URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2017.a] - Rev 294
Compare with Previous | Blame | View Log
-- CXG2017.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the TANH function returns
-- a result that is within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks that use an identity for determining the result.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 20 Mar 96 SAIC Initial release for 2.1
-- 17 Aug 96 SAIC Incorporated reviewer comments.
-- 03 Jun 98 EDS Add parens to remove the potential for overflow.
-- Remove the invocation of Identity_Test that checks
-- Tanh values that are too close to zero for the
-- test's error bounds.
--!
--
-- References:
--
-- Software Manual for the Elementary Functions
-- William J. Cody, Jr. and William Waite
-- Prentice-Hall, 1980
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
-- Implementation and Testing of Function Software
-- W. J. Cody
-- Problems and Methodologies in Mathematical Software Production
-- editors P. C. Messina and A. Murli
-- Lecture Notes in Computer Science Volume 142
-- Springer Verlag, 1982
--
with System;
with Report;
with Ada.Numerics.Generic_Elementary_Functions;
procedure CXG2017 is
Verbose : constant Boolean := False;
Max_Samples : constant := 1000;
E : constant := Ada.Numerics.E;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real);
function Tanh (X : Real) return Real renames
Elementary_Functions.Tanh;
function Log (X : Real) return Real renames
Elementary_Functions.Log;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
-- The following value is a lower bound on the accuracy
-- required. It is normally 0.0 so that the lower bound
-- is computed from Model_Epsilon. However, for tests
-- where the expected result is only known to a certain
-- amount of precision this bound takes on a non-zero
-- value to account for that level of precision.
Error_Low_Bound : Real := 0.0;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Small instead
-- of Model_Epsilon and Expected.
Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
Abs_Error := MRE * Real'Model_Small;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
-- take into account the low bound on the error
if Max_Error < Error_Low_Bound then
Max_Error := Error_Low_Bound;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Special_Value_Test is
-- In the following tests the expected result is accurate
-- to the machine precision so the minimum guaranteed error
-- bound can be used.
Minimum_Error : constant := 8.0;
E2 : constant := E * E;
begin
Check (Tanh (1.0),
(E - 1.0 / E) / (E + 1.0 / E),
"tanh(1)",
Minimum_Error);
Check (Tanh (2.0),
(E2 - 1.0 / E2) / (E2 + 1.0 / E2),
"tanh(2)",
Minimum_Error);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in special value test");
when others =>
Report.Failed ("exception in special value test");
end Special_Value_Test;
procedure Exact_Result_Test is
No_Error : constant := 0.0;
begin
-- A.5.1(38);6.0
Check (Tanh (0.0), 0.0, "tanh(0)", No_Error);
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in Exact_Result Test");
when others =>
Report.Failed ("exception in Exact_Result Test");
end Exact_Result_Test;
procedure Identity_Test (A, B : Real) is
-- For this test we use the identity
-- TANH(u+v) = [TANH(u) + TANH(v)] / [1 + TANH(u)*TANH(v)]
-- which is transformed to
-- TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
-- where C = TANH(1/8) and y = x - 1/8
--
-- see Cody pg 248-249 for details on the error analysis.
-- The net result is a relative error bound of 16 * Model_Epsilon.
--
-- The second part of this test checks the identity
-- TANH(-x) = -TANH(X)
X, Y : Real;
Actual1, Actual2 : Real;
C : constant := 1.2435300177159620805e-1;
begin
if Real'Digits > 20 then
-- constant C is accurate to 20 digits. Set the low bound
-- on the error to 16*10**-20
Error_Low_Bound := 0.00000_00000_00000_00016;
Report.Comment ("tanh accuracy checked to 20 digits");
end if;
Accuracy_Error_Reported := False; -- reset
for I in 1..Max_Samples loop
X := (B - A) * (Real (I) / Real (Max_Samples)) + A;
Actual1 := Tanh(X);
-- TANH(x) = [TANH(y)+C] / [1 + TANH(y) * C]
Y := X - (1.0 / 8.0);
Actual2 := (Tanh (Y) + C) / (1.0 + Tanh(Y) * C);
Check (Actual1, Actual2,
"Identity_1_Test " & Integer'Image (I) & ": tanh(" &
Real'Image (X) & ") ",
16.0);
-- TANH(-x) = -TANH(X)
Actual2 := Tanh(-X);
Check (-Actual1, Actual2,
"Identity_2_Test " & Integer'Image (I) & ": tanh(" &
Real'Image (X) & ") ",
16.0);
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
Error_Low_Bound := 0.0; -- reset
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Identity_Test" &
" for X=" & Real'Image (X));
when others =>
Report.Failed ("exception in Identity_Test" &
" for X=" & Real'Image (X));
end Identity_Test;
procedure Do_Test is
begin
Special_Value_Test;
Exact_Result_Test;
-- cover a large range
Identity_Test (1.0, Real'Safe_Last);
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Float_Check is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2017",
"Check the accuracy of the TANH function");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2017;