URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2011.a] - Rev 294
Compare with Previous | Blame | View Log
-- CXG2011.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the log function returns
-- results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks in a range where a Taylor series can be used to compute
-- the expected result.
-- Checks that use an identity for determining the result.
-- Exception checks.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 1 Mar 96 SAIC Initial release for 2.1
-- 22 Aug 96 SAIC Improved Check routine
-- 02 DEC 97 EDS Log (0.0) must raise Constraint_Error,
-- not Argument_Error
--!
--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science Volume 142
-- Springer Verlag, 1982
--
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2011 is
Verbose : constant Boolean := False;
Max_Samples : constant := 1000;
-- CRC Handbook Page 738
Ln10 : constant := 2.30258_50929_94045_68401_79914_54684_36420_76011_01489;
Ln2 : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755_00134;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Sqrt (X : Real'Base) return Real'Base renames
Elementary_Functions.Sqrt;
function Exp (X : Real'Base) return Real'Base renames
Elementary_Functions.Exp;
function Log (X : Real'Base) return Real'Base renames
Elementary_Functions.Log;
function Log (X, Base : Real'Base) return Real'Base renames
Elementary_Functions.Log;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon
-- instead of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Special_Value_Test is
begin
--- test 1 ---
declare
Y : Real;
begin
Y := Log(1.0);
Check (Y, 0.0, "special value test 1 -- log(1)",
0.0); -- no error allowed
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 1");
when others =>
Report.Failed ("exception in test 1");
end;
--- test 2 ---
declare
Y : Real;
begin
Y := Log(10.0);
Check (Y, Ln10, "special value test 2 -- log(10)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 2");
when others =>
Report.Failed ("exception in test 2");
end;
--- test 3 ---
declare
Y : Real;
begin
Y := Log (2.0);
Check (Y, Ln2, "special value test 3 -- log(2)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 3");
when others =>
Report.Failed ("exception in test 3");
end;
--- test 4 ---
declare
Y : Real;
begin
Y := Log (2.0 ** 18, 2.0);
Check (Y, 18.0, "special value test 4 -- log(2**18,2)", 4.0);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in test 4");
when others =>
Report.Failed ("exception in test 4");
end;
end Special_Value_Test;
procedure Taylor_Series_Test is
-- Use a 4 term taylor series expansion to check a selection of
-- arguments very near 1.0.
-- The range is chosen so that the 4 term taylor series will
-- provide accuracy to machine precision. Cody pg 49-50.
Half_Range : constant Real := Real'Model_Epsilon * 50.0;
A : constant Real := 1.0 - Half_Range;
B : constant Real := 1.0 + Half_Range;
X : Real;
Xm1 : Real;
Expected : Real;
Actual : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Xm1 := X - 1.0;
-- The following is the first 4 terms of the taylor series
-- that has been rearranged to minimize error in the calculation
Expected := (Xm1 * (1.0/3.0 - Xm1/4.0) - 0.5) * Xm1 * Xm1 + Xm1;
Actual := Log (X);
Check (Actual, Expected,
"Taylor Series Test -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Taylor Series Test");
when others =>
Report.Failed ("exception in Taylor Series Test");
end Taylor_Series_Test;
procedure Log_Difference_Identity is
-- Check using the identity ln(x) = ln(17x/16) - ln(17/16)
-- over the range A to B.
-- The selected range assures that both X and 17x/16 will
-- have the same exponents and neither argument gets too close
-- to 1. Cody pg 50.
A : constant Real := 1.0 / Sqrt (2.0);
B : constant Real := 15.0 / 16.0;
X : Real;
Expected : Real;
Actual : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
-- magic argument purification
X := Real'Machine (Real'Machine (X+8.0) - 8.0);
Expected := Log (X + X / 16.0) - Log (17.0/16.0);
Actual := Log (X);
Check (Actual, Expected,
"Log Difference Identity -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Log Difference Identity Test");
when others =>
Report.Failed ("exception in Log Difference Identity Test");
end Log_Difference_Identity;
procedure Log_Product_Identity is
-- Check using the identity ln(x**2) = 2ln(x)
-- over the range A to B.
-- This large range is chosen to minimize the possibility of
-- undetected systematic errors. Cody pg 53.
A : constant Real := 16.0;
B : constant Real := 240.0;
X : Real;
Expected : Real;
Actual : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
-- magic argument purification
X := Real'Machine (Real'Machine (X+8.0) - 8.0);
Expected := 2.0 * Log (X);
Actual := Log (X*X);
Check (Actual, Expected,
"Log Product Identity -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Log Product Identity Test");
when others =>
Report.Failed ("exception in Log Product Identity Test");
end Log_Product_Identity;
procedure Log10_Test is
-- Check using the identity log(x) = log(11x/10) - log(1.1)
-- over the range A to B. See Cody pg 52.
A : constant Real := 1.0 / Sqrt (10.0);
B : constant Real := 0.9;
X : Real;
Expected : Real;
Actual : Real;
begin
if Real'Digits > 17 then
-- constant used below is accuract to 17 digits
Error_Low_Bound := 0.00000_00000_00000_01;
Report.Comment ("log accuracy checked to 19 digits");
end if;
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
Expected := Log (X + X/10.0, 10.0)
- 3.77060_15822_50407_5E-4 - 21.0 / 512.0;
Actual := Log (X, 10.0);
Check (Actual, Expected,
"Log 10 Test -" &
Integer'Image (I) &
" log (" & Real'Image (X) & ")",
4.0);
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
exit when Accuracy_Error_Reported;
end loop;
Error_Low_Bound := 0.0; -- reset
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Log 10 Test");
when others =>
Report.Failed ("exception in Log 10 Test");
end Log10_Test;
procedure Exception_Test is
X1, X2, X3, X4 : Real;
begin
begin
X1 := Log (0.0);
Report.Failed ("exception not raised for LOG(0)");
exception
-- Log (0.0) must raise Constraint_Error, not Argument_Error,
-- as per A.5.1(28,29). Was incorrect in ACVC 2.1 release.
when Ada.Numerics.Argument_Error =>
Report.Failed ("Argument_Error raised instead of" &
" Constraint_Error for LOG(0)--A.5.1(28,29)");
when Constraint_Error => null; -- ok
when others =>
Report.Failed ("wrong exception raised for LOG(0)");
end;
begin
X2 := Log ( 1.0, 0.0);
Report.Failed ("exception not raised for LOG(1,0)");
exception
when Ada.Numerics.Argument_Error => null; -- ok
when Constraint_Error =>
Report.Failed ("constraint_error raised instead of" &
" argument_error for LOG(1,0)");
when others =>
Report.Failed ("wrong exception raised for LOG(1,0)");
end;
begin
X3 := Log (1.0, 1.0);
Report.Failed ("exception not raised for LOG(1,1)");
exception
when Ada.Numerics.Argument_Error => null; -- ok
when Constraint_Error =>
Report.Failed ("constraint_error raised instead of" &
" argument_error for LOG(1,1)");
when others =>
Report.Failed ("wrong exception raised for LOG(1,1)");
end;
begin
X4 := Log (1.0, -10.0);
Report.Failed ("exception not raised for LOG(1,-10)");
exception
when Ada.Numerics.Argument_Error => null; -- ok
when Constraint_Error =>
Report.Failed ("constraint_error raised instead of" &
" argument_error for LOG(1,-10)");
when others =>
Report.Failed ("wrong exception raised for LOG(1,-10)");
end;
-- optimizer thwarting
if Report.Ident_Bool (False) then
Report.Comment (Real'Image (X1+X2+X3+X4));
end if;
end Exception_Test;
procedure Do_Test is
begin
Special_Value_Test;
Taylor_Series_Test;
Log_Difference_Identity;
Log_Product_Identity;
Log10_Test;
Exception_Test;
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Float_Check is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2011",
"Check the accuracy of the log function");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2011;