URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2013.a] - Rev 294
Compare with Previous | Blame | View Log
-- CXG2013.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the TAN and COT functions return
-- results that are within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks that use an identity for determining the result.
-- Exception checks.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 11 Mar 96 SAIC Initial release for 2.1
-- 17 Aug 96 SAIC Commentary fixes.
-- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi
-- 02 DEC 97 EDS Change Max_Samples constant to 1001.
-- 29 JUN 98 EDS Deleted Special_Angle_Test as fatally flawed.
--!
--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science Volume 142
-- Springer Verlag, 1982
--
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2013 is
Verbose : constant Boolean := False;
Max_Samples : constant := 1001;
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
Sqrt2 : constant :=
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
Sqrt3 : constant :=
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
Pi : constant := Ada.Numerics.Pi;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Sqrt (X : Real) return Real renames
Elementary_Functions.Sqrt;
function Tan (X : Real) return Real renames
Elementary_Functions.Tan;
function Cot (X : Real) return Real renames
Elementary_Functions.Cot;
function Tan (X, Cycle : Real) return Real renames
Elementary_Functions.Tan;
function Cot (X, Cycle : Real) return Real renames
Elementary_Functions.Cot;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
-- factor to be applied in computing MRE
Maximum_Relative_Error : constant Real := 4.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Exact_Result_Test is
No_Error : constant := 0.0;
begin
-- A.5.1(38);6.0
Check (Tan (0.0), 0.0, "tan(0)", No_Error);
-- A.5.1(41);6.0
Check (Tan (180.0, 360.0), 0.0, "tan(180,360)", No_Error);
Check (Tan (360.0, 360.0), 0.0, "tan(360,360)", No_Error);
Check (Tan (720.0, 360.0), 0.0, "tan(720,360)", No_Error);
-- A.5.1(41);6.0
Check (Cot ( 90.0, 360.0), 0.0, "cot( 90,360)", No_Error);
Check (Cot (270.0, 360.0), 0.0, "cot(270,360)", No_Error);
Check (Cot (810.0, 360.0), 0.0, "cot(810,360)", No_Error);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in Exact_Result Test");
when others =>
Report.Failed ("exception in Exact_Result Test");
end Exact_Result_Test;
procedure Tan_Test (A, B : Real) is
-- Use identity Tan(X) = [2*Tan(x/2)]/[1-Tan(x/2) ** 2]
-- checks over the range -pi/4 .. pi/4 require no argument reduction
-- checks over the range 7pi/8 .. 9pi/8 require argument reduction
X, Y : Real;
Actual1, Actual2 : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
-- argument purification to insure x and x/2 are exact
-- See Cody page 170.
Y := Real'Machine (X*0.5);
X := Real'Machine (Y + Y);
Actual1 := Tan(X);
Actual2 := (2.0 * Tan (Y)) / (1.0 - Tan (Y) ** 2);
if abs (X - Pi) > ( (B-A)/Real(2*Max_Samples) ) then
Check (Actual1, Actual2,
"Tan_Test " & Integer'Image (I) & ": tan(" &
Real'Image (X) & ") ",
(1.0 + Sqrt2) * Maximum_Relative_Error);
-- see Cody pg 165 for error bound info
end if;
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Tan_Test");
when others =>
Report.Failed ("exception in Tan_Test");
end Tan_Test;
procedure Cot_Test is
-- Use identity Cot(X) = [Cot(X/2)**2 - 1]/[2*Cot(X/2)]
A : constant := 6.0 * Pi;
B : constant := 25.0 / 4.0 * Pi;
X, Y : Real;
Actual1, Actual2 : Real;
begin
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * Real (I) / Real (Max_Samples) + A;
-- argument purification to insure x and x/2 are exact.
-- See Cody page 170.
Y := Real'Machine (X*0.5);
X := Real'Machine (Y + Y);
Actual1 := Cot(X);
Actual2 := (Cot (Y) ** 2 - 1.0) / (2.0 * Cot (Y));
Check (Actual1, Actual2,
"Cot_Test " & Integer'Image (I) & ": cot(" &
Real'Image (X) & ") ",
(1.0 + Sqrt2) * Maximum_Relative_Error);
-- see Cody pg 165 for error bound info
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Cot_Test");
when others =>
Report.Failed ("exception in Cot_Test");
end Cot_Test;
procedure Exception_Test is
X1, X2, X3, X4, X5 : Real := 0.0;
begin
begin -- A.5.1(20);6.0
X1 := Tan (0.0, Cycle => 0.0);
Report.Failed ("no exception for cycle = 0.0");
exception
when Ada.Numerics.Argument_Error => null;
when others =>
Report.Failed ("wrong exception for cycle = 0.0");
end;
begin -- A.5.1(20);6.0
X2 := Cot (1.0, Cycle => -3.0);
Report.Failed ("no exception for cycle < 0.0");
exception
when Ada.Numerics.Argument_Error => null;
when others =>
Report.Failed ("wrong exception for cycle < 0.0");
end;
-- the remaining tests only apply to machines that overflow
if Real'Machine_Overflows then -- A.5.1(28);6.0
begin -- A.5.1(29);6.0
X3 := Cot (0.0);
Report.Failed ("exception not raised for cot(0)");
exception
when Constraint_Error => null; -- ok
when others =>
Report.Failed ("wrong exception raised for cot(0)");
end;
begin -- A.5.1(31);6.0
X4 := Tan (90.0, 360.0);
Report.Failed ("exception not raised for tan(90,360)");
exception
when Constraint_Error => null; -- ok
when others =>
Report.Failed ("wrong exception raised for tan(90,360)");
end;
begin -- A.5.1(32);6.0
X5 := Cot (180.0, 360.0);
Report.Failed ("exception not raised for cot(180,360)");
exception
when Constraint_Error => null; -- ok
when others =>
Report.Failed ("wrong exception raised for cot(180,360)");
end;
end if;
-- optimizer thwarting
if Report.Ident_Bool (False) then
Report.Comment (Real'Image (X1+X2+X3+X4+X5));
end if;
end Exception_Test;
procedure Do_Test is
begin
Exact_Result_Test;
Tan_Test (-Pi/4.0, Pi/4.0);
Tan_Test (7.0*Pi/8.0, 9.0*Pi/8.0);
Cot_Test;
Exception_Test;
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Float_Check is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2013",
"Check the accuracy of the TAN and COT functions");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2013;