URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [recog.c] - Rev 328
Go to most recent revision | Compare with Previous | Blame | View Log
/* Subroutines used by or related to instruction recognition. Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tm_p.h" #include "insn-config.h" #include "insn-attr.h" #include "hard-reg-set.h" #include "recog.h" #include "regs.h" #include "addresses.h" #include "expr.h" #include "function.h" #include "flags.h" #include "real.h" #include "toplev.h" #include "basic-block.h" #include "output.h" #include "reload.h" #include "target.h" #include "timevar.h" #include "tree-pass.h" #include "df.h" #ifndef STACK_PUSH_CODE #ifdef STACK_GROWS_DOWNWARD #define STACK_PUSH_CODE PRE_DEC #else #define STACK_PUSH_CODE PRE_INC #endif #endif #ifndef STACK_POP_CODE #ifdef STACK_GROWS_DOWNWARD #define STACK_POP_CODE POST_INC #else #define STACK_POP_CODE POST_DEC #endif #endif #ifndef HAVE_ATTR_enabled static inline bool get_attr_enabled (rtx insn ATTRIBUTE_UNUSED) { return true; } #endif static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool); static void validate_replace_src_1 (rtx *, void *); static rtx split_insn (rtx); /* Nonzero means allow operands to be volatile. This should be 0 if you are generating rtl, such as if you are calling the functions in optabs.c and expmed.c (most of the time). This should be 1 if all valid insns need to be recognized, such as in reginfo.c and final.c and reload.c. init_recog and init_recog_no_volatile are responsible for setting this. */ int volatile_ok; struct recog_data recog_data; /* Contains a vector of operand_alternative structures for every operand. Set up by preprocess_constraints. */ struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES]; /* On return from `constrain_operands', indicate which alternative was satisfied. */ int which_alternative; /* Nonzero after end of reload pass. Set to 1 or 0 by toplev.c. Controls the significance of (SUBREG (MEM)). */ int reload_completed; /* Nonzero after thread_prologue_and_epilogue_insns has run. */ int epilogue_completed; /* Initialize data used by the function `recog'. This must be called once in the compilation of a function before any insn recognition may be done in the function. */ void init_recog_no_volatile (void) { volatile_ok = 0; } void init_recog (void) { volatile_ok = 1; } /* Check that X is an insn-body for an `asm' with operands and that the operands mentioned in it are legitimate. */ int check_asm_operands (rtx x) { int noperands; rtx *operands; const char **constraints; int i; /* Post-reload, be more strict with things. */ if (reload_completed) { /* ??? Doh! We've not got the wrapping insn. Cook one up. */ extract_insn (make_insn_raw (x)); constrain_operands (1); return which_alternative >= 0; } noperands = asm_noperands (x); if (noperands < 0) return 0; if (noperands == 0) return 1; operands = XALLOCAVEC (rtx, noperands); constraints = XALLOCAVEC (const char *, noperands); decode_asm_operands (x, operands, NULL, constraints, NULL, NULL); for (i = 0; i < noperands; i++) { const char *c = constraints[i]; if (c[0] == '%') c++; if (! asm_operand_ok (operands[i], c, constraints)) return 0; } return 1; } /* Static data for the next two routines. */ typedef struct change_t { rtx object; int old_code; rtx *loc; rtx old; bool unshare; } change_t; static change_t *changes; static int changes_allocated; static int num_changes = 0; /* Validate a proposed change to OBJECT. LOC is the location in the rtl at which NEW_RTX will be placed. If OBJECT is zero, no validation is done, the change is simply made. Two types of objects are supported: If OBJECT is a MEM, memory_address_p will be called with the address and mode as parameters. If OBJECT is an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with the change in place. IN_GROUP is nonzero if this is part of a group of changes that must be performed as a group. In that case, the changes will be stored. The function `apply_change_group' will validate and apply the changes. If IN_GROUP is zero, this is a single change. Try to recognize the insn or validate the memory reference with the change applied. If the result is not valid for the machine, suppress the change and return zero. Otherwise, perform the change and return 1. */ static bool validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare) { rtx old = *loc; if (old == new_rtx || rtx_equal_p (old, new_rtx)) return 1; gcc_assert (in_group != 0 || num_changes == 0); *loc = new_rtx; /* Save the information describing this change. */ if (num_changes >= changes_allocated) { if (changes_allocated == 0) /* This value allows for repeated substitutions inside complex indexed addresses, or changes in up to 5 insns. */ changes_allocated = MAX_RECOG_OPERANDS * 5; else changes_allocated *= 2; changes = XRESIZEVEC (change_t, changes, changes_allocated); } changes[num_changes].object = object; changes[num_changes].loc = loc; changes[num_changes].old = old; changes[num_changes].unshare = unshare; if (object && !MEM_P (object)) { /* Set INSN_CODE to force rerecognition of insn. Save old code in case invalid. */ changes[num_changes].old_code = INSN_CODE (object); INSN_CODE (object) = -1; } num_changes++; /* If we are making a group of changes, return 1. Otherwise, validate the change group we made. */ if (in_group) return 1; else return apply_change_group (); } /* Wrapper for validate_change_1 without the UNSHARE argument defaulting UNSHARE to false. */ bool validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group) { return validate_change_1 (object, loc, new_rtx, in_group, false); } /* Wrapper for validate_change_1 without the UNSHARE argument defaulting UNSHARE to true. */ bool validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group) { return validate_change_1 (object, loc, new_rtx, in_group, true); } /* Keep X canonicalized if some changes have made it non-canonical; only modifies the operands of X, not (for example) its code. Simplifications are not the job of this routine. Return true if anything was changed. */ bool canonicalize_change_group (rtx insn, rtx x) { if (COMMUTATIVE_P (x) && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))) { /* Oops, the caller has made X no longer canonical. Let's redo the changes in the correct order. */ rtx tem = XEXP (x, 0); validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1); validate_change (insn, &XEXP (x, 1), tem, 1); return true; } else return false; } /* This subroutine of apply_change_group verifies whether the changes to INSN were valid; i.e. whether INSN can still be recognized. */ int insn_invalid_p (rtx insn) { rtx pat = PATTERN (insn); int num_clobbers = 0; /* If we are before reload and the pattern is a SET, see if we can add clobbers. */ int icode = recog (pat, insn, (GET_CODE (pat) == SET && ! reload_completed && ! reload_in_progress) ? &num_clobbers : 0); int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0; /* If this is an asm and the operand aren't legal, then fail. Likewise if this is not an asm and the insn wasn't recognized. */ if ((is_asm && ! check_asm_operands (PATTERN (insn))) || (!is_asm && icode < 0)) return 1; /* If we have to add CLOBBERs, fail if we have to add ones that reference hard registers since our callers can't know if they are live or not. Otherwise, add them. */ if (num_clobbers > 0) { rtx newpat; if (added_clobbers_hard_reg_p (icode)) return 1; newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1)); XVECEXP (newpat, 0, 0) = pat; add_clobbers (newpat, icode); PATTERN (insn) = pat = newpat; } /* After reload, verify that all constraints are satisfied. */ if (reload_completed) { extract_insn (insn); if (! constrain_operands (1)) return 1; } INSN_CODE (insn) = icode; return 0; } /* Return number of changes made and not validated yet. */ int num_changes_pending (void) { return num_changes; } /* Tentatively apply the changes numbered NUM and up. Return 1 if all changes are valid, zero otherwise. */ int verify_changes (int num) { int i; rtx last_validated = NULL_RTX; /* The changes have been applied and all INSN_CODEs have been reset to force rerecognition. The changes are valid if we aren't given an object, or if we are given a MEM and it still is a valid address, or if this is in insn and it is recognized. In the latter case, if reload has completed, we also require that the operands meet the constraints for the insn. */ for (i = num; i < num_changes; i++) { rtx object = changes[i].object; /* If there is no object to test or if it is the same as the one we already tested, ignore it. */ if (object == 0 || object == last_validated) continue; if (MEM_P (object)) { if (! memory_address_addr_space_p (GET_MODE (object), XEXP (object, 0), MEM_ADDR_SPACE (object))) break; } else if (REG_P (changes[i].old) && asm_noperands (PATTERN (object)) > 0 && REG_EXPR (changes[i].old) != NULL_TREE && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old)) && DECL_REGISTER (REG_EXPR (changes[i].old))) { /* Don't allow changes of hard register operands to inline assemblies if they have been defined as register asm ("x"). */ break; } else if (DEBUG_INSN_P (object)) continue; else if (insn_invalid_p (object)) { rtx pat = PATTERN (object); /* Perhaps we couldn't recognize the insn because there were extra CLOBBERs at the end. If so, try to re-recognize without the last CLOBBER (later iterations will cause each of them to be eliminated, in turn). But don't do this if we have an ASM_OPERAND. */ if (GET_CODE (pat) == PARALLEL && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER && asm_noperands (PATTERN (object)) < 0) { rtx newpat; if (XVECLEN (pat, 0) == 2) newpat = XVECEXP (pat, 0, 0); else { int j; newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (pat, 0) - 1)); for (j = 0; j < XVECLEN (newpat, 0); j++) XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j); } /* Add a new change to this group to replace the pattern with this new pattern. Then consider this change as having succeeded. The change we added will cause the entire call to fail if things remain invalid. Note that this can lose if a later change than the one we are processing specified &XVECEXP (PATTERN (object), 0, X) but this shouldn't occur. */ validate_change (object, &PATTERN (object), newpat, 1); continue; } else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER || GET_CODE (pat) == VAR_LOCATION) /* If this insn is a CLOBBER or USE, it is always valid, but is never recognized. */ continue; else break; } last_validated = object; } return (i == num_changes); } /* A group of changes has previously been issued with validate_change and verified with verify_changes. Call df_insn_rescan for each of the insn changed and clear num_changes. */ void confirm_change_group (void) { int i; rtx last_object = NULL; for (i = 0; i < num_changes; i++) { rtx object = changes[i].object; if (changes[i].unshare) *changes[i].loc = copy_rtx (*changes[i].loc); /* Avoid unnecessary rescanning when multiple changes to same instruction are made. */ if (object) { if (object != last_object && last_object && INSN_P (last_object)) df_insn_rescan (last_object); last_object = object; } } if (last_object && INSN_P (last_object)) df_insn_rescan (last_object); num_changes = 0; } /* Apply a group of changes previously issued with `validate_change'. If all changes are valid, call confirm_change_group and return 1, otherwise, call cancel_changes and return 0. */ int apply_change_group (void) { if (verify_changes (0)) { confirm_change_group (); return 1; } else { cancel_changes (0); return 0; } } /* Return the number of changes so far in the current group. */ int num_validated_changes (void) { return num_changes; } /* Retract the changes numbered NUM and up. */ void cancel_changes (int num) { int i; /* Back out all the changes. Do this in the opposite order in which they were made. */ for (i = num_changes - 1; i >= num; i--) { *changes[i].loc = changes[i].old; if (changes[i].object && !MEM_P (changes[i].object)) INSN_CODE (changes[i].object) = changes[i].old_code; } num_changes = num; } /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting rtx. */ static void simplify_while_replacing (rtx *loc, rtx to, rtx object, enum machine_mode op0_mode) { rtx x = *loc; enum rtx_code code = GET_CODE (x); rtx new_rtx; if (SWAPPABLE_OPERANDS_P (x) && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))) { validate_unshare_change (object, loc, gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code : swap_condition (code), GET_MODE (x), XEXP (x, 1), XEXP (x, 0)), 1); x = *loc; code = GET_CODE (x); } switch (code) { case PLUS: /* If we have a PLUS whose second operand is now a CONST_INT, use simplify_gen_binary to try to simplify it. ??? We may want later to remove this, once simplification is separated from this function. */ if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to) validate_change (object, loc, simplify_gen_binary (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1); break; case MINUS: if (CONST_INT_P (XEXP (x, 1)) || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE) validate_change (object, loc, simplify_gen_binary (PLUS, GET_MODE (x), XEXP (x, 0), simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1), GET_MODE (x))), 1); break; case ZERO_EXTEND: case SIGN_EXTEND: if (GET_MODE (XEXP (x, 0)) == VOIDmode) { new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0), op0_mode); /* If any of the above failed, substitute in something that we know won't be recognized. */ if (!new_rtx) new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx); validate_change (object, loc, new_rtx, 1); } break; case SUBREG: /* All subregs possible to simplify should be simplified. */ new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode, SUBREG_BYTE (x)); /* Subregs of VOIDmode operands are incorrect. */ if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode) new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx); if (new_rtx) validate_change (object, loc, new_rtx, 1); break; case ZERO_EXTRACT: case SIGN_EXTRACT: /* If we are replacing a register with memory, try to change the memory to be the mode required for memory in extract operations (this isn't likely to be an insertion operation; if it was, nothing bad will happen, we might just fail in some cases). */ if (MEM_P (XEXP (x, 0)) && CONST_INT_P (XEXP (x, 1)) && CONST_INT_P (XEXP (x, 2)) && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0)) && !MEM_VOLATILE_P (XEXP (x, 0))) { enum machine_mode wanted_mode = VOIDmode; enum machine_mode is_mode = GET_MODE (XEXP (x, 0)); int pos = INTVAL (XEXP (x, 2)); if (GET_CODE (x) == ZERO_EXTRACT) { enum machine_mode new_mode = mode_for_extraction (EP_extzv, 1); if (new_mode != MAX_MACHINE_MODE) wanted_mode = new_mode; } else if (GET_CODE (x) == SIGN_EXTRACT) { enum machine_mode new_mode = mode_for_extraction (EP_extv, 1); if (new_mode != MAX_MACHINE_MODE) wanted_mode = new_mode; } /* If we have a narrower mode, we can do something. */ if (wanted_mode != VOIDmode && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode)) { int offset = pos / BITS_PER_UNIT; rtx newmem; /* If the bytes and bits are counted differently, we must adjust the offset. */ if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN) offset = (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) - offset); pos %= GET_MODE_BITSIZE (wanted_mode); newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset); validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1); validate_change (object, &XEXP (x, 0), newmem, 1); } } break; default: break; } } /* Replace every occurrence of FROM in X with TO. Mark each change with validate_change passing OBJECT. */ static void validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object, bool simplify) { int i, j; const char *fmt; rtx x = *loc; enum rtx_code code; enum machine_mode op0_mode = VOIDmode; int prev_changes = num_changes; if (!x) return; code = GET_CODE (x); fmt = GET_RTX_FORMAT (code); if (fmt[0] == 'e') op0_mode = GET_MODE (XEXP (x, 0)); /* X matches FROM if it is the same rtx or they are both referring to the same register in the same mode. Avoid calling rtx_equal_p unless the operands look similar. */ if (x == from || (REG_P (x) && REG_P (from) && GET_MODE (x) == GET_MODE (from) && REGNO (x) == REGNO (from)) || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from) && rtx_equal_p (x, from))) { validate_unshare_change (object, loc, to, 1); return; } /* Call ourself recursively to perform the replacements. We must not replace inside already replaced expression, otherwise we get infinite recursion for replacements like (reg X)->(subreg (reg X)) done by regmove, so we must special case shared ASM_OPERANDS. */ if (GET_CODE (x) == PARALLEL) { for (j = XVECLEN (x, 0) - 1; j >= 0; j--) { if (j && GET_CODE (XVECEXP (x, 0, j)) == SET && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS) { /* Verify that operands are really shared. */ gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, j)))); validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)), from, to, object, simplify); } else validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object, simplify); } } else for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object, simplify); } /* If we didn't substitute, there is nothing more to do. */ if (num_changes == prev_changes) return; /* Allow substituted expression to have different mode. This is used by regmove to change mode of pseudo register. */ if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode) op0_mode = GET_MODE (XEXP (x, 0)); /* Do changes needed to keep rtx consistent. Don't do any other simplifications, as it is not our job. */ if (simplify) simplify_while_replacing (loc, to, object, op0_mode); } /* Try replacing every occurrence of FROM in subexpression LOC of INSN with TO. After all changes have been made, validate by seeing if INSN is still valid. */ int validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc) { validate_replace_rtx_1 (loc, from, to, insn, true); return apply_change_group (); } /* Try replacing every occurrence of FROM in INSN with TO. After all changes have been made, validate by seeing if INSN is still valid. */ int validate_replace_rtx (rtx from, rtx to, rtx insn) { validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true); return apply_change_group (); } /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE is a part of INSN. After all changes have been made, validate by seeing if INSN is still valid. validate_replace_rtx (from, to, insn) is equivalent to validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */ int validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn) { validate_replace_rtx_1 (where, from, to, insn, true); return apply_change_group (); } /* Same as above, but do not simplify rtx afterwards. */ int validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where, rtx insn) { validate_replace_rtx_1 (where, from, to, insn, false); return apply_change_group (); } /* Try replacing every occurrence of FROM in INSN with TO. This also will replace in REG_EQUAL and REG_EQUIV notes. */ void validate_replace_rtx_group (rtx from, rtx to, rtx insn) { rtx note; validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true); for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) if (REG_NOTE_KIND (note) == REG_EQUAL || REG_NOTE_KIND (note) == REG_EQUIV) validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true); } /* Function called by note_uses to replace used subexpressions. */ struct validate_replace_src_data { rtx from; /* Old RTX */ rtx to; /* New RTX */ rtx insn; /* Insn in which substitution is occurring. */ }; static void validate_replace_src_1 (rtx *x, void *data) { struct validate_replace_src_data *d = (struct validate_replace_src_data *) data; validate_replace_rtx_1 (x, d->from, d->to, d->insn, true); } /* Try replacing every occurrence of FROM in INSN with TO, avoiding SET_DESTs. */ void validate_replace_src_group (rtx from, rtx to, rtx insn) { struct validate_replace_src_data d; d.from = from; d.to = to; d.insn = insn; note_uses (&PATTERN (insn), validate_replace_src_1, &d); } /* Try simplify INSN. Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's pattern and return true if something was simplified. */ bool validate_simplify_insn (rtx insn) { int i; rtx pat = NULL; rtx newpat = NULL; pat = PATTERN (insn); if (GET_CODE (pat) == SET) { newpat = simplify_rtx (SET_SRC (pat)); if (newpat && !rtx_equal_p (SET_SRC (pat), newpat)) validate_change (insn, &SET_SRC (pat), newpat, 1); newpat = simplify_rtx (SET_DEST (pat)); if (newpat && !rtx_equal_p (SET_DEST (pat), newpat)) validate_change (insn, &SET_DEST (pat), newpat, 1); } else if (GET_CODE (pat) == PARALLEL) for (i = 0; i < XVECLEN (pat, 0); i++) { rtx s = XVECEXP (pat, 0, i); if (GET_CODE (XVECEXP (pat, 0, i)) == SET) { newpat = simplify_rtx (SET_SRC (s)); if (newpat && !rtx_equal_p (SET_SRC (s), newpat)) validate_change (insn, &SET_SRC (s), newpat, 1); newpat = simplify_rtx (SET_DEST (s)); if (newpat && !rtx_equal_p (SET_DEST (s), newpat)) validate_change (insn, &SET_DEST (s), newpat, 1); } } return ((num_changes_pending () > 0) && (apply_change_group () > 0)); } #ifdef HAVE_cc0 /* Return 1 if the insn using CC0 set by INSN does not contain any ordered tests applied to the condition codes. EQ and NE tests do not count. */ int next_insn_tests_no_inequality (rtx insn) { rtx next = next_cc0_user (insn); /* If there is no next insn, we have to take the conservative choice. */ if (next == 0) return 0; return (INSN_P (next) && ! inequality_comparisons_p (PATTERN (next))); } #endif /* Return 1 if OP is a valid general operand for machine mode MODE. This is either a register reference, a memory reference, or a constant. In the case of a memory reference, the address is checked for general validity for the target machine. Register and memory references must have mode MODE in order to be valid, but some constants have no machine mode and are valid for any mode. If MODE is VOIDmode, OP is checked for validity for whatever mode it has. The main use of this function is as a predicate in match_operand expressions in the machine description. For an explanation of this function's behavior for registers of class NO_REGS, see the comment for `register_operand'. */ int general_operand (rtx op, enum machine_mode mode) { enum rtx_code code = GET_CODE (op); if (mode == VOIDmode) mode = GET_MODE (op); /* Don't accept CONST_INT or anything similar if the caller wants something floating. */ if (GET_MODE (op) == VOIDmode && mode != VOIDmode && GET_MODE_CLASS (mode) != MODE_INT && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) return 0; if (CONST_INT_P (op) && mode != VOIDmode && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) return 0; if (CONSTANT_P (op)) return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode || mode == VOIDmode) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)) && LEGITIMATE_CONSTANT_P (op)); /* Except for certain constants with VOIDmode, already checked for, OP's mode must match MODE if MODE specifies a mode. */ if (GET_MODE (op) != mode) return 0; if (code == SUBREG) { rtx sub = SUBREG_REG (op); #ifdef INSN_SCHEDULING /* On machines that have insn scheduling, we want all memory reference to be explicit, so outlaw paradoxical SUBREGs. However, we must allow them after reload so that they can get cleaned up by cleanup_subreg_operands. */ if (!reload_completed && MEM_P (sub) && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub))) return 0; #endif /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory may result in incorrect reference. We should simplify all valid subregs of MEM anyway. But allow this after reload because we might be called from cleanup_subreg_operands. ??? This is a kludge. */ if (!reload_completed && SUBREG_BYTE (op) != 0 && MEM_P (sub)) return 0; /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally create such rtl, and we must reject it. */ if (SCALAR_FLOAT_MODE_P (GET_MODE (op)) && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub))) return 0; op = sub; code = GET_CODE (op); } if (code == REG) /* A register whose class is NO_REGS is not a general operand. */ return (REGNO (op) >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (REGNO (op)) != NO_REGS); if (code == MEM) { rtx y = XEXP (op, 0); if (! volatile_ok && MEM_VOLATILE_P (op)) return 0; /* Use the mem's mode, since it will be reloaded thus. */ if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op))) return 1; } return 0; } /* Return 1 if OP is a valid memory address for a memory reference of mode MODE. The main use of this function is as a predicate in match_operand expressions in the machine description. */ int address_operand (rtx op, enum machine_mode mode) { return memory_address_p (mode, op); } /* Return 1 if OP is a register reference of mode MODE. If MODE is VOIDmode, accept a register in any mode. The main use of this function is as a predicate in match_operand expressions in the machine description. As a special exception, registers whose class is NO_REGS are not accepted by `register_operand'. The reason for this change is to allow the representation of special architecture artifacts (such as a condition code register) without extending the rtl definitions. Since registers of class NO_REGS cannot be used as registers in any case where register classes are examined, it is most consistent to keep this function from accepting them. */ int register_operand (rtx op, enum machine_mode mode) { if (GET_MODE (op) != mode && mode != VOIDmode) return 0; if (GET_CODE (op) == SUBREG) { rtx sub = SUBREG_REG (op); /* Before reload, we can allow (SUBREG (MEM...)) as a register operand because it is guaranteed to be reloaded into one. Just make sure the MEM is valid in itself. (Ideally, (SUBREG (MEM)...) should not exist after reload, but currently it does result from (SUBREG (REG)...) where the reg went on the stack.) */ if (! reload_completed && MEM_P (sub)) return general_operand (op, mode); #ifdef CANNOT_CHANGE_MODE_CLASS if (REG_P (sub) && REGNO (sub) < FIRST_PSEUDO_REGISTER && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode) && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT) return 0; #endif /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally create such rtl, and we must reject it. */ if (SCALAR_FLOAT_MODE_P (GET_MODE (op)) && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub))) return 0; op = sub; } /* We don't consider registers whose class is NO_REGS to be a register operand. */ return (REG_P (op) && (REGNO (op) >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (REGNO (op)) != NO_REGS)); } /* Return 1 for a register in Pmode; ignore the tested mode. */ int pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED) { return register_operand (op, Pmode); } /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH or a hard register. */ int scratch_operand (rtx op, enum machine_mode mode) { if (GET_MODE (op) != mode && mode != VOIDmode) return 0; return (GET_CODE (op) == SCRATCH || (REG_P (op) && REGNO (op) < FIRST_PSEUDO_REGISTER)); } /* Return 1 if OP is a valid immediate operand for mode MODE. The main use of this function is as a predicate in match_operand expressions in the machine description. */ int immediate_operand (rtx op, enum machine_mode mode) { /* Don't accept CONST_INT or anything similar if the caller wants something floating. */ if (GET_MODE (op) == VOIDmode && mode != VOIDmode && GET_MODE_CLASS (mode) != MODE_INT && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) return 0; if (CONST_INT_P (op) && mode != VOIDmode && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) return 0; return (CONSTANT_P (op) && (GET_MODE (op) == mode || mode == VOIDmode || GET_MODE (op) == VOIDmode) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)) && LEGITIMATE_CONSTANT_P (op)); } /* Returns 1 if OP is an operand that is a CONST_INT. */ int const_int_operand (rtx op, enum machine_mode mode) { if (!CONST_INT_P (op)) return 0; if (mode != VOIDmode && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) return 0; return 1; } /* Returns 1 if OP is an operand that is a constant integer or constant floating-point number. */ int const_double_operand (rtx op, enum machine_mode mode) { /* Don't accept CONST_INT or anything similar if the caller wants something floating. */ if (GET_MODE (op) == VOIDmode && mode != VOIDmode && GET_MODE_CLASS (mode) != MODE_INT && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) return 0; return ((GET_CODE (op) == CONST_DOUBLE || CONST_INT_P (op)) && (mode == VOIDmode || GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)); } /* Return 1 if OP is a general operand that is not an immediate operand. */ int nonimmediate_operand (rtx op, enum machine_mode mode) { return (general_operand (op, mode) && ! CONSTANT_P (op)); } /* Return 1 if OP is a register reference or immediate value of mode MODE. */ int nonmemory_operand (rtx op, enum machine_mode mode) { if (CONSTANT_P (op)) { /* Don't accept CONST_INT or anything similar if the caller wants something floating. */ if (GET_MODE (op) == VOIDmode && mode != VOIDmode && GET_MODE_CLASS (mode) != MODE_INT && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) return 0; if (CONST_INT_P (op) && mode != VOIDmode && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op)) return 0; return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode || mode == VOIDmode) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)) && LEGITIMATE_CONSTANT_P (op)); } if (GET_MODE (op) != mode && mode != VOIDmode) return 0; if (GET_CODE (op) == SUBREG) { /* Before reload, we can allow (SUBREG (MEM...)) as a register operand because it is guaranteed to be reloaded into one. Just make sure the MEM is valid in itself. (Ideally, (SUBREG (MEM)...) should not exist after reload, but currently it does result from (SUBREG (REG)...) where the reg went on the stack.) */ if (! reload_completed && MEM_P (SUBREG_REG (op))) return general_operand (op, mode); op = SUBREG_REG (op); } /* We don't consider registers whose class is NO_REGS to be a register operand. */ return (REG_P (op) && (REGNO (op) >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (REGNO (op)) != NO_REGS)); } /* Return 1 if OP is a valid operand that stands for pushing a value of mode MODE onto the stack. The main use of this function is as a predicate in match_operand expressions in the machine description. */ int push_operand (rtx op, enum machine_mode mode) { unsigned int rounded_size = GET_MODE_SIZE (mode); #ifdef PUSH_ROUNDING rounded_size = PUSH_ROUNDING (rounded_size); #endif if (!MEM_P (op)) return 0; if (mode != VOIDmode && GET_MODE (op) != mode) return 0; op = XEXP (op, 0); if (rounded_size == GET_MODE_SIZE (mode)) { if (GET_CODE (op) != STACK_PUSH_CODE) return 0; } else { if (GET_CODE (op) != PRE_MODIFY || GET_CODE (XEXP (op, 1)) != PLUS || XEXP (XEXP (op, 1), 0) != XEXP (op, 0) || !CONST_INT_P (XEXP (XEXP (op, 1), 1)) #ifdef STACK_GROWS_DOWNWARD || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size #else || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size #endif ) return 0; } return XEXP (op, 0) == stack_pointer_rtx; } /* Return 1 if OP is a valid operand that stands for popping a value of mode MODE off the stack. The main use of this function is as a predicate in match_operand expressions in the machine description. */ int pop_operand (rtx op, enum machine_mode mode) { if (!MEM_P (op)) return 0; if (mode != VOIDmode && GET_MODE (op) != mode) return 0; op = XEXP (op, 0); if (GET_CODE (op) != STACK_POP_CODE) return 0; return XEXP (op, 0) == stack_pointer_rtx; } /* Return 1 if ADDR is a valid memory address for mode MODE in address space AS. */ int memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr, addr_space_t as) { #ifdef GO_IF_LEGITIMATE_ADDRESS gcc_assert (ADDR_SPACE_GENERIC_P (as)); GO_IF_LEGITIMATE_ADDRESS (mode, addr, win); return 0; win: return 1; #else return targetm.addr_space.legitimate_address_p (mode, addr, 0, as); #endif } /* Return 1 if OP is a valid memory reference with mode MODE, including a valid address. The main use of this function is as a predicate in match_operand expressions in the machine description. */ int memory_operand (rtx op, enum machine_mode mode) { rtx inner; if (! reload_completed) /* Note that no SUBREG is a memory operand before end of reload pass, because (SUBREG (MEM...)) forces reloading into a register. */ return MEM_P (op) && general_operand (op, mode); if (mode != VOIDmode && GET_MODE (op) != mode) return 0; inner = op; if (GET_CODE (inner) == SUBREG) inner = SUBREG_REG (inner); return (MEM_P (inner) && general_operand (op, mode)); } /* Return 1 if OP is a valid indirect memory reference with mode MODE; that is, a memory reference whose address is a general_operand. */ int indirect_operand (rtx op, enum machine_mode mode) { /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */ if (! reload_completed && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op))) { int offset = SUBREG_BYTE (op); rtx inner = SUBREG_REG (op); if (mode != VOIDmode && GET_MODE (op) != mode) return 0; /* The only way that we can have a general_operand as the resulting address is if OFFSET is zero and the address already is an operand or if the address is (plus Y (const_int -OFFSET)) and Y is an operand. */ return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode)) || (GET_CODE (XEXP (inner, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (inner, 0), 1)) && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset && general_operand (XEXP (XEXP (inner, 0), 0), Pmode))); } return (MEM_P (op) && memory_operand (op, mode) && general_operand (XEXP (op, 0), Pmode)); } /* Return 1 if this is an ordered comparison operator (not including ORDERED and UNORDERED). */ int ordered_comparison_operator (rtx op, enum machine_mode mode) { if (mode != VOIDmode && GET_MODE (op) != mode) return false; switch (GET_CODE (op)) { case EQ: case NE: case LT: case LTU: case LE: case LEU: case GT: case GTU: case GE: case GEU: return true; default: return false; } } /* Return 1 if this is a comparison operator. This allows the use of MATCH_OPERATOR to recognize all the branch insns. */ int comparison_operator (rtx op, enum machine_mode mode) { return ((mode == VOIDmode || GET_MODE (op) == mode) && COMPARISON_P (op)); } /* If BODY is an insn body that uses ASM_OPERANDS, return it. */ rtx extract_asm_operands (rtx body) { rtx tmp; switch (GET_CODE (body)) { case ASM_OPERANDS: return body; case SET: /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */ tmp = SET_SRC (body); if (GET_CODE (tmp) == ASM_OPERANDS) return tmp; break; case PARALLEL: tmp = XVECEXP (body, 0, 0); if (GET_CODE (tmp) == ASM_OPERANDS) return tmp; if (GET_CODE (tmp) == SET) { tmp = SET_SRC (tmp); if (GET_CODE (tmp) == ASM_OPERANDS) return tmp; } break; default: break; } return NULL; } /* If BODY is an insn body that uses ASM_OPERANDS, return the number of operands (both input and output) in the insn. Otherwise return -1. */ int asm_noperands (const_rtx body) { rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body)); int n_sets = 0; if (asm_op == NULL) return -1; if (GET_CODE (body) == SET) n_sets = 1; else if (GET_CODE (body) == PARALLEL) { int i; if (GET_CODE (XVECEXP (body, 0, 0)) == SET) { /* Multiple output operands, or 1 output plus some clobbers: body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */ /* Count backwards through CLOBBERs to determine number of SETs. */ for (i = XVECLEN (body, 0); i > 0; i--) { if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET) break; if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER) return -1; } /* N_SETS is now number of output operands. */ n_sets = i; /* Verify that all the SETs we have came from a single original asm_operands insn (so that invalid combinations are blocked). */ for (i = 0; i < n_sets; i++) { rtx elt = XVECEXP (body, 0, i); if (GET_CODE (elt) != SET) return -1; if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS) return -1; /* If these ASM_OPERANDS rtx's came from different original insns then they aren't allowed together. */ if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt)) != ASM_OPERANDS_INPUT_VEC (asm_op)) return -1; } } else { /* 0 outputs, but some clobbers: body is [(asm_operands ...) (clobber (reg ...))...]. */ /* Make sure all the other parallel things really are clobbers. */ for (i = XVECLEN (body, 0) - 1; i > 0; i--) if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER) return -1; } } return (ASM_OPERANDS_INPUT_LENGTH (asm_op) + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets); } /* Assuming BODY is an insn body that uses ASM_OPERANDS, copy its operands (both input and output) into the vector OPERANDS, the locations of the operands within the insn into the vector OPERAND_LOCS, and the constraints for the operands into CONSTRAINTS. Write the modes of the operands into MODES. Return the assembler-template. If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0, we don't store that info. */ const char * decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs, const char **constraints, enum machine_mode *modes, location_t *loc) { int nbase = 0, n, i; rtx asmop; switch (GET_CODE (body)) { case ASM_OPERANDS: /* Zero output asm: BODY is (asm_operands ...). */ asmop = body; break; case SET: /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */ asmop = SET_SRC (body); /* The output is in the SET. Its constraint is in the ASM_OPERANDS itself. */ if (operands) operands[0] = SET_DEST (body); if (operand_locs) operand_locs[0] = &SET_DEST (body); if (constraints) constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop); if (modes) modes[0] = GET_MODE (SET_DEST (body)); nbase = 1; break; case PARALLEL: { int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */ asmop = XVECEXP (body, 0, 0); if (GET_CODE (asmop) == SET) { asmop = SET_SRC (asmop); /* At least one output, plus some CLOBBERs. The outputs are in the SETs. Their constraints are in the ASM_OPERANDS itself. */ for (i = 0; i < nparallel; i++) { if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER) break; /* Past last SET */ if (operands) operands[i] = SET_DEST (XVECEXP (body, 0, i)); if (operand_locs) operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i)); if (constraints) constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1); if (modes) modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i))); } nbase = i; } break; } default: gcc_unreachable (); } n = ASM_OPERANDS_INPUT_LENGTH (asmop); for (i = 0; i < n; i++) { if (operand_locs) operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i); if (operands) operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i); if (constraints) constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i); if (modes) modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i); } nbase += n; n = ASM_OPERANDS_LABEL_LENGTH (asmop); for (i = 0; i < n; i++) { if (operand_locs) operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i); if (operands) operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i); if (constraints) constraints[nbase + i] = ""; if (modes) modes[nbase + i] = Pmode; } if (loc) *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop); return ASM_OPERANDS_TEMPLATE (asmop); } /* Check if an asm_operand matches its constraints. Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */ int asm_operand_ok (rtx op, const char *constraint, const char **constraints) { int result = 0; /* Use constrain_operands after reload. */ gcc_assert (!reload_completed); /* Empty constraint string is the same as "X,...,X", i.e. X for as many alternatives as required to match the other operands. */ if (*constraint == '\0') return 1; while (*constraint) { char c = *constraint; int len; switch (c) { case ',': constraint++; continue; case '=': case '+': case '*': case '%': case '!': case '#': case '&': case '?': break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': /* If caller provided constraints pointer, look up the maching constraint. Otherwise, our caller should have given us the proper matching constraint, but we can't actually fail the check if they didn't. Indicate that results are inconclusive. */ if (constraints) { char *end; unsigned long match; match = strtoul (constraint, &end, 10); if (!result) result = asm_operand_ok (op, constraints[match], NULL); constraint = (const char *) end; } else { do constraint++; while (ISDIGIT (*constraint)); if (! result) result = -1; } continue; case 'p': if (address_operand (op, VOIDmode)) result = 1; break; case TARGET_MEM_CONSTRAINT: case 'V': /* non-offsettable */ if (memory_operand (op, VOIDmode)) result = 1; break; case 'o': /* offsettable */ if (offsettable_nonstrict_memref_p (op)) result = 1; break; case '<': /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist, excepting those that expand_call created. Further, on some machines which do not have generalized auto inc/dec, an inc/dec is not a memory_operand. Match any memory and hope things are resolved after reload. */ if (MEM_P (op) && (1 || GET_CODE (XEXP (op, 0)) == PRE_DEC || GET_CODE (XEXP (op, 0)) == POST_DEC)) result = 1; break; case '>': if (MEM_P (op) && (1 || GET_CODE (XEXP (op, 0)) == PRE_INC || GET_CODE (XEXP (op, 0)) == POST_INC)) result = 1; break; case 'E': case 'F': if (GET_CODE (op) == CONST_DOUBLE || (GET_CODE (op) == CONST_VECTOR && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)) result = 1; break; case 'G': if (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint)) result = 1; break; case 'H': if (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint)) result = 1; break; case 's': if (CONST_INT_P (op) || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)) break; /* Fall through. */ case 'i': if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))) result = 1; break; case 'n': if (CONST_INT_P (op) || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)) result = 1; break; case 'I': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint)) result = 1; break; case 'J': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint)) result = 1; break; case 'K': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint)) result = 1; break; case 'L': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint)) result = 1; break; case 'M': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint)) result = 1; break; case 'N': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint)) result = 1; break; case 'O': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint)) result = 1; break; case 'P': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint)) result = 1; break; case 'X': result = 1; break; case 'g': if (general_operand (op, VOIDmode)) result = 1; break; default: /* For all other letters, we first check for a register class, otherwise it is an EXTRA_CONSTRAINT. */ if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS) { case 'r': if (GET_MODE (op) == BLKmode) break; if (register_operand (op, VOIDmode)) result = 1; } #ifdef EXTRA_CONSTRAINT_STR else if (EXTRA_MEMORY_CONSTRAINT (c, constraint)) /* Every memory operand can be reloaded to fit. */ result = result || memory_operand (op, VOIDmode); else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint)) /* Every address operand can be reloaded to fit. */ result = result || address_operand (op, VOIDmode); else if (EXTRA_CONSTRAINT_STR (op, c, constraint)) result = 1; #endif break; } len = CONSTRAINT_LEN (c, constraint); do constraint++; while (--len && *constraint); if (len) return 0; } return result; } /* Given an rtx *P, if it is a sum containing an integer constant term, return the location (type rtx *) of the pointer to that constant term. Otherwise, return a null pointer. */ rtx * find_constant_term_loc (rtx *p) { rtx *tem; enum rtx_code code = GET_CODE (*p); /* If *P IS such a constant term, P is its location. */ if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF || code == CONST) return p; /* Otherwise, if not a sum, it has no constant term. */ if (GET_CODE (*p) != PLUS) return 0; /* If one of the summands is constant, return its location. */ if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0)) && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1))) return p; /* Otherwise, check each summand for containing a constant term. */ if (XEXP (*p, 0) != 0) { tem = find_constant_term_loc (&XEXP (*p, 0)); if (tem != 0) return tem; } if (XEXP (*p, 1) != 0) { tem = find_constant_term_loc (&XEXP (*p, 1)); if (tem != 0) return tem; } return 0; } /* Return 1 if OP is a memory reference whose address contains no side effects and remains valid after the addition of a positive integer less than the size of the object being referenced. We assume that the original address is valid and do not check it. This uses strict_memory_address_p as a subroutine, so don't use it before reload. */ int offsettable_memref_p (rtx op) { return ((MEM_P (op)) && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0), MEM_ADDR_SPACE (op))); } /* Similar, but don't require a strictly valid mem ref: consider pseudo-regs valid as index or base regs. */ int offsettable_nonstrict_memref_p (rtx op) { return ((MEM_P (op)) && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0), MEM_ADDR_SPACE (op))); } /* Return 1 if Y is a memory address which contains no side effects and would remain valid for address space AS after the addition of a positive integer less than the size of that mode. We assume that the original address is valid and do not check it. We do check that it is valid for narrower modes. If STRICTP is nonzero, we require a strictly valid address, for the sake of use in reload.c. */ int offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y, addr_space_t as) { enum rtx_code ycode = GET_CODE (y); rtx z; rtx y1 = y; rtx *y2; int (*addressp) (enum machine_mode, rtx, addr_space_t) = (strictp ? strict_memory_address_addr_space_p : memory_address_addr_space_p); unsigned int mode_sz = GET_MODE_SIZE (mode); if (CONSTANT_ADDRESS_P (y)) return 1; /* Adjusting an offsettable address involves changing to a narrower mode. Make sure that's OK. */ if (mode_dependent_address_p (y)) return 0; /* ??? How much offset does an offsettable BLKmode reference need? Clearly that depends on the situation in which it's being used. However, the current situation in which we test 0xffffffff is less than ideal. Caveat user. */ if (mode_sz == 0) mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT; /* If the expression contains a constant term, see if it remains valid when max possible offset is added. */ if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1))) { int good; y1 = *y2; *y2 = plus_constant (*y2, mode_sz - 1); /* Use QImode because an odd displacement may be automatically invalid for any wider mode. But it should be valid for a single byte. */ good = (*addressp) (QImode, y, as); /* In any case, restore old contents of memory. */ *y2 = y1; return good; } if (GET_RTX_CLASS (ycode) == RTX_AUTOINC) return 0; /* The offset added here is chosen as the maximum offset that any instruction could need to add when operating on something of the specified mode. We assume that if Y and Y+c are valid addresses then so is Y+d for all 0<d<c. adjust_address will go inside a LO_SUM here, so we do so as well. */ if (GET_CODE (y) == LO_SUM && mode != BLKmode && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT) z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0), plus_constant (XEXP (y, 1), mode_sz - 1)); else z = plus_constant (y, mode_sz - 1); /* Use QImode because an odd displacement may be automatically invalid for any wider mode. But it should be valid for a single byte. */ return (*addressp) (QImode, z, as); } /* Return 1 if ADDR is an address-expression whose effect depends on the mode of the memory reference it is used in. Autoincrement addressing is a typical example of mode-dependence because the amount of the increment depends on the mode. */ int mode_dependent_address_p (rtx addr) { /* Auto-increment addressing with anything other than post_modify or pre_modify always introduces a mode dependency. Catch such cases now instead of deferring to the target. */ if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == POST_INC || GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_DEC) return 1; GO_IF_MODE_DEPENDENT_ADDRESS (addr, win); return 0; /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */ win: ATTRIBUTE_UNUSED_LABEL return 1; } /* Like extract_insn, but save insn extracted and don't extract again, when called again for the same insn expecting that recog_data still contain the valid information. This is used primary by gen_attr infrastructure that often does extract insn again and again. */ void extract_insn_cached (rtx insn) { if (recog_data.insn == insn && INSN_CODE (insn) >= 0) return; extract_insn (insn); recog_data.insn = insn; } /* Do cached extract_insn, constrain_operands and complain about failures. Used by insn_attrtab. */ void extract_constrain_insn_cached (rtx insn) { extract_insn_cached (insn); if (which_alternative == -1 && !constrain_operands (reload_completed)) fatal_insn_not_found (insn); } /* Do cached constrain_operands and complain about failures. */ int constrain_operands_cached (int strict) { if (which_alternative == -1) return constrain_operands (strict); else return 1; } /* Analyze INSN and fill in recog_data. */ void extract_insn (rtx insn) { int i; int icode; int noperands; rtx body = PATTERN (insn); recog_data.n_operands = 0; recog_data.n_alternatives = 0; recog_data.n_dups = 0; switch (GET_CODE (body)) { case USE: case CLOBBER: case ASM_INPUT: case ADDR_VEC: case ADDR_DIFF_VEC: case VAR_LOCATION: return; case SET: if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS) goto asm_insn; else goto normal_insn; case PARALLEL: if ((GET_CODE (XVECEXP (body, 0, 0)) == SET && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS) || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS) goto asm_insn; else goto normal_insn; case ASM_OPERANDS: asm_insn: recog_data.n_operands = noperands = asm_noperands (body); if (noperands >= 0) { /* This insn is an `asm' with operands. */ /* expand_asm_operands makes sure there aren't too many operands. */ gcc_assert (noperands <= MAX_RECOG_OPERANDS); /* Now get the operand values and constraints out of the insn. */ decode_asm_operands (body, recog_data.operand, recog_data.operand_loc, recog_data.constraints, recog_data.operand_mode, NULL); if (noperands > 0) { const char *p = recog_data.constraints[0]; recog_data.n_alternatives = 1; while (*p) recog_data.n_alternatives += (*p++ == ','); } break; } fatal_insn_not_found (insn); default: normal_insn: /* Ordinary insn: recognize it, get the operands via insn_extract and get the constraints. */ icode = recog_memoized (insn); if (icode < 0) fatal_insn_not_found (insn); recog_data.n_operands = noperands = insn_data[icode].n_operands; recog_data.n_alternatives = insn_data[icode].n_alternatives; recog_data.n_dups = insn_data[icode].n_dups; insn_extract (insn); for (i = 0; i < noperands; i++) { recog_data.constraints[i] = insn_data[icode].operand[i].constraint; recog_data.operand_mode[i] = insn_data[icode].operand[i].mode; /* VOIDmode match_operands gets mode from their real operand. */ if (recog_data.operand_mode[i] == VOIDmode) recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]); } } for (i = 0; i < noperands; i++) recog_data.operand_type[i] = (recog_data.constraints[i][0] == '=' ? OP_OUT : recog_data.constraints[i][0] == '+' ? OP_INOUT : OP_IN); gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES); if (INSN_CODE (insn) < 0) for (i = 0; i < recog_data.n_alternatives; i++) recog_data.alternative_enabled_p[i] = true; else { recog_data.insn = insn; for (i = 0; i < recog_data.n_alternatives; i++) { which_alternative = i; recog_data.alternative_enabled_p[i] = get_attr_enabled (insn); } } recog_data.insn = NULL; which_alternative = -1; } /* After calling extract_insn, you can use this function to extract some information from the constraint strings into a more usable form. The collected data is stored in recog_op_alt. */ void preprocess_constraints (void) { int i; for (i = 0; i < recog_data.n_operands; i++) memset (recog_op_alt[i], 0, (recog_data.n_alternatives * sizeof (struct operand_alternative))); for (i = 0; i < recog_data.n_operands; i++) { int j; struct operand_alternative *op_alt; const char *p = recog_data.constraints[i]; op_alt = recog_op_alt[i]; for (j = 0; j < recog_data.n_alternatives; j++) { op_alt[j].cl = NO_REGS; op_alt[j].constraint = p; op_alt[j].matches = -1; op_alt[j].matched = -1; if (!recog_data.alternative_enabled_p[j]) { p = skip_alternative (p); continue; } if (*p == '\0' || *p == ',') { op_alt[j].anything_ok = 1; continue; } for (;;) { char c = *p; if (c == '#') do c = *++p; while (c != ',' && c != '\0'); if (c == ',' || c == '\0') { p++; break; } switch (c) { case '=': case '+': case '*': case '%': case 'E': case 'F': case 'G': case 'H': case 's': case 'i': case 'n': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': /* These don't say anything we care about. */ break; case '?': op_alt[j].reject += 6; break; case '!': op_alt[j].reject += 600; break; case '&': op_alt[j].earlyclobber = 1; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { char *end; op_alt[j].matches = strtoul (p, &end, 10); recog_op_alt[op_alt[j].matches][j].matched = i; p = end; } continue; case TARGET_MEM_CONSTRAINT: op_alt[j].memory_ok = 1; break; case '<': op_alt[j].decmem_ok = 1; break; case '>': op_alt[j].incmem_ok = 1; break; case 'V': op_alt[j].nonoffmem_ok = 1; break; case 'o': op_alt[j].offmem_ok = 1; break; case 'X': op_alt[j].anything_ok = 1; break; case 'p': op_alt[j].is_address = 1; op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl] [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)]; break; case 'g': case 'r': op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS]; break; default: if (EXTRA_MEMORY_CONSTRAINT (c, p)) { op_alt[j].memory_ok = 1; break; } if (EXTRA_ADDRESS_CONSTRAINT (c, p)) { op_alt[j].is_address = 1; op_alt[j].cl = (reg_class_subunion [(int) op_alt[j].cl] [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)]); break; } op_alt[j].cl = (reg_class_subunion [(int) op_alt[j].cl] [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]); break; } p += CONSTRAINT_LEN (c, p); } } } } /* Check the operands of an insn against the insn's operand constraints and return 1 if they are valid. The information about the insn's operands, constraints, operand modes etc. is obtained from the global variables set up by extract_insn. WHICH_ALTERNATIVE is set to a number which indicates which alternative of constraints was matched: 0 for the first alternative, 1 for the next, etc. In addition, when two operands are required to match and it happens that the output operand is (reg) while the input operand is --(reg) or ++(reg) (a pre-inc or pre-dec), make the output operand look like the input. This is because the output operand is the one the template will print. This is used in final, just before printing the assembler code and by the routines that determine an insn's attribute. If STRICT is a positive nonzero value, it means that we have been called after reload has been completed. In that case, we must do all checks strictly. If it is zero, it means that we have been called before reload has completed. In that case, we first try to see if we can find an alternative that matches strictly. If not, we try again, this time assuming that reload will fix up the insn. This provides a "best guess" for the alternative and is used to compute attributes of insns prior to reload. A negative value of STRICT is used for this internal call. */ struct funny_match { int this_op, other; }; int constrain_operands (int strict) { const char *constraints[MAX_RECOG_OPERANDS]; int matching_operands[MAX_RECOG_OPERANDS]; int earlyclobber[MAX_RECOG_OPERANDS]; int c; struct funny_match funny_match[MAX_RECOG_OPERANDS]; int funny_match_index; which_alternative = 0; if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0) return 1; for (c = 0; c < recog_data.n_operands; c++) { constraints[c] = recog_data.constraints[c]; matching_operands[c] = -1; } do { int seen_earlyclobber_at = -1; int opno; int lose = 0; funny_match_index = 0; if (!recog_data.alternative_enabled_p[which_alternative]) { int i; for (i = 0; i < recog_data.n_operands; i++) constraints[i] = skip_alternative (constraints[i]); which_alternative++; continue; } for (opno = 0; opno < recog_data.n_operands; opno++) { rtx op = recog_data.operand[opno]; enum machine_mode mode = GET_MODE (op); const char *p = constraints[opno]; int offset = 0; int win = 0; int val; int len; earlyclobber[opno] = 0; /* A unary operator may be accepted by the predicate, but it is irrelevant for matching constraints. */ if (UNARY_P (op)) op = XEXP (op, 0); if (GET_CODE (op) == SUBREG) { if (REG_P (SUBREG_REG (op)) && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER) offset = subreg_regno_offset (REGNO (SUBREG_REG (op)), GET_MODE (SUBREG_REG (op)), SUBREG_BYTE (op), GET_MODE (op)); op = SUBREG_REG (op); } /* An empty constraint or empty alternative allows anything which matched the pattern. */ if (*p == 0 || *p == ',') win = 1; do switch (c = *p, len = CONSTRAINT_LEN (c, p), c) { case '\0': len = 0; break; case ',': c = '\0'; break; case '?': case '!': case '*': case '%': case '=': case '+': break; case '#': /* Ignore rest of this alternative as far as constraint checking is concerned. */ do p++; while (*p && *p != ','); len = 0; break; case '&': earlyclobber[opno] = 1; if (seen_earlyclobber_at < 0) seen_earlyclobber_at = opno; break; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* This operand must be the same as a previous one. This kind of constraint is used for instructions such as add when they take only two operands. Note that the lower-numbered operand is passed first. If we are not testing strictly, assume that this constraint will be satisfied. */ char *end; int match; match = strtoul (p, &end, 10); p = end; if (strict < 0) val = 1; else { rtx op1 = recog_data.operand[match]; rtx op2 = recog_data.operand[opno]; /* A unary operator may be accepted by the predicate, but it is irrelevant for matching constraints. */ if (UNARY_P (op1)) op1 = XEXP (op1, 0); if (UNARY_P (op2)) op2 = XEXP (op2, 0); val = operands_match_p (op1, op2); } matching_operands[opno] = match; matching_operands[match] = opno; if (val != 0) win = 1; /* If output is *x and input is *--x, arrange later to change the output to *--x as well, since the output op is the one that will be printed. */ if (val == 2 && strict > 0) { funny_match[funny_match_index].this_op = opno; funny_match[funny_match_index++].other = match; } } len = 0; break; case 'p': /* p is used for address_operands. When we are called by gen_reload, no one will have checked that the address is strictly valid, i.e., that all pseudos requiring hard regs have gotten them. */ if (strict <= 0 || (strict_memory_address_p (recog_data.operand_mode[opno], op))) win = 1; break; /* No need to check general_operand again; it was done in insn-recog.c. Well, except that reload doesn't check the validity of its replacements, but that should only matter when there's a bug. */ case 'g': /* Anything goes unless it is a REG and really has a hard reg but the hard reg is not in the class GENERAL_REGS. */ if (REG_P (op)) { if (strict < 0 || GENERAL_REGS == ALL_REGS || (reload_in_progress && REGNO (op) >= FIRST_PSEUDO_REGISTER) || reg_fits_class_p (op, GENERAL_REGS, offset, mode)) win = 1; } else if (strict < 0 || general_operand (op, mode)) win = 1; break; case 'X': /* This is used for a MATCH_SCRATCH in the cases when we don't actually need anything. So anything goes any time. */ win = 1; break; case TARGET_MEM_CONSTRAINT: /* Memory operands must be valid, to the extent required by STRICT. */ if (MEM_P (op)) { if (strict > 0 && !strict_memory_address_addr_space_p (GET_MODE (op), XEXP (op, 0), MEM_ADDR_SPACE (op))) break; if (strict == 0 && !memory_address_addr_space_p (GET_MODE (op), XEXP (op, 0), MEM_ADDR_SPACE (op))) break; win = 1; } /* Before reload, accept what reload can turn into mem. */ else if (strict < 0 && CONSTANT_P (op)) win = 1; /* During reload, accept a pseudo */ else if (reload_in_progress && REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER) win = 1; break; case '<': if (MEM_P (op) && (GET_CODE (XEXP (op, 0)) == PRE_DEC || GET_CODE (XEXP (op, 0)) == POST_DEC)) win = 1; break; case '>': if (MEM_P (op) && (GET_CODE (XEXP (op, 0)) == PRE_INC || GET_CODE (XEXP (op, 0)) == POST_INC)) win = 1; break; case 'E': case 'F': if (GET_CODE (op) == CONST_DOUBLE || (GET_CODE (op) == CONST_VECTOR && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)) win = 1; break; case 'G': case 'H': if (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p)) win = 1; break; case 's': if (CONST_INT_P (op) || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)) break; case 'i': if (CONSTANT_P (op)) win = 1; break; case 'n': if (CONST_INT_P (op) || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)) win = 1; break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': if (CONST_INT_P (op) && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p)) win = 1; break; case 'V': if (MEM_P (op) && ((strict > 0 && ! offsettable_memref_p (op)) || (strict < 0 && !(CONSTANT_P (op) || MEM_P (op))) || (reload_in_progress && !(REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)))) win = 1; break; case 'o': if ((strict > 0 && offsettable_memref_p (op)) || (strict == 0 && offsettable_nonstrict_memref_p (op)) /* Before reload, accept what reload can handle. */ || (strict < 0 && (CONSTANT_P (op) || MEM_P (op))) /* During reload, accept a pseudo */ || (reload_in_progress && REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)) win = 1; break; default: { enum reg_class cl; cl = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p)); if (cl != NO_REGS) { if (strict < 0 || (strict == 0 && REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER) || (strict == 0 && GET_CODE (op) == SCRATCH) || (REG_P (op) && reg_fits_class_p (op, cl, offset, mode))) win = 1; } #ifdef EXTRA_CONSTRAINT_STR else if (EXTRA_CONSTRAINT_STR (op, c, p)) win = 1; else if (EXTRA_MEMORY_CONSTRAINT (c, p) /* Every memory operand can be reloaded to fit. */ && ((strict < 0 && MEM_P (op)) /* Before reload, accept what reload can turn into mem. */ || (strict < 0 && CONSTANT_P (op)) /* During reload, accept a pseudo */ || (reload_in_progress && REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))) win = 1; else if (EXTRA_ADDRESS_CONSTRAINT (c, p) /* Every address operand can be reloaded to fit. */ && strict < 0) win = 1; #endif break; } } while (p += len, c); constraints[opno] = p; /* If this operand did not win somehow, this alternative loses. */ if (! win) lose = 1; } /* This alternative won; the operands are ok. Change whichever operands this alternative says to change. */ if (! lose) { int opno, eopno; /* See if any earlyclobber operand conflicts with some other operand. */ if (strict > 0 && seen_earlyclobber_at >= 0) for (eopno = seen_earlyclobber_at; eopno < recog_data.n_operands; eopno++) /* Ignore earlyclobber operands now in memory, because we would often report failure when we have two memory operands, one of which was formerly a REG. */ if (earlyclobber[eopno] && REG_P (recog_data.operand[eopno])) for (opno = 0; opno < recog_data.n_operands; opno++) if ((MEM_P (recog_data.operand[opno]) || recog_data.operand_type[opno] != OP_OUT) && opno != eopno /* Ignore things like match_operator operands. */ && *recog_data.constraints[opno] != 0 && ! (matching_operands[opno] == eopno && operands_match_p (recog_data.operand[opno], recog_data.operand[eopno])) && ! safe_from_earlyclobber (recog_data.operand[opno], recog_data.operand[eopno])) lose = 1; if (! lose) { while (--funny_match_index >= 0) { recog_data.operand[funny_match[funny_match_index].other] = recog_data.operand[funny_match[funny_match_index].this_op]; } return 1; } } which_alternative++; } while (which_alternative < recog_data.n_alternatives); which_alternative = -1; /* If we are about to reject this, but we are not to test strictly, try a very loose test. Only return failure if it fails also. */ if (strict == 0) return constrain_operands (-1); else return 0; } /* Return 1 iff OPERAND (assumed to be a REG rtx) is a hard reg in class CLASS when its regno is offset by OFFSET and changed to mode MODE. If REG occupies multiple hard regs, all of them must be in CLASS. */ int reg_fits_class_p (rtx operand, enum reg_class cl, int offset, enum machine_mode mode) { int regno = REGNO (operand); if (cl == NO_REGS) return 0; return (regno < FIRST_PSEUDO_REGISTER && in_hard_reg_set_p (reg_class_contents[(int) cl], mode, regno + offset)); } /* Split single instruction. Helper function for split_all_insns and split_all_insns_noflow. Return last insn in the sequence if successful, or NULL if unsuccessful. */ static rtx split_insn (rtx insn) { /* Split insns here to get max fine-grain parallelism. */ rtx first = PREV_INSN (insn); rtx last = try_split (PATTERN (insn), insn, 1); rtx insn_set, last_set, note; if (last == insn) return NULL_RTX; /* If the original instruction was a single set that was known to be equivalent to a constant, see if we can say the same about the last instruction in the split sequence. The two instructions must set the same destination. */ insn_set = single_set (insn); if (insn_set) { last_set = single_set (last); if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set))) { note = find_reg_equal_equiv_note (insn); if (note && CONSTANT_P (XEXP (note, 0))) set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0)); else if (CONSTANT_P (SET_SRC (insn_set))) set_unique_reg_note (last, REG_EQUAL, SET_SRC (insn_set)); } } /* try_split returns the NOTE that INSN became. */ SET_INSN_DELETED (insn); /* ??? Coddle to md files that generate subregs in post-reload splitters instead of computing the proper hard register. */ if (reload_completed && first != last) { first = NEXT_INSN (first); for (;;) { if (INSN_P (first)) cleanup_subreg_operands (first); if (first == last) break; first = NEXT_INSN (first); } } return last; } /* Split all insns in the function. If UPD_LIFE, update life info after. */ void split_all_insns (void) { sbitmap blocks; bool changed; basic_block bb; blocks = sbitmap_alloc (last_basic_block); sbitmap_zero (blocks); changed = false; FOR_EACH_BB_REVERSE (bb) { rtx insn, next; bool finish = false; rtl_profile_for_bb (bb); for (insn = BB_HEAD (bb); !finish ; insn = next) { /* Can't use `next_real_insn' because that might go across CODE_LABELS and short-out basic blocks. */ next = NEXT_INSN (insn); finish = (insn == BB_END (bb)); if (INSN_P (insn)) { rtx set = single_set (insn); /* Don't split no-op move insns. These should silently disappear later in final. Splitting such insns would break the code that handles LIBCALL blocks. */ if (set && set_noop_p (set)) { /* Nops get in the way while scheduling, so delete them now if register allocation has already been done. It is too risky to try to do this before register allocation, and there are unlikely to be very many nops then anyways. */ if (reload_completed) delete_insn_and_edges (insn); } else { rtx last = split_insn (insn); if (last) { /* The split sequence may include barrier, but the BB boundary we are interested in will be set to previous one. */ while (BARRIER_P (last)) last = PREV_INSN (last); SET_BIT (blocks, bb->index); changed = true; } } } } } default_rtl_profile (); if (changed) find_many_sub_basic_blocks (blocks); #ifdef ENABLE_CHECKING verify_flow_info (); #endif sbitmap_free (blocks); } /* Same as split_all_insns, but do not expect CFG to be available. Used by machine dependent reorg passes. */ unsigned int split_all_insns_noflow (void) { rtx next, insn; for (insn = get_insns (); insn; insn = next) { next = NEXT_INSN (insn); if (INSN_P (insn)) { /* Don't split no-op move insns. These should silently disappear later in final. Splitting such insns would break the code that handles LIBCALL blocks. */ rtx set = single_set (insn); if (set && set_noop_p (set)) { /* Nops get in the way while scheduling, so delete them now if register allocation has already been done. It is too risky to try to do this before register allocation, and there are unlikely to be very many nops then anyways. ??? Should we use delete_insn when the CFG isn't valid? */ if (reload_completed) delete_insn_and_edges (insn); } else split_insn (insn); } } return 0; } #ifdef HAVE_peephole2 struct peep2_insn_data { rtx insn; regset live_before; }; static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1]; static int peep2_current; /* The number of instructions available to match a peep2. */ int peep2_current_count; /* A non-insn marker indicating the last insn of the block. The live_before regset for this element is correct, indicating DF_LIVE_OUT for the block. */ #define PEEP2_EOB pc_rtx /* Return the Nth non-note insn after `current', or return NULL_RTX if it does not exist. Used by the recognizer to find the next insn to match in a multi-insn pattern. */ rtx peep2_next_insn (int n) { gcc_assert (n <= peep2_current_count); n += peep2_current; if (n >= MAX_INSNS_PER_PEEP2 + 1) n -= MAX_INSNS_PER_PEEP2 + 1; return peep2_insn_data[n].insn; } /* Return true if REGNO is dead before the Nth non-note insn after `current'. */ int peep2_regno_dead_p (int ofs, int regno) { gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1); ofs += peep2_current; if (ofs >= MAX_INSNS_PER_PEEP2 + 1) ofs -= MAX_INSNS_PER_PEEP2 + 1; gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX); return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno); } /* Similarly for a REG. */ int peep2_reg_dead_p (int ofs, rtx reg) { int regno, n; gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1); ofs += peep2_current; if (ofs >= MAX_INSNS_PER_PEEP2 + 1) ofs -= MAX_INSNS_PER_PEEP2 + 1; gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX); regno = REGNO (reg); n = hard_regno_nregs[regno][GET_MODE (reg)]; while (--n >= 0) if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n)) return 0; return 1; } /* Try to find a hard register of mode MODE, matching the register class in CLASS_STR, which is available at the beginning of insn CURRENT_INSN and remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX, in which case the only condition is that the register must be available before CURRENT_INSN. Registers that already have bits set in REG_SET will not be considered. If an appropriate register is available, it will be returned and the corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is returned. */ rtx peep2_find_free_register (int from, int to, const char *class_str, enum machine_mode mode, HARD_REG_SET *reg_set) { static int search_ofs; enum reg_class cl; HARD_REG_SET live; int i; gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1); gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1); from += peep2_current; if (from >= MAX_INSNS_PER_PEEP2 + 1) from -= MAX_INSNS_PER_PEEP2 + 1; to += peep2_current; if (to >= MAX_INSNS_PER_PEEP2 + 1) to -= MAX_INSNS_PER_PEEP2 + 1; gcc_assert (peep2_insn_data[from].insn != NULL_RTX); REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before); while (from != to) { HARD_REG_SET this_live; if (++from >= MAX_INSNS_PER_PEEP2 + 1) from = 0; gcc_assert (peep2_insn_data[from].insn != NULL_RTX); REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before); IOR_HARD_REG_SET (live, this_live); } cl = (class_str[0] == 'r' ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str)); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { int raw_regno, regno, success, j; /* Distribute the free registers as much as possible. */ raw_regno = search_ofs + i; if (raw_regno >= FIRST_PSEUDO_REGISTER) raw_regno -= FIRST_PSEUDO_REGISTER; #ifdef REG_ALLOC_ORDER regno = reg_alloc_order[raw_regno]; #else regno = raw_regno; #endif /* Don't allocate fixed registers. */ if (fixed_regs[regno]) continue; /* Don't allocate global registers. */ if (global_regs[regno]) continue; /* Make sure the register is of the right class. */ if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno)) continue; /* And can support the mode we need. */ if (! HARD_REGNO_MODE_OK (regno, mode)) continue; /* And that we don't create an extra save/restore. */ if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno)) continue; if (! targetm.hard_regno_scratch_ok (regno)) continue; /* And we don't clobber traceback for noreturn functions. */ if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM) && (! reload_completed || frame_pointer_needed)) continue; success = 1; for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--) { if (TEST_HARD_REG_BIT (*reg_set, regno + j) || TEST_HARD_REG_BIT (live, regno + j)) { success = 0; break; } } if (success) { add_to_hard_reg_set (reg_set, mode, regno); /* Start the next search with the next register. */ if (++raw_regno >= FIRST_PSEUDO_REGISTER) raw_regno = 0; search_ofs = raw_regno; return gen_rtx_REG (mode, regno); } } search_ofs = 0; return NULL_RTX; } /* Forget all currently tracked instructions, only remember current LIVE regset. */ static void peep2_reinit_state (regset live) { int i; /* Indicate that all slots except the last holds invalid data. */ for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i) peep2_insn_data[i].insn = NULL_RTX; peep2_current_count = 0; /* Indicate that the last slot contains live_after data. */ peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB; peep2_current = MAX_INSNS_PER_PEEP2; COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live); } /* Perform the peephole2 optimization pass. */ static void peephole2_optimize (void) { rtx insn, prev; bitmap live; int i; basic_block bb; bool do_cleanup_cfg = false; bool do_rebuild_jump_labels = false; df_set_flags (DF_LR_RUN_DCE); df_analyze (); /* Initialize the regsets we're going to use. */ for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i) peep2_insn_data[i].live_before = BITMAP_ALLOC (®_obstack); live = BITMAP_ALLOC (®_obstack); FOR_EACH_BB_REVERSE (bb) { rtl_profile_for_bb (bb); /* Start up propagation. */ bitmap_copy (live, DF_LR_OUT (bb)); df_simulate_initialize_backwards (bb, live); peep2_reinit_state (live); for (insn = BB_END (bb); ; insn = prev) { prev = PREV_INSN (insn); if (NONDEBUG_INSN_P (insn)) { rtx attempt, before_try, x; int match_len; rtx note; bool was_call = false; /* Record this insn. */ if (--peep2_current < 0) peep2_current = MAX_INSNS_PER_PEEP2; if (peep2_current_count < MAX_INSNS_PER_PEEP2 && peep2_insn_data[peep2_current].insn == NULL_RTX) peep2_current_count++; peep2_insn_data[peep2_current].insn = insn; df_simulate_one_insn_backwards (bb, insn, live); COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live); if (RTX_FRAME_RELATED_P (insn)) { /* If an insn has RTX_FRAME_RELATED_P set, peephole substitution would lose the REG_FRAME_RELATED_EXPR that is attached. */ peep2_reinit_state (live); attempt = NULL; } else /* Match the peephole. */ attempt = peephole2_insns (PATTERN (insn), insn, &match_len); if (attempt != NULL) { /* If we are splitting a CALL_INSN, look for the CALL_INSN in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other cfg-related call notes. */ for (i = 0; i <= match_len; ++i) { int j; rtx old_insn, new_insn, note; j = i + peep2_current; if (j >= MAX_INSNS_PER_PEEP2 + 1) j -= MAX_INSNS_PER_PEEP2 + 1; old_insn = peep2_insn_data[j].insn; if (!CALL_P (old_insn)) continue; was_call = true; new_insn = attempt; while (new_insn != NULL_RTX) { if (CALL_P (new_insn)) break; new_insn = NEXT_INSN (new_insn); } gcc_assert (new_insn != NULL_RTX); CALL_INSN_FUNCTION_USAGE (new_insn) = CALL_INSN_FUNCTION_USAGE (old_insn); for (note = REG_NOTES (old_insn); note; note = XEXP (note, 1)) switch (REG_NOTE_KIND (note)) { case REG_NORETURN: case REG_SETJMP: add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0)); break; default: /* Discard all other reg notes. */ break; } /* Croak if there is another call in the sequence. */ while (++i <= match_len) { j = i + peep2_current; if (j >= MAX_INSNS_PER_PEEP2 + 1) j -= MAX_INSNS_PER_PEEP2 + 1; old_insn = peep2_insn_data[j].insn; gcc_assert (!CALL_P (old_insn)); } break; } i = match_len + peep2_current; if (i >= MAX_INSNS_PER_PEEP2 + 1) i -= MAX_INSNS_PER_PEEP2 + 1; note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX); /* Replace the old sequence with the new. */ attempt = emit_insn_after_setloc (attempt, peep2_insn_data[i].insn, INSN_LOCATOR (peep2_insn_data[i].insn)); before_try = PREV_INSN (insn); delete_insn_chain (insn, peep2_insn_data[i].insn, false); /* Re-insert the EH_REGION notes. */ if (note || (was_call && nonlocal_goto_handler_labels)) { edge eh_edge; edge_iterator ei; FOR_EACH_EDGE (eh_edge, ei, bb->succs) if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) break; if (note) copy_reg_eh_region_note_backward (note, attempt, before_try); if (eh_edge) for (x = attempt ; x != before_try ; x = PREV_INSN (x)) if (x != BB_END (bb) && (can_throw_internal (x) || can_nonlocal_goto (x))) { edge nfte, nehe; int flags; nfte = split_block (bb, x); flags = (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL)); if (CALL_P (x)) flags |= EDGE_ABNORMAL_CALL; nehe = make_edge (nfte->src, eh_edge->dest, flags); nehe->probability = eh_edge->probability; nfte->probability = REG_BR_PROB_BASE - nehe->probability; do_cleanup_cfg |= purge_dead_edges (nfte->dest); bb = nfte->src; eh_edge = nehe; } /* Converting possibly trapping insn to non-trapping is possible. Zap dummy outgoing edges. */ do_cleanup_cfg |= purge_dead_edges (bb); } if (targetm.have_conditional_execution ()) { for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i) peep2_insn_data[i].insn = NULL_RTX; peep2_insn_data[peep2_current].insn = PEEP2_EOB; peep2_current_count = 0; } else { /* Back up lifetime information past the end of the newly created sequence. */ if (++i >= MAX_INSNS_PER_PEEP2 + 1) i = 0; bitmap_copy (live, peep2_insn_data[i].live_before); /* Update life information for the new sequence. */ x = attempt; do { if (INSN_P (x)) { if (--i < 0) i = MAX_INSNS_PER_PEEP2; if (peep2_current_count < MAX_INSNS_PER_PEEP2 && peep2_insn_data[i].insn == NULL_RTX) peep2_current_count++; peep2_insn_data[i].insn = x; df_insn_rescan (x); df_simulate_one_insn_backwards (bb, x, live); bitmap_copy (peep2_insn_data[i].live_before, live); } x = PREV_INSN (x); } while (x != prev); peep2_current = i; } /* If we generated a jump instruction, it won't have JUMP_LABEL set. Recompute after we're done. */ for (x = attempt; x != before_try; x = PREV_INSN (x)) if (JUMP_P (x)) { do_rebuild_jump_labels = true; break; } } } if (insn == BB_HEAD (bb)) break; } } default_rtl_profile (); for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i) BITMAP_FREE (peep2_insn_data[i].live_before); BITMAP_FREE (live); if (do_rebuild_jump_labels) rebuild_jump_labels (get_insns ()); } #endif /* HAVE_peephole2 */ /* Common predicates for use with define_bypass. */ /* True if the dependency between OUT_INSN and IN_INSN is on the store data not the address operand(s) of the store. IN_INSN and OUT_INSN must be either a single_set or a PARALLEL with SETs inside. */ int store_data_bypass_p (rtx out_insn, rtx in_insn) { rtx out_set, in_set; rtx out_pat, in_pat; rtx out_exp, in_exp; int i, j; in_set = single_set (in_insn); if (in_set) { if (!MEM_P (SET_DEST (in_set))) return false; out_set = single_set (out_insn); if (out_set) { if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set))) return false; } else { out_pat = PATTERN (out_insn); if (GET_CODE (out_pat) != PARALLEL) return false; for (i = 0; i < XVECLEN (out_pat, 0); i++) { out_exp = XVECEXP (out_pat, 0, i); if (GET_CODE (out_exp) == CLOBBER) continue; gcc_assert (GET_CODE (out_exp) == SET); if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set))) return false; } } } else { in_pat = PATTERN (in_insn); gcc_assert (GET_CODE (in_pat) == PARALLEL); for (i = 0; i < XVECLEN (in_pat, 0); i++) { in_exp = XVECEXP (in_pat, 0, i); if (GET_CODE (in_exp) == CLOBBER) continue; gcc_assert (GET_CODE (in_exp) == SET); if (!MEM_P (SET_DEST (in_exp))) return false; out_set = single_set (out_insn); if (out_set) { if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp))) return false; } else { out_pat = PATTERN (out_insn); gcc_assert (GET_CODE (out_pat) == PARALLEL); for (j = 0; j < XVECLEN (out_pat, 0); j++) { out_exp = XVECEXP (out_pat, 0, j); if (GET_CODE (out_exp) == CLOBBER) continue; gcc_assert (GET_CODE (out_exp) == SET); if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp))) return false; } } } } return true; } /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE condition, and not the THEN or ELSE branch. OUT_INSN may be either a single or multiple set; IN_INSN should be single_set for truth, but for convenience of insn categorization may be any JUMP or CALL insn. */ int if_test_bypass_p (rtx out_insn, rtx in_insn) { rtx out_set, in_set; in_set = single_set (in_insn); if (! in_set) { gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn)); return false; } if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE) return false; in_set = SET_SRC (in_set); out_set = single_set (out_insn); if (out_set) { if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1)) || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2))) return false; } else { rtx out_pat; int i; out_pat = PATTERN (out_insn); gcc_assert (GET_CODE (out_pat) == PARALLEL); for (i = 0; i < XVECLEN (out_pat, 0); i++) { rtx exp = XVECEXP (out_pat, 0, i); if (GET_CODE (exp) == CLOBBER) continue; gcc_assert (GET_CODE (exp) == SET); if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1)) || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2))) return false; } } return true; } static bool gate_handle_peephole2 (void) { return (optimize > 0 && flag_peephole2); } static unsigned int rest_of_handle_peephole2 (void) { #ifdef HAVE_peephole2 peephole2_optimize (); #endif return 0; } struct rtl_opt_pass pass_peephole2 = { { RTL_PASS, "peephole2", /* name */ gate_handle_peephole2, /* gate */ rest_of_handle_peephole2, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_PEEPHOLE2, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_df_finish | TODO_verify_rtl_sharing | TODO_dump_func /* todo_flags_finish */ } }; static unsigned int rest_of_handle_split_all_insns (void) { split_all_insns (); return 0; } struct rtl_opt_pass pass_split_all_insns = { { RTL_PASS, "split1", /* name */ NULL, /* gate */ rest_of_handle_split_all_insns, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func /* todo_flags_finish */ } }; static unsigned int rest_of_handle_split_after_reload (void) { /* If optimizing, then go ahead and split insns now. */ #ifndef STACK_REGS if (optimize > 0) #endif split_all_insns (); return 0; } struct rtl_opt_pass pass_split_after_reload = { { RTL_PASS, "split2", /* name */ NULL, /* gate */ rest_of_handle_split_after_reload, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func /* todo_flags_finish */ } }; static bool gate_handle_split_before_regstack (void) { #if defined (HAVE_ATTR_length) && defined (STACK_REGS) /* If flow2 creates new instructions which need splitting and scheduling after reload is not done, they might not be split until final which doesn't allow splitting if HAVE_ATTR_length. */ # ifdef INSN_SCHEDULING return (optimize && !flag_schedule_insns_after_reload); # else return (optimize); # endif #else return 0; #endif } static unsigned int rest_of_handle_split_before_regstack (void) { split_all_insns (); return 0; } struct rtl_opt_pass pass_split_before_regstack = { { RTL_PASS, "split3", /* name */ gate_handle_split_before_regstack, /* gate */ rest_of_handle_split_before_regstack, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func /* todo_flags_finish */ } }; static bool gate_handle_split_before_sched2 (void) { #ifdef INSN_SCHEDULING return optimize > 0 && flag_schedule_insns_after_reload; #else return 0; #endif } static unsigned int rest_of_handle_split_before_sched2 (void) { #ifdef INSN_SCHEDULING split_all_insns (); #endif return 0; } struct rtl_opt_pass pass_split_before_sched2 = { { RTL_PASS, "split4", /* name */ gate_handle_split_before_sched2, /* gate */ rest_of_handle_split_before_sched2, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_verify_flow | TODO_dump_func /* todo_flags_finish */ } }; /* The placement of the splitting that we do for shorten_branches depends on whether regstack is used by the target or not. */ static bool gate_do_final_split (void) { #if defined (HAVE_ATTR_length) && !defined (STACK_REGS) return 1; #else return 0; #endif } struct rtl_opt_pass pass_split_for_shorten_branches = { { RTL_PASS, "split5", /* name */ gate_do_final_split, /* gate */ split_all_insns_noflow, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ 0, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */ } };
Go to most recent revision | Compare with Previous | Blame | View Log