URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2010.a] - Rev 304
Go to most recent revision | Compare with Previous | Blame | View Log
-- CXG2010.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the exp function returns
-- results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test contains three test packages that are almost
-- identical. The first two packages differ only in the
-- floating point type that is being tested. The first
-- and third package differ only in whether the generic
-- elementary functions package or the pre-instantiated
-- package is used.
-- The test package is not generic so that the arguments
-- and expected results for some of the test values
-- can be expressed as universal real instead of being
-- computed at runtime.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex and where the Machine_Radix is 2, 4, 8, or 16.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 1 Mar 96 SAIC Initial release for 2.1
-- 2 Sep 96 SAIC Improved check routine
--
--!
--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science Volume 142
-- Springer Verlag, 1982
--
--
-- Notes on derivation of error bound for exp(p)*exp(-p)
--
-- Let a = true value of exp(p) and ac be the computed value.
-- Then a = ac(1+e1), where |e1| <= 4*Model_Epsilon.
-- Similarly, let b = true value of exp(-p) and bc be the computed value.
-- Then b = bc(1+e2), where |e2| <= 4*ME.
--
-- The product of x and y is (x*y)(1+e3), where |e3| <= 1.0ME
--
-- Hence, the computed ab is [ac(1+e1)*bc(1+e2)](1+e3) =
-- (ac*bc)[1 + e1 + e2 + e3 + e1e2 + e1e3 + e2e3 + e1e2e3).
--
-- Throwing away the last four tiny terms, we have (ac*bc)(1 + eta),
--
-- where |eta| <= (4+4+1)ME = 9.0Model_Epsilon.
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
with Ada.Numerics.Elementary_Functions;
procedure CXG2010 is
Verbose : constant Boolean := False;
Max_Samples : constant := 1000;
Accuracy_Error_Reported : Boolean := False;
package Float_Check is
subtype Real is Float;
procedure Do_Test;
end Float_Check;
package body Float_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Sqrt (X : Real) return Real renames
Elementary_Functions.Sqrt;
function Exp (X : Real) return Real renames
Elementary_Functions.Exp;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon
-- instead of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Argument_Range_Check_1 (A, B : Real;
Test : String) is
-- test a evenly distributed selection of
-- arguments selected from the range A to B.
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
-- The parameter One_Minus_Exp_Minus_V is the value
-- 1.0 - Exp (-V)
-- accurate to machine precision.
-- This procedure is a translation of part of Cody's test
X : Real;
Y : Real;
ZX, ZY : Real;
V : constant := 1.0 / 16.0;
One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
begin
Accuracy_Error_Reported := False;
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X - V;
if Y < 0.0 then
X := Y + V;
end if;
ZX := Exp (X);
ZY := Exp (Y);
-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
-- which simplifies to ZX := Exp (X-V);
ZX := ZX - ZX * One_Minus_Exp_Minus_V;
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (ZY, ZX,
"test " & Test & " -" &
Integer'Image (I) &
" exp (" & Real'Image (X) & ")",
9.0);
exit when Accuracy_Error_Reported;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check 1");
when others =>
Report.Failed ("exception in argument range check 1");
end Argument_Range_Check_1;
procedure Argument_Range_Check_2 (A, B : Real;
Test : String) is
-- test a evenly distributed selection of
-- arguments selected from the range A to B.
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
-- The parameter One_Minus_Exp_Minus_V is the value
-- 1.0 - Exp (-V)
-- accurate to machine precision.
-- This procedure is a translation of part of Cody's test
X : Real;
Y : Real;
ZX, ZY : Real;
V : constant := 45.0 / 16.0;
-- 1/16 - Exp(45/16)
Coeff : constant := 2.4453321046920570389E-3;
begin
Accuracy_Error_Reported := False;
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X - V;
if Y < 0.0 then
X := Y + V;
end if;
ZX := Exp (X);
ZY := Exp (Y);
-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
-- where Coeff is 1/16 - Exp(45/16)
-- which simplifies to ZX := Exp (X-V);
ZX := ZX * 0.0625 - ZX * Coeff;
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (ZY, ZX,
"test " & Test & " -" &
Integer'Image (I) &
" exp (" & Real'Image (X) & ")",
9.0);
exit when Accuracy_Error_Reported;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check 2");
when others =>
Report.Failed ("exception in argument range check 2");
end Argument_Range_Check_2;
procedure Do_Test is
begin
--- test 1 ---
declare
Y : Real;
begin
Y := Exp(1.0);
-- normal accuracy requirements
Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
Y : Real;
begin
Y := Exp(16.0) * Exp(-16.0);
Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
Y : Real;
begin
Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
Y : Real;
begin
Y := Exp(0.0);
Check (Y, 1.0, "test 4 -- exp(0.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
-- constants used here only have 19 digits of precision
if Real'Digits > 19 then
Error_Low_Bound := 0.00000_00000_00000_0001;
Report.Comment ("exp accuracy checked to 19 digits");
end if;
Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
1.0,
"5");
Error_Low_Bound := 0.0; -- reset
--- test 6 ---
-- constants used here only have 19 digits of precision
if Real'Digits > 19 then
Error_Low_Bound := 0.00000_00000_00000_0001;
Report.Comment ("exp accuracy checked to 19 digits");
end if;
Argument_Range_Check_2 (1.0,
Sqrt(Real(Real'Machine_Radix)),
"6");
Error_Low_Bound := 0.0; -- reset
end Do_Test;
end Float_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is
subtype Real is A_Long_Float;
procedure Do_Test;
end A_Long_Float_Check;
package body A_Long_Float_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Sqrt (X : Real) return Real renames
Elementary_Functions.Sqrt;
function Exp (X : Real) return Real renames
Elementary_Functions.Exp;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon
-- instead of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Argument_Range_Check_1 (A, B : Real;
Test : String) is
-- test a evenly distributed selection of
-- arguments selected from the range A to B.
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
-- The parameter One_Minus_Exp_Minus_V is the value
-- 1.0 - Exp (-V)
-- accurate to machine precision.
-- This procedure is a translation of part of Cody's test
X : Real;
Y : Real;
ZX, ZY : Real;
V : constant := 1.0 / 16.0;
One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
begin
Accuracy_Error_Reported := False;
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X - V;
if Y < 0.0 then
X := Y + V;
end if;
ZX := Exp (X);
ZY := Exp (Y);
-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
-- which simplifies to ZX := Exp (X-V);
ZX := ZX - ZX * One_Minus_Exp_Minus_V;
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (ZY, ZX,
"test " & Test & " -" &
Integer'Image (I) &
" exp (" & Real'Image (X) & ")",
9.0);
exit when Accuracy_Error_Reported;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check 1");
when others =>
Report.Failed ("exception in argument range check 1");
end Argument_Range_Check_1;
procedure Argument_Range_Check_2 (A, B : Real;
Test : String) is
-- test a evenly distributed selection of
-- arguments selected from the range A to B.
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
-- The parameter One_Minus_Exp_Minus_V is the value
-- 1.0 - Exp (-V)
-- accurate to machine precision.
-- This procedure is a translation of part of Cody's test
X : Real;
Y : Real;
ZX, ZY : Real;
V : constant := 45.0 / 16.0;
-- 1/16 - Exp(45/16)
Coeff : constant := 2.4453321046920570389E-3;
begin
Accuracy_Error_Reported := False;
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X - V;
if Y < 0.0 then
X := Y + V;
end if;
ZX := Exp (X);
ZY := Exp (Y);
-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
-- where Coeff is 1/16 - Exp(45/16)
-- which simplifies to ZX := Exp (X-V);
ZX := ZX * 0.0625 - ZX * Coeff;
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (ZY, ZX,
"test " & Test & " -" &
Integer'Image (I) &
" exp (" & Real'Image (X) & ")",
9.0);
exit when Accuracy_Error_Reported;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check 2");
when others =>
Report.Failed ("exception in argument range check 2");
end Argument_Range_Check_2;
procedure Do_Test is
begin
--- test 1 ---
declare
Y : Real;
begin
Y := Exp(1.0);
-- normal accuracy requirements
Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
Y : Real;
begin
Y := Exp(16.0) * Exp(-16.0);
Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
Y : Real;
begin
Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
Y : Real;
begin
Y := Exp(0.0);
Check (Y, 1.0, "test 4 -- exp(0.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
-- constants used here only have 19 digits of precision
if Real'Digits > 19 then
Error_Low_Bound := 0.00000_00000_00000_0001;
Report.Comment ("exp accuracy checked to 19 digits");
end if;
Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
1.0,
"5");
Error_Low_Bound := 0.0; -- reset
--- test 6 ---
-- constants used here only have 19 digits of precision
if Real'Digits > 19 then
Error_Low_Bound := 0.00000_00000_00000_0001;
Report.Comment ("exp accuracy checked to 19 digits");
end if;
Argument_Range_Check_2 (1.0,
Sqrt(Real(Real'Machine_Radix)),
"6");
Error_Low_Bound := 0.0; -- reset
end Do_Test;
end A_Long_Float_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Non_Generic_Check is
procedure Do_Test;
subtype Real is Float;
end Non_Generic_Check;
package body Non_Generic_Check is
package Elementary_Functions renames
Ada.Numerics.Elementary_Functions;
function Sqrt (X : Real) return Real renames
Elementary_Functions.Sqrt;
function Exp (X : Real) return Real renames
Elementary_Functions.Exp;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon
-- instead of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Argument_Range_Check_1 (A, B : Real;
Test : String) is
-- test a evenly distributed selection of
-- arguments selected from the range A to B.
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
-- The parameter One_Minus_Exp_Minus_V is the value
-- 1.0 - Exp (-V)
-- accurate to machine precision.
-- This procedure is a translation of part of Cody's test
X : Real;
Y : Real;
ZX, ZY : Real;
V : constant := 1.0 / 16.0;
One_Minus_Exp_Minus_V : constant := 6.058693718652421388E-2;
begin
Accuracy_Error_Reported := False;
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X - V;
if Y < 0.0 then
X := Y + V;
end if;
ZX := Exp (X);
ZY := Exp (Y);
-- ZX := Exp(X) - Exp(X) * (1 - Exp(-V);
-- which simplifies to ZX := Exp (X-V);
ZX := ZX - ZX * One_Minus_Exp_Minus_V;
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (ZY, ZX,
"test " & Test & " -" &
Integer'Image (I) &
" exp (" & Real'Image (X) & ")",
9.0);
exit when Accuracy_Error_Reported;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check 1");
when others =>
Report.Failed ("exception in argument range check 1");
end Argument_Range_Check_1;
procedure Argument_Range_Check_2 (A, B : Real;
Test : String) is
-- test a evenly distributed selection of
-- arguments selected from the range A to B.
-- Test using identity: EXP(X-V) = EXP(X) * EXP (-V)
-- The parameter One_Minus_Exp_Minus_V is the value
-- 1.0 - Exp (-V)
-- accurate to machine precision.
-- This procedure is a translation of part of Cody's test
X : Real;
Y : Real;
ZX, ZY : Real;
V : constant := 45.0 / 16.0;
-- 1/16 - Exp(45/16)
Coeff : constant := 2.4453321046920570389E-3;
begin
Accuracy_Error_Reported := False;
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Y := X - V;
if Y < 0.0 then
X := Y + V;
end if;
ZX := Exp (X);
ZY := Exp (Y);
-- ZX := Exp(X) * 1/16 - Exp(X) * Coeff;
-- where Coeff is 1/16 - Exp(45/16)
-- which simplifies to ZX := Exp (X-V);
ZX := ZX * 0.0625 - ZX * Coeff;
-- note that since the expected value is computed, we
-- must take the error in that computation into account.
Check (ZY, ZX,
"test " & Test & " -" &
Integer'Image (I) &
" exp (" & Real'Image (X) & ")",
9.0);
exit when Accuracy_Error_Reported;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in argument range check 2");
when others =>
Report.Failed ("exception in argument range check 2");
end Argument_Range_Check_2;
procedure Do_Test is
begin
--- test 1 ---
declare
Y : Real;
begin
Y := Exp(1.0);
-- normal accuracy requirements
Check (Y, Ada.Numerics.e, "test 1 -- exp(1)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
Y : Real;
begin
Y := Exp(16.0) * Exp(-16.0);
Check (Y, 1.0, "test 2 -- exp(16)*exp(-16)", 9.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
Y : Real;
begin
Y := Exp (Ada.Numerics.Pi) * Exp (-Ada.Numerics.Pi);
Check (Y, 1.0, "test 3 -- exp(pi)*exp(-pi)", 9.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
Y : Real;
begin
Y := Exp(0.0);
Check (Y, 1.0, "test 4 -- exp(0.0)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
--- test 5 ---
-- constants used here only have 19 digits of precision
if Real'Digits > 19 then
Error_Low_Bound := 0.00000_00000_00000_0001;
Report.Comment ("exp accuracy checked to 19 digits");
end if;
Argument_Range_Check_1 ( 1.0/Sqrt(Real(Real'Machine_Radix)),
1.0,
"5");
Error_Low_Bound := 0.0; -- reset
--- test 6 ---
-- constants used here only have 19 digits of precision
if Real'Digits > 19 then
Error_Low_Bound := 0.00000_00000_00000_0001;
Report.Comment ("exp accuracy checked to 19 digits");
end if;
Argument_Range_Check_2 (1.0,
Sqrt(Real(Real'Machine_Radix)),
"6");
Error_Low_Bound := 0.0; -- reset
end Do_Test;
end Non_Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2010",
"Check the accuracy of the exp function");
-- the test only applies to machines with a radix of 2,4,8, or 16
case Float'Machine_Radix is
when 2 | 4 | 8 | 16 => null;
when others =>
Report.Not_Applicable ("only applicable to binary radix");
Report.Result;
return;
end case;
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking non-generic package");
end if;
Non_Generic_Check.Do_Test;
Report.Result;
end CXG2010;
Go to most recent revision | Compare with Previous | Blame | View Log