URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [fortran/] [trans-stmt.c] - Rev 304
Go to most recent revision | Compare with Previous | Blame | View Log
/* Statement translation -- generate GCC trees from gfc_code. Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Paul Brook <paul@nowt.org> and Steven Bosscher <s.bosscher@student.tudelft.nl> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tree.h" #include "gimple.h" #include "ggc.h" #include "toplev.h" #include "real.h" #include "gfortran.h" #include "flags.h" #include "trans.h" #include "trans-stmt.h" #include "trans-types.h" #include "trans-array.h" #include "trans-const.h" #include "arith.h" #include "dependency.h" typedef struct iter_info { tree var; tree start; tree end; tree step; struct iter_info *next; } iter_info; typedef struct forall_info { iter_info *this_loop; tree mask; tree maskindex; int nvar; tree size; struct forall_info *prev_nest; } forall_info; static void gfc_trans_where_2 (gfc_code *, tree, bool, forall_info *, stmtblock_t *); /* Translate a F95 label number to a LABEL_EXPR. */ tree gfc_trans_label_here (gfc_code * code) { return build1_v (LABEL_EXPR, gfc_get_label_decl (code->here)); } /* Given a variable expression which has been ASSIGNed to, find the decl containing the auxiliary variables. For variables in common blocks this is a field_decl. */ void gfc_conv_label_variable (gfc_se * se, gfc_expr * expr) { gcc_assert (expr->symtree->n.sym->attr.assign == 1); gfc_conv_expr (se, expr); /* Deals with variable in common block. Get the field declaration. */ if (TREE_CODE (se->expr) == COMPONENT_REF) se->expr = TREE_OPERAND (se->expr, 1); /* Deals with dummy argument. Get the parameter declaration. */ else if (TREE_CODE (se->expr) == INDIRECT_REF) se->expr = TREE_OPERAND (se->expr, 0); } /* Translate a label assignment statement. */ tree gfc_trans_label_assign (gfc_code * code) { tree label_tree; gfc_se se; tree len; tree addr; tree len_tree; int label_len; /* Start a new block. */ gfc_init_se (&se, NULL); gfc_start_block (&se.pre); gfc_conv_label_variable (&se, code->expr1); len = GFC_DECL_STRING_LEN (se.expr); addr = GFC_DECL_ASSIGN_ADDR (se.expr); label_tree = gfc_get_label_decl (code->label1); if (code->label1->defined == ST_LABEL_TARGET) { label_tree = gfc_build_addr_expr (pvoid_type_node, label_tree); len_tree = integer_minus_one_node; } else { gfc_expr *format = code->label1->format; label_len = format->value.character.length; len_tree = build_int_cst (NULL_TREE, label_len); label_tree = gfc_build_wide_string_const (format->ts.kind, label_len + 1, format->value.character.string); label_tree = gfc_build_addr_expr (pvoid_type_node, label_tree); } gfc_add_modify (&se.pre, len, len_tree); gfc_add_modify (&se.pre, addr, label_tree); return gfc_finish_block (&se.pre); } /* Translate a GOTO statement. */ tree gfc_trans_goto (gfc_code * code) { locus loc = code->loc; tree assigned_goto; tree target; tree tmp; gfc_se se; if (code->label1 != NULL) return build1_v (GOTO_EXPR, gfc_get_label_decl (code->label1)); /* ASSIGNED GOTO. */ gfc_init_se (&se, NULL); gfc_start_block (&se.pre); gfc_conv_label_variable (&se, code->expr1); tmp = GFC_DECL_STRING_LEN (se.expr); tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, build_int_cst (TREE_TYPE (tmp), -1)); gfc_trans_runtime_check (true, false, tmp, &se.pre, &loc, "Assigned label is not a target label"); assigned_goto = GFC_DECL_ASSIGN_ADDR (se.expr); /* We're going to ignore a label list. It does not really change the statement's semantics (because it is just a further restriction on what's legal code); before, we were comparing label addresses here, but that's a very fragile business and may break with optimization. So just ignore it. */ target = fold_build1 (GOTO_EXPR, void_type_node, assigned_goto); gfc_add_expr_to_block (&se.pre, target); return gfc_finish_block (&se.pre); } /* Translate an ENTRY statement. Just adds a label for this entry point. */ tree gfc_trans_entry (gfc_code * code) { return build1_v (LABEL_EXPR, code->ext.entry->label); } /* Check for dependencies between INTENT(IN) and INTENT(OUT) arguments of elemental subroutines. Make temporaries for output arguments if any such dependencies are found. Output arguments are chosen because internal_unpack can be used, as is, to copy the result back to the variable. */ static void gfc_conv_elemental_dependencies (gfc_se * se, gfc_se * loopse, gfc_symbol * sym, gfc_actual_arglist * arg, gfc_dep_check check_variable) { gfc_actual_arglist *arg0; gfc_expr *e; gfc_formal_arglist *formal; gfc_loopinfo tmp_loop; gfc_se parmse; gfc_ss *ss; gfc_ss_info *info; gfc_symbol *fsym; gfc_ref *ref; int n; tree data; tree offset; tree size; tree tmp; if (loopse->ss == NULL) return; ss = loopse->ss; arg0 = arg; formal = sym->formal; /* Loop over all the arguments testing for dependencies. */ for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL) { e = arg->expr; if (e == NULL) continue; /* Obtain the info structure for the current argument. */ info = NULL; for (ss = loopse->ss; ss && ss != gfc_ss_terminator; ss = ss->next) { if (ss->expr != e) continue; info = &ss->data.info; break; } /* If there is a dependency, create a temporary and use it instead of the variable. */ fsym = formal ? formal->sym : NULL; if (e->expr_type == EXPR_VARIABLE && e->rank && fsym && fsym->attr.intent != INTENT_IN && gfc_check_fncall_dependency (e, fsym->attr.intent, sym, arg0, check_variable)) { tree initial, temptype; stmtblock_t temp_post; /* Make a local loopinfo for the temporary creation, so that none of the other ss->info's have to be renormalized. */ gfc_init_loopinfo (&tmp_loop); for (n = 0; n < info->dimen; n++) { tmp_loop.to[n] = loopse->loop->to[n]; tmp_loop.from[n] = loopse->loop->from[n]; tmp_loop.order[n] = loopse->loop->order[n]; } /* Obtain the argument descriptor for unpacking. */ gfc_init_se (&parmse, NULL); parmse.want_pointer = 1; /* The scalarizer introduces some specific peculiarities when handling elemental subroutines; the stride can be needed up to the dim_array - 1, rather than dim_loop - 1 to calculate offsets outside the loop. For this reason, we make sure that the descriptor has the dimensionality of the array by converting trailing elements into ranges with end = start. */ for (ref = e->ref; ref; ref = ref->next) if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION) break; if (ref) { bool seen_range = false; for (n = 0; n < ref->u.ar.dimen; n++) { if (ref->u.ar.dimen_type[n] == DIMEN_RANGE) seen_range = true; if (!seen_range || ref->u.ar.dimen_type[n] != DIMEN_ELEMENT) continue; ref->u.ar.end[n] = gfc_copy_expr (ref->u.ar.start[n]); ref->u.ar.dimen_type[n] = DIMEN_RANGE; } } gfc_conv_expr_descriptor (&parmse, e, gfc_walk_expr (e)); gfc_add_block_to_block (&se->pre, &parmse.pre); /* If we've got INTENT(INOUT) or a derived type with INTENT(OUT), initialize the array temporary with a copy of the values. */ if (fsym->attr.intent == INTENT_INOUT || (fsym->ts.type ==BT_DERIVED && fsym->attr.intent == INTENT_OUT)) initial = parmse.expr; else initial = NULL_TREE; /* Find the type of the temporary to create; we don't use the type of e itself as this breaks for subcomponent-references in e (where the type of e is that of the final reference, but parmse.expr's type corresponds to the full derived-type). */ /* TODO: Fix this somehow so we don't need a temporary of the whole array but instead only the components referenced. */ temptype = TREE_TYPE (parmse.expr); /* Pointer to descriptor. */ gcc_assert (TREE_CODE (temptype) == POINTER_TYPE); temptype = TREE_TYPE (temptype); temptype = gfc_get_element_type (temptype); /* Generate the temporary. Cleaning up the temporary should be the very last thing done, so we add the code to a new block and add it to se->post as last instructions. */ size = gfc_create_var (gfc_array_index_type, NULL); data = gfc_create_var (pvoid_type_node, NULL); gfc_init_block (&temp_post); tmp = gfc_trans_create_temp_array (&se->pre, &temp_post, &tmp_loop, info, temptype, initial, false, true, false, &arg->expr->where); gfc_add_modify (&se->pre, size, tmp); tmp = fold_convert (pvoid_type_node, info->data); gfc_add_modify (&se->pre, data, tmp); /* Calculate the offset for the temporary. */ offset = gfc_index_zero_node; for (n = 0; n < info->dimen; n++) { tmp = gfc_conv_descriptor_stride_get (info->descriptor, gfc_rank_cst[n]); tmp = fold_build2 (MULT_EXPR, gfc_array_index_type, loopse->loop->from[n], tmp); offset = fold_build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp); } info->offset = gfc_create_var (gfc_array_index_type, NULL); gfc_add_modify (&se->pre, info->offset, offset); /* Copy the result back using unpack. */ tmp = build_call_expr_loc (input_location, gfor_fndecl_in_unpack, 2, parmse.expr, data); gfc_add_expr_to_block (&se->post, tmp); /* parmse.pre is already added above. */ gfc_add_block_to_block (&se->post, &parmse.post); gfc_add_block_to_block (&se->post, &temp_post); } } } /* Translate the CALL statement. Builds a call to an F95 subroutine. */ tree gfc_trans_call (gfc_code * code, bool dependency_check, tree mask, tree count1, bool invert) { gfc_se se; gfc_ss * ss; int has_alternate_specifier; gfc_dep_check check_variable; tree index = NULL_TREE; tree maskexpr = NULL_TREE; tree tmp; /* A CALL starts a new block because the actual arguments may have to be evaluated first. */ gfc_init_se (&se, NULL); gfc_start_block (&se.pre); gcc_assert (code->resolved_sym); ss = gfc_ss_terminator; if (code->resolved_sym->attr.elemental) ss = gfc_walk_elemental_function_args (ss, code->ext.actual, GFC_SS_REFERENCE); /* Is not an elemental subroutine call with array valued arguments. */ if (ss == gfc_ss_terminator) { /* Translate the call. */ has_alternate_specifier = gfc_conv_procedure_call (&se, code->resolved_sym, code->ext.actual, code->expr1, NULL_TREE); /* A subroutine without side-effect, by definition, does nothing! */ TREE_SIDE_EFFECTS (se.expr) = 1; /* Chain the pieces together and return the block. */ if (has_alternate_specifier) { gfc_code *select_code; gfc_symbol *sym; select_code = code->next; gcc_assert(select_code->op == EXEC_SELECT); sym = select_code->expr1->symtree->n.sym; se.expr = convert (gfc_typenode_for_spec (&sym->ts), se.expr); if (sym->backend_decl == NULL) sym->backend_decl = gfc_get_symbol_decl (sym); gfc_add_modify (&se.pre, sym->backend_decl, se.expr); } else gfc_add_expr_to_block (&se.pre, se.expr); gfc_add_block_to_block (&se.pre, &se.post); } else { /* An elemental subroutine call with array valued arguments has to be scalarized. */ gfc_loopinfo loop; stmtblock_t body; stmtblock_t block; gfc_se loopse; gfc_se depse; /* gfc_walk_elemental_function_args renders the ss chain in the reverse order to the actual argument order. */ ss = gfc_reverse_ss (ss); /* Initialize the loop. */ gfc_init_se (&loopse, NULL); gfc_init_loopinfo (&loop); gfc_add_ss_to_loop (&loop, ss); gfc_conv_ss_startstride (&loop); /* TODO: gfc_conv_loop_setup generates a temporary for vector subscripts. This could be prevented in the elemental case as temporaries are handled separatedly (below in gfc_conv_elemental_dependencies). */ gfc_conv_loop_setup (&loop, &code->expr1->where); gfc_mark_ss_chain_used (ss, 1); /* Convert the arguments, checking for dependencies. */ gfc_copy_loopinfo_to_se (&loopse, &loop); loopse.ss = ss; /* For operator assignment, do dependency checking. */ if (dependency_check) check_variable = ELEM_CHECK_VARIABLE; else check_variable = ELEM_DONT_CHECK_VARIABLE; gfc_init_se (&depse, NULL); gfc_conv_elemental_dependencies (&depse, &loopse, code->resolved_sym, code->ext.actual, check_variable); gfc_add_block_to_block (&loop.pre, &depse.pre); gfc_add_block_to_block (&loop.post, &depse.post); /* Generate the loop body. */ gfc_start_scalarized_body (&loop, &body); gfc_init_block (&block); if (mask && count1) { /* Form the mask expression according to the mask. */ index = count1; maskexpr = gfc_build_array_ref (mask, index, NULL); if (invert) maskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (maskexpr), maskexpr); } /* Add the subroutine call to the block. */ gfc_conv_procedure_call (&loopse, code->resolved_sym, code->ext.actual, code->expr1, NULL_TREE); if (mask && count1) { tmp = build3_v (COND_EXPR, maskexpr, loopse.expr, build_empty_stmt (input_location)); gfc_add_expr_to_block (&loopse.pre, tmp); tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count1, gfc_index_one_node); gfc_add_modify (&loopse.pre, count1, tmp); } else gfc_add_expr_to_block (&loopse.pre, loopse.expr); gfc_add_block_to_block (&block, &loopse.pre); gfc_add_block_to_block (&block, &loopse.post); /* Finish up the loop block and the loop. */ gfc_add_expr_to_block (&body, gfc_finish_block (&block)); gfc_trans_scalarizing_loops (&loop, &body); gfc_add_block_to_block (&se.pre, &loop.pre); gfc_add_block_to_block (&se.pre, &loop.post); gfc_add_block_to_block (&se.pre, &se.post); gfc_cleanup_loop (&loop); } return gfc_finish_block (&se.pre); } /* Translate the RETURN statement. */ tree gfc_trans_return (gfc_code * code ATTRIBUTE_UNUSED) { if (code->expr1) { gfc_se se; tree tmp; tree result; /* If code->expr is not NULL, this return statement must appear in a subroutine and current_fake_result_decl has already been generated. */ result = gfc_get_fake_result_decl (NULL, 0); if (!result) { gfc_warning ("An alternate return at %L without a * dummy argument", &code->expr1->where); return build1_v (GOTO_EXPR, gfc_get_return_label ()); } /* Start a new block for this statement. */ gfc_init_se (&se, NULL); gfc_start_block (&se.pre); gfc_conv_expr (&se, code->expr1); tmp = fold_build2 (MODIFY_EXPR, TREE_TYPE (result), result, fold_convert (TREE_TYPE (result), se.expr)); gfc_add_expr_to_block (&se.pre, tmp); tmp = build1_v (GOTO_EXPR, gfc_get_return_label ()); gfc_add_expr_to_block (&se.pre, tmp); gfc_add_block_to_block (&se.pre, &se.post); return gfc_finish_block (&se.pre); } else return build1_v (GOTO_EXPR, gfc_get_return_label ()); } /* Translate the PAUSE statement. We have to translate this statement to a runtime library call. */ tree gfc_trans_pause (gfc_code * code) { tree gfc_int4_type_node = gfc_get_int_type (4); gfc_se se; tree tmp; /* Start a new block for this statement. */ gfc_init_se (&se, NULL); gfc_start_block (&se.pre); if (code->expr1 == NULL) { tmp = build_int_cst (gfc_int4_type_node, code->ext.stop_code); tmp = build_call_expr_loc (input_location, gfor_fndecl_pause_numeric, 1, tmp); } else { gfc_conv_expr_reference (&se, code->expr1); tmp = build_call_expr_loc (input_location, gfor_fndecl_pause_string, 2, se.expr, se.string_length); } gfc_add_expr_to_block (&se.pre, tmp); gfc_add_block_to_block (&se.pre, &se.post); return gfc_finish_block (&se.pre); } /* Translate the STOP statement. We have to translate this statement to a runtime library call. */ tree gfc_trans_stop (gfc_code * code) { tree gfc_int4_type_node = gfc_get_int_type (4); gfc_se se; tree tmp; /* Start a new block for this statement. */ gfc_init_se (&se, NULL); gfc_start_block (&se.pre); if (code->expr1 == NULL) { tmp = build_int_cst (gfc_int4_type_node, code->ext.stop_code); tmp = build_call_expr_loc (input_location, gfor_fndecl_stop_numeric, 1, tmp); } else { gfc_conv_expr_reference (&se, code->expr1); tmp = build_call_expr_loc (input_location, gfor_fndecl_stop_string, 2, se.expr, se.string_length); } gfc_add_expr_to_block (&se.pre, tmp); gfc_add_block_to_block (&se.pre, &se.post); return gfc_finish_block (&se.pre); } /* Generate GENERIC for the IF construct. This function also deals with the simple IF statement, because the front end translates the IF statement into an IF construct. We translate: IF (cond) THEN then_clause ELSEIF (cond2) elseif_clause ELSE else_clause ENDIF into: pre_cond_s; if (cond_s) { then_clause; } else { pre_cond_s if (cond_s) { elseif_clause } else { else_clause; } } where COND_S is the simplified version of the predicate. PRE_COND_S are the pre side-effects produced by the translation of the conditional. We need to build the chain recursively otherwise we run into problems with folding incomplete statements. */ static tree gfc_trans_if_1 (gfc_code * code) { gfc_se if_se; tree stmt, elsestmt; /* Check for an unconditional ELSE clause. */ if (!code->expr1) return gfc_trans_code (code->next); /* Initialize a statement builder for each block. Puts in NULL_TREEs. */ gfc_init_se (&if_se, NULL); gfc_start_block (&if_se.pre); /* Calculate the IF condition expression. */ gfc_conv_expr_val (&if_se, code->expr1); /* Translate the THEN clause. */ stmt = gfc_trans_code (code->next); /* Translate the ELSE clause. */ if (code->block) elsestmt = gfc_trans_if_1 (code->block); else elsestmt = build_empty_stmt (input_location); /* Build the condition expression and add it to the condition block. */ stmt = fold_build3 (COND_EXPR, void_type_node, if_se.expr, stmt, elsestmt); gfc_add_expr_to_block (&if_se.pre, stmt); /* Finish off this statement. */ return gfc_finish_block (&if_se.pre); } tree gfc_trans_if (gfc_code * code) { /* Ignore the top EXEC_IF, it only announces an IF construct. The actual code we must translate is in code->block. */ return gfc_trans_if_1 (code->block); } /* Translate an arithmetic IF expression. IF (cond) label1, label2, label3 translates to if (cond <= 0) { if (cond < 0) goto label1; else // cond == 0 goto label2; } else // cond > 0 goto label3; An optimized version can be generated in case of equal labels. E.g., if label1 is equal to label2, we can translate it to if (cond <= 0) goto label1; else goto label3; */ tree gfc_trans_arithmetic_if (gfc_code * code) { gfc_se se; tree tmp; tree branch1; tree branch2; tree zero; /* Start a new block. */ gfc_init_se (&se, NULL); gfc_start_block (&se.pre); /* Pre-evaluate COND. */ gfc_conv_expr_val (&se, code->expr1); se.expr = gfc_evaluate_now (se.expr, &se.pre); /* Build something to compare with. */ zero = gfc_build_const (TREE_TYPE (se.expr), integer_zero_node); if (code->label1->value != code->label2->value) { /* If (cond < 0) take branch1 else take branch2. First build jumps to the COND .LT. 0 and the COND .EQ. 0 cases. */ branch1 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label1)); branch2 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label2)); if (code->label1->value != code->label3->value) tmp = fold_build2 (LT_EXPR, boolean_type_node, se.expr, zero); else tmp = fold_build2 (NE_EXPR, boolean_type_node, se.expr, zero); branch1 = fold_build3 (COND_EXPR, void_type_node, tmp, branch1, branch2); } else branch1 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label1)); if (code->label1->value != code->label3->value && code->label2->value != code->label3->value) { /* if (cond <= 0) take branch1 else take branch2. */ branch2 = build1_v (GOTO_EXPR, gfc_get_label_decl (code->label3)); tmp = fold_build2 (LE_EXPR, boolean_type_node, se.expr, zero); branch1 = fold_build3 (COND_EXPR, void_type_node, tmp, branch1, branch2); } /* Append the COND_EXPR to the evaluation of COND, and return. */ gfc_add_expr_to_block (&se.pre, branch1); return gfc_finish_block (&se.pre); } /* Translate a BLOCK construct. This is basically what we would do for a procedure body. */ tree gfc_trans_block_construct (gfc_code* code) { gfc_namespace* ns; gfc_symbol* sym; stmtblock_t body; tree tmp; ns = code->ext.ns; gcc_assert (ns); sym = ns->proc_name; gcc_assert (sym); gcc_assert (!sym->tlink); sym->tlink = sym; gfc_start_block (&body); gfc_process_block_locals (ns); tmp = gfc_trans_code (ns->code); tmp = gfc_trans_deferred_vars (sym, tmp); gfc_add_expr_to_block (&body, tmp); return gfc_finish_block (&body); } /* Translate the simple DO construct. This is where the loop variable has integer type and step +-1. We can't use this in the general case because integer overflow and floating point errors could give incorrect results. We translate a do loop from: DO dovar = from, to, step body END DO to: [Evaluate loop bounds and step] dovar = from; if ((step > 0) ? (dovar <= to) : (dovar => to)) { for (;;) { body; cycle_label: cond = (dovar == to); dovar += step; if (cond) goto end_label; } } end_label: This helps the optimizers by avoiding the extra induction variable used in the general case. */ static tree gfc_trans_simple_do (gfc_code * code, stmtblock_t *pblock, tree dovar, tree from, tree to, tree step, tree exit_cond) { stmtblock_t body; tree type; tree cond; tree tmp; tree saved_dovar = NULL; tree cycle_label; tree exit_label; type = TREE_TYPE (dovar); /* Initialize the DO variable: dovar = from. */ gfc_add_modify (pblock, dovar, from); /* Save value for do-tinkering checking. */ if (gfc_option.rtcheck & GFC_RTCHECK_DO) { saved_dovar = gfc_create_var (type, ".saved_dovar"); gfc_add_modify (pblock, saved_dovar, dovar); } /* Cycle and exit statements are implemented with gotos. */ cycle_label = gfc_build_label_decl (NULL_TREE); exit_label = gfc_build_label_decl (NULL_TREE); /* Put the labels where they can be found later. See gfc_trans_do(). */ code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL); /* Loop body. */ gfc_start_block (&body); /* Main loop body. */ tmp = gfc_trans_code_cond (code->block->next, exit_cond); gfc_add_expr_to_block (&body, tmp); /* Label for cycle statements (if needed). */ if (TREE_USED (cycle_label)) { tmp = build1_v (LABEL_EXPR, cycle_label); gfc_add_expr_to_block (&body, tmp); } /* Check whether someone has modified the loop variable. */ if (gfc_option.rtcheck & GFC_RTCHECK_DO) { tmp = fold_build2 (NE_EXPR, boolean_type_node, dovar, saved_dovar); gfc_trans_runtime_check (true, false, tmp, &body, &code->loc, "Loop variable has been modified"); } /* Exit the loop if there is an I/O result condition or error. */ if (exit_cond) { tmp = build1_v (GOTO_EXPR, exit_label); tmp = fold_build3 (COND_EXPR, void_type_node, exit_cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&body, tmp); } /* Evaluate the loop condition. */ cond = fold_build2 (EQ_EXPR, boolean_type_node, dovar, to); cond = gfc_evaluate_now (cond, &body); /* Increment the loop variable. */ tmp = fold_build2 (PLUS_EXPR, type, dovar, step); gfc_add_modify (&body, dovar, tmp); if (gfc_option.rtcheck & GFC_RTCHECK_DO) gfc_add_modify (&body, saved_dovar, dovar); /* The loop exit. */ tmp = build1_v (GOTO_EXPR, exit_label); TREE_USED (exit_label) = 1; tmp = fold_build3 (COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&body, tmp); /* Finish the loop body. */ tmp = gfc_finish_block (&body); tmp = build1_v (LOOP_EXPR, tmp); /* Only execute the loop if the number of iterations is positive. */ if (tree_int_cst_sgn (step) > 0) cond = fold_build2 (LE_EXPR, boolean_type_node, dovar, to); else cond = fold_build2 (GE_EXPR, boolean_type_node, dovar, to); tmp = fold_build3 (COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (pblock, tmp); /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (pblock, tmp); return gfc_finish_block (pblock); } /* Translate the DO construct. This obviously is one of the most important ones to get right with any compiler, but especially so for Fortran. We special case some loop forms as described in gfc_trans_simple_do. For other cases we implement them with a separate loop count, as described in the standard. We translate a do loop from: DO dovar = from, to, step body END DO to: [evaluate loop bounds and step] empty = (step > 0 ? to < from : to > from); countm1 = (to - from) / step; dovar = from; if (empty) goto exit_label; for (;;) { body; cycle_label: dovar += step if (countm1 ==0) goto exit_label; countm1--; } exit_label: countm1 is an unsigned integer. It is equal to the loop count minus one, because the loop count itself can overflow. */ tree gfc_trans_do (gfc_code * code, tree exit_cond) { gfc_se se; tree dovar; tree saved_dovar = NULL; tree from; tree to; tree step; tree countm1; tree type; tree utype; tree cond; tree cycle_label; tree exit_label; tree tmp; tree pos_step; stmtblock_t block; stmtblock_t body; gfc_start_block (&block); /* Evaluate all the expressions in the iterator. */ gfc_init_se (&se, NULL); gfc_conv_expr_lhs (&se, code->ext.iterator->var); gfc_add_block_to_block (&block, &se.pre); dovar = se.expr; type = TREE_TYPE (dovar); gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, code->ext.iterator->start); gfc_add_block_to_block (&block, &se.pre); from = gfc_evaluate_now (se.expr, &block); gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, code->ext.iterator->end); gfc_add_block_to_block (&block, &se.pre); to = gfc_evaluate_now (se.expr, &block); gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, code->ext.iterator->step); gfc_add_block_to_block (&block, &se.pre); step = gfc_evaluate_now (se.expr, &block); if (gfc_option.rtcheck & GFC_RTCHECK_DO) { tmp = fold_build2 (EQ_EXPR, boolean_type_node, step, fold_convert (type, integer_zero_node)); gfc_trans_runtime_check (true, false, tmp, &block, &code->loc, "DO step value is zero"); } /* Special case simple loops. */ if (TREE_CODE (type) == INTEGER_TYPE && (integer_onep (step) || tree_int_cst_equal (step, integer_minus_one_node))) return gfc_trans_simple_do (code, &block, dovar, from, to, step, exit_cond); pos_step = fold_build2 (GT_EXPR, boolean_type_node, step, fold_convert (type, integer_zero_node)); if (TREE_CODE (type) == INTEGER_TYPE) utype = unsigned_type_for (type); else utype = unsigned_type_for (gfc_array_index_type); countm1 = gfc_create_var (utype, "countm1"); /* Cycle and exit statements are implemented with gotos. */ cycle_label = gfc_build_label_decl (NULL_TREE); exit_label = gfc_build_label_decl (NULL_TREE); TREE_USED (exit_label) = 1; /* Initialize the DO variable: dovar = from. */ gfc_add_modify (&block, dovar, from); /* Save value for do-tinkering checking. */ if (gfc_option.rtcheck & GFC_RTCHECK_DO) { saved_dovar = gfc_create_var (type, ".saved_dovar"); gfc_add_modify (&block, saved_dovar, dovar); } /* Initialize loop count and jump to exit label if the loop is empty. This code is executed before we enter the loop body. We generate: step_sign = sign(1,step); if (step > 0) { if (to < from) goto exit_label; } else { if (to > from) goto exit_label; } countm1 = (to*step_sign - from*step_sign) / (step*step_sign); */ if (TREE_CODE (type) == INTEGER_TYPE) { tree pos, neg, step_sign, to2, from2, step2; /* Calculate SIGN (1,step), as (step < 0 ? -1 : 1) */ tmp = fold_build2 (LT_EXPR, boolean_type_node, step, build_int_cst (TREE_TYPE (step), 0)); step_sign = fold_build3 (COND_EXPR, type, tmp, build_int_cst (type, -1), build_int_cst (type, 1)); tmp = fold_build2 (LT_EXPR, boolean_type_node, to, from); pos = fold_build3 (COND_EXPR, void_type_node, tmp, build1_v (GOTO_EXPR, exit_label), build_empty_stmt (input_location)); tmp = fold_build2 (GT_EXPR, boolean_type_node, to, from); neg = fold_build3 (COND_EXPR, void_type_node, tmp, build1_v (GOTO_EXPR, exit_label), build_empty_stmt (input_location)); tmp = fold_build3 (COND_EXPR, void_type_node, pos_step, pos, neg); gfc_add_expr_to_block (&block, tmp); /* Calculate the loop count. to-from can overflow, so we cast to unsigned. */ to2 = fold_build2 (MULT_EXPR, type, step_sign, to); from2 = fold_build2 (MULT_EXPR, type, step_sign, from); step2 = fold_build2 (MULT_EXPR, type, step_sign, step); step2 = fold_convert (utype, step2); tmp = fold_build2 (MINUS_EXPR, type, to2, from2); tmp = fold_convert (utype, tmp); tmp = fold_build2 (TRUNC_DIV_EXPR, utype, tmp, step2); tmp = fold_build2 (MODIFY_EXPR, void_type_node, countm1, tmp); gfc_add_expr_to_block (&block, tmp); } else { /* TODO: We could use the same width as the real type. This would probably cause more problems that it solves when we implement "long double" types. */ tmp = fold_build2 (MINUS_EXPR, type, to, from); tmp = fold_build2 (RDIV_EXPR, type, tmp, step); tmp = fold_build1 (FIX_TRUNC_EXPR, utype, tmp); gfc_add_modify (&block, countm1, tmp); /* We need a special check for empty loops: empty = (step > 0 ? to < from : to > from); */ tmp = fold_build3 (COND_EXPR, boolean_type_node, pos_step, fold_build2 (LT_EXPR, boolean_type_node, to, from), fold_build2 (GT_EXPR, boolean_type_node, to, from)); /* If the loop is empty, go directly to the exit label. */ tmp = fold_build3 (COND_EXPR, void_type_node, tmp, build1_v (GOTO_EXPR, exit_label), build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); } /* Loop body. */ gfc_start_block (&body); /* Put these labels where they can be found later. We put the labels in a TREE_LIST node (because TREE_CHAIN is already used). cycle_label goes in TREE_PURPOSE (backend_decl), exit label in TREE_VALUE (backend_decl). */ code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL); /* Main loop body. */ tmp = gfc_trans_code_cond (code->block->next, exit_cond); gfc_add_expr_to_block (&body, tmp); /* Label for cycle statements (if needed). */ if (TREE_USED (cycle_label)) { tmp = build1_v (LABEL_EXPR, cycle_label); gfc_add_expr_to_block (&body, tmp); } /* Check whether someone has modified the loop variable. */ if (gfc_option.rtcheck & GFC_RTCHECK_DO) { tmp = fold_build2 (NE_EXPR, boolean_type_node, dovar, saved_dovar); gfc_trans_runtime_check (true, false, tmp, &body, &code->loc, "Loop variable has been modified"); } /* Exit the loop if there is an I/O result condition or error. */ if (exit_cond) { tmp = build1_v (GOTO_EXPR, exit_label); tmp = fold_build3 (COND_EXPR, void_type_node, exit_cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&body, tmp); } /* Increment the loop variable. */ tmp = fold_build2 (PLUS_EXPR, type, dovar, step); gfc_add_modify (&body, dovar, tmp); if (gfc_option.rtcheck & GFC_RTCHECK_DO) gfc_add_modify (&body, saved_dovar, dovar); /* End with the loop condition. Loop until countm1 == 0. */ cond = fold_build2 (EQ_EXPR, boolean_type_node, countm1, build_int_cst (utype, 0)); tmp = build1_v (GOTO_EXPR, exit_label); tmp = fold_build3 (COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&body, tmp); /* Decrement the loop count. */ tmp = fold_build2 (MINUS_EXPR, utype, countm1, build_int_cst (utype, 1)); gfc_add_modify (&body, countm1, tmp); /* End of loop body. */ tmp = gfc_finish_block (&body); /* The for loop itself. */ tmp = build1_v (LOOP_EXPR, tmp); gfc_add_expr_to_block (&block, tmp); /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Translate the DO WHILE construct. We translate DO WHILE (cond) body END DO to: for ( ; ; ) { pre_cond; if (! cond) goto exit_label; body; cycle_label: } exit_label: Because the evaluation of the exit condition `cond' may have side effects, we can't do much for empty loop bodies. The backend optimizers should be smart enough to eliminate any dead loops. */ tree gfc_trans_do_while (gfc_code * code) { gfc_se cond; tree tmp; tree cycle_label; tree exit_label; stmtblock_t block; /* Everything we build here is part of the loop body. */ gfc_start_block (&block); /* Cycle and exit statements are implemented with gotos. */ cycle_label = gfc_build_label_decl (NULL_TREE); exit_label = gfc_build_label_decl (NULL_TREE); /* Put the labels where they can be found later. See gfc_trans_do(). */ code->block->backend_decl = tree_cons (cycle_label, exit_label, NULL); /* Create a GIMPLE version of the exit condition. */ gfc_init_se (&cond, NULL); gfc_conv_expr_val (&cond, code->expr1); gfc_add_block_to_block (&block, &cond.pre); cond.expr = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond.expr); /* Build "IF (! cond) GOTO exit_label". */ tmp = build1_v (GOTO_EXPR, exit_label); TREE_USED (exit_label) = 1; tmp = fold_build3 (COND_EXPR, void_type_node, cond.expr, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); /* The main body of the loop. */ tmp = gfc_trans_code (code->block->next); gfc_add_expr_to_block (&block, tmp); /* Label for cycle statements (if needed). */ if (TREE_USED (cycle_label)) { tmp = build1_v (LABEL_EXPR, cycle_label); gfc_add_expr_to_block (&block, tmp); } /* End of loop body. */ tmp = gfc_finish_block (&block); gfc_init_block (&block); /* Build the loop. */ tmp = build1_v (LOOP_EXPR, tmp); gfc_add_expr_to_block (&block, tmp); /* Add the exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Translate the SELECT CASE construct for INTEGER case expressions, without killing all potential optimizations. The problem is that Fortran allows unbounded cases, but the back-end does not, so we need to intercept those before we enter the equivalent SWITCH_EXPR we can build. For example, we translate this, SELECT CASE (expr) CASE (:100,101,105:115) block_1 CASE (190:199,200:) block_2 CASE (300) block_3 CASE DEFAULT block_4 END SELECT to the GENERIC equivalent, switch (expr) { case (minimum value for typeof(expr) ... 100: case 101: case 105 ... 114: block1: goto end_label; case 200 ... (maximum value for typeof(expr): case 190 ... 199: block2; goto end_label; case 300: block_3; goto end_label; default: block_4; goto end_label; } end_label: */ static tree gfc_trans_integer_select (gfc_code * code) { gfc_code *c; gfc_case *cp; tree end_label; tree tmp; gfc_se se; stmtblock_t block; stmtblock_t body; gfc_start_block (&block); /* Calculate the switch expression. */ gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, code->expr1); gfc_add_block_to_block (&block, &se.pre); end_label = gfc_build_label_decl (NULL_TREE); gfc_init_block (&body); for (c = code->block; c; c = c->block) { for (cp = c->ext.case_list; cp; cp = cp->next) { tree low, high; tree label; /* Assume it's the default case. */ low = high = NULL_TREE; if (cp->low) { low = gfc_conv_mpz_to_tree (cp->low->value.integer, cp->low->ts.kind); /* If there's only a lower bound, set the high bound to the maximum value of the case expression. */ if (!cp->high) high = TYPE_MAX_VALUE (TREE_TYPE (se.expr)); } if (cp->high) { /* Three cases are possible here: 1) There is no lower bound, e.g. CASE (:N). 2) There is a lower bound .NE. high bound, that is a case range, e.g. CASE (N:M) where M>N (we make sure that M>N during type resolution). 3) There is a lower bound, and it has the same value as the high bound, e.g. CASE (N:N). This is our internal representation of CASE(N). In the first and second case, we need to set a value for high. In the third case, we don't because the GCC middle end represents a single case value by just letting high be a NULL_TREE. We can't do that because we need to be able to represent unbounded cases. */ if (!cp->low || (cp->low && mpz_cmp (cp->low->value.integer, cp->high->value.integer) != 0)) high = gfc_conv_mpz_to_tree (cp->high->value.integer, cp->high->ts.kind); /* Unbounded case. */ if (!cp->low) low = TYPE_MIN_VALUE (TREE_TYPE (se.expr)); } /* Build a label. */ label = gfc_build_label_decl (NULL_TREE); /* Add this case label. Add parameter 'label', make it match GCC backend. */ tmp = fold_build3 (CASE_LABEL_EXPR, void_type_node, low, high, label); gfc_add_expr_to_block (&body, tmp); } /* Add the statements for this case. */ tmp = gfc_trans_code (c->next); gfc_add_expr_to_block (&body, tmp); /* Break to the end of the construct. */ tmp = build1_v (GOTO_EXPR, end_label); gfc_add_expr_to_block (&body, tmp); } tmp = gfc_finish_block (&body); tmp = build3_v (SWITCH_EXPR, se.expr, tmp, NULL_TREE); gfc_add_expr_to_block (&block, tmp); tmp = build1_v (LABEL_EXPR, end_label); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Translate the SELECT CASE construct for LOGICAL case expressions. There are only two cases possible here, even though the standard does allow three cases in a LOGICAL SELECT CASE construct: .TRUE., .FALSE., and DEFAULT. We never generate more than two blocks here. Instead, we always try to eliminate the DEFAULT case. This way, we can translate this kind of SELECT construct to a simple if {} else {}; expression in GENERIC. */ static tree gfc_trans_logical_select (gfc_code * code) { gfc_code *c; gfc_code *t, *f, *d; gfc_case *cp; gfc_se se; stmtblock_t block; /* Assume we don't have any cases at all. */ t = f = d = NULL; /* Now see which ones we actually do have. We can have at most two cases in a single case list: one for .TRUE. and one for .FALSE. The default case is always separate. If the cases for .TRUE. and .FALSE. are in the same case list, the block for that case list always executed, and we don't generate code a COND_EXPR. */ for (c = code->block; c; c = c->block) { for (cp = c->ext.case_list; cp; cp = cp->next) { if (cp->low) { if (cp->low->value.logical == 0) /* .FALSE. */ f = c; else /* if (cp->value.logical != 0), thus .TRUE. */ t = c; } else d = c; } } /* Start a new block. */ gfc_start_block (&block); /* Calculate the switch expression. We always need to do this because it may have side effects. */ gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, code->expr1); gfc_add_block_to_block (&block, &se.pre); if (t == f && t != NULL) { /* Cases for .TRUE. and .FALSE. are in the same block. Just translate the code for these cases, append it to the current block. */ gfc_add_expr_to_block (&block, gfc_trans_code (t->next)); } else { tree true_tree, false_tree, stmt; true_tree = build_empty_stmt (input_location); false_tree = build_empty_stmt (input_location); /* If we have a case for .TRUE. and for .FALSE., discard the default case. Otherwise, if .TRUE. or .FALSE. is missing and there is a default case, make the missing case the default case. */ if (t != NULL && f != NULL) d = NULL; else if (d != NULL) { if (t == NULL) t = d; else f = d; } /* Translate the code for each of these blocks, and append it to the current block. */ if (t != NULL) true_tree = gfc_trans_code (t->next); if (f != NULL) false_tree = gfc_trans_code (f->next); stmt = fold_build3 (COND_EXPR, void_type_node, se.expr, true_tree, false_tree); gfc_add_expr_to_block (&block, stmt); } return gfc_finish_block (&block); } /* Translate the SELECT CASE construct for CHARACTER case expressions. Instead of generating compares and jumps, it is far simpler to generate a data structure describing the cases in order and call a library subroutine that locates the right case. This is particularly true because this is the only case where we might have to dispose of a temporary. The library subroutine returns a pointer to jump to or NULL if no branches are to be taken. */ static tree gfc_trans_character_select (gfc_code *code) { tree init, node, end_label, tmp, type, case_num, label, fndecl; stmtblock_t block, body; gfc_case *cp, *d; gfc_code *c; gfc_se se; int n, k; /* The jump table types are stored in static variables to avoid constructing them from scratch every single time. */ static tree select_struct[2]; static tree ss_string1[2], ss_string1_len[2]; static tree ss_string2[2], ss_string2_len[2]; static tree ss_target[2]; tree pchartype = gfc_get_pchar_type (code->expr1->ts.kind); if (code->expr1->ts.kind == 1) k = 0; else if (code->expr1->ts.kind == 4) k = 1; else gcc_unreachable (); if (select_struct[k] == NULL) { select_struct[k] = make_node (RECORD_TYPE); if (code->expr1->ts.kind == 1) TYPE_NAME (select_struct[k]) = get_identifier ("_jump_struct_char1"); else if (code->expr1->ts.kind == 4) TYPE_NAME (select_struct[k]) = get_identifier ("_jump_struct_char4"); else gcc_unreachable (); #undef ADD_FIELD #define ADD_FIELD(NAME, TYPE) \ ss_##NAME[k] = gfc_add_field_to_struct \ (&(TYPE_FIELDS (select_struct[k])), select_struct[k], \ get_identifier (stringize(NAME)), TYPE) ADD_FIELD (string1, pchartype); ADD_FIELD (string1_len, gfc_charlen_type_node); ADD_FIELD (string2, pchartype); ADD_FIELD (string2_len, gfc_charlen_type_node); ADD_FIELD (target, integer_type_node); #undef ADD_FIELD gfc_finish_type (select_struct[k]); } cp = code->block->ext.case_list; while (cp->left != NULL) cp = cp->left; n = 0; for (d = cp; d; d = d->right) d->n = n++; end_label = gfc_build_label_decl (NULL_TREE); /* Generate the body */ gfc_start_block (&block); gfc_init_block (&body); for (c = code->block; c; c = c->block) { for (d = c->ext.case_list; d; d = d->next) { label = gfc_build_label_decl (NULL_TREE); tmp = fold_build3 (CASE_LABEL_EXPR, void_type_node, build_int_cst (NULL_TREE, d->n), build_int_cst (NULL_TREE, d->n), label); gfc_add_expr_to_block (&body, tmp); } tmp = gfc_trans_code (c->next); gfc_add_expr_to_block (&body, tmp); tmp = build1_v (GOTO_EXPR, end_label); gfc_add_expr_to_block (&body, tmp); } /* Generate the structure describing the branches */ init = NULL_TREE; for(d = cp; d; d = d->right) { node = NULL_TREE; gfc_init_se (&se, NULL); if (d->low == NULL) { node = tree_cons (ss_string1[k], null_pointer_node, node); node = tree_cons (ss_string1_len[k], integer_zero_node, node); } else { gfc_conv_expr_reference (&se, d->low); node = tree_cons (ss_string1[k], se.expr, node); node = tree_cons (ss_string1_len[k], se.string_length, node); } if (d->high == NULL) { node = tree_cons (ss_string2[k], null_pointer_node, node); node = tree_cons (ss_string2_len[k], integer_zero_node, node); } else { gfc_init_se (&se, NULL); gfc_conv_expr_reference (&se, d->high); node = tree_cons (ss_string2[k], se.expr, node); node = tree_cons (ss_string2_len[k], se.string_length, node); } node = tree_cons (ss_target[k], build_int_cst (integer_type_node, d->n), node); tmp = build_constructor_from_list (select_struct[k], nreverse (node)); init = tree_cons (NULL_TREE, tmp, init); } type = build_array_type (select_struct[k], build_index_type (build_int_cst (NULL_TREE, n-1))); init = build_constructor_from_list (type, nreverse(init)); TREE_CONSTANT (init) = 1; TREE_STATIC (init) = 1; /* Create a static variable to hold the jump table. */ tmp = gfc_create_var (type, "jumptable"); TREE_CONSTANT (tmp) = 1; TREE_STATIC (tmp) = 1; TREE_READONLY (tmp) = 1; DECL_INITIAL (tmp) = init; init = tmp; /* Build the library call */ init = gfc_build_addr_expr (pvoid_type_node, init); gfc_init_se (&se, NULL); gfc_conv_expr_reference (&se, code->expr1); gfc_add_block_to_block (&block, &se.pre); if (code->expr1->ts.kind == 1) fndecl = gfor_fndecl_select_string; else if (code->expr1->ts.kind == 4) fndecl = gfor_fndecl_select_string_char4; else gcc_unreachable (); tmp = build_call_expr_loc (input_location, fndecl, 4, init, build_int_cst (NULL_TREE, n), se.expr, se.string_length); case_num = gfc_create_var (integer_type_node, "case_num"); gfc_add_modify (&block, case_num, tmp); gfc_add_block_to_block (&block, &se.post); tmp = gfc_finish_block (&body); tmp = build3_v (SWITCH_EXPR, case_num, tmp, NULL_TREE); gfc_add_expr_to_block (&block, tmp); tmp = build1_v (LABEL_EXPR, end_label); gfc_add_expr_to_block (&block, tmp); return gfc_finish_block (&block); } /* Translate the three variants of the SELECT CASE construct. SELECT CASEs with INTEGER case expressions can be translated to an equivalent GENERIC switch statement, and for LOGICAL case expressions we build one or two if-else compares. SELECT CASEs with CHARACTER case expressions are a whole different story, because they don't exist in GENERIC. So we sort them and do a binary search at runtime. Fortran has no BREAK statement, and it does not allow jumps from one case block to another. That makes things a lot easier for the optimizers. */ tree gfc_trans_select (gfc_code * code) { gcc_assert (code && code->expr1); /* Empty SELECT constructs are legal. */ if (code->block == NULL) return build_empty_stmt (input_location); /* Select the correct translation function. */ switch (code->expr1->ts.type) { case BT_LOGICAL: return gfc_trans_logical_select (code); case BT_INTEGER: return gfc_trans_integer_select (code); case BT_CHARACTER: return gfc_trans_character_select (code); default: gfc_internal_error ("gfc_trans_select(): Bad type for case expr."); /* Not reached */ } } /* Traversal function to substitute a replacement symtree if the symbol in the expression is the same as that passed. f == 2 signals that that variable itself is not to be checked - only the references. This group of functions is used when the variable expression in a FORALL assignment has internal references. For example: FORALL (i = 1:4) p(p(i)) = i The only recourse here is to store a copy of 'p' for the index expression. */ static gfc_symtree *new_symtree; static gfc_symtree *old_symtree; static bool forall_replace (gfc_expr *expr, gfc_symbol *sym, int *f) { if (expr->expr_type != EXPR_VARIABLE) return false; if (*f == 2) *f = 1; else if (expr->symtree->n.sym == sym) expr->symtree = new_symtree; return false; } static void forall_replace_symtree (gfc_expr *e, gfc_symbol *sym, int f) { gfc_traverse_expr (e, sym, forall_replace, f); } static bool forall_restore (gfc_expr *expr, gfc_symbol *sym ATTRIBUTE_UNUSED, int *f ATTRIBUTE_UNUSED) { if (expr->expr_type != EXPR_VARIABLE) return false; if (expr->symtree == new_symtree) expr->symtree = old_symtree; return false; } static void forall_restore_symtree (gfc_expr *e) { gfc_traverse_expr (e, NULL, forall_restore, 0); } static void forall_make_variable_temp (gfc_code *c, stmtblock_t *pre, stmtblock_t *post) { gfc_se tse; gfc_se rse; gfc_expr *e; gfc_symbol *new_sym; gfc_symbol *old_sym; gfc_symtree *root; tree tmp; /* Build a copy of the lvalue. */ old_symtree = c->expr1->symtree; old_sym = old_symtree->n.sym; e = gfc_lval_expr_from_sym (old_sym); if (old_sym->attr.dimension) { gfc_init_se (&tse, NULL); gfc_conv_subref_array_arg (&tse, e, 0, INTENT_IN, false); gfc_add_block_to_block (pre, &tse.pre); gfc_add_block_to_block (post, &tse.post); tse.expr = build_fold_indirect_ref_loc (input_location, tse.expr); if (e->ts.type != BT_CHARACTER) { /* Use the variable offset for the temporary. */ tmp = gfc_conv_array_offset (old_sym->backend_decl); gfc_conv_descriptor_offset_set (pre, tse.expr, tmp); } } else { gfc_init_se (&tse, NULL); gfc_init_se (&rse, NULL); gfc_conv_expr (&rse, e); if (e->ts.type == BT_CHARACTER) { tse.string_length = rse.string_length; tmp = gfc_get_character_type_len (gfc_default_character_kind, tse.string_length); tse.expr = gfc_conv_string_tmp (&tse, build_pointer_type (tmp), rse.string_length); gfc_add_block_to_block (pre, &tse.pre); gfc_add_block_to_block (post, &tse.post); } else { tmp = gfc_typenode_for_spec (&e->ts); tse.expr = gfc_create_var (tmp, "temp"); } tmp = gfc_trans_scalar_assign (&tse, &rse, e->ts, true, e->expr_type == EXPR_VARIABLE); gfc_add_expr_to_block (pre, tmp); } gfc_free_expr (e); /* Create a new symbol to represent the lvalue. */ new_sym = gfc_new_symbol (old_sym->name, NULL); new_sym->ts = old_sym->ts; new_sym->attr.referenced = 1; new_sym->attr.temporary = 1; new_sym->attr.dimension = old_sym->attr.dimension; new_sym->attr.flavor = old_sym->attr.flavor; /* Use the temporary as the backend_decl. */ new_sym->backend_decl = tse.expr; /* Create a fake symtree for it. */ root = NULL; new_symtree = gfc_new_symtree (&root, old_sym->name); new_symtree->n.sym = new_sym; gcc_assert (new_symtree == root); /* Go through the expression reference replacing the old_symtree with the new. */ forall_replace_symtree (c->expr1, old_sym, 2); /* Now we have made this temporary, we might as well use it for the right hand side. */ forall_replace_symtree (c->expr2, old_sym, 1); } /* Handles dependencies in forall assignments. */ static int check_forall_dependencies (gfc_code *c, stmtblock_t *pre, stmtblock_t *post) { gfc_ref *lref; gfc_ref *rref; int need_temp; gfc_symbol *lsym; lsym = c->expr1->symtree->n.sym; need_temp = gfc_check_dependency (c->expr1, c->expr2, 0); /* Now check for dependencies within the 'variable' expression itself. These are treated by making a complete copy of variable and changing all the references to it point to the copy instead. Note that the shallow copy of the variable will not suffice for derived types with pointer components. We therefore leave these to their own devices. */ if (lsym->ts.type == BT_DERIVED && lsym->ts.u.derived->attr.pointer_comp) return need_temp; new_symtree = NULL; if (find_forall_index (c->expr1, lsym, 2) == SUCCESS) { forall_make_variable_temp (c, pre, post); need_temp = 0; } /* Substrings with dependencies are treated in the same way. */ if (c->expr1->ts.type == BT_CHARACTER && c->expr1->ref && c->expr2->expr_type == EXPR_VARIABLE && lsym == c->expr2->symtree->n.sym) { for (lref = c->expr1->ref; lref; lref = lref->next) if (lref->type == REF_SUBSTRING) break; for (rref = c->expr2->ref; rref; rref = rref->next) if (rref->type == REF_SUBSTRING) break; if (rref && lref && gfc_dep_compare_expr (rref->u.ss.start, lref->u.ss.start) < 0) { forall_make_variable_temp (c, pre, post); need_temp = 0; } } return need_temp; } static void cleanup_forall_symtrees (gfc_code *c) { forall_restore_symtree (c->expr1); forall_restore_symtree (c->expr2); gfc_free (new_symtree->n.sym); gfc_free (new_symtree); } /* Generate the loops for a FORALL block, specified by FORALL_TMP. BODY is the contents of the FORALL block/stmt to be iterated. MASK_FLAG indicates whether we should generate code to test the FORALLs mask array. OUTER is the loop header to be used for initializing mask indices. The generated loop format is: count = (end - start + step) / step loopvar = start while (1) { if (count <=0 ) goto end_of_loop <body> loopvar += step count -- } end_of_loop: */ static tree gfc_trans_forall_loop (forall_info *forall_tmp, tree body, int mask_flag, stmtblock_t *outer) { int n, nvar; tree tmp; tree cond; stmtblock_t block; tree exit_label; tree count; tree var, start, end, step; iter_info *iter; /* Initialize the mask index outside the FORALL nest. */ if (mask_flag && forall_tmp->mask) gfc_add_modify (outer, forall_tmp->maskindex, gfc_index_zero_node); iter = forall_tmp->this_loop; nvar = forall_tmp->nvar; for (n = 0; n < nvar; n++) { var = iter->var; start = iter->start; end = iter->end; step = iter->step; exit_label = gfc_build_label_decl (NULL_TREE); TREE_USED (exit_label) = 1; /* The loop counter. */ count = gfc_create_var (TREE_TYPE (var), "count"); /* The body of the loop. */ gfc_init_block (&block); /* The exit condition. */ cond = fold_build2 (LE_EXPR, boolean_type_node, count, build_int_cst (TREE_TYPE (count), 0)); tmp = build1_v (GOTO_EXPR, exit_label); tmp = fold_build3 (COND_EXPR, void_type_node, cond, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); /* The main loop body. */ gfc_add_expr_to_block (&block, body); /* Increment the loop variable. */ tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (var), var, step); gfc_add_modify (&block, var, tmp); /* Advance to the next mask element. Only do this for the innermost loop. */ if (n == 0 && mask_flag && forall_tmp->mask) { tree maskindex = forall_tmp->maskindex; tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, maskindex, gfc_index_one_node); gfc_add_modify (&block, maskindex, tmp); } /* Decrement the loop counter. */ tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (var), count, build_int_cst (TREE_TYPE (var), 1)); gfc_add_modify (&block, count, tmp); body = gfc_finish_block (&block); /* Loop var initialization. */ gfc_init_block (&block); gfc_add_modify (&block, var, start); /* Initialize the loop counter. */ tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (var), step, start); tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (var), end, tmp); tmp = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (var), tmp, step); gfc_add_modify (&block, count, tmp); /* The loop expression. */ tmp = build1_v (LOOP_EXPR, body); gfc_add_expr_to_block (&block, tmp); /* The exit label. */ tmp = build1_v (LABEL_EXPR, exit_label); gfc_add_expr_to_block (&block, tmp); body = gfc_finish_block (&block); iter = iter->next; } return body; } /* Generate the body and loops according to MASK_FLAG. If MASK_FLAG is nonzero, the body is controlled by all masks in the forall nest. Otherwise, the innermost loop is not controlled by it's mask. This is used for initializing that mask. */ static tree gfc_trans_nested_forall_loop (forall_info * nested_forall_info, tree body, int mask_flag) { tree tmp; stmtblock_t header; forall_info *forall_tmp; tree mask, maskindex; gfc_start_block (&header); forall_tmp = nested_forall_info; while (forall_tmp != NULL) { /* Generate body with masks' control. */ if (mask_flag) { mask = forall_tmp->mask; maskindex = forall_tmp->maskindex; /* If a mask was specified make the assignment conditional. */ if (mask) { tmp = gfc_build_array_ref (mask, maskindex, NULL); body = build3_v (COND_EXPR, tmp, body, build_empty_stmt (input_location)); } } body = gfc_trans_forall_loop (forall_tmp, body, mask_flag, &header); forall_tmp = forall_tmp->prev_nest; mask_flag = 1; } gfc_add_expr_to_block (&header, body); return gfc_finish_block (&header); } /* Allocate data for holding a temporary array. Returns either a local temporary array or a pointer variable. */ static tree gfc_do_allocate (tree bytesize, tree size, tree * pdata, stmtblock_t * pblock, tree elem_type) { tree tmpvar; tree type; tree tmp; if (INTEGER_CST_P (size)) { tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, size, gfc_index_one_node); } else tmp = NULL_TREE; type = build_range_type (gfc_array_index_type, gfc_index_zero_node, tmp); type = build_array_type (elem_type, type); if (gfc_can_put_var_on_stack (bytesize)) { gcc_assert (INTEGER_CST_P (size)); tmpvar = gfc_create_var (type, "temp"); *pdata = NULL_TREE; } else { tmpvar = gfc_create_var (build_pointer_type (type), "temp"); *pdata = convert (pvoid_type_node, tmpvar); tmp = gfc_call_malloc (pblock, TREE_TYPE (tmpvar), bytesize); gfc_add_modify (pblock, tmpvar, tmp); } return tmpvar; } /* Generate codes to copy the temporary to the actual lhs. */ static tree generate_loop_for_temp_to_lhs (gfc_expr *expr, tree tmp1, tree count3, tree count1, tree wheremask, bool invert) { gfc_ss *lss; gfc_se lse, rse; stmtblock_t block, body; gfc_loopinfo loop1; tree tmp; tree wheremaskexpr; /* Walk the lhs. */ lss = gfc_walk_expr (expr); if (lss == gfc_ss_terminator) { gfc_start_block (&block); gfc_init_se (&lse, NULL); /* Translate the expression. */ gfc_conv_expr (&lse, expr); /* Form the expression for the temporary. */ tmp = gfc_build_array_ref (tmp1, count1, NULL); /* Use the scalar assignment as is. */ gfc_add_block_to_block (&block, &lse.pre); gfc_add_modify (&block, lse.expr, tmp); gfc_add_block_to_block (&block, &lse.post); /* Increment the count1. */ tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (count1), count1, gfc_index_one_node); gfc_add_modify (&block, count1, tmp); tmp = gfc_finish_block (&block); } else { gfc_start_block (&block); gfc_init_loopinfo (&loop1); gfc_init_se (&rse, NULL); gfc_init_se (&lse, NULL); /* Associate the lss with the loop. */ gfc_add_ss_to_loop (&loop1, lss); /* Calculate the bounds of the scalarization. */ gfc_conv_ss_startstride (&loop1); /* Setup the scalarizing loops. */ gfc_conv_loop_setup (&loop1, &expr->where); gfc_mark_ss_chain_used (lss, 1); /* Start the scalarized loop body. */ gfc_start_scalarized_body (&loop1, &body); /* Setup the gfc_se structures. */ gfc_copy_loopinfo_to_se (&lse, &loop1); lse.ss = lss; /* Form the expression of the temporary. */ if (lss != gfc_ss_terminator) rse.expr = gfc_build_array_ref (tmp1, count1, NULL); /* Translate expr. */ gfc_conv_expr (&lse, expr); /* Use the scalar assignment. */ rse.string_length = lse.string_length; tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, false, false); /* Form the mask expression according to the mask tree list. */ if (wheremask) { wheremaskexpr = gfc_build_array_ref (wheremask, count3, NULL); if (invert) wheremaskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (wheremaskexpr), wheremaskexpr); tmp = fold_build3 (COND_EXPR, void_type_node, wheremaskexpr, tmp, build_empty_stmt (input_location)); } gfc_add_expr_to_block (&body, tmp); /* Increment count1. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count1, gfc_index_one_node); gfc_add_modify (&body, count1, tmp); /* Increment count3. */ if (count3) { tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count3, gfc_index_one_node); gfc_add_modify (&body, count3, tmp); } /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop1, &body); gfc_add_block_to_block (&block, &loop1.pre); gfc_add_block_to_block (&block, &loop1.post); gfc_cleanup_loop (&loop1); tmp = gfc_finish_block (&block); } return tmp; } /* Generate codes to copy rhs to the temporary. TMP1 is the address of temporary, LSS and RSS are formed in function compute_inner_temp_size(), and should not be freed. WHEREMASK is the conditional execution mask whose sense may be inverted by INVERT. */ static tree generate_loop_for_rhs_to_temp (gfc_expr *expr2, tree tmp1, tree count3, tree count1, gfc_ss *lss, gfc_ss *rss, tree wheremask, bool invert) { stmtblock_t block, body1; gfc_loopinfo loop; gfc_se lse; gfc_se rse; tree tmp; tree wheremaskexpr; gfc_start_block (&block); gfc_init_se (&rse, NULL); gfc_init_se (&lse, NULL); if (lss == gfc_ss_terminator) { gfc_init_block (&body1); gfc_conv_expr (&rse, expr2); lse.expr = gfc_build_array_ref (tmp1, count1, NULL); } else { /* Initialize the loop. */ gfc_init_loopinfo (&loop); /* We may need LSS to determine the shape of the expression. */ gfc_add_ss_to_loop (&loop, lss); gfc_add_ss_to_loop (&loop, rss); gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop, &expr2->where); gfc_mark_ss_chain_used (rss, 1); /* Start the loop body. */ gfc_start_scalarized_body (&loop, &body1); /* Translate the expression. */ gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = rss; gfc_conv_expr (&rse, expr2); /* Form the expression of the temporary. */ lse.expr = gfc_build_array_ref (tmp1, count1, NULL); } /* Use the scalar assignment. */ lse.string_length = rse.string_length; tmp = gfc_trans_scalar_assign (&lse, &rse, expr2->ts, true, expr2->expr_type == EXPR_VARIABLE); /* Form the mask expression according to the mask tree list. */ if (wheremask) { wheremaskexpr = gfc_build_array_ref (wheremask, count3, NULL); if (invert) wheremaskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (wheremaskexpr), wheremaskexpr); tmp = fold_build3 (COND_EXPR, void_type_node, wheremaskexpr, tmp, build_empty_stmt (input_location)); } gfc_add_expr_to_block (&body1, tmp); if (lss == gfc_ss_terminator) { gfc_add_block_to_block (&block, &body1); /* Increment count1. */ tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (count1), count1, gfc_index_one_node); gfc_add_modify (&block, count1, tmp); } else { /* Increment count1. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count1, gfc_index_one_node); gfc_add_modify (&body1, count1, tmp); /* Increment count3. */ if (count3) { tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count3, gfc_index_one_node); gfc_add_modify (&body1, count3, tmp); } /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop, &body1); gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); gfc_cleanup_loop (&loop); /* TODO: Reuse lss and rss when copying temp->lhs. Need to be careful as tree nodes in SS may not be valid in different scope. */ } tmp = gfc_finish_block (&block); return tmp; } /* Calculate the size of temporary needed in the assignment inside forall. LSS and RSS are filled in this function. */ static tree compute_inner_temp_size (gfc_expr *expr1, gfc_expr *expr2, stmtblock_t * pblock, gfc_ss **lss, gfc_ss **rss) { gfc_loopinfo loop; tree size; int i; int save_flag; tree tmp; *lss = gfc_walk_expr (expr1); *rss = NULL; size = gfc_index_one_node; if (*lss != gfc_ss_terminator) { gfc_init_loopinfo (&loop); /* Walk the RHS of the expression. */ *rss = gfc_walk_expr (expr2); if (*rss == gfc_ss_terminator) { /* The rhs is scalar. Add a ss for the expression. */ *rss = gfc_get_ss (); (*rss)->next = gfc_ss_terminator; (*rss)->type = GFC_SS_SCALAR; (*rss)->expr = expr2; } /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, *lss); /* We don't actually need to add the rhs at this point, but it might make guessing the loop bounds a bit easier. */ gfc_add_ss_to_loop (&loop, *rss); /* We only want the shape of the expression, not rest of the junk generated by the scalarizer. */ loop.array_parameter = 1; /* Calculate the bounds of the scalarization. */ save_flag = gfc_option.rtcheck; gfc_option.rtcheck &= !GFC_RTCHECK_BOUNDS; gfc_conv_ss_startstride (&loop); gfc_option.rtcheck = save_flag; gfc_conv_loop_setup (&loop, &expr2->where); /* Figure out how many elements we need. */ for (i = 0; i < loop.dimen; i++) { tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, gfc_index_one_node, loop.from[i]); tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, loop.to[i]); size = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp); } gfc_add_block_to_block (pblock, &loop.pre); size = gfc_evaluate_now (size, pblock); gfc_add_block_to_block (pblock, &loop.post); /* TODO: write a function that cleans up a loopinfo without freeing the SS chains. Currently a NOP. */ } return size; } /* Calculate the overall iterator number of the nested forall construct. This routine actually calculates the number of times the body of the nested forall specified by NESTED_FORALL_INFO is executed and multiplies that by the expression INNER_SIZE. The BLOCK argument specifies the block in which to calculate the result, and the optional INNER_SIZE_BODY argument contains any statements that need to executed (inside the loop) to initialize or calculate INNER_SIZE. */ static tree compute_overall_iter_number (forall_info *nested_forall_info, tree inner_size, stmtblock_t *inner_size_body, stmtblock_t *block) { forall_info *forall_tmp = nested_forall_info; tree tmp, number; stmtblock_t body; /* We can eliminate the innermost unconditional loops with constant array bounds. */ if (INTEGER_CST_P (inner_size)) { while (forall_tmp && !forall_tmp->mask && INTEGER_CST_P (forall_tmp->size)) { inner_size = fold_build2 (MULT_EXPR, gfc_array_index_type, inner_size, forall_tmp->size); forall_tmp = forall_tmp->prev_nest; } /* If there are no loops left, we have our constant result. */ if (!forall_tmp) return inner_size; } /* Otherwise, create a temporary variable to compute the result. */ number = gfc_create_var (gfc_array_index_type, "num"); gfc_add_modify (block, number, gfc_index_zero_node); gfc_start_block (&body); if (inner_size_body) gfc_add_block_to_block (&body, inner_size_body); if (forall_tmp) tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, number, inner_size); else tmp = inner_size; gfc_add_modify (&body, number, tmp); tmp = gfc_finish_block (&body); /* Generate loops. */ if (forall_tmp != NULL) tmp = gfc_trans_nested_forall_loop (forall_tmp, tmp, 1); gfc_add_expr_to_block (block, tmp); return number; } /* Allocate temporary for forall construct. SIZE is the size of temporary needed. PTEMP1 is returned for space free. */ static tree allocate_temp_for_forall_nest_1 (tree type, tree size, stmtblock_t * block, tree * ptemp1) { tree bytesize; tree unit; tree tmp; unit = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (type)); if (!integer_onep (unit)) bytesize = fold_build2 (MULT_EXPR, gfc_array_index_type, size, unit); else bytesize = size; *ptemp1 = NULL; tmp = gfc_do_allocate (bytesize, size, ptemp1, block, type); if (*ptemp1) tmp = build_fold_indirect_ref_loc (input_location, tmp); return tmp; } /* Allocate temporary for forall construct according to the information in nested_forall_info. INNER_SIZE is the size of temporary needed in the assignment inside forall. PTEMP1 is returned for space free. */ static tree allocate_temp_for_forall_nest (forall_info * nested_forall_info, tree type, tree inner_size, stmtblock_t * inner_size_body, stmtblock_t * block, tree * ptemp1) { tree size; /* Calculate the total size of temporary needed in forall construct. */ size = compute_overall_iter_number (nested_forall_info, inner_size, inner_size_body, block); return allocate_temp_for_forall_nest_1 (type, size, block, ptemp1); } /* Handle assignments inside forall which need temporary. forall (i=start:end:stride; maskexpr) e<i> = f<i> end forall (where e,f<i> are arbitrary expressions possibly involving i and there is a dependency between e<i> and f<i>) Translates to: masktmp(:) = maskexpr(:) maskindex = 0; count1 = 0; num = 0; for (i = start; i <= end; i += stride) num += SIZE (f<i>) count1 = 0; ALLOCATE (tmp(num)) for (i = start; i <= end; i += stride) { if (masktmp[maskindex++]) tmp[count1++] = f<i> } maskindex = 0; count1 = 0; for (i = start; i <= end; i += stride) { if (masktmp[maskindex++]) e<i> = tmp[count1++] } DEALLOCATE (tmp) */ static void gfc_trans_assign_need_temp (gfc_expr * expr1, gfc_expr * expr2, tree wheremask, bool invert, forall_info * nested_forall_info, stmtblock_t * block) { tree type; tree inner_size; gfc_ss *lss, *rss; tree count, count1; tree tmp, tmp1; tree ptemp1; stmtblock_t inner_size_body; /* Create vars. count1 is the current iterator number of the nested forall. */ count1 = gfc_create_var (gfc_array_index_type, "count1"); /* Count is the wheremask index. */ if (wheremask) { count = gfc_create_var (gfc_array_index_type, "count"); gfc_add_modify (block, count, gfc_index_zero_node); } else count = NULL; /* Initialize count1. */ gfc_add_modify (block, count1, gfc_index_zero_node); /* Calculate the size of temporary needed in the assignment. Return loop, lss and rss which are used in function generate_loop_for_rhs_to_temp(). */ gfc_init_block (&inner_size_body); inner_size = compute_inner_temp_size (expr1, expr2, &inner_size_body, &lss, &rss); /* The type of LHS. Used in function allocate_temp_for_forall_nest */ if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->length) { if (!expr1->ts.u.cl->backend_decl) { gfc_se tse; gfc_init_se (&tse, NULL); gfc_conv_expr (&tse, expr1->ts.u.cl->length); expr1->ts.u.cl->backend_decl = tse.expr; } type = gfc_get_character_type_len (gfc_default_character_kind, expr1->ts.u.cl->backend_decl); } else type = gfc_typenode_for_spec (&expr1->ts); /* Allocate temporary for nested forall construct according to the information in nested_forall_info and inner_size. */ tmp1 = allocate_temp_for_forall_nest (nested_forall_info, type, inner_size, &inner_size_body, block, &ptemp1); /* Generate codes to copy rhs to the temporary . */ tmp = generate_loop_for_rhs_to_temp (expr2, tmp1, count, count1, lss, rss, wheremask, invert); /* Generate body and loops according to the information in nested_forall_info. */ tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1); gfc_add_expr_to_block (block, tmp); /* Reset count1. */ gfc_add_modify (block, count1, gfc_index_zero_node); /* Reset count. */ if (wheremask) gfc_add_modify (block, count, gfc_index_zero_node); /* Generate codes to copy the temporary to lhs. */ tmp = generate_loop_for_temp_to_lhs (expr1, tmp1, count, count1, wheremask, invert); /* Generate body and loops according to the information in nested_forall_info. */ tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1); gfc_add_expr_to_block (block, tmp); if (ptemp1) { /* Free the temporary. */ tmp = gfc_call_free (ptemp1); gfc_add_expr_to_block (block, tmp); } } /* Translate pointer assignment inside FORALL which need temporary. */ static void gfc_trans_pointer_assign_need_temp (gfc_expr * expr1, gfc_expr * expr2, forall_info * nested_forall_info, stmtblock_t * block) { tree type; tree inner_size; gfc_ss *lss, *rss; gfc_se lse; gfc_se rse; gfc_ss_info *info; gfc_loopinfo loop; tree desc; tree parm; tree parmtype; stmtblock_t body; tree count; tree tmp, tmp1, ptemp1; count = gfc_create_var (gfc_array_index_type, "count"); gfc_add_modify (block, count, gfc_index_zero_node); inner_size = integer_one_node; lss = gfc_walk_expr (expr1); rss = gfc_walk_expr (expr2); if (lss == gfc_ss_terminator) { type = gfc_typenode_for_spec (&expr1->ts); type = build_pointer_type (type); /* Allocate temporary for nested forall construct according to the information in nested_forall_info and inner_size. */ tmp1 = allocate_temp_for_forall_nest (nested_forall_info, type, inner_size, NULL, block, &ptemp1); gfc_start_block (&body); gfc_init_se (&lse, NULL); lse.expr = gfc_build_array_ref (tmp1, count, NULL); gfc_init_se (&rse, NULL); rse.want_pointer = 1; gfc_conv_expr (&rse, expr2); gfc_add_block_to_block (&body, &rse.pre); gfc_add_modify (&body, lse.expr, fold_convert (TREE_TYPE (lse.expr), rse.expr)); gfc_add_block_to_block (&body, &rse.post); /* Increment count. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count, gfc_index_one_node); gfc_add_modify (&body, count, tmp); tmp = gfc_finish_block (&body); /* Generate body and loops according to the information in nested_forall_info. */ tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1); gfc_add_expr_to_block (block, tmp); /* Reset count. */ gfc_add_modify (block, count, gfc_index_zero_node); gfc_start_block (&body); gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); rse.expr = gfc_build_array_ref (tmp1, count, NULL); lse.want_pointer = 1; gfc_conv_expr (&lse, expr1); gfc_add_block_to_block (&body, &lse.pre); gfc_add_modify (&body, lse.expr, rse.expr); gfc_add_block_to_block (&body, &lse.post); /* Increment count. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count, gfc_index_one_node); gfc_add_modify (&body, count, tmp); tmp = gfc_finish_block (&body); /* Generate body and loops according to the information in nested_forall_info. */ tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1); gfc_add_expr_to_block (block, tmp); } else { gfc_init_loopinfo (&loop); /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, rss); /* Setup the scalarizing loops and bounds. */ gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop, &expr2->where); info = &rss->data.info; desc = info->descriptor; /* Make a new descriptor. */ parmtype = gfc_get_element_type (TREE_TYPE (desc)); parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, loop.from, loop.to, 1, GFC_ARRAY_UNKNOWN, true); /* Allocate temporary for nested forall construct. */ tmp1 = allocate_temp_for_forall_nest (nested_forall_info, parmtype, inner_size, NULL, block, &ptemp1); gfc_start_block (&body); gfc_init_se (&lse, NULL); lse.expr = gfc_build_array_ref (tmp1, count, NULL); lse.direct_byref = 1; rss = gfc_walk_expr (expr2); gfc_conv_expr_descriptor (&lse, expr2, rss); gfc_add_block_to_block (&body, &lse.pre); gfc_add_block_to_block (&body, &lse.post); /* Increment count. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count, gfc_index_one_node); gfc_add_modify (&body, count, tmp); tmp = gfc_finish_block (&body); /* Generate body and loops according to the information in nested_forall_info. */ tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1); gfc_add_expr_to_block (block, tmp); /* Reset count. */ gfc_add_modify (block, count, gfc_index_zero_node); parm = gfc_build_array_ref (tmp1, count, NULL); lss = gfc_walk_expr (expr1); gfc_init_se (&lse, NULL); gfc_conv_expr_descriptor (&lse, expr1, lss); gfc_add_modify (&lse.pre, lse.expr, parm); gfc_start_block (&body); gfc_add_block_to_block (&body, &lse.pre); gfc_add_block_to_block (&body, &lse.post); /* Increment count. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count, gfc_index_one_node); gfc_add_modify (&body, count, tmp); tmp = gfc_finish_block (&body); tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1); gfc_add_expr_to_block (block, tmp); } /* Free the temporary. */ if (ptemp1) { tmp = gfc_call_free (ptemp1); gfc_add_expr_to_block (block, tmp); } } /* FORALL and WHERE statements are really nasty, especially when you nest them. All the rhs of a forall assignment must be evaluated before the actual assignments are performed. Presumably this also applies to all the assignments in an inner where statement. */ /* Generate code for a FORALL statement. Any temporaries are allocated as a linear array, relying on the fact that we process in the same order in all loops. forall (i=start:end:stride; maskexpr) e<i> = f<i> g<i> = h<i> end forall (where e,f,g,h<i> are arbitrary expressions possibly involving i) Translates to: count = ((end + 1 - start) / stride) masktmp(:) = maskexpr(:) maskindex = 0; for (i = start; i <= end; i += stride) { if (masktmp[maskindex++]) e<i> = f<i> } maskindex = 0; for (i = start; i <= end; i += stride) { if (masktmp[maskindex++]) g<i> = h<i> } Note that this code only works when there are no dependencies. Forall loop with array assignments and data dependencies are a real pain, because the size of the temporary cannot always be determined before the loop is executed. This problem is compounded by the presence of nested FORALL constructs. */ static tree gfc_trans_forall_1 (gfc_code * code, forall_info * nested_forall_info) { stmtblock_t pre; stmtblock_t post; stmtblock_t block; stmtblock_t body; tree *var; tree *start; tree *end; tree *step; gfc_expr **varexpr; tree tmp; tree assign; tree size; tree maskindex; tree mask; tree pmask; int n; int nvar; int need_temp; gfc_forall_iterator *fa; gfc_se se; gfc_code *c; gfc_saved_var *saved_vars; iter_info *this_forall; forall_info *info; bool need_mask; /* Do nothing if the mask is false. */ if (code->expr1 && code->expr1->expr_type == EXPR_CONSTANT && !code->expr1->value.logical) return build_empty_stmt (input_location); n = 0; /* Count the FORALL index number. */ for (fa = code->ext.forall_iterator; fa; fa = fa->next) n++; nvar = n; /* Allocate the space for var, start, end, step, varexpr. */ var = (tree *) gfc_getmem (nvar * sizeof (tree)); start = (tree *) gfc_getmem (nvar * sizeof (tree)); end = (tree *) gfc_getmem (nvar * sizeof (tree)); step = (tree *) gfc_getmem (nvar * sizeof (tree)); varexpr = (gfc_expr **) gfc_getmem (nvar * sizeof (gfc_expr *)); saved_vars = (gfc_saved_var *) gfc_getmem (nvar * sizeof (gfc_saved_var)); /* Allocate the space for info. */ info = (forall_info *) gfc_getmem (sizeof (forall_info)); gfc_start_block (&pre); gfc_init_block (&post); gfc_init_block (&block); n = 0; for (fa = code->ext.forall_iterator; fa; fa = fa->next) { gfc_symbol *sym = fa->var->symtree->n.sym; /* Allocate space for this_forall. */ this_forall = (iter_info *) gfc_getmem (sizeof (iter_info)); /* Create a temporary variable for the FORALL index. */ tmp = gfc_typenode_for_spec (&sym->ts); var[n] = gfc_create_var (tmp, sym->name); gfc_shadow_sym (sym, var[n], &saved_vars[n]); /* Record it in this_forall. */ this_forall->var = var[n]; /* Replace the index symbol's backend_decl with the temporary decl. */ sym->backend_decl = var[n]; /* Work out the start, end and stride for the loop. */ gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, fa->start); /* Record it in this_forall. */ this_forall->start = se.expr; gfc_add_block_to_block (&block, &se.pre); start[n] = se.expr; gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, fa->end); /* Record it in this_forall. */ this_forall->end = se.expr; gfc_make_safe_expr (&se); gfc_add_block_to_block (&block, &se.pre); end[n] = se.expr; gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, fa->stride); /* Record it in this_forall. */ this_forall->step = se.expr; gfc_make_safe_expr (&se); gfc_add_block_to_block (&block, &se.pre); step[n] = se.expr; /* Set the NEXT field of this_forall to NULL. */ this_forall->next = NULL; /* Link this_forall to the info construct. */ if (info->this_loop) { iter_info *iter_tmp = info->this_loop; while (iter_tmp->next != NULL) iter_tmp = iter_tmp->next; iter_tmp->next = this_forall; } else info->this_loop = this_forall; n++; } nvar = n; /* Calculate the size needed for the current forall level. */ size = gfc_index_one_node; for (n = 0; n < nvar; n++) { /* size = (end + step - start) / step. */ tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (start[n]), step[n], start[n]); tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (end[n]), end[n], tmp); tmp = fold_build2 (FLOOR_DIV_EXPR, TREE_TYPE (tmp), tmp, step[n]); tmp = convert (gfc_array_index_type, tmp); size = fold_build2 (MULT_EXPR, gfc_array_index_type, size, tmp); } /* Record the nvar and size of current forall level. */ info->nvar = nvar; info->size = size; if (code->expr1) { /* If the mask is .true., consider the FORALL unconditional. */ if (code->expr1->expr_type == EXPR_CONSTANT && code->expr1->value.logical) need_mask = false; else need_mask = true; } else need_mask = false; /* First we need to allocate the mask. */ if (need_mask) { /* As the mask array can be very big, prefer compact boolean types. */ tree mask_type = gfc_get_logical_type (gfc_logical_kinds[0].kind); mask = allocate_temp_for_forall_nest (nested_forall_info, mask_type, size, NULL, &block, &pmask); maskindex = gfc_create_var_np (gfc_array_index_type, "mi"); /* Record them in the info structure. */ info->maskindex = maskindex; info->mask = mask; } else { /* No mask was specified. */ maskindex = NULL_TREE; mask = pmask = NULL_TREE; } /* Link the current forall level to nested_forall_info. */ info->prev_nest = nested_forall_info; nested_forall_info = info; /* Copy the mask into a temporary variable if required. For now we assume a mask temporary is needed. */ if (need_mask) { /* As the mask array can be very big, prefer compact boolean types. */ tree mask_type = gfc_get_logical_type (gfc_logical_kinds[0].kind); gfc_add_modify (&block, maskindex, gfc_index_zero_node); /* Start of mask assignment loop body. */ gfc_start_block (&body); /* Evaluate the mask expression. */ gfc_init_se (&se, NULL); gfc_conv_expr_val (&se, code->expr1); gfc_add_block_to_block (&body, &se.pre); /* Store the mask. */ se.expr = convert (mask_type, se.expr); tmp = gfc_build_array_ref (mask, maskindex, NULL); gfc_add_modify (&body, tmp, se.expr); /* Advance to the next mask element. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, maskindex, gfc_index_one_node); gfc_add_modify (&body, maskindex, tmp); /* Generate the loops. */ tmp = gfc_finish_block (&body); tmp = gfc_trans_nested_forall_loop (info, tmp, 0); gfc_add_expr_to_block (&block, tmp); } c = code->block->next; /* TODO: loop merging in FORALL statements. */ /* Now that we've got a copy of the mask, generate the assignment loops. */ while (c) { switch (c->op) { case EXEC_ASSIGN: /* A scalar or array assignment. DO the simple check for lhs to rhs dependencies. These make a temporary for the rhs and form a second forall block to copy to variable. */ need_temp = check_forall_dependencies(c, &pre, &post); /* Temporaries due to array assignment data dependencies introduce no end of problems. */ if (need_temp) gfc_trans_assign_need_temp (c->expr1, c->expr2, NULL, false, nested_forall_info, &block); else { /* Use the normal assignment copying routines. */ assign = gfc_trans_assignment (c->expr1, c->expr2, false); /* Generate body and loops. */ tmp = gfc_trans_nested_forall_loop (nested_forall_info, assign, 1); gfc_add_expr_to_block (&block, tmp); } /* Cleanup any temporary symtrees that have been made to deal with dependencies. */ if (new_symtree) cleanup_forall_symtrees (c); break; case EXEC_WHERE: /* Translate WHERE or WHERE construct nested in FORALL. */ gfc_trans_where_2 (c, NULL, false, nested_forall_info, &block); break; /* Pointer assignment inside FORALL. */ case EXEC_POINTER_ASSIGN: need_temp = gfc_check_dependency (c->expr1, c->expr2, 0); if (need_temp) gfc_trans_pointer_assign_need_temp (c->expr1, c->expr2, nested_forall_info, &block); else { /* Use the normal assignment copying routines. */ assign = gfc_trans_pointer_assignment (c->expr1, c->expr2); /* Generate body and loops. */ tmp = gfc_trans_nested_forall_loop (nested_forall_info, assign, 1); gfc_add_expr_to_block (&block, tmp); } break; case EXEC_FORALL: tmp = gfc_trans_forall_1 (c, nested_forall_info); gfc_add_expr_to_block (&block, tmp); break; /* Explicit subroutine calls are prevented by the frontend but interface assignments can legitimately produce them. */ case EXEC_ASSIGN_CALL: assign = gfc_trans_call (c, true, NULL_TREE, NULL_TREE, false); tmp = gfc_trans_nested_forall_loop (nested_forall_info, assign, 1); gfc_add_expr_to_block (&block, tmp); break; default: gcc_unreachable (); } c = c->next; } /* Restore the original index variables. */ for (fa = code->ext.forall_iterator, n = 0; fa; fa = fa->next, n++) gfc_restore_sym (fa->var->symtree->n.sym, &saved_vars[n]); /* Free the space for var, start, end, step, varexpr. */ gfc_free (var); gfc_free (start); gfc_free (end); gfc_free (step); gfc_free (varexpr); gfc_free (saved_vars); /* Free the space for this forall_info. */ gfc_free (info); if (pmask) { /* Free the temporary for the mask. */ tmp = gfc_call_free (pmask); gfc_add_expr_to_block (&block, tmp); } if (maskindex) pushdecl (maskindex); gfc_add_block_to_block (&pre, &block); gfc_add_block_to_block (&pre, &post); return gfc_finish_block (&pre); } /* Translate the FORALL statement or construct. */ tree gfc_trans_forall (gfc_code * code) { return gfc_trans_forall_1 (code, NULL); } /* Evaluate the WHERE mask expression, copy its value to a temporary. If the WHERE construct is nested in FORALL, compute the overall temporary needed by the WHERE mask expression multiplied by the iterator number of the nested forall. ME is the WHERE mask expression. MASK is the current execution mask upon input, whose sense may or may not be inverted as specified by the INVERT argument. CMASK is the updated execution mask on output, or NULL if not required. PMASK is the pending execution mask on output, or NULL if not required. BLOCK is the block in which to place the condition evaluation loops. */ static void gfc_evaluate_where_mask (gfc_expr * me, forall_info * nested_forall_info, tree mask, bool invert, tree cmask, tree pmask, tree mask_type, stmtblock_t * block) { tree tmp, tmp1; gfc_ss *lss, *rss; gfc_loopinfo loop; stmtblock_t body, body1; tree count, cond, mtmp; gfc_se lse, rse; gfc_init_loopinfo (&loop); lss = gfc_walk_expr (me); rss = gfc_walk_expr (me); /* Variable to index the temporary. */ count = gfc_create_var (gfc_array_index_type, "count"); /* Initialize count. */ gfc_add_modify (block, count, gfc_index_zero_node); gfc_start_block (&body); gfc_init_se (&rse, NULL); gfc_init_se (&lse, NULL); if (lss == gfc_ss_terminator) { gfc_init_block (&body1); } else { /* Initialize the loop. */ gfc_init_loopinfo (&loop); /* We may need LSS to determine the shape of the expression. */ gfc_add_ss_to_loop (&loop, lss); gfc_add_ss_to_loop (&loop, rss); gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop, &me->where); gfc_mark_ss_chain_used (rss, 1); /* Start the loop body. */ gfc_start_scalarized_body (&loop, &body1); /* Translate the expression. */ gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = rss; gfc_conv_expr (&rse, me); } /* Variable to evaluate mask condition. */ cond = gfc_create_var (mask_type, "cond"); if (mask && (cmask || pmask)) mtmp = gfc_create_var (mask_type, "mask"); else mtmp = NULL_TREE; gfc_add_block_to_block (&body1, &lse.pre); gfc_add_block_to_block (&body1, &rse.pre); gfc_add_modify (&body1, cond, fold_convert (mask_type, rse.expr)); if (mask && (cmask || pmask)) { tmp = gfc_build_array_ref (mask, count, NULL); if (invert) tmp = fold_build1 (TRUTH_NOT_EXPR, mask_type, tmp); gfc_add_modify (&body1, mtmp, tmp); } if (cmask) { tmp1 = gfc_build_array_ref (cmask, count, NULL); tmp = cond; if (mask) tmp = fold_build2 (TRUTH_AND_EXPR, mask_type, mtmp, tmp); gfc_add_modify (&body1, tmp1, tmp); } if (pmask) { tmp1 = gfc_build_array_ref (pmask, count, NULL); tmp = fold_build1 (TRUTH_NOT_EXPR, mask_type, cond); if (mask) tmp = fold_build2 (TRUTH_AND_EXPR, mask_type, mtmp, tmp); gfc_add_modify (&body1, tmp1, tmp); } gfc_add_block_to_block (&body1, &lse.post); gfc_add_block_to_block (&body1, &rse.post); if (lss == gfc_ss_terminator) { gfc_add_block_to_block (&body, &body1); } else { /* Increment count. */ tmp1 = fold_build2 (PLUS_EXPR, gfc_array_index_type, count, gfc_index_one_node); gfc_add_modify (&body1, count, tmp1); /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop, &body1); gfc_add_block_to_block (&body, &loop.pre); gfc_add_block_to_block (&body, &loop.post); gfc_cleanup_loop (&loop); /* TODO: Reuse lss and rss when copying temp->lhs. Need to be careful as tree nodes in SS may not be valid in different scope. */ } tmp1 = gfc_finish_block (&body); /* If the WHERE construct is inside FORALL, fill the full temporary. */ if (nested_forall_info != NULL) tmp1 = gfc_trans_nested_forall_loop (nested_forall_info, tmp1, 1); gfc_add_expr_to_block (block, tmp1); } /* Translate an assignment statement in a WHERE statement or construct statement. The MASK expression is used to control which elements of EXPR1 shall be assigned. The sense of MASK is specified by INVERT. */ static tree gfc_trans_where_assign (gfc_expr *expr1, gfc_expr *expr2, tree mask, bool invert, tree count1, tree count2, gfc_code *cnext) { gfc_se lse; gfc_se rse; gfc_ss *lss; gfc_ss *lss_section; gfc_ss *rss; gfc_loopinfo loop; tree tmp; stmtblock_t block; stmtblock_t body; tree index, maskexpr; /* A defined assignment. */ if (cnext && cnext->resolved_sym) return gfc_trans_call (cnext, true, mask, count1, invert); #if 0 /* TODO: handle this special case. Special case a single function returning an array. */ if (expr2->expr_type == EXPR_FUNCTION && expr2->rank > 0) { tmp = gfc_trans_arrayfunc_assign (expr1, expr2); if (tmp) return tmp; } #endif /* Assignment of the form lhs = rhs. */ gfc_start_block (&block); gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); /* Walk the lhs. */ lss = gfc_walk_expr (expr1); rss = NULL; /* In each where-assign-stmt, the mask-expr and the variable being defined shall be arrays of the same shape. */ gcc_assert (lss != gfc_ss_terminator); /* The assignment needs scalarization. */ lss_section = lss; /* Find a non-scalar SS from the lhs. */ while (lss_section != gfc_ss_terminator && lss_section->type != GFC_SS_SECTION) lss_section = lss_section->next; gcc_assert (lss_section != gfc_ss_terminator); /* Initialize the scalarizer. */ gfc_init_loopinfo (&loop); /* Walk the rhs. */ rss = gfc_walk_expr (expr2); if (rss == gfc_ss_terminator) { /* The rhs is scalar. Add a ss for the expression. */ rss = gfc_get_ss (); rss->where = 1; rss->next = gfc_ss_terminator; rss->type = GFC_SS_SCALAR; rss->expr = expr2; } /* Associate the SS with the loop. */ gfc_add_ss_to_loop (&loop, lss); gfc_add_ss_to_loop (&loop, rss); /* Calculate the bounds of the scalarization. */ gfc_conv_ss_startstride (&loop); /* Resolve any data dependencies in the statement. */ gfc_conv_resolve_dependencies (&loop, lss_section, rss); /* Setup the scalarizing loops. */ gfc_conv_loop_setup (&loop, &expr2->where); /* Setup the gfc_se structures. */ gfc_copy_loopinfo_to_se (&lse, &loop); gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = rss; gfc_mark_ss_chain_used (rss, 1); if (loop.temp_ss == NULL) { lse.ss = lss; gfc_mark_ss_chain_used (lss, 1); } else { lse.ss = loop.temp_ss; gfc_mark_ss_chain_used (lss, 3); gfc_mark_ss_chain_used (loop.temp_ss, 3); } /* Start the scalarized loop body. */ gfc_start_scalarized_body (&loop, &body); /* Translate the expression. */ gfc_conv_expr (&rse, expr2); if (lss != gfc_ss_terminator && loop.temp_ss != NULL) { gfc_conv_tmp_array_ref (&lse); gfc_advance_se_ss_chain (&lse); } else gfc_conv_expr (&lse, expr1); /* Form the mask expression according to the mask. */ index = count1; maskexpr = gfc_build_array_ref (mask, index, NULL); if (invert) maskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (maskexpr), maskexpr); /* Use the scalar assignment as is. */ tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts, loop.temp_ss != NULL, false); tmp = build3_v (COND_EXPR, maskexpr, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&body, tmp); if (lss == gfc_ss_terminator) { /* Increment count1. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count1, gfc_index_one_node); gfc_add_modify (&body, count1, tmp); /* Use the scalar assignment as is. */ gfc_add_block_to_block (&block, &body); } else { gcc_assert (lse.ss == gfc_ss_terminator && rse.ss == gfc_ss_terminator); if (loop.temp_ss != NULL) { /* Increment count1 before finish the main body of a scalarized expression. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count1, gfc_index_one_node); gfc_add_modify (&body, count1, tmp); gfc_trans_scalarized_loop_boundary (&loop, &body); /* We need to copy the temporary to the actual lhs. */ gfc_init_se (&lse, NULL); gfc_init_se (&rse, NULL); gfc_copy_loopinfo_to_se (&lse, &loop); gfc_copy_loopinfo_to_se (&rse, &loop); rse.ss = loop.temp_ss; lse.ss = lss; gfc_conv_tmp_array_ref (&rse); gfc_advance_se_ss_chain (&rse); gfc_conv_expr (&lse, expr1); gcc_assert (lse.ss == gfc_ss_terminator && rse.ss == gfc_ss_terminator); /* Form the mask expression according to the mask tree list. */ index = count2; maskexpr = gfc_build_array_ref (mask, index, NULL); if (invert) maskexpr = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (maskexpr), maskexpr); /* Use the scalar assignment as is. */ tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts, false, false); tmp = build3_v (COND_EXPR, maskexpr, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&body, tmp); /* Increment count2. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count2, gfc_index_one_node); gfc_add_modify (&body, count2, tmp); } else { /* Increment count1. */ tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, count1, gfc_index_one_node); gfc_add_modify (&body, count1, tmp); } /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop, &body); /* Wrap the whole thing up. */ gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); gfc_cleanup_loop (&loop); } return gfc_finish_block (&block); } /* Translate the WHERE construct or statement. This function can be called iteratively to translate the nested WHERE construct or statement. MASK is the control mask. */ static void gfc_trans_where_2 (gfc_code * code, tree mask, bool invert, forall_info * nested_forall_info, stmtblock_t * block) { stmtblock_t inner_size_body; tree inner_size, size; gfc_ss *lss, *rss; tree mask_type; gfc_expr *expr1; gfc_expr *expr2; gfc_code *cblock; gfc_code *cnext; tree tmp; tree cond; tree count1, count2; bool need_cmask; bool need_pmask; int need_temp; tree pcmask = NULL_TREE; tree ppmask = NULL_TREE; tree cmask = NULL_TREE; tree pmask = NULL_TREE; gfc_actual_arglist *arg; /* the WHERE statement or the WHERE construct statement. */ cblock = code->block; /* As the mask array can be very big, prefer compact boolean types. */ mask_type = gfc_get_logical_type (gfc_logical_kinds[0].kind); /* Determine which temporary masks are needed. */ if (!cblock->block) { /* One clause: No ELSEWHEREs. */ need_cmask = (cblock->next != 0); need_pmask = false; } else if (cblock->block->block) { /* Three or more clauses: Conditional ELSEWHEREs. */ need_cmask = true; need_pmask = true; } else if (cblock->next) { /* Two clauses, the first non-empty. */ need_cmask = true; need_pmask = (mask != NULL_TREE && cblock->block->next != 0); } else if (!cblock->block->next) { /* Two clauses, both empty. */ need_cmask = false; need_pmask = false; } /* Two clauses, the first empty, the second non-empty. */ else if (mask) { need_cmask = (cblock->block->expr1 != 0); need_pmask = true; } else { need_cmask = true; need_pmask = false; } if (need_cmask || need_pmask) { /* Calculate the size of temporary needed by the mask-expr. */ gfc_init_block (&inner_size_body); inner_size = compute_inner_temp_size (cblock->expr1, cblock->expr1, &inner_size_body, &lss, &rss); /* Calculate the total size of temporary needed. */ size = compute_overall_iter_number (nested_forall_info, inner_size, &inner_size_body, block); /* Check whether the size is negative. */ cond = fold_build2 (LE_EXPR, boolean_type_node, size, gfc_index_zero_node); size = fold_build3 (COND_EXPR, gfc_array_index_type, cond, gfc_index_zero_node, size); size = gfc_evaluate_now (size, block); /* Allocate temporary for WHERE mask if needed. */ if (need_cmask) cmask = allocate_temp_for_forall_nest_1 (mask_type, size, block, &pcmask); /* Allocate temporary for !mask if needed. */ if (need_pmask) pmask = allocate_temp_for_forall_nest_1 (mask_type, size, block, &ppmask); } while (cblock) { /* Each time around this loop, the where clause is conditional on the value of mask and invert, which are updated at the bottom of the loop. */ /* Has mask-expr. */ if (cblock->expr1) { /* Ensure that the WHERE mask will be evaluated exactly once. If there are no statements in this WHERE/ELSEWHERE clause, then we don't need to update the control mask (cmask). If this is the last clause of the WHERE construct, then we don't need to update the pending control mask (pmask). */ if (mask) gfc_evaluate_where_mask (cblock->expr1, nested_forall_info, mask, invert, cblock->next ? cmask : NULL_TREE, cblock->block ? pmask : NULL_TREE, mask_type, block); else gfc_evaluate_where_mask (cblock->expr1, nested_forall_info, NULL_TREE, false, (cblock->next || cblock->block) ? cmask : NULL_TREE, NULL_TREE, mask_type, block); invert = false; } /* It's a final elsewhere-stmt. No mask-expr is present. */ else cmask = mask; /* The body of this where clause are controlled by cmask with sense specified by invert. */ /* Get the assignment statement of a WHERE statement, or the first statement in where-body-construct of a WHERE construct. */ cnext = cblock->next; while (cnext) { switch (cnext->op) { /* WHERE assignment statement. */ case EXEC_ASSIGN_CALL: arg = cnext->ext.actual; expr1 = expr2 = NULL; for (; arg; arg = arg->next) { if (!arg->expr) continue; if (expr1 == NULL) expr1 = arg->expr; else expr2 = arg->expr; } goto evaluate; case EXEC_ASSIGN: expr1 = cnext->expr1; expr2 = cnext->expr2; evaluate: if (nested_forall_info != NULL) { need_temp = gfc_check_dependency (expr1, expr2, 0); if (need_temp && cnext->op != EXEC_ASSIGN_CALL) gfc_trans_assign_need_temp (expr1, expr2, cmask, invert, nested_forall_info, block); else { /* Variables to control maskexpr. */ count1 = gfc_create_var (gfc_array_index_type, "count1"); count2 = gfc_create_var (gfc_array_index_type, "count2"); gfc_add_modify (block, count1, gfc_index_zero_node); gfc_add_modify (block, count2, gfc_index_zero_node); tmp = gfc_trans_where_assign (expr1, expr2, cmask, invert, count1, count2, cnext); tmp = gfc_trans_nested_forall_loop (nested_forall_info, tmp, 1); gfc_add_expr_to_block (block, tmp); } } else { /* Variables to control maskexpr. */ count1 = gfc_create_var (gfc_array_index_type, "count1"); count2 = gfc_create_var (gfc_array_index_type, "count2"); gfc_add_modify (block, count1, gfc_index_zero_node); gfc_add_modify (block, count2, gfc_index_zero_node); tmp = gfc_trans_where_assign (expr1, expr2, cmask, invert, count1, count2, cnext); gfc_add_expr_to_block (block, tmp); } break; /* WHERE or WHERE construct is part of a where-body-construct. */ case EXEC_WHERE: gfc_trans_where_2 (cnext, cmask, invert, nested_forall_info, block); break; default: gcc_unreachable (); } /* The next statement within the same where-body-construct. */ cnext = cnext->next; } /* The next masked-elsewhere-stmt, elsewhere-stmt, or end-where-stmt. */ cblock = cblock->block; if (mask == NULL_TREE) { /* If we're the initial WHERE, we can simply invert the sense of the current mask to obtain the "mask" for the remaining ELSEWHEREs. */ invert = true; mask = cmask; } else { /* Otherwise, for nested WHERE's we need to use the pending mask. */ invert = false; mask = pmask; } } /* If we allocated a pending mask array, deallocate it now. */ if (ppmask) { tmp = gfc_call_free (ppmask); gfc_add_expr_to_block (block, tmp); } /* If we allocated a current mask array, deallocate it now. */ if (pcmask) { tmp = gfc_call_free (pcmask); gfc_add_expr_to_block (block, tmp); } } /* Translate a simple WHERE construct or statement without dependencies. CBLOCK is the "then" clause of the WHERE statement, where CBLOCK->EXPR is the mask condition, and EBLOCK if non-NULL is the "else" clause. Currently both CBLOCK and EBLOCK are restricted to single assignments. */ static tree gfc_trans_where_3 (gfc_code * cblock, gfc_code * eblock) { stmtblock_t block, body; gfc_expr *cond, *tdst, *tsrc, *edst, *esrc; tree tmp, cexpr, tstmt, estmt; gfc_ss *css, *tdss, *tsss; gfc_se cse, tdse, tsse, edse, esse; gfc_loopinfo loop; gfc_ss *edss = 0; gfc_ss *esss = 0; /* Allow the scalarizer to workshare simple where loops. */ if (ompws_flags & OMPWS_WORKSHARE_FLAG) ompws_flags |= OMPWS_SCALARIZER_WS; cond = cblock->expr1; tdst = cblock->next->expr1; tsrc = cblock->next->expr2; edst = eblock ? eblock->next->expr1 : NULL; esrc = eblock ? eblock->next->expr2 : NULL; gfc_start_block (&block); gfc_init_loopinfo (&loop); /* Handle the condition. */ gfc_init_se (&cse, NULL); css = gfc_walk_expr (cond); gfc_add_ss_to_loop (&loop, css); /* Handle the then-clause. */ gfc_init_se (&tdse, NULL); gfc_init_se (&tsse, NULL); tdss = gfc_walk_expr (tdst); tsss = gfc_walk_expr (tsrc); if (tsss == gfc_ss_terminator) { tsss = gfc_get_ss (); tsss->where = 1; tsss->next = gfc_ss_terminator; tsss->type = GFC_SS_SCALAR; tsss->expr = tsrc; } gfc_add_ss_to_loop (&loop, tdss); gfc_add_ss_to_loop (&loop, tsss); if (eblock) { /* Handle the else clause. */ gfc_init_se (&edse, NULL); gfc_init_se (&esse, NULL); edss = gfc_walk_expr (edst); esss = gfc_walk_expr (esrc); if (esss == gfc_ss_terminator) { esss = gfc_get_ss (); esss->where = 1; esss->next = gfc_ss_terminator; esss->type = GFC_SS_SCALAR; esss->expr = esrc; } gfc_add_ss_to_loop (&loop, edss); gfc_add_ss_to_loop (&loop, esss); } gfc_conv_ss_startstride (&loop); gfc_conv_loop_setup (&loop, &tdst->where); gfc_mark_ss_chain_used (css, 1); gfc_mark_ss_chain_used (tdss, 1); gfc_mark_ss_chain_used (tsss, 1); if (eblock) { gfc_mark_ss_chain_used (edss, 1); gfc_mark_ss_chain_used (esss, 1); } gfc_start_scalarized_body (&loop, &body); gfc_copy_loopinfo_to_se (&cse, &loop); gfc_copy_loopinfo_to_se (&tdse, &loop); gfc_copy_loopinfo_to_se (&tsse, &loop); cse.ss = css; tdse.ss = tdss; tsse.ss = tsss; if (eblock) { gfc_copy_loopinfo_to_se (&edse, &loop); gfc_copy_loopinfo_to_se (&esse, &loop); edse.ss = edss; esse.ss = esss; } gfc_conv_expr (&cse, cond); gfc_add_block_to_block (&body, &cse.pre); cexpr = cse.expr; gfc_conv_expr (&tsse, tsrc); if (tdss != gfc_ss_terminator && loop.temp_ss != NULL) { gfc_conv_tmp_array_ref (&tdse); gfc_advance_se_ss_chain (&tdse); } else gfc_conv_expr (&tdse, tdst); if (eblock) { gfc_conv_expr (&esse, esrc); if (edss != gfc_ss_terminator && loop.temp_ss != NULL) { gfc_conv_tmp_array_ref (&edse); gfc_advance_se_ss_chain (&edse); } else gfc_conv_expr (&edse, edst); } tstmt = gfc_trans_scalar_assign (&tdse, &tsse, tdst->ts, false, false); estmt = eblock ? gfc_trans_scalar_assign (&edse, &esse, edst->ts, false, false) : build_empty_stmt (input_location); tmp = build3_v (COND_EXPR, cexpr, tstmt, estmt); gfc_add_expr_to_block (&body, tmp); gfc_add_block_to_block (&body, &cse.post); gfc_trans_scalarizing_loops (&loop, &body); gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); gfc_cleanup_loop (&loop); return gfc_finish_block (&block); } /* As the WHERE or WHERE construct statement can be nested, we call gfc_trans_where_2 to do the translation, and pass the initial NULL values for both the control mask and the pending control mask. */ tree gfc_trans_where (gfc_code * code) { stmtblock_t block; gfc_code *cblock; gfc_code *eblock; cblock = code->block; if (cblock->next && cblock->next->op == EXEC_ASSIGN && !cblock->next->next) { eblock = cblock->block; if (!eblock) { /* A simple "WHERE (cond) x = y" statement or block is dependence free if cond is not dependent upon writing x, and the source y is unaffected by the destination x. */ if (!gfc_check_dependency (cblock->next->expr1, cblock->expr1, 0) && !gfc_check_dependency (cblock->next->expr1, cblock->next->expr2, 0)) return gfc_trans_where_3 (cblock, NULL); } else if (!eblock->expr1 && !eblock->block && eblock->next && eblock->next->op == EXEC_ASSIGN && !eblock->next->next) { /* A simple "WHERE (cond) x1 = y1 ELSEWHERE x2 = y2 ENDWHERE" block is dependence free if cond is not dependent on writes to x1 and x2, y1 is not dependent on writes to x2, and y2 is not dependent on writes to x1, and both y's are not dependent upon their own x's. In addition to this, the final two dependency checks below exclude all but the same array reference if the where and elswhere destinations are the same. In short, this is VERY conservative and this is needed because the two loops, required by the standard are coalesced in gfc_trans_where_3. */ if (!gfc_check_dependency(cblock->next->expr1, cblock->expr1, 0) && !gfc_check_dependency(eblock->next->expr1, cblock->expr1, 0) && !gfc_check_dependency(cblock->next->expr1, eblock->next->expr2, 1) && !gfc_check_dependency(eblock->next->expr1, cblock->next->expr2, 1) && !gfc_check_dependency(cblock->next->expr1, cblock->next->expr2, 1) && !gfc_check_dependency(eblock->next->expr1, eblock->next->expr2, 1) && !gfc_check_dependency(cblock->next->expr1, eblock->next->expr1, 0) && !gfc_check_dependency(eblock->next->expr1, cblock->next->expr1, 0)) return gfc_trans_where_3 (cblock, eblock); } } gfc_start_block (&block); gfc_trans_where_2 (code, NULL, false, NULL, &block); return gfc_finish_block (&block); } /* CYCLE a DO loop. The label decl has already been created by gfc_trans_do(), it's in TREE_PURPOSE (backend_decl) of the gfc_code node at the head of the loop. We must mark the label as used. */ tree gfc_trans_cycle (gfc_code * code) { tree cycle_label; cycle_label = TREE_PURPOSE (code->ext.whichloop->backend_decl); TREE_USED (cycle_label) = 1; return build1_v (GOTO_EXPR, cycle_label); } /* EXIT a DO loop. Similar to CYCLE, but now the label is in TREE_VALUE (backend_decl) of the gfc_code node at the head of the loop. */ tree gfc_trans_exit (gfc_code * code) { tree exit_label; exit_label = TREE_VALUE (code->ext.whichloop->backend_decl); TREE_USED (exit_label) = 1; return build1_v (GOTO_EXPR, exit_label); } /* Translate the ALLOCATE statement. */ tree gfc_trans_allocate (gfc_code * code) { gfc_alloc *al; gfc_expr *expr; gfc_se se; tree tmp; tree parm; tree stat; tree pstat; tree error_label; tree memsz; stmtblock_t block; if (!code->ext.alloc.list) return NULL_TREE; pstat = stat = error_label = tmp = memsz = NULL_TREE; gfc_start_block (&block); /* Either STAT= and/or ERRMSG is present. */ if (code->expr1 || code->expr2) { tree gfc_int4_type_node = gfc_get_int_type (4); stat = gfc_create_var (gfc_int4_type_node, "stat"); pstat = gfc_build_addr_expr (NULL_TREE, stat); error_label = gfc_build_label_decl (NULL_TREE); TREE_USED (error_label) = 1; } for (al = code->ext.alloc.list; al != NULL; al = al->next) { expr = gfc_copy_expr (al->expr); if (expr->ts.type == BT_CLASS) gfc_add_component_ref (expr, "$data"); gfc_init_se (&se, NULL); gfc_start_block (&se.pre); se.want_pointer = 1; se.descriptor_only = 1; gfc_conv_expr (&se, expr); if (!gfc_array_allocate (&se, expr, pstat)) { /* A scalar or derived type. */ /* Determine allocate size. */ if (code->expr3 && code->expr3->ts.type == BT_CLASS) { gfc_expr *sz; gfc_se se_sz; sz = gfc_copy_expr (code->expr3); gfc_add_component_ref (sz, "$vptr"); gfc_add_component_ref (sz, "$size"); gfc_init_se (&se_sz, NULL); gfc_conv_expr (&se_sz, sz); gfc_free_expr (sz); memsz = se_sz.expr; } else if (code->expr3 && code->expr3->ts.type != BT_CLASS) memsz = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&code->expr3->ts)); else if (code->ext.alloc.ts.type != BT_UNKNOWN) memsz = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&code->ext.alloc.ts)); else memsz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (se.expr))); if (expr->ts.type == BT_CHARACTER && memsz == NULL_TREE) memsz = se.string_length; /* Allocate - for non-pointers with re-alloc checking. */ { gfc_ref *ref; bool allocatable; ref = expr->ref; /* Find the last reference in the chain. */ while (ref && ref->next != NULL) { gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT); ref = ref->next; } if (!ref) allocatable = expr->symtree->n.sym->attr.allocatable; else allocatable = ref->u.c.component->attr.allocatable; if (allocatable) tmp = gfc_allocate_array_with_status (&se.pre, se.expr, memsz, pstat, expr); else tmp = gfc_allocate_with_status (&se.pre, memsz, pstat); } tmp = fold_build2 (MODIFY_EXPR, void_type_node, se.expr, fold_convert (TREE_TYPE (se.expr), tmp)); gfc_add_expr_to_block (&se.pre, tmp); if (code->expr1 || code->expr2) { tmp = build1_v (GOTO_EXPR, error_label); parm = fold_build2 (NE_EXPR, boolean_type_node, stat, build_int_cst (TREE_TYPE (stat), 0)); tmp = fold_build3 (COND_EXPR, void_type_node, parm, tmp, build_empty_stmt (input_location)); gfc_add_expr_to_block (&se.pre, tmp); } if (expr->ts.type == BT_DERIVED && expr->ts.u.derived->attr.alloc_comp) { tmp = build_fold_indirect_ref_loc (input_location, se.expr); tmp = gfc_nullify_alloc_comp (expr->ts.u.derived, tmp, 0); gfc_add_expr_to_block (&se.pre, tmp); } } tmp = gfc_finish_block (&se.pre); gfc_add_expr_to_block (&block, tmp); /* Initialization via SOURCE block. */ if (code->expr3) { gfc_expr *rhs = gfc_copy_expr (code->expr3); if (al->expr->ts.type == BT_CLASS) { gfc_se dst,src; if (rhs->ts.type == BT_CLASS) gfc_add_component_ref (rhs, "$data"); gfc_init_se (&dst, NULL); gfc_init_se (&src, NULL); gfc_conv_expr (&dst, expr); gfc_conv_expr (&src, rhs); gfc_add_block_to_block (&block, &src.pre); tmp = gfc_build_memcpy_call (dst.expr, src.expr, memsz); } else tmp = gfc_trans_assignment (gfc_expr_to_initialize (expr), rhs, false); gfc_free_expr (rhs); gfc_add_expr_to_block (&block, tmp); } /* Allocation of CLASS entities. */ gfc_free_expr (expr); expr = al->expr; if (expr->ts.type == BT_CLASS) { gfc_expr *lhs,*rhs; gfc_se lse; /* Initialize VPTR for CLASS objects. */ lhs = gfc_expr_to_initialize (expr); gfc_add_component_ref (lhs, "$vptr"); rhs = NULL; if (code->expr3 && code->expr3->ts.type == BT_CLASS) { /* VPTR must be determined at run time. */ rhs = gfc_copy_expr (code->expr3); gfc_add_component_ref (rhs, "$vptr"); tmp = gfc_trans_pointer_assignment (lhs, rhs); gfc_add_expr_to_block (&block, tmp); gfc_free_expr (rhs); } else { /* VPTR is fixed at compile time. */ gfc_symbol *vtab; gfc_typespec *ts; if (code->expr3) ts = &code->expr3->ts; else if (expr->ts.type == BT_DERIVED) ts = &expr->ts; else if (code->ext.alloc.ts.type == BT_DERIVED) ts = &code->ext.alloc.ts; else if (expr->ts.type == BT_CLASS) ts = &expr->ts.u.derived->components->ts; else ts = &expr->ts; if (ts->type == BT_DERIVED) { vtab = gfc_find_derived_vtab (ts->u.derived); gcc_assert (vtab); gfc_init_se (&lse, NULL); lse.want_pointer = 1; gfc_conv_expr (&lse, lhs); tmp = gfc_build_addr_expr (NULL_TREE, gfc_get_symbol_decl (vtab)); gfc_add_modify (&block, lse.expr, fold_convert (TREE_TYPE (lse.expr), tmp)); } } } } /* STAT block. */ if (code->expr1) { tmp = build1_v (LABEL_EXPR, error_label); gfc_add_expr_to_block (&block, tmp); gfc_init_se (&se, NULL); gfc_conv_expr_lhs (&se, code->expr1); tmp = convert (TREE_TYPE (se.expr), stat); gfc_add_modify (&block, se.expr, tmp); } /* ERRMSG block. */ if (code->expr2) { /* A better error message may be possible, but not required. */ const char *msg = "Attempt to allocate an allocated object"; tree errmsg, slen, dlen; gfc_init_se (&se, NULL); gfc_conv_expr_lhs (&se, code->expr2); errmsg = gfc_create_var (pchar_type_node, "ERRMSG"); gfc_add_modify (&block, errmsg, gfc_build_addr_expr (pchar_type_node, gfc_build_localized_cstring_const (msg))); slen = build_int_cst (gfc_charlen_type_node, ((int) strlen (msg))); dlen = gfc_get_expr_charlen (code->expr2); slen = fold_build2 (MIN_EXPR, TREE_TYPE (slen), dlen, slen); dlen = build_call_expr_loc (input_location, built_in_decls[BUILT_IN_MEMCPY], 3, gfc_build_addr_expr (pvoid_type_node, se.expr), errmsg, slen); tmp = fold_build2 (NE_EXPR, boolean_type_node, stat, build_int_cst (TREE_TYPE (stat), 0)); tmp = build3_v (COND_EXPR, tmp, dlen, build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); } return gfc_finish_block (&block); } /* Translate a DEALLOCATE statement. */ tree gfc_trans_deallocate (gfc_code *code) { gfc_se se; gfc_alloc *al; gfc_expr *expr; tree apstat, astat, pstat, stat, tmp; stmtblock_t block; pstat = apstat = stat = astat = tmp = NULL_TREE; gfc_start_block (&block); /* Count the number of failed deallocations. If deallocate() was called with STAT= , then set STAT to the count. If deallocate was called with ERRMSG, then set ERRMG to a string. */ if (code->expr1 || code->expr2) { tree gfc_int4_type_node = gfc_get_int_type (4); stat = gfc_create_var (gfc_int4_type_node, "stat"); pstat = gfc_build_addr_expr (NULL_TREE, stat); /* Running total of possible deallocation failures. */ astat = gfc_create_var (gfc_int4_type_node, "astat"); apstat = gfc_build_addr_expr (NULL_TREE, astat); /* Initialize astat to 0. */ gfc_add_modify (&block, astat, build_int_cst (TREE_TYPE (astat), 0)); } for (al = code->ext.alloc.list; al != NULL; al = al->next) { expr = al->expr; gcc_assert (expr->expr_type == EXPR_VARIABLE); gfc_init_se (&se, NULL); gfc_start_block (&se.pre); se.want_pointer = 1; se.descriptor_only = 1; gfc_conv_expr (&se, expr); if (expr->ts.type == BT_DERIVED && expr->ts.u.derived->attr.alloc_comp) { gfc_ref *ref; gfc_ref *last = NULL; for (ref = expr->ref; ref; ref = ref->next) if (ref->type == REF_COMPONENT) last = ref; /* Do not deallocate the components of a derived type ultimate pointer component. */ if (!(last && last->u.c.component->attr.pointer) && !(!last && expr->symtree->n.sym->attr.pointer)) { tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, se.expr, expr->rank); gfc_add_expr_to_block (&se.pre, tmp); } } if (expr->rank) tmp = gfc_array_deallocate (se.expr, pstat, expr); else { tmp = gfc_deallocate_with_status (se.expr, pstat, false, expr); gfc_add_expr_to_block (&se.pre, tmp); tmp = fold_build2 (MODIFY_EXPR, void_type_node, se.expr, build_int_cst (TREE_TYPE (se.expr), 0)); } gfc_add_expr_to_block (&se.pre, tmp); /* Keep track of the number of failed deallocations by adding stat of the last deallocation to the running total. */ if (code->expr1 || code->expr2) { apstat = fold_build2 (PLUS_EXPR, TREE_TYPE (stat), astat, stat); gfc_add_modify (&se.pre, astat, apstat); } tmp = gfc_finish_block (&se.pre); gfc_add_expr_to_block (&block, tmp); } /* Set STAT. */ if (code->expr1) { gfc_init_se (&se, NULL); gfc_conv_expr_lhs (&se, code->expr1); tmp = convert (TREE_TYPE (se.expr), astat); gfc_add_modify (&block, se.expr, tmp); } /* Set ERRMSG. */ if (code->expr2) { /* A better error message may be possible, but not required. */ const char *msg = "Attempt to deallocate an unallocated object"; tree errmsg, slen, dlen; gfc_init_se (&se, NULL); gfc_conv_expr_lhs (&se, code->expr2); errmsg = gfc_create_var (pchar_type_node, "ERRMSG"); gfc_add_modify (&block, errmsg, gfc_build_addr_expr (pchar_type_node, gfc_build_localized_cstring_const (msg))); slen = build_int_cst (gfc_charlen_type_node, ((int) strlen (msg))); dlen = gfc_get_expr_charlen (code->expr2); slen = fold_build2 (MIN_EXPR, TREE_TYPE (slen), dlen, slen); dlen = build_call_expr_loc (input_location, built_in_decls[BUILT_IN_MEMCPY], 3, gfc_build_addr_expr (pvoid_type_node, se.expr), errmsg, slen); tmp = fold_build2 (NE_EXPR, boolean_type_node, astat, build_int_cst (TREE_TYPE (astat), 0)); tmp = build3_v (COND_EXPR, tmp, dlen, build_empty_stmt (input_location)); gfc_add_expr_to_block (&block, tmp); } return gfc_finish_block (&block); }
Go to most recent revision | Compare with Previous | Blame | View Log