URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [ddg.c] - Rev 304
Go to most recent revision | Compare with Previous | Blame | View Log
/* DDG - Data Dependence Graph implementation. Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "toplev.h" #include "rtl.h" #include "tm_p.h" #include "hard-reg-set.h" #include "regs.h" #include "function.h" #include "flags.h" #include "insn-config.h" #include "insn-attr.h" #include "except.h" #include "recog.h" #include "sched-int.h" #include "target.h" #include "cfglayout.h" #include "cfgloop.h" #include "sbitmap.h" #include "expr.h" #include "bitmap.h" #include "ddg.h" #ifdef INSN_SCHEDULING /* A flag indicating that a ddg edge belongs to an SCC or not. */ enum edge_flag {NOT_IN_SCC = 0, IN_SCC}; /* Forward declarations. */ static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr); static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr); static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr); static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr, dep_t); static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr, dep_type, dep_data_type, int); static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type, dep_data_type, int, int); static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr); /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */ static bool mem_ref_p; /* Auxiliary function for mem_read_insn_p. */ static int mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED) { if (MEM_P (*x)) mem_ref_p = true; return 0; } /* Auxiliary function for mem_read_insn_p. */ static void mark_mem_use_1 (rtx *x, void *data) { for_each_rtx (x, mark_mem_use, data); } /* Returns nonzero if INSN reads from memory. */ static bool mem_read_insn_p (rtx insn) { mem_ref_p = false; note_uses (&PATTERN (insn), mark_mem_use_1, NULL); return mem_ref_p; } static void mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED) { if (MEM_P (loc)) mem_ref_p = true; } /* Returns nonzero if INSN writes to memory. */ static bool mem_write_insn_p (rtx insn) { mem_ref_p = false; note_stores (PATTERN (insn), mark_mem_store, NULL); return mem_ref_p; } /* Returns nonzero if X has access to memory. */ static bool rtx_mem_access_p (rtx x) { int i, j; const char *fmt; enum rtx_code code; if (x == 0) return false; if (MEM_P (x)) return true; code = GET_CODE (x); fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') { if (rtx_mem_access_p (XEXP (x, i))) return true; } else if (fmt[i] == 'E') for (j = 0; j < XVECLEN (x, i); j++) { if (rtx_mem_access_p (XVECEXP (x, i, j))) return true; } } return false; } /* Returns nonzero if INSN reads to or writes from memory. */ static bool mem_access_insn_p (rtx insn) { return rtx_mem_access_p (PATTERN (insn)); } /* Computes the dependence parameters (latency, distance etc.), creates a ddg_edge and adds it to the given DDG. */ static void create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node, ddg_node_ptr dest_node, dep_t link) { ddg_edge_ptr e; int latency, distance = 0; dep_type t = TRUE_DEP; dep_data_type dt = (mem_access_insn_p (src_node->insn) && mem_access_insn_p (dest_node->insn) ? MEM_DEP : REG_DEP); gcc_assert (src_node->cuid < dest_node->cuid); gcc_assert (link); /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */ if (DEP_TYPE (link) == REG_DEP_ANTI) t = ANTI_DEP; else if (DEP_TYPE (link) == REG_DEP_OUTPUT) t = OUTPUT_DEP; gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP); gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP); /* We currently choose not to create certain anti-deps edges and compensate for that by generating reg-moves based on the life-range analysis. The anti-deps that will be deleted are the ones which have true-deps edges in the opposite direction (in other words the kernel has only one def of the relevant register). TODO: support the removal of all anti-deps edges, i.e. including those whose register has multiple defs in the loop. */ if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP)) { rtx set; set = single_set (dest_node->insn); /* TODO: Handle registers that REG_P is not true for them, i.e. subregs and special registers. */ if (set && REG_P (SET_DEST (set))) { int regno = REGNO (SET_DEST (set)); df_ref first_def; struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb); first_def = df_bb_regno_first_def_find (g->bb, regno); gcc_assert (first_def); if (bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def))) return; } } latency = dep_cost (link); e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance); add_edge_to_ddg (g, e); } /* The same as the above function, but it doesn't require a link parameter. */ static void create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to, dep_type d_t, dep_data_type d_dt, int distance) { ddg_edge_ptr e; int l; enum reg_note dep_kind; struct _dep _dep, *dep = &_dep; gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP); gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP); if (d_t == ANTI_DEP) dep_kind = REG_DEP_ANTI; else if (d_t == OUTPUT_DEP) dep_kind = REG_DEP_OUTPUT; else { gcc_assert (d_t == TRUE_DEP); dep_kind = REG_DEP_TRUE; } init_dep (dep, from->insn, to->insn, dep_kind); l = dep_cost (dep); e = create_ddg_edge (from, to, d_t, d_dt, l, distance); if (distance > 0) add_backarc_to_ddg (g, e); else add_edge_to_ddg (g, e); } /* Given a downwards exposed register def LAST_DEF (which is the last definition of that register in the bb), add inter-loop true dependences to all its uses in the next iteration, an output dependence to the first def of the same register (possibly itself) in the next iteration and anti-dependences from its uses in the current iteration to the first definition in the next iteration. */ static void add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def) { int regno = DF_REF_REGNO (last_def); struct df_link *r_use; int has_use_in_bb_p = false; rtx def_insn = DF_REF_INSN (last_def); ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn); ddg_node_ptr use_node; #ifdef ENABLE_CHECKING struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb); #endif df_ref first_def = df_bb_regno_first_def_find (g->bb, regno); gcc_assert (last_def_node); gcc_assert (first_def); #ifdef ENABLE_CHECKING if (DF_REF_ID (last_def) != DF_REF_ID (first_def)) gcc_assert (!bitmap_bit_p (bb_info->gen, DF_REF_ID (first_def))); #endif /* Create inter-loop true dependences and anti dependences. */ for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next) { rtx use_insn = DF_REF_INSN (r_use->ref); if (BLOCK_FOR_INSN (use_insn) != g->bb) continue; /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */ use_node = get_node_of_insn (g, use_insn); gcc_assert (use_node); has_use_in_bb_p = true; if (use_node->cuid <= last_def_node->cuid) { /* Add true deps from last_def to it's uses in the next iteration. Any such upwards exposed use appears before the last_def def. */ create_ddg_dep_no_link (g, last_def_node, use_node, DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP, REG_DEP, 1); } else if (!DEBUG_INSN_P (use_insn)) { /* Add anti deps from last_def's uses in the current iteration to the first def in the next iteration. We do not add ANTI dep when there is an intra-loop TRUE dep in the opposite direction, but use regmoves to fix such disregarded ANTI deps when broken. If the first_def reaches the USE then there is such a dep. */ ddg_node_ptr first_def_node = get_node_of_insn (g, DF_REF_INSN (first_def)); gcc_assert (first_def_node); if (DF_REF_ID (last_def) != DF_REF_ID (first_def) || !flag_modulo_sched_allow_regmoves) create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP, REG_DEP, 1); } } /* Create an inter-loop output dependence between LAST_DEF (which is the last def in its block, being downwards exposed) and the first def in its block. Avoid creating a self output dependence. Avoid creating an output dependence if there is a dependence path between the two defs starting with a true dependence to a use which can be in the next iteration; followed by an anti dependence of that use to the first def (i.e. if there is a use between the two defs.) */ if (!has_use_in_bb_p) { ddg_node_ptr dest_node; if (DF_REF_ID (last_def) == DF_REF_ID (first_def)) return; dest_node = get_node_of_insn (g, DF_REF_INSN (first_def)); gcc_assert (dest_node); create_ddg_dep_no_link (g, last_def_node, dest_node, OUTPUT_DEP, REG_DEP, 1); } } /* Build inter-loop dependencies, by looking at DF analysis backwards. */ static void build_inter_loop_deps (ddg_ptr g) { unsigned rd_num; struct df_rd_bb_info *rd_bb_info; bitmap_iterator bi; rd_bb_info = DF_RD_BB_INFO (g->bb); /* Find inter-loop register output, true and anti deps. */ EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi) { df_ref rd = DF_DEFS_GET (rd_num); add_cross_iteration_register_deps (g, rd); } } /* Given two nodes, analyze their RTL insns and add inter-loop mem deps to ddg G. */ static void add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to) { if (!insn_alias_sets_conflict_p (from->insn, to->insn)) /* Do not create edge if memory references have disjoint alias sets. */ return; if (mem_write_insn_p (from->insn)) { if (mem_read_insn_p (to->insn)) create_ddg_dep_no_link (g, from, to, DEBUG_INSN_P (to->insn) ? ANTI_DEP : TRUE_DEP, MEM_DEP, 1); else if (from->cuid != to->cuid) create_ddg_dep_no_link (g, from, to, DEBUG_INSN_P (to->insn) ? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1); } else { if (mem_read_insn_p (to->insn)) return; else if (from->cuid != to->cuid) { create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1); if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn)) create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1); else create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1); } } } /* Perform intra-block Data Dependency analysis and connect the nodes in the DDG. We assume the loop has a single basic block. */ static void build_intra_loop_deps (ddg_ptr g) { int i; /* Hold the dependency analysis state during dependency calculations. */ struct deps_desc tmp_deps; rtx head, tail; /* Build the dependence information, using the sched_analyze function. */ init_deps_global (); init_deps (&tmp_deps, false); /* Do the intra-block data dependence analysis for the given block. */ get_ebb_head_tail (g->bb, g->bb, &head, &tail); sched_analyze (&tmp_deps, head, tail); /* Build intra-loop data dependencies using the scheduler dependency analysis. */ for (i = 0; i < g->num_nodes; i++) { ddg_node_ptr dest_node = &g->nodes[i]; sd_iterator_def sd_it; dep_t dep; if (! INSN_P (dest_node->insn)) continue; FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep) { ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep)); if (!src_node) continue; create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep); } /* If this insn modifies memory, add an edge to all insns that access memory. */ if (mem_access_insn_p (dest_node->insn)) { int j; for (j = 0; j <= i; j++) { ddg_node_ptr j_node = &g->nodes[j]; if (DEBUG_INSN_P (j_node->insn)) continue; if (mem_access_insn_p (j_node->insn)) /* Don't bother calculating inter-loop dep if an intra-loop dep already exists. */ if (! TEST_BIT (dest_node->successors, j)) add_inter_loop_mem_dep (g, dest_node, j_node); } } } /* Free the INSN_LISTs. */ finish_deps_global (); free_deps (&tmp_deps); /* Free dependencies. */ sched_free_deps (head, tail, false); } /* Given a basic block, create its DDG and return a pointer to a variable of ddg type that represents it. Initialize the ddg structure fields to the appropriate values. */ ddg_ptr create_ddg (basic_block bb, int closing_branch_deps) { ddg_ptr g; rtx insn, first_note; int i; int num_nodes = 0; g = (ddg_ptr) xcalloc (1, sizeof (struct ddg)); g->bb = bb; g->closing_branch_deps = closing_branch_deps; /* Count the number of insns in the BB. */ for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn)) { if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE) continue; if (DEBUG_INSN_P (insn)) g->num_debug++; else { if (mem_read_insn_p (insn)) g->num_loads++; if (mem_write_insn_p (insn)) g->num_stores++; } num_nodes++; } /* There is nothing to do for this BB. */ if ((num_nodes - g->num_debug) <= 1) { free (g); return NULL; } /* Allocate the nodes array, and initialize the nodes. */ g->num_nodes = num_nodes; g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node)); g->closing_branch = NULL; i = 0; first_note = NULL_RTX; for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn)) { if (! INSN_P (insn)) { if (! first_note && NOTE_P (insn) && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK) first_note = insn; continue; } if (JUMP_P (insn)) { gcc_assert (!g->closing_branch); g->closing_branch = &g->nodes[i]; } else if (GET_CODE (PATTERN (insn)) == USE) { if (! first_note) first_note = insn; continue; } g->nodes[i].cuid = i; g->nodes[i].successors = sbitmap_alloc (num_nodes); sbitmap_zero (g->nodes[i].successors); g->nodes[i].predecessors = sbitmap_alloc (num_nodes); sbitmap_zero (g->nodes[i].predecessors); g->nodes[i].first_note = (first_note ? first_note : insn); g->nodes[i++].insn = insn; first_note = NULL_RTX; } /* We must have found a branch in DDG. */ gcc_assert (g->closing_branch); /* Build the data dependency graph. */ build_intra_loop_deps (g); build_inter_loop_deps (g); return g; } /* Free all the memory allocated for the DDG. */ void free_ddg (ddg_ptr g) { int i; if (!g) return; for (i = 0; i < g->num_nodes; i++) { ddg_edge_ptr e = g->nodes[i].out; while (e) { ddg_edge_ptr next = e->next_out; free (e); e = next; } sbitmap_free (g->nodes[i].successors); sbitmap_free (g->nodes[i].predecessors); } if (g->num_backarcs > 0) free (g->backarcs); free (g->nodes); free (g); } void print_ddg_edge (FILE *file, ddg_edge_ptr e) { char dep_c; switch (e->type) { case OUTPUT_DEP : dep_c = 'O'; break; case ANTI_DEP : dep_c = 'A'; break; default: dep_c = 'T'; } fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn), dep_c, e->latency, e->distance, INSN_UID (e->dest->insn)); } /* Print the DDG nodes with there in/out edges to the dump file. */ void print_ddg (FILE *file, ddg_ptr g) { int i; for (i = 0; i < g->num_nodes; i++) { ddg_edge_ptr e; fprintf (file, "Node num: %d\n", g->nodes[i].cuid); print_rtl_single (file, g->nodes[i].insn); fprintf (file, "OUT ARCS: "); for (e = g->nodes[i].out; e; e = e->next_out) print_ddg_edge (file, e); fprintf (file, "\nIN ARCS: "); for (e = g->nodes[i].in; e; e = e->next_in) print_ddg_edge (file, e); fprintf (file, "\n"); } } /* Print the given DDG in VCG format. */ void vcg_print_ddg (FILE *file, ddg_ptr g) { int src_cuid; fprintf (file, "graph: {\n"); for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++) { ddg_edge_ptr e; int src_uid = INSN_UID (g->nodes[src_cuid].insn); fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid); print_rtl_single (file, g->nodes[src_cuid].insn); fprintf (file, "\"}\n"); for (e = g->nodes[src_cuid].out; e; e = e->next_out) { int dst_uid = INSN_UID (e->dest->insn); int dst_cuid = e->dest->cuid; /* Give the backarcs a different color. */ if (e->distance > 0) fprintf (file, "backedge: {color: red "); else fprintf (file, "edge: { "); fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid); fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid); fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance); } } fprintf (file, "}\n"); } /* Dump the sccs in SCCS. */ void print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g) { unsigned int u = 0; sbitmap_iterator sbi; int i; if (!file) return; fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs); for (i = 0; i < sccs->num_sccs; i++) { fprintf (file, "SCC number: %d\n", i); EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi) { fprintf (file, "insn num %d\n", u); print_rtl_single (file, g->nodes[u].insn); } } fprintf (file, "\n"); } /* Create an edge and initialize it with given values. */ static ddg_edge_ptr create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest, dep_type t, dep_data_type dt, int l, int d) { ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge)); e->src = src; e->dest = dest; e->type = t; e->data_type = dt; e->latency = l; e->distance = d; e->next_in = e->next_out = NULL; e->aux.info = 0; return e; } /* Add the given edge to the in/out linked lists of the DDG nodes. */ static void add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e) { ddg_node_ptr src = e->src; ddg_node_ptr dest = e->dest; /* Should have allocated the sbitmaps. */ gcc_assert (src->successors && dest->predecessors); SET_BIT (src->successors, dest->cuid); SET_BIT (dest->predecessors, src->cuid); e->next_in = dest->in; dest->in = e; e->next_out = src->out; src->out = e; } /* Algorithm for computing the recurrence_length of an scc. We assume at for now that cycles in the data dependence graph contain a single backarc. This simplifies the algorithm, and can be generalized later. */ static void set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g) { int j; int result = -1; for (j = 0; j < scc->num_backarcs; j++) { ddg_edge_ptr backarc = scc->backarcs[j]; int length; int distance = backarc->distance; ddg_node_ptr src = backarc->dest; ddg_node_ptr dest = backarc->src; length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes); if (length < 0 ) { /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */ continue; } length += backarc->latency; result = MAX (result, (length / distance)); } scc->recurrence_length = result; } /* Create a new SCC given the set of its nodes. Compute its recurrence_length and mark edges that belong to this scc as IN_SCC. */ static ddg_scc_ptr create_scc (ddg_ptr g, sbitmap nodes) { ddg_scc_ptr scc; unsigned int u = 0; sbitmap_iterator sbi; scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc)); scc->backarcs = NULL; scc->num_backarcs = 0; scc->nodes = sbitmap_alloc (g->num_nodes); sbitmap_copy (scc->nodes, nodes); /* Mark the backarcs that belong to this SCC. */ EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi) { ddg_edge_ptr e; ddg_node_ptr n = &g->nodes[u]; for (e = n->out; e; e = e->next_out) if (TEST_BIT (nodes, e->dest->cuid)) { e->aux.count = IN_SCC; if (e->distance > 0) add_backarc_to_scc (scc, e); } } set_recurrence_length (scc, g); return scc; } /* Cleans the memory allocation of a given SCC. */ static void free_scc (ddg_scc_ptr scc) { if (!scc) return; sbitmap_free (scc->nodes); if (scc->num_backarcs > 0) free (scc->backarcs); free (scc); } /* Add a given edge known to be a backarc to the given DDG. */ static void add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e) { int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr); add_edge_to_ddg (g, e); g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size); g->backarcs[g->num_backarcs++] = e; } /* Add backarc to an SCC. */ static void add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e) { int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr); scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size); scc->backarcs[scc->num_backarcs++] = e; } /* Add the given SCC to the DDG. */ static void add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc) { int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr); g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size); g->sccs[g->num_sccs++] = scc; } /* Given the instruction INSN return the node that represents it. */ ddg_node_ptr get_node_of_insn (ddg_ptr g, rtx insn) { int i; for (i = 0; i < g->num_nodes; i++) if (insn == g->nodes[i].insn) return &g->nodes[i]; return NULL; } /* Given a set OPS of nodes in the DDG, find the set of their successors which are not in OPS, and set their bits in SUCC. Bits corresponding to OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */ void find_successors (sbitmap succ, ddg_ptr g, sbitmap ops) { unsigned int i = 0; sbitmap_iterator sbi; EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi) { const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]); sbitmap_a_or_b (succ, succ, node_succ); }; /* We want those that are not in ops. */ sbitmap_difference (succ, succ, ops); } /* Given a set OPS of nodes in the DDG, find the set of their predecessors which are not in OPS, and set their bits in PREDS. Bits corresponding to OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */ void find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops) { unsigned int i = 0; sbitmap_iterator sbi; EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi) { const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]); sbitmap_a_or_b (preds, preds, node_preds); }; /* We want those that are not in ops. */ sbitmap_difference (preds, preds, ops); } /* Compare function to be passed to qsort to order the backarcs in descending recMII order. */ static int compare_sccs (const void *s1, const void *s2) { const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length; const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length; return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1)); } /* Order the backarcs in descending recMII order using compare_sccs. */ static void order_sccs (ddg_all_sccs_ptr g) { qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr), (int (*) (const void *, const void *)) compare_sccs); } #ifdef ENABLE_CHECKING /* Check that every node in SCCS belongs to exactly one strongly connected component and that no element of SCCS is empty. */ static void check_sccs (ddg_all_sccs_ptr sccs, int num_nodes) { int i = 0; sbitmap tmp = sbitmap_alloc (num_nodes); sbitmap_zero (tmp); for (i = 0; i < sccs->num_sccs; i++) { gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes)); /* Verify that every node in sccs is in exactly one strongly connected component. */ gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes)); sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes); } sbitmap_free (tmp); } #endif /* Perform the Strongly Connected Components decomposing algorithm on the DDG and return DDG_ALL_SCCS structure that contains them. */ ddg_all_sccs_ptr create_ddg_all_sccs (ddg_ptr g) { int i; int num_nodes = g->num_nodes; sbitmap from = sbitmap_alloc (num_nodes); sbitmap to = sbitmap_alloc (num_nodes); sbitmap scc_nodes = sbitmap_alloc (num_nodes); ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr) xmalloc (sizeof (struct ddg_all_sccs)); sccs->ddg = g; sccs->sccs = NULL; sccs->num_sccs = 0; for (i = 0; i < g->num_backarcs; i++) { ddg_scc_ptr scc; ddg_edge_ptr backarc = g->backarcs[i]; ddg_node_ptr src = backarc->src; ddg_node_ptr dest = backarc->dest; /* If the backarc already belongs to an SCC, continue. */ if (backarc->aux.count == IN_SCC) continue; sbitmap_zero (scc_nodes); sbitmap_zero (from); sbitmap_zero (to); SET_BIT (from, dest->cuid); SET_BIT (to, src->cuid); if (find_nodes_on_paths (scc_nodes, g, from, to)) { scc = create_scc (g, scc_nodes); add_scc_to_ddg (sccs, scc); } } order_sccs (sccs); sbitmap_free (from); sbitmap_free (to); sbitmap_free (scc_nodes); #ifdef ENABLE_CHECKING check_sccs (sccs, num_nodes); #endif return sccs; } /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */ void free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs) { int i; if (!all_sccs) return; for (i = 0; i < all_sccs->num_sccs; i++) free_scc (all_sccs->sccs[i]); free (all_sccs); } /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination nodes - find all nodes that lie on paths from FROM to TO (not excluding nodes from FROM and TO). Return nonzero if nodes exist. */ int find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to) { int answer; int change; unsigned int u = 0; int num_nodes = g->num_nodes; sbitmap_iterator sbi; sbitmap workset = sbitmap_alloc (num_nodes); sbitmap reachable_from = sbitmap_alloc (num_nodes); sbitmap reach_to = sbitmap_alloc (num_nodes); sbitmap tmp = sbitmap_alloc (num_nodes); sbitmap_copy (reachable_from, from); sbitmap_copy (tmp, from); change = 1; while (change) { change = 0; sbitmap_copy (workset, tmp); sbitmap_zero (tmp); EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi) { ddg_edge_ptr e; ddg_node_ptr u_node = &g->nodes[u]; for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out) { ddg_node_ptr v_node = e->dest; int v = v_node->cuid; if (!TEST_BIT (reachable_from, v)) { SET_BIT (reachable_from, v); SET_BIT (tmp, v); change = 1; } } } } sbitmap_copy (reach_to, to); sbitmap_copy (tmp, to); change = 1; while (change) { change = 0; sbitmap_copy (workset, tmp); sbitmap_zero (tmp); EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi) { ddg_edge_ptr e; ddg_node_ptr u_node = &g->nodes[u]; for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in) { ddg_node_ptr v_node = e->src; int v = v_node->cuid; if (!TEST_BIT (reach_to, v)) { SET_BIT (reach_to, v); SET_BIT (tmp, v); change = 1; } } } } answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to); sbitmap_free (workset); sbitmap_free (reachable_from); sbitmap_free (reach_to); sbitmap_free (tmp); return answer; } /* Updates the counts of U_NODE's successors (that belong to NODES) to be at-least as large as the count of U_NODE plus the latency between them. Sets a bit in TMP for each successor whose count was changed (increased). Returns nonzero if any count was changed. */ static int update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp) { ddg_edge_ptr e; int result = 0; for (e = u_node->out; e; e = e->next_out) { ddg_node_ptr v_node = e->dest; int v = v_node->cuid; if (TEST_BIT (nodes, v) && (e->distance == 0) && (v_node->aux.count < u_node->aux.count + e->latency)) { v_node->aux.count = u_node->aux.count + e->latency; SET_BIT (tmp, v); result = 1; } } return result; } /* Find the length of a longest path from SRC to DEST in G, going only through NODES, and disregarding backarcs. */ int longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes) { int i; unsigned int u = 0; int change = 1; int result; int num_nodes = g->num_nodes; sbitmap workset = sbitmap_alloc (num_nodes); sbitmap tmp = sbitmap_alloc (num_nodes); /* Data will hold the distance of the longest path found so far from src to each node. Initialize to -1 = less than minimum. */ for (i = 0; i < g->num_nodes; i++) g->nodes[i].aux.count = -1; g->nodes[src].aux.count = 0; sbitmap_zero (tmp); SET_BIT (tmp, src); while (change) { sbitmap_iterator sbi; change = 0; sbitmap_copy (workset, tmp); sbitmap_zero (tmp); EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi) { ddg_node_ptr u_node = &g->nodes[u]; change |= update_dist_to_successors (u_node, nodes, tmp); } } result = g->nodes[dest].aux.count; sbitmap_free (workset); sbitmap_free (tmp); return result; } #endif /* INSN_SCHEDULING */
Go to most recent revision | Compare with Previous | Blame | View Log