split the CALL_EXPR into its function and its arguments here. Then, in expand_expr, we put them back together. The reason for this is that this expression might be a default argument expression. In that case, we need a new temporary every time the expression is used. That's what break_out_target_exprs does; it replaces every AGGR_INIT_EXPR with a copy that uses a fresh temporary slot. Then, expand_expr builds up a call-expression using the new slot. */ /* If we don't need to use a constructor to create an object of this type, don't mess with AGGR_INIT_EXPR. */ if (is_ctor || TREE_ADDRESSABLE (type)) { slot = build_local_temp (type); if (TREE_CODE(init) == CALL_EXPR) rval = build_aggr_init_array (void_type_node, fn, slot, call_expr_nargs (init), CALL_EXPR_ARGP (init)); else rval = build_aggr_init_array (void_type_node, fn, slot, aggr_init_expr_nargs (init), AGGR_INIT_EXPR_ARGP (init)); TREE_SIDE_EFFECTS (rval) = 1; AGGR_INIT_VIA_CTOR_P (rval) = is_ctor; } else rval = init; return rval; } /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its target. TYPE is the type that this initialization should appear to have. Build an encapsulation of the initialization to perform and return it so that it can be processed by language-independent and language-specific expression expanders. */ tree build_cplus_new (tree type, tree init) { tree rval = build_aggr_init_expr (type, init); tree slot; if (TREE_CODE (rval) == AGGR_INIT_EXPR) slot = AGGR_INIT_EXPR_SLOT (rval); else if (TREE_CODE (rval) == CALL_EXPR) slot = build_local_temp (type); else return rval; rval = build_target_expr (slot, rval); TARGET_EXPR_IMPLICIT_P (rval) = 1; return rval; } /* Return a TARGET_EXPR which expresses the direct-initialization of one array from another. */ tree build_array_copy (tree init) { tree type = TREE_TYPE (init); tree slot = build_local_temp (type); init = build2 (VEC_INIT_EXPR, type, slot, init); SET_EXPR_LOCATION (init, input_location); init = build_target_expr (slot, init); TARGET_EXPR_IMPLICIT_P (init) = 1; return init; } /* Build a TARGET_EXPR using INIT to initialize a new temporary of the indicated TYPE. */ tree build_target_expr_with_type (tree init, tree type) { gcc_assert (!VOID_TYPE_P (type)); if (TREE_CODE (init) == TARGET_EXPR) return init; else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type) && !VOID_TYPE_P (TREE_TYPE (init)) && TREE_CODE (init) != COND_EXPR && TREE_CODE (init) != CONSTRUCTOR && TREE_CODE (init) != VA_ARG_EXPR) /* We need to build up a copy constructor call. A void initializer means we're being called from bot_manip. COND_EXPR is a special case because we already have copies on the arms and we don't want another one here. A CONSTRUCTOR is aggregate initialization, which is handled separately. A VA_ARG_EXPR is magic creation of an aggregate; there's no additional work to be done. */ return force_rvalue (init); return force_target_expr (type, init); } /* Like the above function, but without the checking. This function should only be used by code which is deliberately trying to subvert the type system, such as call_builtin_trap. */ tree force_target_expr (tree type, tree init) { tree slot; gcc_assert (!VOID_TYPE_P (type)); slot = build_local_temp (type); return build_target_expr (slot, init); } /* Like build_target_expr_with_type, but use the type of INIT. */ tree get_target_expr (tree init) { if (TREE_CODE (init) == AGGR_INIT_EXPR) return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init); else return build_target_expr_with_type (init, TREE_TYPE (init)); } /* If EXPR is a bitfield reference, convert it to the declared type of the bitfield, and return the resulting expression. Otherwise, return EXPR itself. */ tree convert_bitfield_to_declared_type (tree expr) { tree bitfield_type; bitfield_type = is_bitfield_expr_with_lowered_type (expr); if (bitfield_type) expr = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type), expr); return expr; } /* EXPR is being used in an rvalue context. Return a version of EXPR that is marked as an rvalue. */ tree rvalue (tree expr) { tree type; if (error_operand_p (expr)) return expr; /* [basic.lval] Non-class rvalues always have cv-unqualified types. */ type = TREE_TYPE (expr); if (!CLASS_TYPE_P (type) && cv_qualified_p (type)) type = cv_unqualified (type); /* We need to do this for rvalue refs as well to get the right answer from decltype; see c++/36628. */ if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr)) expr = build1 (NON_LVALUE_EXPR, type, expr); else if (type != TREE_TYPE (expr)) expr = build_nop (type, expr); return expr; } /* Hash an ARRAY_TYPE. K is really of type `tree'. */ static hashval_t cplus_array_hash (const void* k) { hashval_t hash; const_tree const t = (const_tree) k; hash = TYPE_UID (TREE_TYPE (t)); if (TYPE_DOMAIN (t)) hash ^= TYPE_UID (TYPE_DOMAIN (t)); return hash; } typedef struct cplus_array_info { tree type; tree domain; } cplus_array_info; /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really of type `cplus_array_info*'. */ static int cplus_array_compare (const void * k1, const void * k2) { const_tree const t1 = (const_tree) k1; const cplus_array_info *const t2 = (const cplus_array_info*) k2; return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain); } /* Hash table containing dependent array types, which are unsuitable for the language-independent type hash table. */ static GTY ((param_is (union tree_node))) htab_t cplus_array_htab; /* Like build_array_type, but handle special C++ semantics. */ tree build_cplus_array_type (tree elt_type, tree index_type) { tree t; if (elt_type == error_mark_node || index_type == error_mark_node) return error_mark_node; if (processing_template_decl && (dependent_type_p (elt_type) || (index_type && !TREE_CONSTANT (TYPE_MAX_VALUE (index_type))))) { void **e; cplus_array_info cai; hashval_t hash; if (cplus_array_htab == NULL) cplus_array_htab = htab_create_ggc (61, &cplus_array_hash, &cplus_array_compare, NULL); hash = TYPE_UID (elt_type); if (index_type) hash ^= TYPE_UID (index_type); cai.type = elt_type; cai.domain = index_type; e = htab_find_slot_with_hash (cplus_array_htab, &cai, hash, INSERT); if (*e) /* We have found the type: we're done. */ return (tree) *e; else { /* Build a new array type. */ t = cxx_make_type (ARRAY_TYPE); TREE_TYPE (t) = elt_type; TYPE_DOMAIN (t) = index_type; /* Store it in the hash table. */ *e = t; /* Set the canonical type for this new node. */ if (TYPE_STRUCTURAL_EQUALITY_P (elt_type) || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (elt_type) != elt_type || (index_type && TYPE_CANONICAL (index_type) != index_type)) TYPE_CANONICAL (t) = build_cplus_array_type (TYPE_CANONICAL (elt_type), index_type ? TYPE_CANONICAL (index_type) : index_type); else TYPE_CANONICAL (t) = t; } } else t = build_array_type (elt_type, index_type); /* We want TYPE_MAIN_VARIANT of an array to strip cv-quals from the element type as well, so fix it up if needed. */ if (elt_type != TYPE_MAIN_VARIANT (elt_type)) { tree m = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type), index_type); if (TYPE_MAIN_VARIANT (t) != m) { TYPE_MAIN_VARIANT (t) = m; TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m); TYPE_NEXT_VARIANT (m) = t; } } /* Push these needs up so that initialization takes place more easily. */ TYPE_NEEDS_CONSTRUCTING (t) = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type)); TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type)); return t; } /* Return an ARRAY_TYPE with element type ELT and length N. */ tree build_array_of_n_type (tree elt, int n) { return build_cplus_array_type (elt, build_index_type (size_int (n - 1))); } /* Return a reference type node referring to TO_TYPE. If RVAL is true, return an rvalue reference type, otherwise return an lvalue reference type. If a type node exists, reuse it, otherwise create a new one. */ tree cp_build_reference_type (tree to_type, bool rval) { tree lvalue_ref, t; lvalue_ref = build_reference_type (to_type); if (!rval) return lvalue_ref; /* This code to create rvalue reference types is based on and tied to the code creating lvalue reference types in the middle-end functions build_reference_type_for_mode and build_reference_type. It works by putting the rvalue reference type nodes after the lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so they will effectively be ignored by the middle end. */ for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); ) if (TYPE_REF_IS_RVALUE (t)) return t; t = build_distinct_type_copy (lvalue_ref); TYPE_REF_IS_RVALUE (t) = true; TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref); TYPE_NEXT_REF_TO (lvalue_ref) = t; if (TYPE_STRUCTURAL_EQUALITY_P (to_type)) SET_TYPE_STRUCTURAL_EQUALITY (t); else if (TYPE_CANONICAL (to_type) != to_type) TYPE_CANONICAL (t) = cp_build_reference_type (TYPE_CANONICAL (to_type), rval); else TYPE_CANONICAL (t) = t; layout_type (t); return t; } /* Returns EXPR cast to rvalue reference type, like std::move. */ tree move (tree expr) { tree type = TREE_TYPE (expr); gcc_assert (TREE_CODE (type) != REFERENCE_TYPE); type = cp_build_reference_type (type, /*rval*/true); return build_static_cast (type, expr, tf_warning_or_error); } /* Used by the C++ front end to build qualified array types. However, the C version of this function does not properly maintain canonical types (which are not used in C). */ tree c_build_qualified_type (tree type, int type_quals) { return cp_build_qualified_type (type, type_quals); } /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles arrays correctly. In particular, if TYPE is an array of T's, and TYPE_QUALS is non-empty, returns an array of qualified T's. FLAGS determines how to deal with ill-formed qualifications. If tf_ignore_bad_quals is set, then bad qualifications are dropped (this is permitted if TYPE was introduced via a typedef or template type parameter). If bad qualifications are dropped and tf_warning is set, then a warning is issued for non-const qualifications. If tf_ignore_bad_quals is not set and tf_error is not set, we return error_mark_node. Otherwise, we issue an error, and ignore the qualifications. Qualification of a reference type is valid when the reference came via a typedef or template type argument. [dcl.ref] No such dispensation is provided for qualifying a function type. [dcl.fct] DR 295 queries this and the proposed resolution brings it into line with qualifying a reference. We implement the DR. We also behave in a similar manner for restricting non-pointer types. */ tree cp_build_qualified_type_real (tree type, int type_quals, tsubst_flags_t complain) { tree result; int bad_quals = TYPE_UNQUALIFIED; if (type == error_mark_node) return type; if (type_quals == cp_type_quals (type)) return type; if (TREE_CODE (type) == ARRAY_TYPE) { /* In C++, the qualification really applies to the array element type. Obtain the appropriately qualified element type. */ tree t; tree element_type = cp_build_qualified_type_real (TREE_TYPE (type), type_quals, complain); if (element_type == error_mark_node) return error_mark_node; /* See if we already have an identically qualified type. Tests should be equivalent to those in check_qualified_type. */ for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t)) if (cp_type_quals (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type) && TYPE_CONTEXT (t) == TYPE_CONTEXT (type) && attribute_list_equal (TYPE_ATTRIBUTES (t), TYPE_ATTRIBUTES (type))) break; if (!t) { t = build_cplus_array_type (element_type, TYPE_DOMAIN (type)); /* Keep the typedef name. */ if (TYPE_NAME (t) != TYPE_NAME (type)) { t = build_variant_type_copy (t); TYPE_NAME (t) = TYPE_NAME (type); } } /* Even if we already had this variant, we update TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case they changed since the variant was originally created. This seems hokey; if there is some way to use a previous variant *without* coming through here, TYPE_NEEDS_CONSTRUCTING will never be updated. */ TYPE_NEEDS_CONSTRUCTING (t) = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type)); TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type)); return t; } else if (TYPE_PTRMEMFUNC_P (type)) { /* For a pointer-to-member type, we can't just return a cv-qualified version of the RECORD_TYPE. If we do, we haven't changed the field that contains the actual pointer to a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */ tree t; t = TYPE_PTRMEMFUNC_FN_TYPE (type); t = cp_build_qualified_type_real (t, type_quals, complain); return build_ptrmemfunc_type (t); } else if (TREE_CODE (type) == TYPE_PACK_EXPANSION) { tree t = PACK_EXPANSION_PATTERN (type); t = cp_build_qualified_type_real (t, type_quals, complain); return make_pack_expansion (t); } /* A reference or method type shall not be cv-qualified. [dcl.ref], [dcl.fct] */ if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE) && (TREE_CODE (type) == REFERENCE_TYPE || TREE_CODE (type) == METHOD_TYPE)) { bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE); } /* A restrict-qualified type must be a pointer (or reference) to object or incomplete type. */ if ((type_quals & TYPE_QUAL_RESTRICT) && TREE_CODE (type) != TEMPLATE_TYPE_PARM && TREE_CODE (type) != TYPENAME_TYPE && !POINTER_TYPE_P (type)) { bad_quals |= TYPE_QUAL_RESTRICT; type_quals &= ~TYPE_QUAL_RESTRICT; } if (bad_quals == TYPE_UNQUALIFIED) /*OK*/; else if (!(complain & (tf_error | tf_ignore_bad_quals))) return error_mark_node; else { if (complain & tf_ignore_bad_quals) /* We're not going to warn about constifying things that can't be constified. */ bad_quals &= ~TYPE_QUAL_CONST; if (bad_quals) { tree bad_type = build_qualified_type (ptr_type_node, bad_quals); if (!(complain & tf_ignore_bad_quals)) error ("%qV qualifiers cannot be applied to %qT", bad_type, type); } } /* Retrieve (or create) the appropriately qualified variant. */ result = build_qualified_type (type, type_quals); /* If this was a pointer-to-method type, and we just made a copy, then we need to unshare the record that holds the cached pointer-to-member-function type, because these will be distinct between the unqualified and qualified types. */ if (result != type && TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE && TYPE_LANG_SPECIFIC (result) == TYPE_LANG_SPECIFIC (type)) TYPE_LANG_SPECIFIC (result) = NULL; /* We may also have ended up building a new copy of the canonical type of a pointer-to-method type, which could have the same sharing problem described above. */ if (TYPE_CANONICAL (result) != TYPE_CANONICAL (type) && TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE && (TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result)) == TYPE_LANG_SPECIFIC (TYPE_CANONICAL (type)))) TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result)) = NULL; return result; } /* Return TYPE with const and volatile removed. */ tree cv_unqualified (tree type) { int quals = TYPE_QUALS (type); quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE); return cp_build_qualified_type (type, quals); } /* Builds a qualified variant of T that is not a typedef variant. E.g. consider the following declarations: typedef const int ConstInt; typedef ConstInt* PtrConstInt; If T is PtrConstInt, this function returns a type representing const int*. In other words, if T is a typedef, the function returns the underlying type. The cv-qualification and attributes of the type returned match the input type. They will always be compatible types. The returned type is built so that all of its subtypes recursively have their typedefs stripped as well. This is different from just returning TYPE_CANONICAL (T) Because of several reasons: * If T is a type that needs structural equality its TYPE_CANONICAL (T) will be NULL. * TYPE_CANONICAL (T) desn't carry type attributes and looses template parameter names. */ tree strip_typedefs (tree t) { tree result = NULL, type = NULL, t0 = NULL; if (!t || t == error_mark_node || t == TYPE_CANONICAL (t)) return t; gcc_assert (TYPE_P (t)); switch (TREE_CODE (t)) { case POINTER_TYPE: type = strip_typedefs (TREE_TYPE (t)); result = build_pointer_type (type); break; case REFERENCE_TYPE: type = strip_typedefs (TREE_TYPE (t)); result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t)); break; case OFFSET_TYPE: t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t)); type = strip_typedefs (TREE_TYPE (t)); result = build_offset_type (t0, type); break; case RECORD_TYPE: if (TYPE_PTRMEMFUNC_P (t)) { t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t)); result = build_ptrmemfunc_type (t0); } break; case ARRAY_TYPE: type = strip_typedefs (TREE_TYPE (t)); t0 = strip_typedefs (TYPE_DOMAIN (t));; result = build_cplus_array_type (type, t0); break; case FUNCTION_TYPE: case METHOD_TYPE: { tree arg_types = NULL, arg_node, arg_type; for (arg_node = TYPE_ARG_TYPES (t); arg_node; arg_node = TREE_CHAIN (arg_node)) { if (arg_node == void_list_node) break; arg_type = strip_typedefs (TREE_VALUE (arg_node)); gcc_assert (arg_type); arg_types = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types); } if (arg_types) arg_types = nreverse (arg_types); /* A list of parameters not ending with an ellipsis must end with void_list_node. */ if (arg_node) arg_types = chainon (arg_types, void_list_node); type = strip_typedefs (TREE_TYPE (t)); if (TREE_CODE (t) == METHOD_TYPE) { tree class_type = TREE_TYPE (TREE_VALUE (arg_types)); gcc_assert (class_type); result = build_method_type_directly (class_type, type, TREE_CHAIN (arg_types)); } else result = build_function_type (type, arg_types); if (TYPE_RAISES_EXCEPTIONS (t)) result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (t)); } break; default: break; } if (!result) result = TYPE_MAIN_VARIANT (t); if (TYPE_ATTRIBUTES (t)) result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t)); return cp_build_qualified_type (result, cp_type_quals (t)); } /* Returns true iff TYPE is a type variant created for a typedef. */ bool typedef_variant_p (tree type) { return is_typedef_decl (TYPE_NAME (type)); } /* Setup a TYPE_DECL node as a typedef representation. See comments of set_underlying_type in c-common.c. */ void cp_set_underlying_type (tree t) { set_underlying_type (t); /* If T is a template type parm, make it require structural equality. This is useful when comparing two template type parms, because it forces the comparison of the template parameters of their decls. */ if (TREE_CODE (TREE_TYPE (t)) == TEMPLATE_TYPE_PARM) SET_TYPE_STRUCTURAL_EQUALITY (TREE_TYPE (t)); } /* Makes a copy of BINFO and TYPE, which is to be inherited into a graph dominated by T. If BINFO is NULL, TYPE is a dependent base, and we do a shallow copy. If BINFO is non-NULL, we do a deep copy. VIRT indicates whether TYPE is inherited virtually or not. IGO_PREV points at the previous binfo of the inheritance graph order chain. The newly copied binfo's TREE_CHAIN forms this ordering. The CLASSTYPE_VBASECLASSES vector of T is constructed in the correct order. That is in the order the bases themselves should be constructed in. The BINFO_INHERITANCE of a virtual base class points to the binfo of the most derived type. ??? We could probably change this so that BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence remove a field. They currently can only differ for primary virtual virtual bases. */ tree copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt) { tree new_binfo; if (virt) { /* See if we've already made this virtual base. */ new_binfo = binfo_for_vbase (type, t); if (new_binfo) return new_binfo; } new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0); BINFO_TYPE (new_binfo) = type; /* Chain it into the inheritance graph. */ TREE_CHAIN (*igo_prev) = new_binfo; *igo_prev = new_binfo; if (binfo) { int ix; tree base_binfo; gcc_assert (!BINFO_DEPENDENT_BASE_P (binfo)); gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type)); BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo); BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo); /* We do not need to copy the accesses, as they are read only. */ BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo); /* Recursively copy base binfos of BINFO. */ for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++) { tree new_base_binfo; gcc_assert (!BINFO_DEPENDENT_BASE_P (base_binfo)); new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo), t, igo_prev, BINFO_VIRTUAL_P (base_binfo)); if (!BINFO_INHERITANCE_CHAIN (new_base_binfo)) BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo; BINFO_BASE_APPEND (new_binfo, new_base_binfo); } } else BINFO_DEPENDENT_BASE_P (new_binfo) = 1; if (virt) { /* Push it onto the list after any virtual bases it contains will have been pushed. */ VEC_quick_push (tree, CLASSTYPE_VBASECLASSES (t), new_binfo); BINFO_VIRTUAL_P (new_binfo) = 1; BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t); } return new_binfo; } /* Hashing of lists so that we don't make duplicates. The entry point is `list_hash_canon'. */ /* Now here is the hash table. When recording a list, it is added to the slot whose index is the hash code mod the table size. Note that the hash table is used for several kinds of lists. While all these live in the same table, they are completely independent, and the hash code is computed differently for each of these. */ static GTY ((param_is (union tree_node))) htab_t list_hash_table; struct list_proxy { tree purpose; tree value; tree chain; }; /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy for a node we are thinking about adding). */ static int list_hash_eq (const void* entry, const void* data) { const_tree const t = (const_tree) entry; const struct list_proxy *const proxy = (const struct list_proxy *) data; return (TREE_VALUE (t) == proxy->value && TREE_PURPOSE (t) == proxy->purpose && TREE_CHAIN (t) == proxy->chain); } /* Compute a hash code for a list (chain of TREE_LIST nodes with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the TREE_COMMON slots), by adding the hash codes of the individual entries. */ static hashval_t list_hash_pieces (tree purpose, tree value, tree chain) { hashval_t hashcode = 0; if (chain) hashcode += TREE_HASH (chain); if (value) hashcode += TREE_HASH (value); else hashcode += 1007; if (purpose) hashcode += TREE_HASH (purpose); else hashcode += 1009; return hashcode; } /* Hash an already existing TREE_LIST. */ static hashval_t list_hash (const void* p) { const_tree const t = (const_tree) p; return list_hash_pieces (TREE_PURPOSE (t), TREE_VALUE (t), TREE_CHAIN (t)); } /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical object for an identical list if one already exists. Otherwise, build a new one, and record it as the canonical object. */ tree hash_tree_cons (tree purpose, tree value, tree chain) { int hashcode = 0; void **slot; struct list_proxy proxy; /* Hash the list node. */ hashcode = list_hash_pieces (purpose, value, chain); /* Create a proxy for the TREE_LIST we would like to create. We don't actually create it so as to avoid creating garbage. */ proxy.purpose = purpose; proxy.value = value; proxy.chain = chain; /* See if it is already in the table. */ slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode, INSERT); /* If not, create a new node. */ if (!*slot) *slot = tree_cons (purpose, value, chain); return (tree) *slot; } /* Constructor for hashed lists. */ tree hash_tree_chain (tree value, tree chain) { return hash_tree_cons (NULL_TREE, value, chain); } void debug_binfo (tree elem) { HOST_WIDE_INT n; tree virtuals; fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC "\nvtable type:\n", TYPE_NAME_STRING (BINFO_TYPE (elem)), TREE_INT_CST_LOW (BINFO_OFFSET (elem))); debug_tree (BINFO_TYPE (elem)); if (BINFO_VTABLE (elem)) fprintf (stderr, "vtable decl \"%s\"\n", IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem)))); else fprintf (stderr, "no vtable decl yet\n"); fprintf (stderr, "virtuals:\n"); virtuals = BINFO_VIRTUALS (elem); n = 0; while (virtuals) { tree fndecl = TREE_VALUE (virtuals); fprintf (stderr, "%s [%ld =? %ld]\n", IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)), (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl))); ++n; virtuals = TREE_CHAIN (virtuals); } } /* Build a representation for the qualified name SCOPE::NAME. TYPE is the type of the result expression, if known, or NULL_TREE if the resulting expression is type-dependent. If TEMPLATE_P is true, NAME is known to be a template because the user explicitly used the "template" keyword after the "::". All SCOPE_REFs should be built by use of this function. */ tree build_qualified_name (tree type, tree scope, tree name, bool template_p) { tree t; if (type == error_mark_node || scope == error_mark_node || name == error_mark_node) return error_mark_node; t = build2 (SCOPE_REF, type, scope, name); QUALIFIED_NAME_IS_TEMPLATE (t) = template_p; if (type) t = convert_from_reference (t); return t; } /* Returns nonzero if X is an expression for a (possibly overloaded) function. If "f" is a function or function template, "f", "c->f", "c.f", "C::f", and "f<int>" will all be considered possibly overloaded functions. Returns 2 if the function is actually overloaded, i.e., if it is impossible to know the type of the function without performing overload resolution. */ int is_overloaded_fn (tree x) { /* A baselink is also considered an overloaded function. */ if (TREE_CODE (x) == OFFSET_REF || TREE_CODE (x) == COMPONENT_REF) x = TREE_OPERAND (x, 1); if (BASELINK_P (x)) x = BASELINK_FUNCTIONS (x); if (TREE_CODE (x) == TEMPLATE_ID_EXPR) x = TREE_OPERAND (x, 0); if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x)) || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x))) return 2; return (TREE_CODE (x) == FUNCTION_DECL || TREE_CODE (x) == OVERLOAD); } /* Returns true iff X is an expression for an overloaded function whose type cannot be known without performing overload resolution. */ bool really_overloaded_fn (tree x) { return is_overloaded_fn (x) == 2; } tree get_first_fn (tree from) { gcc_assert (is_overloaded_fn (from)); /* A baselink is also considered an overloaded function. */ if (TREE_CODE (from) == OFFSET_REF || TREE_CODE (from) == COMPONENT_REF) from = TREE_OPERAND (from, 1); if (BASELINK_P (from)) from = BASELINK_FUNCTIONS (from); if (TREE_CODE (from) == TEMPLATE_ID_EXPR) from = TREE_OPERAND (from, 0); return OVL_CURRENT (from); } /* Return a new OVL node, concatenating it with the old one. */ tree ovl_cons (tree decl, tree chain) { tree result = make_node (OVERLOAD); TREE_TYPE (result) = unknown_type_node; OVL_FUNCTION (result) = decl; TREE_CHAIN (result) = chain; return result; } /* Build a new overloaded function. If this is the first one, just return it; otherwise, ovl_cons the _DECLs */ tree build_overload (tree decl, tree chain) { if (! chain && TREE_CODE (decl) != TEMPLATE_DECL) return decl; if (chain && TREE_CODE (chain) != OVERLOAD) chain = ovl_cons (chain, NULL_TREE); return ovl_cons (decl, chain); } #define PRINT_RING_SIZE 4 static const char * cxx_printable_name_internal (tree decl, int v, bool translate) { static unsigned int uid_ring[PRINT_RING_SIZE]; static char *print_ring[PRINT_RING_SIZE]; static bool trans_ring[PRINT_RING_SIZE]; static int ring_counter; int i; /* Only cache functions. */ if (v < 2 || TREE_CODE (decl) != FUNCTION_DECL || DECL_LANG_SPECIFIC (decl) == 0) return lang_decl_name (decl, v, translate); /* See if this print name is lying around. */ for (i = 0; i < PRINT_RING_SIZE; i++) if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i]) /* yes, so return it. */ return print_ring[i]; if (++ring_counter == PRINT_RING_SIZE) ring_counter = 0; if (current_function_decl != NULL_TREE) { /* There may be both translated and untranslated versions of the name cached. */ for (i = 0; i < 2; i++) { if (uid_ring[ring_counter] == DECL_UID (current_function_decl)) ring_counter += 1; if (ring_counter == PRINT_RING_SIZE) ring_counter = 0; } gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl)); } if (print_ring[ring_counter]) free (print_ring[ring_counter]); print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate)); uid_ring[ring_counter] = DECL_UID (decl); trans_ring[ring_counter] = translate; return print_ring[ring_counter]; } const char * cxx_printable_name (tree decl, int v) { return cxx_printable_name_internal (decl, v, false); } const char * cxx_printable_name_translate (tree decl, int v) { return cxx_printable_name_internal (decl, v, true); } /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions listed in RAISES. */ tree build_exception_variant (tree type, tree raises) { tree v = TYPE_MAIN_VARIANT (type); int type_quals = TYPE_QUALS (type); for (; v; v = TYPE_NEXT_VARIANT (v)) if (check_qualified_type (v, type, type_quals) && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1)) return v; /* Need to build a new variant. */ v = build_variant_type_copy (type); TYPE_RAISES_EXCEPTIONS (v) = raises; return v; } /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template arguments. */ tree bind_template_template_parm (tree t, tree newargs) { tree decl = TYPE_NAME (t); tree t2; t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM); decl = build_decl (input_location, TYPE_DECL, DECL_NAME (decl), NULL_TREE); /* These nodes have to be created to reflect new TYPE_DECL and template arguments. */ TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t)); TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl; TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2) = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs); TREE_TYPE (decl) = t2; TYPE_NAME (t2) = decl; TYPE_STUB_DECL (t2) = decl; TYPE_SIZE (t2) = 0; SET_TYPE_STRUCTURAL_EQUALITY (t2); return t2; } /* Called from count_trees via walk_tree. */ static tree count_trees_r (tree *tp, int *walk_subtrees, void *data) { ++*((int *) data); if (TYPE_P (*tp)) *walk_subtrees = 0; return NULL_TREE; } /* Debugging function for measuring the rough complexity of a tree representation. */ int count_trees (tree t) { int n_trees = 0; cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees); return n_trees; } /* Called from verify_stmt_tree via walk_tree. */ static tree verify_stmt_tree_r (tree* tp, int* walk_subtrees ATTRIBUTE_UNUSED , void* data) { tree t = *tp; htab_t *statements = (htab_t *) data; void **slot; if (!STATEMENT_CODE_P (TREE_CODE (t))) return NULL_TREE; /* If this statement is already present in the hash table, then there is a circularity in the statement tree. */ gcc_assert (!htab_find (*statements, t)); slot = htab_find_slot (*statements, t, INSERT); *slot = t; return NULL_TREE; } /* Debugging function to check that the statement T has not been corrupted. For now, this function simply checks that T contains no circularities. */ void verify_stmt_tree (tree t) { htab_t statements; statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL); cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL); htab_delete (statements); } /* Check if the type T depends on a type with no linkage and if so, return it. If RELAXED_P then do not consider a class type declared within a vague-linkage function to have no linkage. */ tree no_linkage_check (tree t, bool relaxed_p) { tree r; /* There's no point in checking linkage on template functions; we can't know their complete types. */ if (processing_template_decl) return NULL_TREE; switch (TREE_CODE (t)) { case RECORD_TYPE: if (TYPE_PTRMEMFUNC_P (t)) goto ptrmem; /* Lambda types that don't have mangling scope have no linkage. We check CLASSTYPE_LAMBDA_EXPR here rather than LAMBDA_TYPE_P because when we get here from pushtag none of the lambda information is set up yet, so we want to assume that the lambda has linkage and fix it up later if not. */ if (CLASSTYPE_LAMBDA_EXPR (t) && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE) return t; /* Fall through. */ case UNION_TYPE: if (!CLASS_TYPE_P (t)) return NULL_TREE; /* Fall through. */ case ENUMERAL_TYPE: /* Only treat anonymous types as having no linkage if they're at namespace scope. This is core issue 966. */ if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t)) return t; for (r = CP_TYPE_CONTEXT (t); ; ) { /* If we're a nested type of a !TREE_PUBLIC class, we might not have linkage, or we might just be in an anonymous namespace. If we're in a TREE_PUBLIC class, we have linkage. */ if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r))) return no_linkage_check (TYPE_CONTEXT (t), relaxed_p); else if (TREE_CODE (r) == FUNCTION_DECL) { if (!relaxed_p || !vague_linkage_p (r)) return t; else r = CP_DECL_CONTEXT (r); } else break; } return NULL_TREE; case ARRAY_TYPE: case POINTER_TYPE: case REFERENCE_TYPE: return no_linkage_check (TREE_TYPE (t), relaxed_p); case OFFSET_TYPE: ptrmem: r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t), relaxed_p); if (r) return r; return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p); case METHOD_TYPE: r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p); if (r) return r; /* Fall through. */ case FUNCTION_TYPE: { tree parm; for (parm = TYPE_ARG_TYPES (t); parm && parm != void_list_node; parm = TREE_CHAIN (parm)) { r = no_linkage_check (TREE_VALUE (parm), relaxed_p); if (r) return r; } return no_linkage_check (TREE_TYPE (t), relaxed_p); } default: return NULL_TREE; } } #ifdef GATHER_STATISTICS extern int depth_reached; #endif void cxx_print_statistics (void) { print_search_statistics (); print_class_statistics (); #ifdef GATHER_STATISTICS fprintf (stderr, "maximum template instantiation depth reached: %d\n", depth_reached); #endif } /* Return, as an INTEGER_CST node, the number of elements for TYPE (which is an ARRAY_TYPE). This counts only elements of the top array. */ tree array_type_nelts_top (tree type) { return fold_build2_loc (input_location, PLUS_EXPR, sizetype, array_type_nelts (type), size_one_node); } /* Return, as an INTEGER_CST node, the number of elements for TYPE (which is an ARRAY_TYPE). This one is a recursive count of all ARRAY_TYPEs that are clumped together. */ tree array_type_nelts_total (tree type) { tree sz = array_type_nelts_top (type); type = TREE_TYPE (type); while (TREE_CODE (type) == ARRAY_TYPE) { tree n = array_type_nelts_top (type); sz = fold_build2_loc (input_location, MULT_EXPR, sizetype, sz, n); type = TREE_TYPE (type); } return sz; } /* Called from break_out_target_exprs via mapcar. */ static tree bot_manip (tree* tp, int* walk_subtrees, void* data) { splay_tree target_remap = ((splay_tree) data); tree t = *tp; if (!TYPE_P (t) && TREE_CONSTANT (t)) { /* There can't be any TARGET_EXPRs or their slot variables below this point. We used to check !TREE_SIDE_EFFECTS, but then we failed to copy an ADDR_EXPR of the slot VAR_DECL. */ *walk_subtrees = 0; return NULL_TREE; } if (TREE_CODE (t) == TARGET_EXPR) { tree u; if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR) u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1)); else u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t)); /* Map the old variable to the new one. */ splay_tree_insert (target_remap, (splay_tree_key) TREE_OPERAND (t, 0), (splay_tree_value) TREE_OPERAND (u, 0)); TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1)); /* Replace the old expression with the new version. */ *tp = u; /* We don't have to go below this point; the recursive call to break_out_target_exprs will have handled anything below this point. */ *walk_subtrees = 0; return NULL_TREE; } /* Make a copy of this node. */ return copy_tree_r (tp, walk_subtrees, NULL); } /* Replace all remapped VAR_DECLs in T with their new equivalents. DATA is really a splay-tree mapping old variables to new variables. */ static tree bot_replace (tree* t, int* walk_subtrees ATTRIBUTE_UNUSED , void* data) { splay_tree target_remap = ((splay_tree) data); if (TREE_CODE (*t) == VAR_DECL) { splay_tree_node n = splay_tree_lookup (target_remap, (splay_tree_key) *t); if (n) *t = (tree) n->value; } return NULL_TREE; } /* When we parse a default argument expression, we may create temporary variables via TARGET_EXPRs. When we actually use the default-argument expression, we make a copy of the expression, but we must replace the temporaries with appropriate local versions. */ tree break_out_target_exprs (tree t) { static int target_remap_count; static splay_tree target_remap; if (!target_remap_count++) target_remap = splay_tree_new (splay_tree_compare_pointers, /*splay_tree_delete_key_fn=*/NULL, /*splay_tree_delete_value_fn=*/NULL); cp_walk_tree (&t, bot_manip, target_remap, NULL); cp_walk_tree (&t, bot_replace, target_remap, NULL); if (!--target_remap_count) { splay_tree_delete (target_remap); target_remap = NULL; } return t; } /* Similar to `build_nt', but for template definitions of dependent expressions */ tree build_min_nt (enum tree_code code, ...) { tree t; int length; int i; va_list p; gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); va_start (p, code); t = make_node (code); length = TREE_CODE_LENGTH (code); for (i = 0; i < length; i++) { tree x = va_arg (p, tree); TREE_OPERAND (t, i) = x; } va_end (p); return t; } /* Similar to `build', but for template definitions. */ tree build_min (enum tree_code code, tree tt, ...) { tree t; int length; int i; va_list p; gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); va_start (p, tt); t = make_node (code); length = TREE_CODE_LENGTH (code); TREE_TYPE (t) = tt; for (i = 0; i < length; i++) { tree x = va_arg (p, tree); TREE_OPERAND (t, i) = x; if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x)) TREE_SIDE_EFFECTS (t) = 1; } va_end (p); return t; } /* Similar to `build', but for template definitions of non-dependent expressions. NON_DEP is the non-dependent expression that has been built. */ tree build_min_non_dep (enum tree_code code, tree non_dep, ...) { tree t; int length; int i; va_list p; gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); va_start (p, non_dep); t = make_node (code); length = TREE_CODE_LENGTH (code); TREE_TYPE (t) = TREE_TYPE (non_dep); TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep); for (i = 0; i < length; i++) { tree x = va_arg (p, tree); TREE_OPERAND (t, i) = x; } if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR) /* This should not be considered a COMPOUND_EXPR, because it resolves to an overload. */ COMPOUND_EXPR_OVERLOADED (t) = 1; va_end (p); return t; } /* Similar to `build_call_list', but for template definitions of non-dependent expressions. NON_DEP is the non-dependent expression that has been built. */ tree build_min_non_dep_call_vec (tree non_dep, tree fn, VEC(tree,gc) *argvec) { tree t = build_nt_call_vec (fn, argvec); TREE_TYPE (t) = TREE_TYPE (non_dep); TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep); return t; } tree get_type_decl (tree t) { if (TREE_CODE (t) == TYPE_DECL) return t; if (TYPE_P (t)) return TYPE_STUB_DECL (t); gcc_assert (t == error_mark_node); return t; } /* Returns the namespace that contains DECL, whether directly or indirectly. */ tree decl_namespace_context (tree decl) { while (1) { if (TREE_CODE (decl) == NAMESPACE_DECL) return decl; else if (TYPE_P (decl)) decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl)); else decl = CP_DECL_CONTEXT (decl); } } /* Returns true if decl is within an anonymous namespace, however deeply nested, or false otherwise. */ bool decl_anon_ns_mem_p (const_tree decl) { while (1) { if (decl == NULL_TREE || decl == error_mark_node) return false; if (TREE_CODE (decl) == NAMESPACE_DECL && DECL_NAME (decl) == NULL_TREE) return true; /* Classes and namespaces inside anonymous namespaces have TREE_PUBLIC == 0, so we can shortcut the search. */ else if (TYPE_P (decl)) return (TREE_PUBLIC (TYPE_NAME (decl)) == 0); else if (TREE_CODE (decl) == NAMESPACE_DECL) return (TREE_PUBLIC (decl) == 0); else decl = DECL_CONTEXT (decl); } } /* Return truthvalue of whether T1 is the same tree structure as T2. Return 1 if they are the same. Return 0 if they are different. */ bool cp_tree_equal (tree t1, tree t2) { enum tree_code code1, code2; if (t1 == t2) return true; if (!t1 || !t2) return false; for (code1 = TREE_CODE (t1); CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR; code1 = TREE_CODE (t1)) t1 = TREE_OPERAND (t1, 0); for (code2 = TREE_CODE (t2); CONVERT_EXPR_CODE_P (code2) || code1 == NON_LVALUE_EXPR; code2 = TREE_CODE (t2)) t2 = TREE_OPERAND (t2, 0); /* They might have become equal now. */ if (t1 == t2) return true; if (code1 != code2) return false; switch (code1) { case INTEGER_CST: return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2) && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2); case REAL_CST: return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2)); case STRING_CST: return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2) && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2), TREE_STRING_LENGTH (t1)); case FIXED_CST: return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2)); case COMPLEX_CST: return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2)) && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2)); case CONSTRUCTOR: /* We need to do this when determining whether or not two non-type pointer to member function template arguments are the same. */ if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)) /* The first operand is RTL. */ && TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0))) return false; return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); case TREE_LIST: if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))) return false; if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2))) return false; return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2)); case SAVE_EXPR: return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); case CALL_EXPR: { tree arg1, arg2; call_expr_arg_iterator iter1, iter2; if (!cp_tree_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2))) return false; for (arg1 = first_call_expr_arg (t1, &iter1), arg2 = first_call_expr_arg (t2, &iter2); arg1 && arg2; arg1 = next_call_expr_arg (&iter1), arg2 = next_call_expr_arg (&iter2)) if (!cp_tree_equal (arg1, arg2)) return false; if (arg1 || arg2) return false; return true; } case TARGET_EXPR: { tree o1 = TREE_OPERAND (t1, 0); tree o2 = TREE_OPERAND (t2, 0); /* Special case: if either target is an unallocated VAR_DECL, it means that it's going to be unified with whatever the TARGET_EXPR is really supposed to initialize, so treat it as being equivalent to anything. */ if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE && !DECL_RTL_SET_P (o1)) /*Nop*/; else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE && !DECL_RTL_SET_P (o2)) /*Nop*/; else if (!cp_tree_equal (o1, o2)) return false; return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)); } case WITH_CLEANUP_EXPR: if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))) return false; return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1)); case COMPONENT_REF: if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1)) return false; return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)); case PARM_DECL: /* For comparing uses of parameters in late-specified return types with an out-of-class definition of the function. */ if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)) && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)) return true; else return false; case VAR_DECL: case CONST_DECL: case FUNCTION_DECL: case TEMPLATE_DECL: case IDENTIFIER_NODE: case SSA_NAME: return false; case BASELINK: return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2) && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2) && cp_tree_equal (BASELINK_FUNCTIONS (t1), BASELINK_FUNCTIONS (t2))); case TEMPLATE_PARM_INDEX: return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2) && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2) && (TEMPLATE_PARM_PARAMETER_PACK (t1) == TEMPLATE_PARM_PARAMETER_PACK (t2)) && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)), TREE_TYPE (TEMPLATE_PARM_DECL (t2)))); case TEMPLATE_ID_EXPR: { unsigned ix; tree vec1, vec2; if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))) return false; vec1 = TREE_OPERAND (t1, 1); vec2 = TREE_OPERAND (t2, 1); if (!vec1 || !vec2) return !vec1 && !vec2; if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2)) return false; for (ix = TREE_VEC_LENGTH (vec1); ix--;) if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix), TREE_VEC_ELT (vec2, ix))) return false; return true; } case SIZEOF_EXPR: case ALIGNOF_EXPR: { tree o1 = TREE_OPERAND (t1, 0); tree o2 = TREE_OPERAND (t2, 0); if (TREE_CODE (o1) != TREE_CODE (o2)) return false; if (TYPE_P (o1)) return same_type_p (o1, o2); else return cp_tree_equal (o1, o2); } case MODOP_EXPR: { tree t1_op1, t2_op1; if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))) return false; t1_op1 = TREE_OPERAND (t1, 1); t2_op1 = TREE_OPERAND (t2, 1); if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1)) return false; return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2)); } case PTRMEM_CST: /* Two pointer-to-members are the same if they point to the same field or function in the same class. */ if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2)) return false; return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2)); case OVERLOAD: if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2)) return false; return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2)); case TRAIT_EXPR: if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2)) return false; return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2)) && same_type_p (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2)); default: break; } switch (TREE_CODE_CLASS (code1)) { case tcc_unary: case tcc_binary: case tcc_comparison: case tcc_expression: case tcc_vl_exp: case tcc_reference: case tcc_statement: { int i, n; n = TREE_OPERAND_LENGTH (t1); if (TREE_CODE_CLASS (code1) == tcc_vl_exp && n != TREE_OPERAND_LENGTH (t2)) return false; for (i = 0; i < n; ++i) if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i))) return false; return true; } case tcc_type: return same_type_p (t1, t2); default: gcc_unreachable (); } /* We can get here with --disable-checking. */ return false; } /* The type of ARG when used as an lvalue. */ tree lvalue_type (tree arg) { tree type = TREE_TYPE (arg); return type; } /* The type of ARG for printing error messages; denote lvalues with reference types. */ tree error_type (tree arg) { tree type = TREE_TYPE (arg); if (TREE_CODE (type) == ARRAY_TYPE) ; else if (TREE_CODE (type) == ERROR_MARK) ; else if (real_lvalue_p (arg)) type = build_reference_type (lvalue_type (arg)); else if (MAYBE_CLASS_TYPE_P (type)) type = lvalue_type (arg); return type; } /* Does FUNCTION use a variable-length argument list? */ int varargs_function_p (const_tree function) { const_tree parm = TYPE_ARG_TYPES (TREE_TYPE (function)); for (; parm; parm = TREE_CHAIN (parm)) if (TREE_VALUE (parm) == void_type_node) return 0; return 1; } /* Returns 1 if decl is a member of a class. */ int member_p (const_tree decl) { const_tree const ctx = DECL_CONTEXT (decl); return (ctx && TYPE_P (ctx)); } /* Create a placeholder for member access where we don't actually have an object that the access is against. */ tree build_dummy_object (tree type) { tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node); return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error); } /* We've gotten a reference to a member of TYPE. Return *this if appropriate, or a dummy object otherwise. If BINFOP is non-0, it is filled with the binfo path from current_class_type to TYPE, or 0. */ tree maybe_dummy_object (tree type, tree* binfop) { tree decl, context; tree binfo; if (current_class_type && (binfo = lookup_base (current_class_type, type, ba_unique | ba_quiet, NULL))) context = current_class_type; else { /* Reference from a nested class member function. */ context = type; binfo = TYPE_BINFO (type); } if (binfop) *binfop = binfo; if (current_class_ref && context == current_class_type /* Kludge: Make sure that current_class_type is actually correct. It might not be if we're in the middle of tsubst_default_argument. */ && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)), current_class_type)) decl = current_class_ref; else if (current_class_ref && LAMBDA_TYPE_P (current_class_type) && context == nonlambda_method_basetype ()) /* In a lambda, need to go through 'this' capture. */ decl = (cp_build_indirect_ref ((lambda_expr_this_capture (CLASSTYPE_LAMBDA_EXPR (current_class_type))), RO_NULL, tf_warning_or_error)); else decl = build_dummy_object (context); return decl; } /* Returns 1 if OB is a placeholder object, or a pointer to one. */ int is_dummy_object (const_tree ob) { if (TREE_CODE (ob) == INDIRECT_REF) ob = TREE_OPERAND (ob, 0); return (TREE_CODE (ob) == NOP_EXPR && TREE_OPERAND (ob, 0) == void_zero_node); } /* Returns 1 iff type T is something we want to treat as a scalar type for the purpose of deciding whether it is trivial/POD/standard-layout. */ static bool scalarish_type_p (const_tree t) { if (t == error_mark_node) return 1; return (SCALAR_TYPE_P (t) || TREE_CODE (t) == VECTOR_TYPE); } /* Returns true iff T requires non-trivial default initialization. */ bool type_has_nontrivial_default_init (const_tree t) { t = strip_array_types (CONST_CAST_TREE (t)); if (CLASS_TYPE_P (t)) return TYPE_HAS_COMPLEX_DFLT (t); else return 0; } /* Returns true iff copying an object of type T is non-trivial. */ bool type_has_nontrivial_copy_init (const_tree t) { t = strip_array_types (CONST_CAST_TREE (t)); if (CLASS_TYPE_P (t)) return TYPE_HAS_COMPLEX_INIT_REF (t); else return 0; } /* Returns 1 iff type T is a trivial type, as defined in [basic.types]. */ bool trivial_type_p (const_tree t) { t = strip_array_types (CONST_CAST_TREE (t)); if (CLASS_TYPE_P (t)) return (TYPE_HAS_TRIVIAL_DFLT (t) && TYPE_HAS_TRIVIAL_INIT_REF (t) && TYPE_HAS_TRIVIAL_ASSIGN_REF (t) && TYPE_HAS_TRIVIAL_DESTRUCTOR (t)); else return scalarish_type_p (t); } /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */ bool pod_type_p (const_tree t) { /* This CONST_CAST is okay because strip_array_types returns its argument unmodified and we assign it to a const_tree. */ t = strip_array_types (CONST_CAST_TREE(t)); if (!CLASS_TYPE_P (t)) return scalarish_type_p (t); else if (cxx_dialect > cxx98) /* [class]/10: A POD struct is a class that is both a trivial class and a standard-layout class, and has no non-static data members of type non-POD struct, non-POD union (or array of such types). We don't need to check individual members because if a member is non-std-layout or non-trivial, the class will be too. */ return (std_layout_type_p (t) && trivial_type_p (t)); else /* The C++98 definition of POD is different. */ return !CLASSTYPE_NON_LAYOUT_POD_P (t); } /* Returns true iff T is POD for the purpose of layout, as defined in the C++ ABI. */ bool layout_pod_type_p (const_tree t) { t = strip_array_types (CONST_CAST_TREE (t)); if (CLASS_TYPE_P (t)) return !CLASSTYPE_NON_LAYOUT_POD_P (t); else return scalarish_type_p (t); } /* Returns true iff T is a standard-layout type, as defined in [basic.types]. */ bool std_layout_type_p (const_tree t) { t = strip_array_types (CONST_CAST_TREE (t)); if (CLASS_TYPE_P (t)) return !CLASSTYPE_NON_STD_LAYOUT (t); else return scalarish_type_p (t); } /* Nonzero iff type T is a class template implicit specialization. */ bool class_tmpl_impl_spec_p (const_tree t) { return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t); } /* Returns 1 iff zero initialization of type T means actually storing zeros in it. */ int zero_init_p (const_tree t) { /* This CONST_CAST is okay because strip_array_types returns its argument unmodified and we assign it to a const_tree. */ t = strip_array_types (CONST_CAST_TREE(t)); if (t == error_mark_node) return 1; /* NULL pointers to data members are initialized with -1. */ if (TYPE_PTRMEM_P (t)) return 0; /* Classes that contain types that can't be zero-initialized, cannot be zero-initialized themselves. */ if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t)) return 0; return 1; } /* Table of valid C++ attributes. */ const struct attribute_spec cxx_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ { "java_interface", 0, 0, false, false, false, handle_java_interface_attribute }, { "com_interface", 0, 0, false, false, false, handle_com_interface_attribute }, { "init_priority", 1, 1, true, false, false, handle_init_priority_attribute }, { NULL, 0, 0, false, false, false, NULL } }; /* Handle a "java_interface" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_java_interface_attribute (tree* node, tree name, tree args ATTRIBUTE_UNUSED , int flags, bool* no_add_attrs) { if (DECL_P (*node) || !CLASS_TYPE_P (*node) || !TYPE_FOR_JAVA (*node)) { error ("%qE attribute can only be applied to Java class definitions", name); *no_add_attrs = true; return NULL_TREE; } if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE)) *node = build_variant_type_copy (*node); TYPE_JAVA_INTERFACE (*node) = 1; return NULL_TREE; } /* Handle a "com_interface" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_com_interface_attribute (tree* node, tree name, tree args ATTRIBUTE_UNUSED , int flags ATTRIBUTE_UNUSED , bool* no_add_attrs) { static int warned; *no_add_attrs = true; if (DECL_P (*node) || !CLASS_TYPE_P (*node) || *node != TYPE_MAIN_VARIANT (*node)) { warning (OPT_Wattributes, "%qE attribute can only be applied " "to class definitions", name); return NULL_TREE; } if (!warned++) warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default", name); return NULL_TREE; } /* Handle an "init_priority" attribute; arguments as in struct attribute_spec.handler. */ static tree handle_init_priority_attribute (tree* node, tree name, tree args, int flags ATTRIBUTE_UNUSED , bool* no_add_attrs) { tree initp_expr = TREE_VALUE (args); tree decl = *node; tree type = TREE_TYPE (decl); int pri; STRIP_NOPS (initp_expr); if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST) { error ("requested init_priority is not an integer constant"); *no_add_attrs = true; return NULL_TREE; } pri = TREE_INT_CST_LOW (initp_expr); type = strip_array_types (type); if (decl == NULL_TREE || TREE_CODE (decl) != VAR_DECL || !TREE_STATIC (decl) || DECL_EXTERNAL (decl) || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE) /* Static objects in functions are initialized the first time control passes through that function. This is not precise enough to pin down an init_priority value, so don't allow it. */ || current_function_decl) { error ("can only use %qE attribute on file-scope definitions " "of objects of class type", name); *no_add_attrs = true; return NULL_TREE; } if (pri > MAX_INIT_PRIORITY || pri <= 0) { error ("requested init_priority is out of range"); *no_add_attrs = true; return NULL_TREE; } /* Check for init_priorities that are reserved for language and runtime support implementations.*/ if (pri <= MAX_RESERVED_INIT_PRIORITY) { warning (0, "requested init_priority is reserved for internal use"); } if (SUPPORTS_INIT_PRIORITY) { SET_DECL_INIT_PRIORITY (decl, pri); DECL_HAS_INIT_PRIORITY_P (decl) = 1; return NULL_TREE; } else { error ("%qE attribute is not supported on this platform", name); *no_add_attrs = true; return NULL_TREE; } } /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the thing pointed to by the constant. */ tree make_ptrmem_cst (tree type, tree member) { tree ptrmem_cst = make_node (PTRMEM_CST); TREE_TYPE (ptrmem_cst) = type; PTRMEM_CST_MEMBER (ptrmem_cst) = member; return ptrmem_cst; } /* Build a variant of TYPE that has the indicated ATTRIBUTES. May return an existing type if an appropriate type already exists. */ tree cp_build_type_attribute_variant (tree type, tree attributes) { tree new_type; new_type = build_type_attribute_variant (type, attributes); if ((TREE_CODE (new_type) == FUNCTION_TYPE || TREE_CODE (new_type) == METHOD_TYPE) && (TYPE_RAISES_EXCEPTIONS (new_type) != TYPE_RAISES_EXCEPTIONS (type))) new_type = build_exception_variant (new_type, TYPE_RAISES_EXCEPTIONS (type)); /* Making a new main variant of a class type is broken. */ gcc_assert (!CLASS_TYPE_P (type) || new_type == type); return new_type; } /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes. Called only after doing all language independent checks. Only to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already compared in type_hash_eq. */ bool cxx_type_hash_eq (const_tree typea, const_tree typeb) { gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE); return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea), TYPE_RAISES_EXCEPTIONS (typeb), 1); } /* Apply FUNC to all language-specific sub-trees of TP in a pre-order traversal. Called from walk_tree. */ tree cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func, void *data, struct pointer_set_t *pset) { enum tree_code code = TREE_CODE (*tp); tree result; #define WALK_SUBTREE(NODE) \ do \ { \ result = cp_walk_tree (&(NODE), func, data, pset); \ if (result) goto out; \ } \ while (0) /* Not one of the easy cases. We must explicitly go through the children. */ result = NULL_TREE; switch (code) { case DEFAULT_ARG: case TEMPLATE_TEMPLATE_PARM: case BOUND_TEMPLATE_TEMPLATE_PARM: case UNBOUND_CLASS_TEMPLATE: case TEMPLATE_PARM_INDEX: case TEMPLATE_TYPE_PARM: case TYPENAME_TYPE: case TYPEOF_TYPE: /* None of these have subtrees other than those already walked above. */ *walk_subtrees_p = 0; break; case BASELINK: WALK_SUBTREE (BASELINK_FUNCTIONS (*tp)); *walk_subtrees_p = 0; break; case PTRMEM_CST: WALK_SUBTREE (TREE_TYPE (*tp)); *walk_subtrees_p = 0; break; case TREE_LIST: WALK_SUBTREE (TREE_PURPOSE (*tp)); break; case OVERLOAD: WALK_SUBTREE (OVL_FUNCTION (*tp)); WALK_SUBTREE (OVL_CHAIN (*tp)); *walk_subtrees_p = 0; break; case USING_DECL: WALK_SUBTREE (DECL_NAME (*tp)); WALK_SUBTREE (USING_DECL_SCOPE (*tp)); WALK_SUBTREE (USING_DECL_DECLS (*tp)); *walk_subtrees_p = 0; break; case RECORD_TYPE: if (TYPE_PTRMEMFUNC_P (*tp)) WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp)); break; case TYPE_ARGUMENT_PACK: case NONTYPE_ARGUMENT_PACK: { tree args = ARGUMENT_PACK_ARGS (*tp); int i, len = TREE_VEC_LENGTH (args); for (i = 0; i < len; i++) WALK_SUBTREE (TREE_VEC_ELT (args, i)); } break; case TYPE_PACK_EXPANSION: WALK_SUBTREE (TREE_TYPE (*tp)); *walk_subtrees_p = 0; break; case EXPR_PACK_EXPANSION: WALK_SUBTREE (TREE_OPERAND (*tp, 0)); *walk_subtrees_p = 0; break; case CAST_EXPR: case REINTERPRET_CAST_EXPR: case STATIC_CAST_EXPR: case CONST_CAST_EXPR: case DYNAMIC_CAST_EXPR: if (TREE_TYPE (*tp)) WALK_SUBTREE (TREE_TYPE (*tp)); { int i; for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i) WALK_SUBTREE (TREE_OPERAND (*tp, i)); } *walk_subtrees_p = 0; break; case TRAIT_EXPR: WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp)); WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp)); *walk_subtrees_p = 0; break; case DECLTYPE_TYPE: WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp)); *walk_subtrees_p = 0; break; default: return NULL_TREE; } /* We didn't find what we were looking for. */ out: return result; #undef WALK_SUBTREE } /* Like save_expr, but for C++. */ tree cp_save_expr (tree expr) { /* There is no reason to create a SAVE_EXPR within a template; if needed, we can create the SAVE_EXPR when instantiating the template. Furthermore, the middle-end cannot handle C++-specific tree codes. */ if (processing_template_decl) return expr; return save_expr (expr); } /* Initialize tree.c. */ void init_tree (void) { list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL); } /* Returns the kind of special function that DECL (a FUNCTION_DECL) is. Note that sfk_none is zero, so this function can be used as a predicate to test whether or not DECL is a special function. */ special_function_kind special_function_p (const_tree decl) { /* Rather than doing all this stuff with magic names, we should probably have a field of type `special_function_kind' in DECL_LANG_SPECIFIC. */ if (DECL_COPY_CONSTRUCTOR_P (decl)) return sfk_copy_constructor; if (DECL_MOVE_CONSTRUCTOR_P (decl)) return sfk_move_constructor; if (DECL_CONSTRUCTOR_P (decl)) return sfk_constructor; if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR) return sfk_assignment_operator; if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl)) return sfk_destructor; if (DECL_COMPLETE_DESTRUCTOR_P (decl)) return sfk_complete_destructor; if (DECL_BASE_DESTRUCTOR_P (decl)) return sfk_base_destructor; if (DECL_DELETING_DESTRUCTOR_P (decl)) return sfk_deleting_destructor; if (DECL_CONV_FN_P (decl)) return sfk_conversion; return sfk_none; } /* Returns nonzero if TYPE is a character type, including wchar_t. */ int char_type_p (tree type) { return (same_type_p (type, char_type_node) || same_type_p (type, unsigned_char_type_node) || same_type_p (type, signed_char_type_node) || same_type_p (type, char16_type_node) || same_type_p (type, char32_type_node) || same_type_p (type, wchar_type_node)); } /* Returns the kind of linkage associated with the indicated DECL. Th value returned is as specified by the language standard; it is independent of implementation details regarding template instantiation, etc. For example, it is possible that a declaration to which this function assigns external linkage would not show up as a global symbol when you run `nm' on the resulting object file. */ linkage_kind decl_linkage (tree decl) { /* This function doesn't attempt to calculate the linkage from first principles as given in [basic.link]. Instead, it makes use of the fact that we have already set TREE_PUBLIC appropriately, and then handles a few special cases. Ideally, we would calculate linkage first, and then transform that into a concrete implementation. */ /* Things that don't have names have no linkage. */ if (!DECL_NAME (decl)) return lk_none; /* Fields have no linkage. */ if (TREE_CODE (decl) == FIELD_DECL) return lk_none; /* Things that are TREE_PUBLIC have external linkage. */ if (TREE_PUBLIC (decl)) return lk_external; if (TREE_CODE (decl) == NAMESPACE_DECL) return lk_external; /* Linkage of a CONST_DECL depends on the linkage of the enumeration type. */ if (TREE_CODE (decl) == CONST_DECL) return decl_linkage (TYPE_NAME (TREE_TYPE (decl))); /* Some things that are not TREE_PUBLIC have external linkage, too. For example, on targets that don't have weak symbols, we make all template instantiations have internal linkage (in the object file), but the symbols should still be treated as having external linkage from the point of view of the language. */ if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL) && DECL_COMDAT (decl)) return lk_external; /* Things in local scope do not have linkage, if they don't have TREE_PUBLIC set. */ if (decl_function_context (decl)) return lk_none; /* Members of the anonymous namespace also have TREE_PUBLIC unset, but are considered to have external linkage for language purposes. DECLs really meant to have internal linkage have DECL_THIS_STATIC set. */ if (TREE_CODE (decl) == TYPE_DECL) return lk_external; if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL) { if (!DECL_THIS_STATIC (decl)) return lk_external; /* Static data members and static member functions from classes in anonymous namespace also don't have TREE_PUBLIC set. */ if (DECL_CLASS_CONTEXT (decl)) return lk_external; } /* Everything else has internal linkage. */ return lk_internal; } /* EXP is an expression that we want to pre-evaluate. Returns (in *INITP) an expression that will perform the pre-evaluation. The value returned by this function is a side-effect free expression equivalent to the pre-evaluated expression. Callers must ensure that *INITP is evaluated before EXP. */ tree stabilize_expr (tree exp, tree* initp) { tree init_expr; if (!TREE_SIDE_EFFECTS (exp)) init_expr = NULL_TREE; else if (!real_lvalue_p (exp) || !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp))) { init_expr = get_target_expr (exp); exp = TARGET_EXPR_SLOT (init_expr); } else { exp = cp_build_unary_op (ADDR_EXPR, exp, 1, tf_warning_or_error); init_expr = get_target_expr (exp); exp = TARGET_EXPR_SLOT (init_expr); exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error); } *initp = init_expr; gcc_assert (!TREE_SIDE_EFFECTS (exp)); return exp; } /* Add NEW_EXPR, an expression whose value we don't care about, after the similar expression ORIG. */ tree add_stmt_to_compound (tree orig, tree new_expr) { if (!new_expr || !TREE_SIDE_EFFECTS (new_expr)) return orig; if (!orig || !TREE_SIDE_EFFECTS (orig)) return new_expr; return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr); } /* Like stabilize_expr, but for a call whose arguments we want to pre-evaluate. CALL is modified in place to use the pre-evaluated arguments, while, upon return, *INITP contains an expression to compute the arguments. */ void stabilize_call (tree call, tree *initp) { tree inits = NULL_TREE; int i; int nargs = call_expr_nargs (call); if (call == error_mark_node || processing_template_decl) { *initp = NULL_TREE; return; } gcc_assert (TREE_CODE (call) == CALL_EXPR); for (i = 0; i < nargs; i++) { tree init; CALL_EXPR_ARG (call, i) = stabilize_expr (CALL_EXPR_ARG (call, i), &init); inits = add_stmt_to_compound (inits, init); } *initp = inits; } /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want to pre-evaluate. CALL is modified in place to use the pre-evaluated arguments, while, upon return, *INITP contains an expression to compute the arguments. */ void stabilize_aggr_init (tree call, tree *initp) { tree inits = NULL_TREE; int i; int nargs = aggr_init_expr_nargs (call); if (call == error_mark_node) return; gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR); for (i = 0; i < nargs; i++) { tree init; AGGR_INIT_EXPR_ARG (call, i) = stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init); inits = add_stmt_to_compound (inits, init); } *initp = inits; } /* Like stabilize_expr, but for an initialization. If the initialization is for an object of class type, this function takes care not to introduce additional temporaries. Returns TRUE iff the expression was successfully pre-evaluated, i.e., if INIT is now side-effect free, except for, possible, a single call to a constructor. */ bool stabilize_init (tree init, tree *initp) { tree t = init; *initp = NULL_TREE; if (t == error_mark_node || processing_template_decl) return true; if (TREE_CODE (t) == INIT_EXPR && TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR && TREE_CODE (TREE_OPERAND (t, 1)) != AGGR_INIT_EXPR) { TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp); return true; } if (TREE_CODE (t) == INIT_EXPR) t = TREE_OPERAND (t, 1); if (TREE_CODE (t) == TARGET_EXPR) t = TARGET_EXPR_INITIAL (t); if (TREE_CODE (t) == COMPOUND_EXPR) t = expr_last (t); if (TREE_CODE (t) == CONSTRUCTOR && EMPTY_CONSTRUCTOR_P (t)) /* Default-initialization. */ return true; /* If the initializer is a COND_EXPR, we can't preevaluate anything. */ if (TREE_CODE (t) == COND_EXPR) return false; if (TREE_CODE (t) == CALL_EXPR) { stabilize_call (t, initp); return true; } if (TREE_CODE (t) == AGGR_INIT_EXPR) { stabilize_aggr_init (t, initp); return true; } /* The initialization is being performed via a bitwise copy -- and the item copied may have side effects. */ return TREE_SIDE_EFFECTS (init); } /* Like "fold", but should be used whenever we might be processing the body of a template. */ tree fold_if_not_in_template (tree expr) { /* In the body of a template, there is never any need to call "fold". We will call fold later when actually instantiating the template. Integral constant expressions in templates will be evaluated via fold_non_dependent_expr, as necessary. */ if (processing_template_decl) return expr; /* Fold C++ front-end specific tree codes. */ if (TREE_CODE (expr) == UNARY_PLUS_EXPR) return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0)); return fold (expr); } /* Returns true if a cast to TYPE may appear in an integral constant expression. */ bool cast_valid_in_integral_constant_expression_p (tree type) { return (INTEGRAL_OR_ENUMERATION_TYPE_P (type) || dependent_type_p (type) || type == error_mark_node); } /* Return true if we need to fix linkage information of DECL. */ static bool cp_fix_function_decl_p (tree decl) { /* Skip if DECL is not externally visible. */ if (!TREE_PUBLIC (decl)) return false; /* We need to fix DECL if it a appears to be exported but with no function body. Thunks do not have CFGs and we may need to handle them specially later. */ if (!gimple_has_body_p (decl) && !DECL_THUNK_P (decl) && !DECL_EXTERNAL (decl)) { struct cgraph_node *node = cgraph_get_node (decl); /* Don't fix same_body aliases. Although they don't have their own CFG, they share it with what they alias to. */ if (!node || node->decl == decl || !node->same_body) return true; } return false; } /* Clean the C++ specific parts of the tree T. */ void cp_free_lang_data (tree t) { if (TREE_CODE (t) == METHOD_TYPE || TREE_CODE (t) == FUNCTION_TYPE) { /* Default args are not interesting anymore. */ tree argtypes = TYPE_ARG_TYPES (t); while (argtypes) { TREE_PURPOSE (argtypes) = 0; argtypes = TREE_CHAIN (argtypes); } } else if (TREE_CODE (t) == FUNCTION_DECL && cp_fix_function_decl_p (t)) { /* If T is used in this translation unit at all, the definition must exist somewhere else since we have decided to not emit it in this TU. So make it an external reference. */ DECL_EXTERNAL (t) = 1; TREE_STATIC (t) = 0; } if (CP_AGGREGATE_TYPE_P (t) && TYPE_NAME (t)) { tree name = TYPE_NAME (t); if (TREE_CODE (name) == TYPE_DECL) name = DECL_NAME (name); /* Drop anonymous names. */ if (name != NULL_TREE && ANON_AGGRNAME_P (name)) TYPE_NAME (t) = NULL_TREE; } } #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007) /* Complain that some language-specific thing hanging off a tree node has been accessed improperly. */ void lang_check_failed (const char* file, int line, const char* function) { internal_error ("lang_* check: failed in %s, at %s:%d", function, trim_filename (file), line); } #endif /* ENABLE_TREE_CHECKING */ #include "gt-cp-tree.h"
Go to most recent revision | Compare with Previous | Blame | View Log