URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg2020.a] - Rev 294
Compare with Previous | Blame | View Log
-- CXG2020.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the complex SQRT function returns
-- a result that is within the error bound allowed.
--
-- TEST DESCRIPTION:
-- This test consists of a generic package that is
-- instantiated to check complex numbers based upon
-- both Float and a long float type.
-- The test for each floating point type is divided into
-- several parts:
-- Special value checks where the result is a known constant.
-- Checks that use an identity for determining the result.
--
-- SPECIAL REQUIREMENTS
-- The Strict Mode for the numerical accuracy must be
-- selected. The method by which this mode is selected
-- is implementation dependent.
--
-- APPLICABILITY CRITERIA:
-- This test applies only to implementations supporting the
-- Numerics Annex.
-- This test only applies to the Strict Mode for numerical
-- accuracy.
--
--
-- CHANGE HISTORY:
-- 24 Mar 96 SAIC Initial release for 2.1
-- 17 Aug 96 SAIC Incorporated reviewer comments.
-- 03 Jun 98 EDS Added parens to ensure that the expression is not
-- evaluated by multiplying its two large terms
-- together and overflowing.
--!
--
-- References:
--
-- W. J. Cody
-- CELEFUNT: A Portable Test Package for Complex Elementary Functions
-- Algorithm 714, Collected Algorithms from ACM.
-- Published in Transactions On Mathematical Software,
-- Vol. 19, No. 1, March, 1993, pp. 1-21.
--
-- CRC Standard Mathematical Tables
-- 23rd Edition
--
with System;
with Report;
with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
procedure CXG2020 is
Verbose : constant Boolean := False;
-- Note that Max_Samples is the number of samples taken in
-- both the real and imaginary directions. Thus, for Max_Samples
-- of 100 the number of values checked is 10000.
Max_Samples : constant := 100;
E : constant := Ada.Numerics.E;
Pi : constant := Ada.Numerics.Pi;
-- CRC Standard Mathematical Tables; 23rd Edition; pg 738
Sqrt2 : constant :=
1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
Sqrt3 : constant :=
1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
generic
type Real is digits <>;
package Generic_Check is
procedure Do_Test;
end Generic_Check;
package body Generic_Check is
package Complex_Type is new
Ada.Numerics.Generic_Complex_Types (Real);
use Complex_Type;
package CEF is new
Ada.Numerics.Generic_Complex_Elementary_Functions (Complex_Type);
function Sqrt (X : Complex) return Complex renames CEF.Sqrt;
-- flag used to terminate some tests early
Accuracy_Error_Reported : Boolean := False;
procedure Check (Actual, Expected : Real;
Test_Name : String;
MRE : Real) is
Max_Error : Real;
Rel_Error : Real;
Abs_Error : Real;
begin
-- In the case where the expected result is very small or 0
-- we compute the maximum error as a multiple of Model_Epsilon
-- instead of Model_Epsilon and Expected.
Rel_Error := MRE * (abs Expected * Real'Model_Epsilon);
Abs_Error := MRE * Real'Model_Epsilon;
if Rel_Error > Abs_Error then
Max_Error := Rel_Error;
else
Max_Error := Abs_Error;
end if;
if abs (Actual - Expected) > Max_Error then
Accuracy_Error_Reported := True;
Report.Failed (Test_Name &
" actual: " & Real'Image (Actual) &
" expected: " & Real'Image (Expected) &
" difference: " & Real'Image (Actual - Expected) &
" max err:" & Real'Image (Max_Error) );
elsif Verbose then
if Actual = Expected then
Report.Comment (Test_Name & " exact result");
else
Report.Comment (Test_Name & " passed");
end if;
end if;
end Check;
procedure Check (Actual, Expected : Complex;
Test_Name : String;
MRE : Real) is
begin
Check (Actual.Re, Expected.Re, Test_Name & " real part", MRE);
Check (Actual.Im, Expected.Im, Test_Name & " imaginary part", MRE);
end Check;
procedure Special_Value_Test is
-- In the following tests the expected result is accurate
-- to the machine precision so the minimum guaranteed error
-- bound can be used if the argument is exact.
--
-- One or i is added to the actual and expected results in
-- order to prevent the expected result from having a
-- real or imaginary part of 0. This is to allow a reasonable
-- relative error for that component.
Minimum_Error : constant := 6.0;
Z1, Z2 : Complex;
begin
Check (Sqrt(9.0+0.0*i) + i,
3.0+1.0*i,
"sqrt(9+0i)+i",
Minimum_Error);
Check (Sqrt (-2.0 + 0.0 * i) + 1.0,
1.0 + Sqrt2 * i,
"sqrt(-2)+1 ",
Minimum_Error);
-- make sure no exception occurs when taking the sqrt of
-- very large and very small values.
Z1 := (Real'Safe_Last * 0.9, Real'Safe_Last * 0.9);
Z2 := Sqrt (Z1);
begin
Check (Z2 * Z2,
Z1,
"sqrt((big,big))",
Minimum_Error + 5.0); -- +5 for multiply
exception
when others =>
Report.Failed ("unexpected exception in sqrt((big,big))");
end;
Z1 := (Real'Model_Epsilon * 10.0, Real'Model_Epsilon * 10.0);
Z2 := Sqrt (Z1);
begin
Check (Z2 * Z2,
Z1,
"sqrt((little,little))",
Minimum_Error + 5.0); -- +5 for multiply
exception
when others =>
Report.Failed ("unexpected exception in " &
"sqrt((little,little))");
end;
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in special value test");
when others =>
Report.Failed ("exception in special value test");
end Special_Value_Test;
procedure Exact_Result_Test is
No_Error : constant := 0.0;
begin
-- G.1.2(36);6.0
Check (Sqrt(0.0 + 0.0*i), 0.0 + 0.0 * i, "sqrt(0+0i)", No_Error);
-- G.1.2(37);6.0
Check (Sqrt(1.0 + 0.0*i), 1.0 + 0.0 * i, "sqrt(1+0i)", No_Error);
-- G.1.2(38-39);6.0
Check (Sqrt(-1.0 + 0.0*i), 0.0 + 1.0 * i, "sqrt(-1+0i)", No_Error);
-- G.1.2(40);6.0
if Real'Signed_Zeros then
Check (Sqrt(-1.0-0.0*i), 0.0 - 1.0 * i, "sqrt(-1-0i)", No_Error);
end if;
exception
when Constraint_Error =>
Report.Failed ("Constraint_Error raised in Exact_Result Test");
when others =>
Report.Failed ("exception in Exact_Result Test");
end Exact_Result_Test;
procedure Identity_Test (RA, RB, IA, IB : Real) is
-- Tests an identity over a range of values specified
-- by the 4 parameters. RA and RB denote the range for the
-- real part while IA and IB denote the range for the
-- imaginary part of the result.
--
-- For this test we use the identity
-- Sqrt(Z*Z) = Z
--
Scale : Real := Real (Real'Machine_Radix) ** (Real'Mantissa / 2 + 4);
W, X, Y, Z : Real;
CX : Complex;
Actual, Expected : Complex;
begin
Accuracy_Error_Reported := False; -- reset
for II in 1..Max_Samples loop
X := (RB - RA) * Real (II) / Real (Max_Samples) + RA;
for J in 1..Max_Samples loop
Y := (IB - IA) * Real (J) / Real (Max_Samples) + IA;
-- purify the arguments to minimize roundoff error.
-- We construct the values so that the products X*X,
-- Y*Y, and X*Y are all exact machine numbers.
-- See Cody page 7 and CELEFUNT code.
Z := X * Scale;
W := Z + X;
X := W - Z;
Z := Y * Scale;
W := Z + Y;
Y := W - Z;
-- G.1.2(21);6.0 - real part of result is non-negative
Expected := Compose_From_Cartesian( abs X,Y);
Z := X*X - Y*Y;
W := X*Y;
CX := Compose_From_Cartesian(Z,W+W);
-- The arguments are now ready so on with the
-- identity computation.
Actual := Sqrt(CX);
Check (Actual, Expected,
"Identity_1_Test " & Integer'Image (II) &
Integer'Image (J) & ": Sqrt((" &
Real'Image (CX.Re) & ", " &
Real'Image (CX.Im) & ")) ",
8.5); -- 6.0 from sqrt, 2.5 from argument.
-- See Cody pg 7-8 for analysis of additional error amount.
if Accuracy_Error_Reported then
-- only report the first error in this test in order to keep
-- lots of failures from producing a huge error log
return;
end if;
end loop;
end loop;
exception
when Constraint_Error =>
Report.Failed
("Constraint_Error raised in Identity_Test" &
" for X=(" & Real'Image (X) &
", " & Real'Image (X) & ")");
when others =>
Report.Failed ("exception in Identity_Test" &
" for X=(" & Real'Image (X) &
", " & Real'Image (X) & ")");
end Identity_Test;
procedure Do_Test is
begin
Special_Value_Test;
Exact_Result_Test;
-- ranges where the sign is the same and where it
-- differs.
Identity_Test ( 0.0, 10.0, 0.0, 10.0);
Identity_Test ( 0.0, 100.0, -100.0, 0.0);
end Do_Test;
end Generic_Check;
-----------------------------------------------------------------------
-----------------------------------------------------------------------
package Float_Check is new Generic_Check (Float);
-- check the floating point type with the most digits
type A_Long_Float is digits System.Max_Digits;
package A_Long_Float_Check is new Generic_Check (A_Long_Float);
-----------------------------------------------------------------------
-----------------------------------------------------------------------
begin
Report.Test ("CXG2020",
"Check the accuracy of the complex SQRT function");
if Verbose then
Report.Comment ("checking Standard.Float");
end if;
Float_Check.Do_Test;
if Verbose then
Report.Comment ("checking a digits" &
Integer'Image (System.Max_Digits) &
" floating point type");
end if;
A_Long_Float_Check.Do_Test;
Report.Result;
end CXG2020;