URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [gensupport.c] - Rev 310
Go to most recent revision | Compare with Previous | Blame | View Log
/* Support routines for the various generation passes. Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "bconfig.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "obstack.h" #include "errors.h" #include "hashtab.h" #include "gensupport.h" /* In case some macros used by files we include need it, define this here. */ int target_flags; int insn_elision = 1; const char *in_fname; /* This callback will be invoked whenever an rtl include directive is processed. To be used for creation of the dependency file. */ void (*include_callback) (const char *); static struct obstack obstack; struct obstack *rtl_obstack = &obstack; static int sequence_num; static int errors; static int predicable_default; static const char *predicable_true; static const char *predicable_false; static htab_t condition_table; static char *base_dir = NULL; /* We initially queue all patterns, process the define_insn and define_cond_exec patterns, then return them one at a time. */ struct queue_elem { rtx data; const char *filename; int lineno; struct queue_elem *next; /* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT, SPLIT points to the generated DEFINE_SPLIT. */ struct queue_elem *split; }; static struct queue_elem *define_attr_queue; static struct queue_elem **define_attr_tail = &define_attr_queue; static struct queue_elem *define_pred_queue; static struct queue_elem **define_pred_tail = &define_pred_queue; static struct queue_elem *define_insn_queue; static struct queue_elem **define_insn_tail = &define_insn_queue; static struct queue_elem *define_cond_exec_queue; static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue; static struct queue_elem *other_queue; static struct queue_elem **other_tail = &other_queue; static struct queue_elem *queue_pattern (rtx, struct queue_elem ***, const char *, int); /* Current maximum length of directory names in the search path for include files. (Altered as we get more of them.) */ size_t max_include_len; struct file_name_list { struct file_name_list *next; const char *fname; }; struct file_name_list *first_dir_md_include = 0; /* First dir to search */ /* First dir to search for <file> */ struct file_name_list *first_bracket_include = 0; struct file_name_list *last_dir_md_include = 0; /* Last in chain */ static void remove_constraints (rtx); static void process_rtx (rtx, int); static int is_predicable (struct queue_elem *); static void identify_predicable_attribute (void); static int n_alternatives (const char *); static void collect_insn_data (rtx, int *, int *); static rtx alter_predicate_for_insn (rtx, int, int, int); static const char *alter_test_for_insn (struct queue_elem *, struct queue_elem *); static char *shift_output_template (char *, const char *, int); static const char *alter_output_for_insn (struct queue_elem *, struct queue_elem *, int, int); static void process_one_cond_exec (struct queue_elem *); static void process_define_cond_exec (void); static void process_include (rtx, int); static char *save_string (const char *, int); static void init_predicate_table (void); static void record_insn_name (int, const char *); void message_with_line (int lineno, const char *msg, ...) { va_list ap; va_start (ap, msg); fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno); vfprintf (stderr, msg, ap); fputc ('\n', stderr); va_end (ap); } /* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in the gensupport programs. */ rtx gen_rtx_CONST_INT (enum machine_mode ARG_UNUSED (mode), HOST_WIDE_INT arg) { rtx rt = rtx_alloc (CONST_INT); XWINT (rt, 0) = arg; return rt; } /* Queue PATTERN on LIST_TAIL. Return the address of the new queue element. */ static struct queue_elem * queue_pattern (rtx pattern, struct queue_elem ***list_tail, const char *filename, int lineno) { struct queue_elem *e = XNEW(struct queue_elem); e->data = pattern; e->filename = filename; e->lineno = lineno; e->next = NULL; e->split = NULL; **list_tail = e; *list_tail = &e->next; return e; } /* Recursively remove constraints from an rtx. */ static void remove_constraints (rtx part) { int i, j; const char *format_ptr; if (part == 0) return; if (GET_CODE (part) == MATCH_OPERAND) XSTR (part, 2) = ""; else if (GET_CODE (part) == MATCH_SCRATCH) XSTR (part, 1) = ""; format_ptr = GET_RTX_FORMAT (GET_CODE (part)); for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++) switch (*format_ptr++) { case 'e': case 'u': remove_constraints (XEXP (part, i)); break; case 'E': if (XVEC (part, i) != NULL) for (j = 0; j < XVECLEN (part, i); j++) remove_constraints (XVECEXP (part, i, j)); break; } } /* Process an include file assuming that it lives in gcc/config/{target}/ if the include looks like (include "file"). */ static void process_include (rtx desc, int lineno) { const char *filename = XSTR (desc, 0); const char *old_filename; int old_lineno; char *pathname; FILE *input_file; /* If specified file name is absolute, skip the include stack. */ if (! IS_ABSOLUTE_PATH (filename)) { struct file_name_list *stackp; /* Search directory path, trying to open the file. */ for (stackp = first_dir_md_include; stackp; stackp = stackp->next) { static const char sep[2] = { DIR_SEPARATOR, '\0' }; pathname = concat (stackp->fname, sep, filename, NULL); input_file = fopen (pathname, "r"); if (input_file != NULL) goto success; free (pathname); } } if (base_dir) pathname = concat (base_dir, filename, NULL); else pathname = xstrdup (filename); input_file = fopen (pathname, "r"); if (input_file == NULL) { free (pathname); message_with_line (lineno, "include file `%s' not found", filename); errors = 1; return; } success: /* Save old cursor; setup new for the new file. Note that "lineno" the argument to this function is the beginning of the include statement, while read_rtx_lineno has already been advanced. */ old_filename = read_rtx_filename; old_lineno = read_rtx_lineno; read_rtx_filename = pathname; read_rtx_lineno = 1; if (include_callback) include_callback (pathname); /* Read the entire file. */ while (read_rtx (input_file, &desc, &lineno)) process_rtx (desc, lineno); /* Do not free pathname. It is attached to the various rtx queue elements. */ read_rtx_filename = old_filename; read_rtx_lineno = old_lineno; fclose (input_file); } /* Process a top level rtx in some way, queuing as appropriate. */ static void process_rtx (rtx desc, int lineno) { switch (GET_CODE (desc)) { case DEFINE_INSN: queue_pattern (desc, &define_insn_tail, read_rtx_filename, lineno); break; case DEFINE_COND_EXEC: queue_pattern (desc, &define_cond_exec_tail, read_rtx_filename, lineno); break; case DEFINE_ATTR: queue_pattern (desc, &define_attr_tail, read_rtx_filename, lineno); break; case DEFINE_PREDICATE: case DEFINE_SPECIAL_PREDICATE: case DEFINE_CONSTRAINT: case DEFINE_REGISTER_CONSTRAINT: case DEFINE_MEMORY_CONSTRAINT: case DEFINE_ADDRESS_CONSTRAINT: queue_pattern (desc, &define_pred_tail, read_rtx_filename, lineno); break; case INCLUDE: process_include (desc, lineno); break; case DEFINE_INSN_AND_SPLIT: { const char *split_cond; rtx split; rtvec attr; int i; struct queue_elem *insn_elem; struct queue_elem *split_elem; /* Create a split with values from the insn_and_split. */ split = rtx_alloc (DEFINE_SPLIT); i = XVECLEN (desc, 1); XVEC (split, 0) = rtvec_alloc (i); while (--i >= 0) { XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i)); remove_constraints (XVECEXP (split, 0, i)); } /* If the split condition starts with "&&", append it to the insn condition to create the new split condition. */ split_cond = XSTR (desc, 4); if (split_cond[0] == '&' && split_cond[1] == '&') { copy_rtx_ptr_loc (split_cond + 2, split_cond); split_cond = join_c_conditions (XSTR (desc, 2), split_cond + 2); } XSTR (split, 1) = split_cond; XVEC (split, 2) = XVEC (desc, 5); XSTR (split, 3) = XSTR (desc, 6); /* Fix up the DEFINE_INSN. */ attr = XVEC (desc, 7); PUT_CODE (desc, DEFINE_INSN); XVEC (desc, 4) = attr; /* Queue them. */ insn_elem = queue_pattern (desc, &define_insn_tail, read_rtx_filename, lineno); split_elem = queue_pattern (split, &other_tail, read_rtx_filename, lineno); insn_elem->split = split_elem; break; } default: queue_pattern (desc, &other_tail, read_rtx_filename, lineno); break; } } /* Return true if attribute PREDICABLE is true for ELEM, which holds a DEFINE_INSN. */ static int is_predicable (struct queue_elem *elem) { rtvec vec = XVEC (elem->data, 4); const char *value; int i; if (! vec) return predicable_default; for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i) { rtx sub = RTVEC_ELT (vec, i); switch (GET_CODE (sub)) { case SET_ATTR: if (strcmp (XSTR (sub, 0), "predicable") == 0) { value = XSTR (sub, 1); goto found; } break; case SET_ATTR_ALTERNATIVE: if (strcmp (XSTR (sub, 0), "predicable") == 0) { message_with_line (elem->lineno, "multiple alternatives for `predicable'"); errors = 1; return 0; } break; case SET: if (GET_CODE (SET_DEST (sub)) != ATTR || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0) break; sub = SET_SRC (sub); if (GET_CODE (sub) == CONST_STRING) { value = XSTR (sub, 0); goto found; } /* ??? It would be possible to handle this if we really tried. It's not easy though, and I'm not going to bother until it really proves necessary. */ message_with_line (elem->lineno, "non-constant value for `predicable'"); errors = 1; return 0; default: gcc_unreachable (); } } return predicable_default; found: /* Verify that predicability does not vary on the alternative. */ /* ??? It should be possible to handle this by simply eliminating the non-predicable alternatives from the insn. FRV would like to do this. Delay this until we've got the basics solid. */ if (strchr (value, ',') != NULL) { message_with_line (elem->lineno, "multiple alternatives for `predicable'"); errors = 1; return 0; } /* Find out which value we're looking at. */ if (strcmp (value, predicable_true) == 0) return 1; if (strcmp (value, predicable_false) == 0) return 0; message_with_line (elem->lineno, "unknown value `%s' for `predicable' attribute", value); errors = 1; return 0; } /* Examine the attribute "predicable"; discover its boolean values and its default. */ static void identify_predicable_attribute (void) { struct queue_elem *elem; char *p_true, *p_false; const char *value; /* Look for the DEFINE_ATTR for `predicable', which must exist. */ for (elem = define_attr_queue; elem ; elem = elem->next) if (strcmp (XSTR (elem->data, 0), "predicable") == 0) goto found; message_with_line (define_cond_exec_queue->lineno, "attribute `predicable' not defined"); errors = 1; return; found: value = XSTR (elem->data, 1); p_false = xstrdup (value); p_true = strchr (p_false, ','); if (p_true == NULL || strchr (++p_true, ',') != NULL) { message_with_line (elem->lineno, "attribute `predicable' is not a boolean"); errors = 1; if (p_false) free (p_false); return; } p_true[-1] = '\0'; predicable_true = p_true; predicable_false = p_false; switch (GET_CODE (XEXP (elem->data, 2))) { case CONST_STRING: value = XSTR (XEXP (elem->data, 2), 0); break; case CONST: message_with_line (elem->lineno, "attribute `predicable' cannot be const"); errors = 1; if (p_false) free (p_false); return; default: message_with_line (elem->lineno, "attribute `predicable' must have a constant default"); errors = 1; if (p_false) free (p_false); return; } if (strcmp (value, p_true) == 0) predicable_default = 1; else if (strcmp (value, p_false) == 0) predicable_default = 0; else { message_with_line (elem->lineno, "unknown value `%s' for `predicable' attribute", value); errors = 1; if (p_false) free (p_false); } } /* Return the number of alternatives in constraint S. */ static int n_alternatives (const char *s) { int n = 1; if (s) while (*s) n += (*s++ == ','); return n; } /* Determine how many alternatives there are in INSN, and how many operands. */ static void collect_insn_data (rtx pattern, int *palt, int *pmax) { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: i = n_alternatives (XSTR (pattern, 2)); *palt = (i > *palt ? i : *palt); /* Fall through. */ case MATCH_OPERATOR: case MATCH_SCRATCH: case MATCH_PARALLEL: i = XINT (pattern, 0); if (i > *pmax) *pmax = i; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { switch (fmt[i]) { case 'e': case 'u': collect_insn_data (XEXP (pattern, i), palt, pmax); break; case 'V': if (XVEC (pattern, i) == NULL) break; /* Fall through. */ case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) collect_insn_data (XVECEXP (pattern, i, j), palt, pmax); break; case 'i': case 'w': case '0': case 's': case 'S': case 'T': break; default: gcc_unreachable (); } } } static rtx alter_predicate_for_insn (rtx pattern, int alt, int max_op, int lineno) { const char *fmt; enum rtx_code code; int i, j, len; code = GET_CODE (pattern); switch (code) { case MATCH_OPERAND: { const char *c = XSTR (pattern, 2); if (n_alternatives (c) != 1) { message_with_line (lineno, "too many alternatives for operand %d", XINT (pattern, 0)); errors = 1; return NULL; } /* Replicate C as needed to fill out ALT alternatives. */ if (c && *c && alt > 1) { size_t c_len = strlen (c); size_t len = alt * (c_len + 1); char *new_c = XNEWVEC(char, len); memcpy (new_c, c, c_len); for (i = 1; i < alt; ++i) { new_c[i * (c_len + 1) - 1] = ','; memcpy (&new_c[i * (c_len + 1)], c, c_len); } new_c[len - 1] = '\0'; XSTR (pattern, 2) = new_c; } } /* Fall through. */ case MATCH_OPERATOR: case MATCH_SCRATCH: case MATCH_PARALLEL: XINT (pattern, 0) += max_op; break; default: break; } fmt = GET_RTX_FORMAT (code); len = GET_RTX_LENGTH (code); for (i = 0; i < len; i++) { rtx r; switch (fmt[i]) { case 'e': case 'u': r = alter_predicate_for_insn (XEXP (pattern, i), alt, max_op, lineno); if (r == NULL) return r; break; case 'E': for (j = XVECLEN (pattern, i) - 1; j >= 0; --j) { r = alter_predicate_for_insn (XVECEXP (pattern, i, j), alt, max_op, lineno); if (r == NULL) return r; } break; case 'i': case 'w': case '0': case 's': break; default: gcc_unreachable (); } } return pattern; } static const char * alter_test_for_insn (struct queue_elem *ce_elem, struct queue_elem *insn_elem) { return join_c_conditions (XSTR (ce_elem->data, 1), XSTR (insn_elem->data, 2)); } /* Adjust all of the operand numbers in SRC to match the shift they'll get from an operand displacement of DISP. Return a pointer after the adjusted string. */ static char * shift_output_template (char *dest, const char *src, int disp) { while (*src) { char c = *src++; *dest++ = c; if (c == '%') { c = *src++; if (ISDIGIT ((unsigned char) c)) c += disp; else if (ISALPHA (c)) { *dest++ = c; c = *src++ + disp; } *dest++ = c; } } return dest; } static const char * alter_output_for_insn (struct queue_elem *ce_elem, struct queue_elem *insn_elem, int alt, int max_op) { const char *ce_out, *insn_out; char *result, *p; size_t len, ce_len, insn_len; /* ??? Could coordinate with genoutput to not duplicate code here. */ ce_out = XSTR (ce_elem->data, 2); insn_out = XTMPL (insn_elem->data, 3); if (!ce_out || *ce_out == '\0') return insn_out; ce_len = strlen (ce_out); insn_len = strlen (insn_out); if (*insn_out == '*') /* You must take care of the predicate yourself. */ return insn_out; if (*insn_out == '@') { len = (ce_len + 1) * alt + insn_len + 1; p = result = XNEWVEC(char, len); do { do *p++ = *insn_out++; while (ISSPACE ((unsigned char) *insn_out)); if (*insn_out != '#') { p = shift_output_template (p, ce_out, max_op); *p++ = ' '; } do *p++ = *insn_out++; while (*insn_out && *insn_out != '\n'); } while (*insn_out); *p = '\0'; } else { len = ce_len + 1 + insn_len + 1; result = XNEWVEC (char, len); p = shift_output_template (result, ce_out, max_op); *p++ = ' '; memcpy (p, insn_out, insn_len + 1); } return result; } /* Replicate insns as appropriate for the given DEFINE_COND_EXEC. */ static void process_one_cond_exec (struct queue_elem *ce_elem) { struct queue_elem *insn_elem; for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next) { int alternatives, max_operand; rtx pred, insn, pattern, split; char *new_name; int i; if (! is_predicable (insn_elem)) continue; alternatives = 1; max_operand = -1; collect_insn_data (insn_elem->data, &alternatives, &max_operand); max_operand += 1; if (XVECLEN (ce_elem->data, 0) != 1) { message_with_line (ce_elem->lineno, "too many patterns in predicate"); errors = 1; return; } pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0)); pred = alter_predicate_for_insn (pred, alternatives, max_operand, ce_elem->lineno); if (pred == NULL) return; /* Construct a new pattern for the new insn. */ insn = copy_rtx (insn_elem->data); new_name = XNEWVAR (char, strlen XSTR (insn_elem->data, 0) + 4); sprintf (new_name, "*p %s", XSTR (insn_elem->data, 0)); XSTR (insn, 0) = new_name; pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; if (XVECLEN (insn, 1) == 1) { XEXP (pattern, 1) = XVECEXP (insn, 1, 0); XVECEXP (insn, 1, 0) = pattern; PUT_NUM_ELEM (XVEC (insn, 1), 1); } else { XEXP (pattern, 1) = rtx_alloc (PARALLEL); XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1); XVEC (insn, 1) = rtvec_alloc (1); XVECEXP (insn, 1, 0) = pattern; } XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem); XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem, alternatives, max_operand); /* ??? Set `predicable' to false. Not crucial since it's really only used here, and we won't reprocess this new pattern. */ /* Put the new pattern on the `other' list so that it (a) is not reprocessed by other define_cond_exec patterns (b) appears after all normal define_insn patterns. ??? B is debatable. If one has normal insns that match cond_exec patterns, they will be preferred over these generated patterns. Whether this matters in practice, or if it's a good thing, or whether we should thread these new patterns into the define_insn chain just after their generator is something we'll have to experiment with. */ queue_pattern (insn, &other_tail, insn_elem->filename, insn_elem->lineno); if (!insn_elem->split) continue; /* If the original insn came from a define_insn_and_split, generate a new split to handle the predicated insn. */ split = copy_rtx (insn_elem->split->data); /* Predicate the pattern matched by the split. */ pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; if (XVECLEN (split, 0) == 1) { XEXP (pattern, 1) = XVECEXP (split, 0, 0); XVECEXP (split, 0, 0) = pattern; PUT_NUM_ELEM (XVEC (split, 0), 1); } else { XEXP (pattern, 1) = rtx_alloc (PARALLEL); XVEC (XEXP (pattern, 1), 0) = XVEC (split, 0); XVEC (split, 0) = rtvec_alloc (1); XVECEXP (split, 0, 0) = pattern; } /* Predicate all of the insns generated by the split. */ for (i = 0; i < XVECLEN (split, 2); i++) { pattern = rtx_alloc (COND_EXEC); XEXP (pattern, 0) = pred; XEXP (pattern, 1) = XVECEXP (split, 2, i); XVECEXP (split, 2, i) = pattern; } /* Add the new split to the queue. */ queue_pattern (split, &other_tail, read_rtx_filename, insn_elem->split->lineno); } } /* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN patterns appropriately. */ static void process_define_cond_exec (void) { struct queue_elem *elem; identify_predicable_attribute (); if (errors) return; for (elem = define_cond_exec_queue; elem ; elem = elem->next) process_one_cond_exec (elem); } static char * save_string (const char *s, int len) { char *result = XNEWVEC (char, len + 1); memcpy (result, s, len); result[len] = 0; return result; } /* The entry point for initializing the reader. */ int init_md_reader_args_cb (int argc, char **argv, bool (*parse_opt)(const char *)) { FILE *input_file; int c, i, lineno; char *lastsl; rtx desc; bool no_more_options; bool already_read_stdin; /* Unlock the stdio streams. */ unlock_std_streams (); /* First we loop over all the options. */ for (i = 1; i < argc; i++) { if (argv[i][0] != '-') continue; c = argv[i][1]; switch (c) { case 'I': /* Add directory to path for includes. */ { struct file_name_list *dirtmp; dirtmp = XNEW (struct file_name_list); dirtmp->next = 0; /* New one goes on the end */ if (first_dir_md_include == 0) first_dir_md_include = dirtmp; else last_dir_md_include->next = dirtmp; last_dir_md_include = dirtmp; /* Tail follows the last one */ if (argv[i][1] == 'I' && argv[i][2] != 0) dirtmp->fname = argv[i] + 2; else if (i + 1 == argc) fatal ("directory name missing after -I option"); else dirtmp->fname = argv[++i]; if (strlen (dirtmp->fname) > max_include_len) max_include_len = strlen (dirtmp->fname); } break; case '\0': /* An argument consisting of exactly one dash is a request to read stdin. This will be handled in the second loop. */ continue; case '-': /* An argument consisting of just two dashes causes option parsing to cease. */ if (argv[i][2] == '\0') goto stop_parsing_options; default: /* The program may have provided a callback so it can accept its own options. */ if (parse_opt && parse_opt (argv[i])) break; fatal ("invalid option `%s'", argv[i]); } } stop_parsing_options: /* Prepare to read input. */ condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL); init_predicate_table (); obstack_init (rtl_obstack); errors = 0; sequence_num = 0; no_more_options = false; already_read_stdin = false; /* Now loop over all input files. */ for (i = 1; i < argc; i++) { if (argv[i][0] == '-') { if (argv[i][1] == '\0') { /* Read stdin. */ if (already_read_stdin) fatal ("cannot read standard input twice"); base_dir = NULL; read_rtx_filename = in_fname = "<stdin>"; read_rtx_lineno = 1; input_file = stdin; already_read_stdin = true; while (read_rtx (input_file, &desc, &lineno)) process_rtx (desc, lineno); fclose (input_file); continue; } else if (argv[i][1] == '-' && argv[i][2] == '\0') { /* No further arguments are to be treated as options. */ no_more_options = true; continue; } else if (!no_more_options) continue; } /* If we get here we are looking at a non-option argument, i.e. a file to be processed. */ in_fname = argv[i]; lastsl = strrchr (in_fname, '/'); if (lastsl != NULL) base_dir = save_string (in_fname, lastsl - in_fname + 1 ); else base_dir = NULL; read_rtx_filename = in_fname; read_rtx_lineno = 1; input_file = fopen (in_fname, "r"); if (input_file == 0) { perror (in_fname); return FATAL_EXIT_CODE; } while (read_rtx (input_file, &desc, &lineno)) process_rtx (desc, lineno); fclose (input_file); } /* If we get to this point without having seen any files to process, read standard input now. */ if (!in_fname) { base_dir = NULL; read_rtx_filename = in_fname = "<stdin>"; read_rtx_lineno = 1; input_file = stdin; while (read_rtx (input_file, &desc, &lineno)) process_rtx (desc, lineno); fclose (input_file); } /* Process define_cond_exec patterns. */ if (define_cond_exec_queue != NULL) process_define_cond_exec (); return errors ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE; } /* Programs that don't have their own options can use this entry point instead. */ int init_md_reader_args (int argc, char **argv) { return init_md_reader_args_cb (argc, argv, 0); } /* The entry point for reading a single rtx from an md file. */ rtx read_md_rtx (int *lineno, int *seqnr) { struct queue_elem **queue, *elem; rtx desc; discard: /* Read all patterns from a given queue before moving on to the next. */ if (define_attr_queue != NULL) queue = &define_attr_queue; else if (define_pred_queue != NULL) queue = &define_pred_queue; else if (define_insn_queue != NULL) queue = &define_insn_queue; else if (other_queue != NULL) queue = &other_queue; else return NULL_RTX; elem = *queue; *queue = elem->next; desc = elem->data; read_rtx_filename = elem->filename; *lineno = elem->lineno; *seqnr = sequence_num; free (elem); /* Discard insn patterns which we know can never match (because their C test is provably always false). If insn_elision is false, our caller needs to see all the patterns. Note that the elided patterns are never counted by the sequence numbering; it it is the caller's responsibility, when insn_elision is false, not to use elided pattern numbers for anything. */ switch (GET_CODE (desc)) { case DEFINE_INSN: case DEFINE_EXPAND: if (maybe_eval_c_test (XSTR (desc, 2)) != 0) sequence_num++; else if (insn_elision) goto discard; /* *seqnr is used here so the name table will match caller's idea of insn numbering, whether or not elision is active. */ record_insn_name (*seqnr, XSTR (desc, 0)); break; case DEFINE_SPLIT: case DEFINE_PEEPHOLE: case DEFINE_PEEPHOLE2: if (maybe_eval_c_test (XSTR (desc, 1)) != 0) sequence_num++; else if (insn_elision) goto discard; break; default: break; } return desc; } /* Helper functions for insn elision. */ /* Compute a hash function of a c_test structure, which is keyed by its ->expr field. */ hashval_t hash_c_test (const void *x) { const struct c_test *a = (const struct c_test *) x; const unsigned char *base, *s = (const unsigned char *) a->expr; hashval_t hash; unsigned char c; unsigned int len; base = s; hash = 0; while ((c = *s++) != '\0') { hash += c + (c << 17); hash ^= hash >> 2; } len = s - base; hash += len + (len << 17); hash ^= hash >> 2; return hash; } /* Compare two c_test expression structures. */ int cmp_c_test (const void *x, const void *y) { const struct c_test *a = (const struct c_test *) x; const struct c_test *b = (const struct c_test *) y; return !strcmp (a->expr, b->expr); } /* Given a string representing a C test expression, look it up in the condition_table and report whether or not its value is known at compile time. Returns a tristate: 1 for known true, 0 for known false, -1 for unknown. */ int maybe_eval_c_test (const char *expr) { const struct c_test *test; struct c_test dummy; if (expr[0] == 0) return 1; dummy.expr = expr; test = (const struct c_test *)htab_find (condition_table, &dummy); if (!test) return -1; return test->value; } /* Record the C test expression EXPR in the condition_table, with value VAL. Duplicates clobber previous entries. */ void add_c_test (const char *expr, int value) { struct c_test *test; if (expr[0] == 0) return; test = XNEW (struct c_test); test->expr = expr; test->value = value; *(htab_find_slot (condition_table, test, INSERT)) = test; } /* For every C test, call CALLBACK with two arguments: a pointer to the condition structure and INFO. Stops when CALLBACK returns zero. */ void traverse_c_tests (htab_trav callback, void *info) { if (condition_table) htab_traverse (condition_table, callback, info); } /* Given a string, return the number of comma-separated elements in it. Return 0 for the null string. */ int n_comma_elts (const char *s) { int n; if (*s == '\0') return 0; for (n = 1; *s; s++) if (*s == ',') n++; return n; } /* Given a pointer to a (char *), return a pointer to the beginning of the next comma-separated element in the string. Advance the pointer given to the end of that element. Return NULL if at end of string. Caller is responsible for copying the string if necessary. White space between a comma and an element is ignored. */ const char * scan_comma_elt (const char **pstr) { const char *start; const char *p = *pstr; if (*p == ',') p++; while (ISSPACE(*p)) p++; if (*p == '\0') return NULL; start = p; while (*p != ',' && *p != '\0') p++; *pstr = p; return start; } /* Helper functions for define_predicate and define_special_predicate processing. Shared between genrecog.c and genpreds.c. */ static htab_t predicate_table; struct pred_data *first_predicate; static struct pred_data **last_predicate = &first_predicate; static hashval_t hash_struct_pred_data (const void *ptr) { return htab_hash_string (((const struct pred_data *)ptr)->name); } static int eq_struct_pred_data (const void *a, const void *b) { return !strcmp (((const struct pred_data *)a)->name, ((const struct pred_data *)b)->name); } struct pred_data * lookup_predicate (const char *name) { struct pred_data key; key.name = name; return (struct pred_data *) htab_find (predicate_table, &key); } /* Record that predicate PRED can accept CODE. */ void add_predicate_code (struct pred_data *pred, enum rtx_code code) { if (!pred->codes[code]) { pred->num_codes++; pred->codes[code] = true; if (GET_RTX_CLASS (code) != RTX_CONST_OBJ) pred->allows_non_const = true; if (code != REG && code != SUBREG && code != MEM && code != CONCAT && code != PARALLEL && code != STRICT_LOW_PART) pred->allows_non_lvalue = true; if (pred->num_codes == 1) pred->singleton = code; else if (pred->num_codes == 2) pred->singleton = UNKNOWN; } } void add_predicate (struct pred_data *pred) { void **slot = htab_find_slot (predicate_table, pred, INSERT); if (*slot) { error ("duplicate predicate definition for '%s'", pred->name); return; } *slot = pred; *last_predicate = pred; last_predicate = &pred->next; } /* This array gives the initial content of the predicate table. It has entries for all predicates defined in recog.c. */ struct std_pred_table { const char *name; bool special; bool allows_const_p; RTX_CODE codes[NUM_RTX_CODE]; }; static const struct std_pred_table std_preds[] = { {"general_operand", false, true, {SUBREG, REG, MEM}}, {"address_operand", true, true, {SUBREG, REG, MEM, PLUS, MINUS, MULT}}, {"register_operand", false, false, {SUBREG, REG}}, {"pmode_register_operand", true, false, {SUBREG, REG}}, {"scratch_operand", false, false, {SCRATCH, REG}}, {"immediate_operand", false, true, {UNKNOWN}}, {"const_int_operand", false, false, {CONST_INT}}, {"const_double_operand", false, false, {CONST_INT, CONST_DOUBLE}}, {"nonimmediate_operand", false, false, {SUBREG, REG, MEM}}, {"nonmemory_operand", false, true, {SUBREG, REG}}, {"push_operand", false, false, {MEM}}, {"pop_operand", false, false, {MEM}}, {"memory_operand", false, false, {SUBREG, MEM}}, {"indirect_operand", false, false, {SUBREG, MEM}}, {"ordered_comparison_operator", false, false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}}, {"comparison_operator", false, false, {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU, UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE, UNLT, LTGT}} }; #define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds) /* Initialize the table of predicate definitions, starting with the information we have on generic predicates. */ static void init_predicate_table (void) { size_t i, j; struct pred_data *pred; predicate_table = htab_create_alloc (37, hash_struct_pred_data, eq_struct_pred_data, 0, xcalloc, free); for (i = 0; i < NUM_KNOWN_STD_PREDS; i++) { pred = XCNEW (struct pred_data); pred->name = std_preds[i].name; pred->special = std_preds[i].special; for (j = 0; std_preds[i].codes[j] != 0; j++) add_predicate_code (pred, std_preds[i].codes[j]); if (std_preds[i].allows_const_p) for (j = 0; j < NUM_RTX_CODE; j++) if (GET_RTX_CLASS (j) == RTX_CONST_OBJ) add_predicate_code (pred, (enum rtx_code) j); add_predicate (pred); } } /* These functions allow linkage with print-rtl.c. Also, some generators like to annotate their output with insn names. */ /* Holds an array of names indexed by insn_code_number. */ static char **insn_name_ptr = 0; static int insn_name_ptr_size = 0; const char * get_insn_name (int code) { if (code < insn_name_ptr_size) return insn_name_ptr[code]; else return NULL; } static void record_insn_name (int code, const char *name) { static const char *last_real_name = "insn"; static int last_real_code = 0; char *new_name; if (insn_name_ptr_size <= code) { int new_size; new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512); insn_name_ptr = XRESIZEVEC (char *, insn_name_ptr, new_size); memset (insn_name_ptr + insn_name_ptr_size, 0, sizeof(char *) * (new_size - insn_name_ptr_size)); insn_name_ptr_size = new_size; } if (!name || name[0] == '\0') { new_name = XNEWVAR (char, strlen (last_real_name) + 10); sprintf (new_name, "%s+%d", last_real_name, code - last_real_code); } else { last_real_name = new_name = xstrdup (name); last_real_code = code; } insn_name_ptr[code] = new_name; }
Go to most recent revision | Compare with Previous | Blame | View Log