URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [double-int.c] - Rev 280
Compare with Previous | Blame | View Log
/* Operations with long integers. Copyright (C) 2006, 2007, 2009 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" /* Returns mask for PREC bits. */ double_int double_int_mask (unsigned prec) { unsigned HOST_WIDE_INT m; double_int mask; if (prec > HOST_BITS_PER_WIDE_INT) { prec -= HOST_BITS_PER_WIDE_INT; m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1; mask.high = (HOST_WIDE_INT) m; mask.low = ALL_ONES; } else { mask.high = 0; mask.low = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1; } return mask; } /* Clears the bits of CST over the precision PREC. If UNS is false, the bits outside of the precision are set to the sign bit (i.e., the PREC-th one), otherwise they are set to zero. This corresponds to returning the value represented by PREC lowermost bits of CST, with the given signedness. */ double_int double_int_ext (double_int cst, unsigned prec, bool uns) { if (uns) return double_int_zext (cst, prec); else return double_int_sext (cst, prec); } /* The same as double_int_ext with UNS = true. */ double_int double_int_zext (double_int cst, unsigned prec) { double_int mask = double_int_mask (prec); double_int r; r.low = cst.low & mask.low; r.high = cst.high & mask.high; return r; } /* The same as double_int_ext with UNS = false. */ double_int double_int_sext (double_int cst, unsigned prec) { double_int mask = double_int_mask (prec); double_int r; unsigned HOST_WIDE_INT snum; if (prec <= HOST_BITS_PER_WIDE_INT) snum = cst.low; else { prec -= HOST_BITS_PER_WIDE_INT; snum = (unsigned HOST_WIDE_INT) cst.high; } if (((snum >> (prec - 1)) & 1) == 1) { r.low = cst.low | ~mask.low; r.high = cst.high | ~mask.high; } else { r.low = cst.low & mask.low; r.high = cst.high & mask.high; } return r; } /* Constructs long integer from tree CST. The extra bits over the precision of the number are filled with sign bit if CST is signed, and with zeros if it is unsigned. */ double_int tree_to_double_int (const_tree cst) { /* We do not need to call double_int_restrict here to ensure the semantics as described, as this is the default one for trees. */ return TREE_INT_CST (cst); } /* Returns true if CST fits in unsigned HOST_WIDE_INT. */ bool double_int_fits_in_uhwi_p (double_int cst) { return cst.high == 0; } /* Returns true if CST fits in signed HOST_WIDE_INT. */ bool double_int_fits_in_shwi_p (double_int cst) { if (cst.high == 0) return (HOST_WIDE_INT) cst.low >= 0; else if (cst.high == -1) return (HOST_WIDE_INT) cst.low < 0; else return false; } /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in unsigned HOST_WIDE_INT if UNS is true. */ bool double_int_fits_in_hwi_p (double_int cst, bool uns) { if (uns) return double_int_fits_in_uhwi_p (cst); else return double_int_fits_in_shwi_p (cst); } /* Returns value of CST as a signed number. CST must satisfy double_int_fits_in_shwi_p. */ HOST_WIDE_INT double_int_to_shwi (double_int cst) { return (HOST_WIDE_INT) cst.low; } /* Returns value of CST as an unsigned number. CST must satisfy double_int_fits_in_uhwi_p. */ unsigned HOST_WIDE_INT double_int_to_uhwi (double_int cst) { return cst.low; } /* Returns A * B. */ double_int double_int_mul (double_int a, double_int b) { double_int ret; mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); return ret; } /* Returns A + B. */ double_int double_int_add (double_int a, double_int b) { double_int ret; add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high); return ret; } /* Returns -A. */ double_int double_int_neg (double_int a) { double_int ret; neg_double (a.low, a.high, &ret.low, &ret.high); return ret; } /* Returns A / B (computed as unsigned depending on UNS, and rounded as specified by CODE). CODE is enum tree_code in fact, but double_int.h must be included before tree.h. The remainder after the division is stored to MOD. */ double_int double_int_divmod (double_int a, double_int b, bool uns, unsigned code, double_int *mod) { double_int ret; div_and_round_double ((enum tree_code) code, uns, a.low, a.high, b.low, b.high, &ret.low, &ret.high, &mod->low, &mod->high); return ret; } /* The same as double_int_divmod with UNS = false. */ double_int double_int_sdivmod (double_int a, double_int b, unsigned code, double_int *mod) { return double_int_divmod (a, b, false, code, mod); } /* The same as double_int_divmod with UNS = true. */ double_int double_int_udivmod (double_int a, double_int b, unsigned code, double_int *mod) { return double_int_divmod (a, b, true, code, mod); } /* Returns A / B (computed as unsigned depending on UNS, and rounded as specified by CODE). CODE is enum tree_code in fact, but double_int.h must be included before tree.h. */ double_int double_int_div (double_int a, double_int b, bool uns, unsigned code) { double_int mod; return double_int_divmod (a, b, uns, code, &mod); } /* The same as double_int_div with UNS = false. */ double_int double_int_sdiv (double_int a, double_int b, unsigned code) { return double_int_div (a, b, false, code); } /* The same as double_int_div with UNS = true. */ double_int double_int_udiv (double_int a, double_int b, unsigned code) { return double_int_div (a, b, true, code); } /* Returns A % B (computed as unsigned depending on UNS, and rounded as specified by CODE). CODE is enum tree_code in fact, but double_int.h must be included before tree.h. */ double_int double_int_mod (double_int a, double_int b, bool uns, unsigned code) { double_int mod; double_int_divmod (a, b, uns, code, &mod); return mod; } /* The same as double_int_mod with UNS = false. */ double_int double_int_smod (double_int a, double_int b, unsigned code) { return double_int_mod (a, b, false, code); } /* The same as double_int_mod with UNS = true. */ double_int double_int_umod (double_int a, double_int b, unsigned code) { return double_int_mod (a, b, true, code); } /* Constructs tree in type TYPE from with value given by CST. Signedness of CST is assumed to be the same as the signedness of TYPE. */ tree double_int_to_tree (tree type, double_int cst) { cst = double_int_ext (cst, TYPE_PRECISION (type), TYPE_UNSIGNED (type)); return build_int_cst_wide (type, cst.low, cst.high); } /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed to be the same as the signedness of TYPE. */ bool double_int_fits_to_tree_p (const_tree type, double_int cst) { double_int ext = double_int_ext (cst, TYPE_PRECISION (type), TYPE_UNSIGNED (type)); return double_int_equal_p (cst, ext); } /* Returns true if CST is negative. Of course, CST is considered to be signed. */ bool double_int_negative_p (double_int cst) { return cst.high < 0; } /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the comparison is given by UNS. */ int double_int_cmp (double_int a, double_int b, bool uns) { if (uns) return double_int_ucmp (a, b); else return double_int_scmp (a, b); } /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B, and 1 if A > B. */ int double_int_ucmp (double_int a, double_int b) { if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high) return -1; if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high) return 1; if (a.low < b.low) return -1; if (a.low > b.low) return 1; return 0; } /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B, and 1 if A > B. */ int double_int_scmp (double_int a, double_int b) { if (a.high < b.high) return -1; if (a.high > b.high) return 1; if (a.low < b.low) return -1; if (a.low > b.low) return 1; return 0; } /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */ static unsigned double_int_split_digit (double_int *cst, unsigned base) { unsigned HOST_WIDE_INT resl, reml; HOST_WIDE_INT resh, remh; div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0, &resl, &resh, &reml, &remh); cst->high = resh; cst->low = resl; return reml; } /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned, otherwise it is signed. */ void dump_double_int (FILE *file, double_int cst, bool uns) { unsigned digits[100], n; int i; if (double_int_zero_p (cst)) { fprintf (file, "0"); return; } if (!uns && double_int_negative_p (cst)) { fprintf (file, "-"); cst = double_int_neg (cst); } for (n = 0; !double_int_zero_p (cst); n++) digits[n] = double_int_split_digit (&cst, 10); for (i = n - 1; i >= 0; i--) fprintf (file, "%u", digits[i]); } /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed otherwise. */ void mpz_set_double_int (mpz_t result, double_int val, bool uns) { bool negate = false; unsigned HOST_WIDE_INT vp[2]; if (!uns && double_int_negative_p (val)) { negate = true; val = double_int_neg (val); } vp[0] = val.low; vp[1] = (unsigned HOST_WIDE_INT) val.high; mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp); if (negate) mpz_neg (result, result); } /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range values of VAL will be wrapped; otherwise, they will be set to the appropriate minimum or maximum TYPE bound. */ double_int mpz_get_double_int (const_tree type, mpz_t val, bool wrap) { unsigned HOST_WIDE_INT *vp; size_t count, numb; double_int res; if (!wrap) { mpz_t min, max; mpz_init (min); mpz_init (max); get_type_static_bounds (type, min, max); if (mpz_cmp (val, min) < 0) mpz_set (val, min); else if (mpz_cmp (val, max) > 0) mpz_set (val, max); mpz_clear (min); mpz_clear (max); } /* Determine the number of unsigned HOST_WIDE_INT that are required for representing the value. The code to calculate count is extracted from the GMP manual, section "Integer Import and Export": http://gmplib.org/manual/Integer-Import-and-Export.html */ numb = 8*sizeof(HOST_WIDE_INT); count = (mpz_sizeinbase (val, 2) + numb-1) / numb; if (count < 2) count = 2; vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT)); vp[0] = 0; vp[1] = 0; mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val); gcc_assert (wrap || count <= 2); res.low = vp[0]; res.high = (HOST_WIDE_INT) vp[1]; res = double_int_ext (res, TYPE_PRECISION (type), TYPE_UNSIGNED (type)); if (mpz_sgn (val) < 0) res = double_int_neg (res); return res; }