URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [tree-ssa-pre.c] - Rev 309
Go to most recent revision | Compare with Previous | Blame | View Log
/* SSA-PRE for trees. Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher <stevenb@suse.de> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "ggc.h" #include "tree.h" #include "basic-block.h" #include "diagnostic.h" #include "tree-inline.h" #include "tree-flow.h" #include "gimple.h" #include "tree-dump.h" #include "timevar.h" #include "fibheap.h" #include "hashtab.h" #include "tree-iterator.h" #include "real.h" #include "alloc-pool.h" #include "obstack.h" #include "tree-pass.h" #include "flags.h" #include "bitmap.h" #include "langhooks.h" #include "cfgloop.h" #include "tree-ssa-sccvn.h" #include "tree-scalar-evolution.h" #include "params.h" #include "dbgcnt.h" /* TODO: 1. Avail sets can be shared by making an avail_find_leader that walks up the dominator tree and looks in those avail sets. This might affect code optimality, it's unclear right now. 2. Strength reduction can be performed by anticipating expressions we can repair later on. 3. We can do back-substitution or smarter value numbering to catch commutative expressions split up over multiple statements. */ /* For ease of terminology, "expression node" in the below refers to every expression node but GIMPLE_ASSIGN, because GIMPLE_ASSIGNs represent the actual statement containing the expressions we care about, and we cache the value number by putting it in the expression. */ /* Basic algorithm First we walk the statements to generate the AVAIL sets, the EXP_GEN sets, and the tmp_gen sets. EXP_GEN sets represent the generation of values/expressions by a given block. We use them when computing the ANTIC sets. The AVAIL sets consist of SSA_NAME's that represent values, so we know what values are available in what blocks. AVAIL is a forward dataflow problem. In SSA, values are never killed, so we don't need a kill set, or a fixpoint iteration, in order to calculate the AVAIL sets. In traditional parlance, AVAIL sets tell us the downsafety of the expressions/values. Next, we generate the ANTIC sets. These sets represent the anticipatable expressions. ANTIC is a backwards dataflow problem. An expression is anticipatable in a given block if it could be generated in that block. This means that if we had to perform an insertion in that block, of the value of that expression, we could. Calculating the ANTIC sets requires phi translation of expressions, because the flow goes backwards through phis. We must iterate to a fixpoint of the ANTIC sets, because we have a kill set. Even in SSA form, values are not live over the entire function, only from their definition point onwards. So we have to remove values from the ANTIC set once we go past the definition point of the leaders that make them up. compute_antic/compute_antic_aux performs this computation. Third, we perform insertions to make partially redundant expressions fully redundant. An expression is partially redundant (excluding partial anticipation) if: 1. It is AVAIL in some, but not all, of the predecessors of a given block. 2. It is ANTIC in all the predecessors. In order to make it fully redundant, we insert the expression into the predecessors where it is not available, but is ANTIC. For the partial anticipation case, we only perform insertion if it is partially anticipated in some block, and fully available in all of the predecessors. insert/insert_aux/do_regular_insertion/do_partial_partial_insertion performs these steps. Fourth, we eliminate fully redundant expressions. This is a simple statement walk that replaces redundant calculations with the now available values. */ /* Representations of value numbers: Value numbers are represented by a representative SSA_NAME. We will create fake SSA_NAME's in situations where we need a representative but do not have one (because it is a complex expression). In order to facilitate storing the value numbers in bitmaps, and keep the number of wasted SSA_NAME's down, we also associate a value_id with each value number, and create full blown ssa_name's only where we actually need them (IE in operands of existing expressions). Theoretically you could replace all the value_id's with SSA_NAME_VERSION, but this would allocate a large number of SSA_NAME's (which are each > 30 bytes) just to get a 4 byte number. It would also require an additional indirection at each point we use the value id. */ /* Representation of expressions on value numbers: Expressions consisting of value numbers are represented the same way as our VN internally represents them, with an additional "pre_expr" wrapping around them in order to facilitate storing all of the expressions in the same sets. */ /* Representation of sets: The dataflow sets do not need to be sorted in any particular order for the majority of their lifetime, are simply represented as two bitmaps, one that keeps track of values present in the set, and one that keeps track of expressions present in the set. When we need them in topological order, we produce it on demand by transforming the bitmap into an array and sorting it into topo order. */ /* Type of expression, used to know which member of the PRE_EXPR union is valid. */ enum pre_expr_kind { NAME, NARY, REFERENCE, CONSTANT }; typedef union pre_expr_union_d { tree name; tree constant; vn_nary_op_t nary; vn_reference_t reference; } pre_expr_union; typedef struct pre_expr_d { enum pre_expr_kind kind; unsigned int id; pre_expr_union u; } *pre_expr; #define PRE_EXPR_NAME(e) (e)->u.name #define PRE_EXPR_NARY(e) (e)->u.nary #define PRE_EXPR_REFERENCE(e) (e)->u.reference #define PRE_EXPR_CONSTANT(e) (e)->u.constant static int pre_expr_eq (const void *p1, const void *p2) { const struct pre_expr_d *e1 = (const struct pre_expr_d *) p1; const struct pre_expr_d *e2 = (const struct pre_expr_d *) p2; if (e1->kind != e2->kind) return false; switch (e1->kind) { case CONSTANT: return vn_constant_eq_with_type (PRE_EXPR_CONSTANT (e1), PRE_EXPR_CONSTANT (e2)); case NAME: return PRE_EXPR_NAME (e1) == PRE_EXPR_NAME (e2); case NARY: return vn_nary_op_eq (PRE_EXPR_NARY (e1), PRE_EXPR_NARY (e2)); case REFERENCE: return vn_reference_eq (PRE_EXPR_REFERENCE (e1), PRE_EXPR_REFERENCE (e2)); default: gcc_unreachable (); } } static hashval_t pre_expr_hash (const void *p1) { const struct pre_expr_d *e = (const struct pre_expr_d *) p1; switch (e->kind) { case CONSTANT: return vn_hash_constant_with_type (PRE_EXPR_CONSTANT (e)); case NAME: return SSA_NAME_VERSION (PRE_EXPR_NAME (e)); case NARY: return PRE_EXPR_NARY (e)->hashcode; case REFERENCE: return PRE_EXPR_REFERENCE (e)->hashcode; default: gcc_unreachable (); } } /* Next global expression id number. */ static unsigned int next_expression_id; /* Mapping from expression to id number we can use in bitmap sets. */ DEF_VEC_P (pre_expr); DEF_VEC_ALLOC_P (pre_expr, heap); static VEC(pre_expr, heap) *expressions; static htab_t expression_to_id; static VEC(unsigned, heap) *name_to_id; /* Allocate an expression id for EXPR. */ static inline unsigned int alloc_expression_id (pre_expr expr) { void **slot; /* Make sure we won't overflow. */ gcc_assert (next_expression_id + 1 > next_expression_id); expr->id = next_expression_id++; VEC_safe_push (pre_expr, heap, expressions, expr); if (expr->kind == NAME) { unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr)); /* VEC_safe_grow_cleared allocates no headroom. Avoid frequent re-allocations by using VEC_reserve upfront. There is no VEC_quick_grow_cleared unfortunately. */ VEC_reserve (unsigned, heap, name_to_id, num_ssa_names); VEC_safe_grow_cleared (unsigned, heap, name_to_id, num_ssa_names); gcc_assert (VEC_index (unsigned, name_to_id, version) == 0); VEC_replace (unsigned, name_to_id, version, expr->id); } else { slot = htab_find_slot (expression_to_id, expr, INSERT); gcc_assert (!*slot); *slot = expr; } return next_expression_id - 1; } /* Return the expression id for tree EXPR. */ static inline unsigned int get_expression_id (const pre_expr expr) { return expr->id; } static inline unsigned int lookup_expression_id (const pre_expr expr) { void **slot; if (expr->kind == NAME) { unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr)); if (VEC_length (unsigned, name_to_id) <= version) return 0; return VEC_index (unsigned, name_to_id, version); } else { slot = htab_find_slot (expression_to_id, expr, NO_INSERT); if (!slot) return 0; return ((pre_expr)*slot)->id; } } /* Return the existing expression id for EXPR, or create one if one does not exist yet. */ static inline unsigned int get_or_alloc_expression_id (pre_expr expr) { unsigned int id = lookup_expression_id (expr); if (id == 0) return alloc_expression_id (expr); return expr->id = id; } /* Return the expression that has expression id ID */ static inline pre_expr expression_for_id (unsigned int id) { return VEC_index (pre_expr, expressions, id); } /* Free the expression id field in all of our expressions, and then destroy the expressions array. */ static void clear_expression_ids (void) { VEC_free (pre_expr, heap, expressions); } static alloc_pool pre_expr_pool; /* Given an SSA_NAME NAME, get or create a pre_expr to represent it. */ static pre_expr get_or_alloc_expr_for_name (tree name) { struct pre_expr_d expr; pre_expr result; unsigned int result_id; expr.kind = NAME; expr.id = 0; PRE_EXPR_NAME (&expr) = name; result_id = lookup_expression_id (&expr); if (result_id != 0) return expression_for_id (result_id); result = (pre_expr) pool_alloc (pre_expr_pool); result->kind = NAME; PRE_EXPR_NAME (result) = name; alloc_expression_id (result); return result; } static bool in_fre = false; /* An unordered bitmap set. One bitmap tracks values, the other, expressions. */ typedef struct bitmap_set { bitmap expressions; bitmap values; } *bitmap_set_t; #define FOR_EACH_EXPR_ID_IN_SET(set, id, bi) \ EXECUTE_IF_SET_IN_BITMAP((set)->expressions, 0, (id), (bi)) #define FOR_EACH_VALUE_ID_IN_SET(set, id, bi) \ EXECUTE_IF_SET_IN_BITMAP((set)->values, 0, (id), (bi)) /* Mapping from value id to expressions with that value_id. */ DEF_VEC_P (bitmap_set_t); DEF_VEC_ALLOC_P (bitmap_set_t, heap); static VEC(bitmap_set_t, heap) *value_expressions; /* Sets that we need to keep track of. */ typedef struct bb_bitmap_sets { /* The EXP_GEN set, which represents expressions/values generated in a basic block. */ bitmap_set_t exp_gen; /* The PHI_GEN set, which represents PHI results generated in a basic block. */ bitmap_set_t phi_gen; /* The TMP_GEN set, which represents results/temporaries generated in a basic block. IE the LHS of an expression. */ bitmap_set_t tmp_gen; /* The AVAIL_OUT set, which represents which values are available in a given basic block. */ bitmap_set_t avail_out; /* The ANTIC_IN set, which represents which values are anticipatable in a given basic block. */ bitmap_set_t antic_in; /* The PA_IN set, which represents which values are partially anticipatable in a given basic block. */ bitmap_set_t pa_in; /* The NEW_SETS set, which is used during insertion to augment the AVAIL_OUT set of blocks with the new insertions performed during the current iteration. */ bitmap_set_t new_sets; /* A cache for value_dies_in_block_x. */ bitmap expr_dies; /* True if we have visited this block during ANTIC calculation. */ unsigned int visited : 1; /* True we have deferred processing this block during ANTIC calculation until its successor is processed. */ unsigned int deferred : 1; /* True when the block contains a call that might not return. */ unsigned int contains_may_not_return_call : 1; } *bb_value_sets_t; #define EXP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->exp_gen #define PHI_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->phi_gen #define TMP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->tmp_gen #define AVAIL_OUT(BB) ((bb_value_sets_t) ((BB)->aux))->avail_out #define ANTIC_IN(BB) ((bb_value_sets_t) ((BB)->aux))->antic_in #define PA_IN(BB) ((bb_value_sets_t) ((BB)->aux))->pa_in #define NEW_SETS(BB) ((bb_value_sets_t) ((BB)->aux))->new_sets #define EXPR_DIES(BB) ((bb_value_sets_t) ((BB)->aux))->expr_dies #define BB_VISITED(BB) ((bb_value_sets_t) ((BB)->aux))->visited #define BB_DEFERRED(BB) ((bb_value_sets_t) ((BB)->aux))->deferred #define BB_MAY_NOTRETURN(BB) ((bb_value_sets_t) ((BB)->aux))->contains_may_not_return_call /* Basic block list in postorder. */ static int *postorder; /* This structure is used to keep track of statistics on what optimization PRE was able to perform. */ static struct { /* The number of RHS computations eliminated by PRE. */ int eliminations; /* The number of new expressions/temporaries generated by PRE. */ int insertions; /* The number of inserts found due to partial anticipation */ int pa_insert; /* The number of new PHI nodes added by PRE. */ int phis; /* The number of values found constant. */ int constified; } pre_stats; static bool do_partial_partial; static pre_expr bitmap_find_leader (bitmap_set_t, unsigned int, gimple); static void bitmap_value_insert_into_set (bitmap_set_t, pre_expr); static void bitmap_value_replace_in_set (bitmap_set_t, pre_expr); static void bitmap_set_copy (bitmap_set_t, bitmap_set_t); static bool bitmap_set_contains_value (bitmap_set_t, unsigned int); static void bitmap_insert_into_set (bitmap_set_t, pre_expr); static void bitmap_insert_into_set_1 (bitmap_set_t, pre_expr, unsigned int, bool); static bitmap_set_t bitmap_set_new (void); static tree create_expression_by_pieces (basic_block, pre_expr, gimple_seq *, gimple, tree); static tree find_or_generate_expression (basic_block, pre_expr, gimple_seq *, gimple); static unsigned int get_expr_value_id (pre_expr); /* We can add and remove elements and entries to and from sets and hash tables, so we use alloc pools for them. */ static alloc_pool bitmap_set_pool; static bitmap_obstack grand_bitmap_obstack; /* To avoid adding 300 temporary variables when we only need one, we only create one temporary variable, on demand, and build ssa names off that. We do have to change the variable if the types don't match the current variable's type. */ static tree pretemp; static tree storetemp; static tree prephitemp; /* Set of blocks with statements that have had its EH information cleaned up. */ static bitmap need_eh_cleanup; /* The phi_translate_table caches phi translations for a given expression and predecessor. */ static htab_t phi_translate_table; /* A three tuple {e, pred, v} used to cache phi translations in the phi_translate_table. */ typedef struct expr_pred_trans_d { /* The expression. */ pre_expr e; /* The predecessor block along which we translated the expression. */ basic_block pred; /* The value that resulted from the translation. */ pre_expr v; /* The hashcode for the expression, pred pair. This is cached for speed reasons. */ hashval_t hashcode; } *expr_pred_trans_t; typedef const struct expr_pred_trans_d *const_expr_pred_trans_t; /* Return the hash value for a phi translation table entry. */ static hashval_t expr_pred_trans_hash (const void *p) { const_expr_pred_trans_t const ve = (const_expr_pred_trans_t) p; return ve->hashcode; } /* Return true if two phi translation table entries are the same. P1 and P2 should point to the expr_pred_trans_t's to be compared.*/ static int expr_pred_trans_eq (const void *p1, const void *p2) { const_expr_pred_trans_t const ve1 = (const_expr_pred_trans_t) p1; const_expr_pred_trans_t const ve2 = (const_expr_pred_trans_t) p2; basic_block b1 = ve1->pred; basic_block b2 = ve2->pred; /* If they are not translations for the same basic block, they can't be equal. */ if (b1 != b2) return false; return pre_expr_eq (ve1->e, ve2->e); } /* Search in the phi translation table for the translation of expression E in basic block PRED. Return the translated value, if found, NULL otherwise. */ static inline pre_expr phi_trans_lookup (pre_expr e, basic_block pred) { void **slot; struct expr_pred_trans_d ept; ept.e = e; ept.pred = pred; ept.hashcode = iterative_hash_hashval_t (pre_expr_hash (e), pred->index); slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode, NO_INSERT); if (!slot) return NULL; else return ((expr_pred_trans_t) *slot)->v; } /* Add the tuple mapping from {expression E, basic block PRED} to value V, to the phi translation table. */ static inline void phi_trans_add (pre_expr e, pre_expr v, basic_block pred) { void **slot; expr_pred_trans_t new_pair = XNEW (struct expr_pred_trans_d); new_pair->e = e; new_pair->pred = pred; new_pair->v = v; new_pair->hashcode = iterative_hash_hashval_t (pre_expr_hash (e), pred->index); slot = htab_find_slot_with_hash (phi_translate_table, new_pair, new_pair->hashcode, INSERT); if (*slot) free (*slot); *slot = (void *) new_pair; } /* Add expression E to the expression set of value id V. */ void add_to_value (unsigned int v, pre_expr e) { bitmap_set_t set; gcc_assert (get_expr_value_id (e) == v); if (v >= VEC_length (bitmap_set_t, value_expressions)) { VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions, v + 1); } set = VEC_index (bitmap_set_t, value_expressions, v); if (!set) { set = bitmap_set_new (); VEC_replace (bitmap_set_t, value_expressions, v, set); } bitmap_insert_into_set_1 (set, e, v, true); } /* Create a new bitmap set and return it. */ static bitmap_set_t bitmap_set_new (void) { bitmap_set_t ret = (bitmap_set_t) pool_alloc (bitmap_set_pool); ret->expressions = BITMAP_ALLOC (&grand_bitmap_obstack); ret->values = BITMAP_ALLOC (&grand_bitmap_obstack); return ret; } /* Return the value id for a PRE expression EXPR. */ static unsigned int get_expr_value_id (pre_expr expr) { switch (expr->kind) { case CONSTANT: { unsigned int id; id = get_constant_value_id (PRE_EXPR_CONSTANT (expr)); if (id == 0) { id = get_or_alloc_constant_value_id (PRE_EXPR_CONSTANT (expr)); add_to_value (id, expr); } return id; } case NAME: return VN_INFO (PRE_EXPR_NAME (expr))->value_id; case NARY: return PRE_EXPR_NARY (expr)->value_id; case REFERENCE: return PRE_EXPR_REFERENCE (expr)->value_id; default: gcc_unreachable (); } } /* Remove an expression EXPR from a bitmapped set. */ static void bitmap_remove_from_set (bitmap_set_t set, pre_expr expr) { unsigned int val = get_expr_value_id (expr); if (!value_id_constant_p (val)) { bitmap_clear_bit (set->values, val); bitmap_clear_bit (set->expressions, get_expression_id (expr)); } } static void bitmap_insert_into_set_1 (bitmap_set_t set, pre_expr expr, unsigned int val, bool allow_constants) { if (allow_constants || !value_id_constant_p (val)) { /* We specifically expect this and only this function to be able to insert constants into a set. */ bitmap_set_bit (set->values, val); bitmap_set_bit (set->expressions, get_or_alloc_expression_id (expr)); } } /* Insert an expression EXPR into a bitmapped set. */ static void bitmap_insert_into_set (bitmap_set_t set, pre_expr expr) { bitmap_insert_into_set_1 (set, expr, get_expr_value_id (expr), false); } /* Copy a bitmapped set ORIG, into bitmapped set DEST. */ static void bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig) { bitmap_copy (dest->expressions, orig->expressions); bitmap_copy (dest->values, orig->values); } /* Free memory used up by SET. */ static void bitmap_set_free (bitmap_set_t set) { BITMAP_FREE (set->expressions); BITMAP_FREE (set->values); } /* Generate an topological-ordered array of bitmap set SET. */ static VEC(pre_expr, heap) * sorted_array_from_bitmap_set (bitmap_set_t set) { unsigned int i, j; bitmap_iterator bi, bj; VEC(pre_expr, heap) *result; /* Pre-allocate roughly enough space for the array. */ result = VEC_alloc (pre_expr, heap, bitmap_count_bits (set->values)); FOR_EACH_VALUE_ID_IN_SET (set, i, bi) { /* The number of expressions having a given value is usually relatively small. Thus, rather than making a vector of all the expressions and sorting it by value-id, we walk the values and check in the reverse mapping that tells us what expressions have a given value, to filter those in our set. As a result, the expressions are inserted in value-id order, which means topological order. If this is somehow a significant lose for some cases, we can choose which set to walk based on the set size. */ bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, i); FOR_EACH_EXPR_ID_IN_SET (exprset, j, bj) { if (bitmap_bit_p (set->expressions, j)) VEC_safe_push (pre_expr, heap, result, expression_for_id (j)); } } return result; } /* Perform bitmapped set operation DEST &= ORIG. */ static void bitmap_set_and (bitmap_set_t dest, bitmap_set_t orig) { bitmap_iterator bi; unsigned int i; if (dest != orig) { bitmap temp = BITMAP_ALLOC (&grand_bitmap_obstack); bitmap_and_into (dest->values, orig->values); bitmap_copy (temp, dest->expressions); EXECUTE_IF_SET_IN_BITMAP (temp, 0, i, bi) { pre_expr expr = expression_for_id (i); unsigned int value_id = get_expr_value_id (expr); if (!bitmap_bit_p (dest->values, value_id)) bitmap_clear_bit (dest->expressions, i); } BITMAP_FREE (temp); } } /* Subtract all values and expressions contained in ORIG from DEST. */ static bitmap_set_t bitmap_set_subtract (bitmap_set_t dest, bitmap_set_t orig) { bitmap_set_t result = bitmap_set_new (); bitmap_iterator bi; unsigned int i; bitmap_and_compl (result->expressions, dest->expressions, orig->expressions); FOR_EACH_EXPR_ID_IN_SET (result, i, bi) { pre_expr expr = expression_for_id (i); unsigned int value_id = get_expr_value_id (expr); bitmap_set_bit (result->values, value_id); } return result; } /* Subtract all the values in bitmap set B from bitmap set A. */ static void bitmap_set_subtract_values (bitmap_set_t a, bitmap_set_t b) { unsigned int i; bitmap_iterator bi; bitmap temp = BITMAP_ALLOC (&grand_bitmap_obstack); bitmap_copy (temp, a->expressions); EXECUTE_IF_SET_IN_BITMAP (temp, 0, i, bi) { pre_expr expr = expression_for_id (i); if (bitmap_set_contains_value (b, get_expr_value_id (expr))) bitmap_remove_from_set (a, expr); } BITMAP_FREE (temp); } /* Return true if bitmapped set SET contains the value VALUE_ID. */ static bool bitmap_set_contains_value (bitmap_set_t set, unsigned int value_id) { if (value_id_constant_p (value_id)) return true; if (!set || bitmap_empty_p (set->expressions)) return false; return bitmap_bit_p (set->values, value_id); } static inline bool bitmap_set_contains_expr (bitmap_set_t set, const pre_expr expr) { return bitmap_bit_p (set->expressions, get_expression_id (expr)); } /* Replace an instance of value LOOKFOR with expression EXPR in SET. */ static void bitmap_set_replace_value (bitmap_set_t set, unsigned int lookfor, const pre_expr expr) { bitmap_set_t exprset; unsigned int i; bitmap_iterator bi; if (value_id_constant_p (lookfor)) return; if (!bitmap_set_contains_value (set, lookfor)) return; /* The number of expressions having a given value is usually significantly less than the total number of expressions in SET. Thus, rather than check, for each expression in SET, whether it has the value LOOKFOR, we walk the reverse mapping that tells us what expressions have a given value, and see if any of those expressions are in our set. For large testcases, this is about 5-10x faster than walking the bitmap. If this is somehow a significant lose for some cases, we can choose which set to walk based on the set size. */ exprset = VEC_index (bitmap_set_t, value_expressions, lookfor); FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi) { if (bitmap_bit_p (set->expressions, i)) { bitmap_clear_bit (set->expressions, i); bitmap_set_bit (set->expressions, get_expression_id (expr)); return; } } } /* Return true if two bitmap sets are equal. */ static bool bitmap_set_equal (bitmap_set_t a, bitmap_set_t b) { return bitmap_equal_p (a->values, b->values); } /* Replace an instance of EXPR's VALUE with EXPR in SET if it exists, and add it otherwise. */ static void bitmap_value_replace_in_set (bitmap_set_t set, pre_expr expr) { unsigned int val = get_expr_value_id (expr); if (bitmap_set_contains_value (set, val)) bitmap_set_replace_value (set, val, expr); else bitmap_insert_into_set (set, expr); } /* Insert EXPR into SET if EXPR's value is not already present in SET. */ static void bitmap_value_insert_into_set (bitmap_set_t set, pre_expr expr) { unsigned int val = get_expr_value_id (expr); #ifdef ENABLE_CHECKING gcc_assert (expr->id == get_or_alloc_expression_id (expr)); #endif /* Constant values are always considered to be part of the set. */ if (value_id_constant_p (val)) return; /* If the value membership changed, add the expression. */ if (bitmap_set_bit (set->values, val)) bitmap_set_bit (set->expressions, expr->id); } /* Print out EXPR to outfile. */ static void print_pre_expr (FILE *outfile, const pre_expr expr) { switch (expr->kind) { case CONSTANT: print_generic_expr (outfile, PRE_EXPR_CONSTANT (expr), 0); break; case NAME: print_generic_expr (outfile, PRE_EXPR_NAME (expr), 0); break; case NARY: { unsigned int i; vn_nary_op_t nary = PRE_EXPR_NARY (expr); fprintf (outfile, "{%s,", tree_code_name [nary->opcode]); for (i = 0; i < nary->length; i++) { print_generic_expr (outfile, nary->op[i], 0); if (i != (unsigned) nary->length - 1) fprintf (outfile, ","); } fprintf (outfile, "}"); } break; case REFERENCE: { vn_reference_op_t vro; unsigned int i; vn_reference_t ref = PRE_EXPR_REFERENCE (expr); fprintf (outfile, "{"); for (i = 0; VEC_iterate (vn_reference_op_s, ref->operands, i, vro); i++) { bool closebrace = false; if (vro->opcode != SSA_NAME && TREE_CODE_CLASS (vro->opcode) != tcc_declaration) { fprintf (outfile, "%s", tree_code_name [vro->opcode]); if (vro->op0) { fprintf (outfile, "<"); closebrace = true; } } if (vro->op0) { print_generic_expr (outfile, vro->op0, 0); if (vro->op1) { fprintf (outfile, ","); print_generic_expr (outfile, vro->op1, 0); } if (vro->op2) { fprintf (outfile, ","); print_generic_expr (outfile, vro->op2, 0); } } if (closebrace) fprintf (outfile, ">"); if (i != VEC_length (vn_reference_op_s, ref->operands) - 1) fprintf (outfile, ","); } fprintf (outfile, "}"); if (ref->vuse) { fprintf (outfile, "@"); print_generic_expr (outfile, ref->vuse, 0); } } break; } } void debug_pre_expr (pre_expr); /* Like print_pre_expr but always prints to stderr. */ void debug_pre_expr (pre_expr e) { print_pre_expr (stderr, e); fprintf (stderr, "\n"); } /* Print out SET to OUTFILE. */ static void print_bitmap_set (FILE *outfile, bitmap_set_t set, const char *setname, int blockindex) { fprintf (outfile, "%s[%d] := { ", setname, blockindex); if (set) { bool first = true; unsigned i; bitmap_iterator bi; FOR_EACH_EXPR_ID_IN_SET (set, i, bi) { const pre_expr expr = expression_for_id (i); if (!first) fprintf (outfile, ", "); first = false; print_pre_expr (outfile, expr); fprintf (outfile, " (%04d)", get_expr_value_id (expr)); } } fprintf (outfile, " }\n"); } void debug_bitmap_set (bitmap_set_t); void debug_bitmap_set (bitmap_set_t set) { print_bitmap_set (stderr, set, "debug", 0); } /* Print out the expressions that have VAL to OUTFILE. */ void print_value_expressions (FILE *outfile, unsigned int val) { bitmap_set_t set = VEC_index (bitmap_set_t, value_expressions, val); if (set) { char s[10]; sprintf (s, "%04d", val); print_bitmap_set (outfile, set, s, 0); } } void debug_value_expressions (unsigned int val) { print_value_expressions (stderr, val); } /* Given a CONSTANT, allocate a new CONSTANT type PRE_EXPR to represent it. */ static pre_expr get_or_alloc_expr_for_constant (tree constant) { unsigned int result_id; unsigned int value_id; struct pre_expr_d expr; pre_expr newexpr; expr.kind = CONSTANT; PRE_EXPR_CONSTANT (&expr) = constant; result_id = lookup_expression_id (&expr); if (result_id != 0) return expression_for_id (result_id); newexpr = (pre_expr) pool_alloc (pre_expr_pool); newexpr->kind = CONSTANT; PRE_EXPR_CONSTANT (newexpr) = constant; alloc_expression_id (newexpr); value_id = get_or_alloc_constant_value_id (constant); add_to_value (value_id, newexpr); return newexpr; } /* Given a value id V, find the actual tree representing the constant value if there is one, and return it. Return NULL if we can't find a constant. */ static tree get_constant_for_value_id (unsigned int v) { if (value_id_constant_p (v)) { unsigned int i; bitmap_iterator bi; bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, v); FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi) { pre_expr expr = expression_for_id (i); if (expr->kind == CONSTANT) return PRE_EXPR_CONSTANT (expr); } } return NULL; } /* Get or allocate a pre_expr for a piece of GIMPLE, and return it. Currently only supports constants and SSA_NAMES. */ static pre_expr get_or_alloc_expr_for (tree t) { if (TREE_CODE (t) == SSA_NAME) return get_or_alloc_expr_for_name (t); else if (is_gimple_min_invariant (t)) return get_or_alloc_expr_for_constant (t); else { /* More complex expressions can result from SCCVN expression simplification that inserts values for them. As they all do not have VOPs the get handled by the nary ops struct. */ vn_nary_op_t result; unsigned int result_id; vn_nary_op_lookup (t, &result); if (result != NULL) { pre_expr e = (pre_expr) pool_alloc (pre_expr_pool); e->kind = NARY; PRE_EXPR_NARY (e) = result; result_id = lookup_expression_id (e); if (result_id != 0) { pool_free (pre_expr_pool, e); e = expression_for_id (result_id); return e; } alloc_expression_id (e); return e; } } return NULL; } /* Return the folded version of T if T, when folded, is a gimple min_invariant. Otherwise, return T. */ static pre_expr fully_constant_expression (pre_expr e) { switch (e->kind) { case CONSTANT: return e; case NARY: { vn_nary_op_t nary = PRE_EXPR_NARY (e); switch (TREE_CODE_CLASS (nary->opcode)) { case tcc_expression: if (nary->opcode == TRUTH_NOT_EXPR) goto do_unary; if (nary->opcode != TRUTH_AND_EXPR && nary->opcode != TRUTH_OR_EXPR && nary->opcode != TRUTH_XOR_EXPR) return e; /* Fallthrough. */ case tcc_binary: case tcc_comparison: { /* We have to go from trees to pre exprs to value ids to constants. */ tree naryop0 = nary->op[0]; tree naryop1 = nary->op[1]; tree result; if (!is_gimple_min_invariant (naryop0)) { pre_expr rep0 = get_or_alloc_expr_for (naryop0); unsigned int vrep0 = get_expr_value_id (rep0); tree const0 = get_constant_for_value_id (vrep0); if (const0) naryop0 = fold_convert (TREE_TYPE (naryop0), const0); } if (!is_gimple_min_invariant (naryop1)) { pre_expr rep1 = get_or_alloc_expr_for (naryop1); unsigned int vrep1 = get_expr_value_id (rep1); tree const1 = get_constant_for_value_id (vrep1); if (const1) naryop1 = fold_convert (TREE_TYPE (naryop1), const1); } result = fold_binary (nary->opcode, nary->type, naryop0, naryop1); if (result && is_gimple_min_invariant (result)) return get_or_alloc_expr_for_constant (result); /* We might have simplified the expression to a SSA_NAME for example from x_1 * 1. But we cannot insert a PHI for x_1 unconditionally as x_1 might not be available readily. */ return e; } case tcc_reference: if (nary->opcode != REALPART_EXPR && nary->opcode != IMAGPART_EXPR && nary->opcode != VIEW_CONVERT_EXPR) return e; /* Fallthrough. */ case tcc_unary: do_unary: { /* We have to go from trees to pre exprs to value ids to constants. */ tree naryop0 = nary->op[0]; tree const0, result; if (is_gimple_min_invariant (naryop0)) const0 = naryop0; else { pre_expr rep0 = get_or_alloc_expr_for (naryop0); unsigned int vrep0 = get_expr_value_id (rep0); const0 = get_constant_for_value_id (vrep0); } result = NULL; if (const0) { tree type1 = TREE_TYPE (nary->op[0]); const0 = fold_convert (type1, const0); result = fold_unary (nary->opcode, nary->type, const0); } if (result && is_gimple_min_invariant (result)) return get_or_alloc_expr_for_constant (result); return e; } default: return e; } } case REFERENCE: { vn_reference_t ref = PRE_EXPR_REFERENCE (e); VEC (vn_reference_op_s, heap) *operands = ref->operands; vn_reference_op_t op; /* Try to simplify the translated expression if it is a call to a builtin function with at most two arguments. */ op = VEC_index (vn_reference_op_s, operands, 0); if (op->opcode == CALL_EXPR && TREE_CODE (op->op0) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (op->op0, 0)) == FUNCTION_DECL && DECL_BUILT_IN (TREE_OPERAND (op->op0, 0)) && VEC_length (vn_reference_op_s, operands) >= 2 && VEC_length (vn_reference_op_s, operands) <= 3) { vn_reference_op_t arg0, arg1 = NULL; bool anyconst = false; arg0 = VEC_index (vn_reference_op_s, operands, 1); if (VEC_length (vn_reference_op_s, operands) > 2) arg1 = VEC_index (vn_reference_op_s, operands, 2); if (TREE_CODE_CLASS (arg0->opcode) == tcc_constant || (arg0->opcode == ADDR_EXPR && is_gimple_min_invariant (arg0->op0))) anyconst = true; if (arg1 && (TREE_CODE_CLASS (arg1->opcode) == tcc_constant || (arg1->opcode == ADDR_EXPR && is_gimple_min_invariant (arg1->op0)))) anyconst = true; if (anyconst) { tree folded = build_call_expr (TREE_OPERAND (op->op0, 0), arg1 ? 2 : 1, arg0->op0, arg1 ? arg1->op0 : NULL); if (folded && TREE_CODE (folded) == NOP_EXPR) folded = TREE_OPERAND (folded, 0); if (folded && is_gimple_min_invariant (folded)) return get_or_alloc_expr_for_constant (folded); } } return e; } default: return e; } return e; } /* Translate the VUSE backwards through phi nodes in PHIBLOCK, so that it has the value it would have in BLOCK. Set *SAME_VALID to true in case the new vuse doesn't change the value id of the OPERANDS. */ static tree translate_vuse_through_block (VEC (vn_reference_op_s, heap) *operands, alias_set_type set, tree type, tree vuse, basic_block phiblock, basic_block block, bool *same_valid) { gimple phi = SSA_NAME_DEF_STMT (vuse); ao_ref ref; edge e = NULL; bool use_oracle; *same_valid = true; if (gimple_bb (phi) != phiblock) return vuse; use_oracle = ao_ref_init_from_vn_reference (&ref, set, type, operands); /* Use the alias-oracle to find either the PHI node in this block, the first VUSE used in this block that is equivalent to vuse or the first VUSE which definition in this block kills the value. */ if (gimple_code (phi) == GIMPLE_PHI) e = find_edge (block, phiblock); else if (use_oracle) while (!stmt_may_clobber_ref_p_1 (phi, &ref)) { vuse = gimple_vuse (phi); phi = SSA_NAME_DEF_STMT (vuse); if (gimple_bb (phi) != phiblock) return vuse; if (gimple_code (phi) == GIMPLE_PHI) { e = find_edge (block, phiblock); break; } } else return NULL_TREE; if (e) { if (use_oracle) { bitmap visited = NULL; /* Try to find a vuse that dominates this phi node by skipping non-clobbering statements. */ vuse = get_continuation_for_phi (phi, &ref, &visited); if (visited) BITMAP_FREE (visited); } else vuse = NULL_TREE; if (!vuse) { /* If we didn't find any, the value ID can't stay the same, but return the translated vuse. */ *same_valid = false; vuse = PHI_ARG_DEF (phi, e->dest_idx); } /* ??? We would like to return vuse here as this is the canonical upmost vdef that this reference is associated with. But during insertion of the references into the hash tables we only ever directly insert with their direct gimple_vuse, hence returning something else would make us not find the other expression. */ return PHI_ARG_DEF (phi, e->dest_idx); } return NULL_TREE; } /* Like bitmap_find_leader, but checks for the value existing in SET1 *or* SET2. This is used to avoid making a set consisting of the union of PA_IN and ANTIC_IN during insert. */ static inline pre_expr find_leader_in_sets (unsigned int val, bitmap_set_t set1, bitmap_set_t set2) { pre_expr result; result = bitmap_find_leader (set1, val, NULL); if (!result && set2) result = bitmap_find_leader (set2, val, NULL); return result; } /* Get the tree type for our PRE expression e. */ static tree get_expr_type (const pre_expr e) { switch (e->kind) { case NAME: return TREE_TYPE (PRE_EXPR_NAME (e)); case CONSTANT: return TREE_TYPE (PRE_EXPR_CONSTANT (e)); case REFERENCE: return PRE_EXPR_REFERENCE (e)->type; case NARY: return PRE_EXPR_NARY (e)->type; } gcc_unreachable(); } /* Get a representative SSA_NAME for a given expression. Since all of our sub-expressions are treated as values, we require them to be SSA_NAME's for simplicity. Prior versions of GVNPRE used to use "value handles" here, so that an expression would be VH.11 + VH.10 instead of d_3 + e_6. In either case, the operands are really values (IE we do not expect them to be usable without finding leaders). */ static tree get_representative_for (const pre_expr e) { tree exprtype; tree name; unsigned int value_id = get_expr_value_id (e); switch (e->kind) { case NAME: return PRE_EXPR_NAME (e); case CONSTANT: return PRE_EXPR_CONSTANT (e); case NARY: case REFERENCE: { /* Go through all of the expressions representing this value and pick out an SSA_NAME. */ unsigned int i; bitmap_iterator bi; bitmap_set_t exprs = VEC_index (bitmap_set_t, value_expressions, value_id); FOR_EACH_EXPR_ID_IN_SET (exprs, i, bi) { pre_expr rep = expression_for_id (i); if (rep->kind == NAME) return PRE_EXPR_NAME (rep); } } break; } /* If we reached here we couldn't find an SSA_NAME. This can happen when we've discovered a value that has never appeared in the program as set to an SSA_NAME, most likely as the result of phi translation. */ if (dump_file) { fprintf (dump_file, "Could not find SSA_NAME representative for expression:"); print_pre_expr (dump_file, e); fprintf (dump_file, "\n"); } exprtype = get_expr_type (e); /* Build and insert the assignment of the end result to the temporary that we will return. */ if (!pretemp || exprtype != TREE_TYPE (pretemp)) { pretemp = create_tmp_var (exprtype, "pretmp"); get_var_ann (pretemp); } name = make_ssa_name (pretemp, gimple_build_nop ()); VN_INFO_GET (name)->value_id = value_id; if (e->kind == CONSTANT) VN_INFO (name)->valnum = PRE_EXPR_CONSTANT (e); else VN_INFO (name)->valnum = name; add_to_value (value_id, get_or_alloc_expr_for_name (name)); if (dump_file) { fprintf (dump_file, "Created SSA_NAME representative "); print_generic_expr (dump_file, name, 0); fprintf (dump_file, " for expression:"); print_pre_expr (dump_file, e); fprintf (dump_file, "\n"); } return name; } static pre_expr phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2, basic_block pred, basic_block phiblock); /* Translate EXPR using phis in PHIBLOCK, so that it has the values of the phis in PRED. Return NULL if we can't find a leader for each part of the translated expression. */ static pre_expr phi_translate_1 (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2, basic_block pred, basic_block phiblock) { switch (expr->kind) { case NARY: { unsigned int i; bool changed = false; vn_nary_op_t nary = PRE_EXPR_NARY (expr); struct vn_nary_op_s newnary; /* The NARY structure is only guaranteed to have been allocated to the nary->length operands. */ memcpy (&newnary, nary, (sizeof (struct vn_nary_op_s) - sizeof (tree) * (4 - nary->length))); for (i = 0; i < newnary.length; i++) { if (TREE_CODE (newnary.op[i]) != SSA_NAME) continue; else { pre_expr leader, result; unsigned int op_val_id = VN_INFO (newnary.op[i])->value_id; leader = find_leader_in_sets (op_val_id, set1, set2); result = phi_translate (leader, set1, set2, pred, phiblock); if (result && result != leader) { tree name = get_representative_for (result); if (!name) return NULL; newnary.op[i] = name; } else if (!result) return NULL; changed |= newnary.op[i] != nary->op[i]; } } if (changed) { pre_expr constant; unsigned int new_val_id; tree result = vn_nary_op_lookup_pieces (newnary.length, newnary.opcode, newnary.type, newnary.op[0], newnary.op[1], newnary.op[2], newnary.op[3], &nary); if (result && is_gimple_min_invariant (result)) return get_or_alloc_expr_for_constant (result); expr = (pre_expr) pool_alloc (pre_expr_pool); expr->kind = NARY; expr->id = 0; if (nary) { PRE_EXPR_NARY (expr) = nary; constant = fully_constant_expression (expr); if (constant != expr) return constant; new_val_id = nary->value_id; get_or_alloc_expression_id (expr); } else { new_val_id = get_next_value_id (); VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions, get_max_value_id() + 1); nary = vn_nary_op_insert_pieces (newnary.length, newnary.opcode, newnary.type, newnary.op[0], newnary.op[1], newnary.op[2], newnary.op[3], result, new_val_id); PRE_EXPR_NARY (expr) = nary; constant = fully_constant_expression (expr); if (constant != expr) return constant; get_or_alloc_expression_id (expr); } add_to_value (new_val_id, expr); } return expr; } break; case REFERENCE: { vn_reference_t ref = PRE_EXPR_REFERENCE (expr); VEC (vn_reference_op_s, heap) *operands = ref->operands; tree vuse = ref->vuse; tree newvuse = vuse; VEC (vn_reference_op_s, heap) *newoperands = NULL; bool changed = false, same_valid = true; unsigned int i, j; vn_reference_op_t operand; vn_reference_t newref; for (i = 0, j = 0; VEC_iterate (vn_reference_op_s, operands, i, operand); i++, j++) { pre_expr opresult; pre_expr leader; tree oldop0 = operand->op0; tree oldop1 = operand->op1; tree oldop2 = operand->op2; tree op0 = oldop0; tree op1 = oldop1; tree op2 = oldop2; tree type = operand->type; vn_reference_op_s newop = *operand; if (op0 && TREE_CODE (op0) == SSA_NAME) { unsigned int op_val_id = VN_INFO (op0)->value_id; leader = find_leader_in_sets (op_val_id, set1, set2); opresult = phi_translate (leader, set1, set2, pred, phiblock); if (opresult && opresult != leader) { tree name = get_representative_for (opresult); if (!name) break; op0 = name; } else if (!opresult) break; } changed |= op0 != oldop0; if (op1 && TREE_CODE (op1) == SSA_NAME) { unsigned int op_val_id = VN_INFO (op1)->value_id; leader = find_leader_in_sets (op_val_id, set1, set2); opresult = phi_translate (leader, set1, set2, pred, phiblock); if (opresult && opresult != leader) { tree name = get_representative_for (opresult); if (!name) break; op1 = name; } else if (!opresult) break; } /* We can't possibly insert these. */ else if (op1 && !is_gimple_min_invariant (op1)) break; changed |= op1 != oldop1; if (op2 && TREE_CODE (op2) == SSA_NAME) { unsigned int op_val_id = VN_INFO (op2)->value_id; leader = find_leader_in_sets (op_val_id, set1, set2); opresult = phi_translate (leader, set1, set2, pred, phiblock); if (opresult && opresult != leader) { tree name = get_representative_for (opresult); if (!name) break; op2 = name; } else if (!opresult) break; } /* We can't possibly insert these. */ else if (op2 && !is_gimple_min_invariant (op2)) break; changed |= op2 != oldop2; if (!newoperands) newoperands = VEC_copy (vn_reference_op_s, heap, operands); /* We may have changed from an SSA_NAME to a constant */ if (newop.opcode == SSA_NAME && TREE_CODE (op0) != SSA_NAME) newop.opcode = TREE_CODE (op0); newop.type = type; newop.op0 = op0; newop.op1 = op1; newop.op2 = op2; VEC_replace (vn_reference_op_s, newoperands, j, &newop); /* If it transforms from an SSA_NAME to an address, fold with a preceding indirect reference. */ if (j > 0 && op0 && TREE_CODE (op0) == ADDR_EXPR && VEC_index (vn_reference_op_s, newoperands, j - 1)->opcode == INDIRECT_REF) vn_reference_fold_indirect (&newoperands, &j); } if (i != VEC_length (vn_reference_op_s, operands)) { if (newoperands) VEC_free (vn_reference_op_s, heap, newoperands); return NULL; } if (vuse) { newvuse = translate_vuse_through_block (newoperands, ref->set, ref->type, vuse, phiblock, pred, &same_valid); if (newvuse == NULL_TREE) { VEC_free (vn_reference_op_s, heap, newoperands); return NULL; } } if (changed || newvuse != vuse) { unsigned int new_val_id; pre_expr constant; tree result = vn_reference_lookup_pieces (newvuse, ref->set, ref->type, newoperands, &newref, true); if (newref) VEC_free (vn_reference_op_s, heap, newoperands); if (result && is_gimple_min_invariant (result)) { gcc_assert (!newoperands); return get_or_alloc_expr_for_constant (result); } expr = (pre_expr) pool_alloc (pre_expr_pool); expr->kind = REFERENCE; expr->id = 0; if (newref) { PRE_EXPR_REFERENCE (expr) = newref; constant = fully_constant_expression (expr); if (constant != expr) return constant; new_val_id = newref->value_id; get_or_alloc_expression_id (expr); } else { if (changed || !same_valid) { new_val_id = get_next_value_id (); VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions, get_max_value_id() + 1); } else new_val_id = ref->value_id; newref = vn_reference_insert_pieces (newvuse, ref->set, ref->type, newoperands, result, new_val_id); newoperands = NULL; PRE_EXPR_REFERENCE (expr) = newref; constant = fully_constant_expression (expr); if (constant != expr) return constant; get_or_alloc_expression_id (expr); } add_to_value (new_val_id, expr); } VEC_free (vn_reference_op_s, heap, newoperands); return expr; } break; case NAME: { gimple phi = NULL; edge e; gimple def_stmt; tree name = PRE_EXPR_NAME (expr); def_stmt = SSA_NAME_DEF_STMT (name); if (gimple_code (def_stmt) == GIMPLE_PHI && gimple_bb (def_stmt) == phiblock) phi = def_stmt; else return expr; e = find_edge (pred, gimple_bb (phi)); if (e) { tree def = PHI_ARG_DEF (phi, e->dest_idx); pre_expr newexpr; if (TREE_CODE (def) == SSA_NAME) def = VN_INFO (def)->valnum; /* Handle constant. */ if (is_gimple_min_invariant (def)) return get_or_alloc_expr_for_constant (def); if (TREE_CODE (def) == SSA_NAME && ssa_undefined_value_p (def)) return NULL; newexpr = get_or_alloc_expr_for_name (def); return newexpr; } } return expr; default: gcc_unreachable (); } } /* Wrapper around phi_translate_1 providing caching functionality. */ static pre_expr phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2, basic_block pred, basic_block phiblock) { pre_expr phitrans; if (!expr) return NULL; /* Constants contain no values that need translation. */ if (expr->kind == CONSTANT) return expr; if (value_id_constant_p (get_expr_value_id (expr))) return expr; if (expr->kind != NAME) { phitrans = phi_trans_lookup (expr, pred); if (phitrans) return phitrans; } /* Translate. */ phitrans = phi_translate_1 (expr, set1, set2, pred, phiblock); /* Don't add empty translations to the cache. Neither add translations of NAMEs as those are cheap to translate. */ if (phitrans && expr->kind != NAME) phi_trans_add (expr, phitrans, pred); return phitrans; } /* For each expression in SET, translate the values through phi nodes in PHIBLOCK using edge PHIBLOCK->PRED, and store the resulting expressions in DEST. */ static void phi_translate_set (bitmap_set_t dest, bitmap_set_t set, basic_block pred, basic_block phiblock) { VEC (pre_expr, heap) *exprs; pre_expr expr; int i; if (gimple_seq_empty_p (phi_nodes (phiblock))) { bitmap_set_copy (dest, set); return; } exprs = sorted_array_from_bitmap_set (set); for (i = 0; VEC_iterate (pre_expr, exprs, i, expr); i++) { pre_expr translated; translated = phi_translate (expr, set, NULL, pred, phiblock); if (!translated) continue; /* We might end up with multiple expressions from SET being translated to the same value. In this case we do not want to retain the NARY or REFERENCE expression but prefer a NAME which would be the leader. */ if (translated->kind == NAME) bitmap_value_replace_in_set (dest, translated); else bitmap_value_insert_into_set (dest, translated); } VEC_free (pre_expr, heap, exprs); } /* Find the leader for a value (i.e., the name representing that value) in a given set, and return it. If STMT is non-NULL it makes sure the defining statement for the leader dominates it. Return NULL if no leader is found. */ static pre_expr bitmap_find_leader (bitmap_set_t set, unsigned int val, gimple stmt) { if (value_id_constant_p (val)) { unsigned int i; bitmap_iterator bi; bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val); FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi) { pre_expr expr = expression_for_id (i); if (expr->kind == CONSTANT) return expr; } } if (bitmap_set_contains_value (set, val)) { /* Rather than walk the entire bitmap of expressions, and see whether any of them has the value we are looking for, we look at the reverse mapping, which tells us the set of expressions that have a given value (IE value->expressions with that value) and see if any of those expressions are in our set. The number of expressions per value is usually significantly less than the number of expressions in the set. In fact, for large testcases, doing it this way is roughly 5-10x faster than walking the bitmap. If this is somehow a significant lose for some cases, we can choose which set to walk based on which set is smaller. */ unsigned int i; bitmap_iterator bi; bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val); EXECUTE_IF_AND_IN_BITMAP (exprset->expressions, set->expressions, 0, i, bi) { pre_expr val = expression_for_id (i); /* At the point where stmt is not null, there should always be an SSA_NAME first in the list of expressions. */ if (stmt) { gimple def_stmt = SSA_NAME_DEF_STMT (PRE_EXPR_NAME (val)); if (gimple_code (def_stmt) != GIMPLE_PHI && gimple_bb (def_stmt) == gimple_bb (stmt) && gimple_uid (def_stmt) >= gimple_uid (stmt)) continue; } return val; } } return NULL; } /* Determine if EXPR, a memory expression, is ANTIC_IN at the top of BLOCK by seeing if it is not killed in the block. Note that we are only determining whether there is a store that kills it. Because of the order in which clean iterates over values, we are guaranteed that altered operands will have caused us to be eliminated from the ANTIC_IN set already. */ static bool value_dies_in_block_x (pre_expr expr, basic_block block) { tree vuse = PRE_EXPR_REFERENCE (expr)->vuse; vn_reference_t refx = PRE_EXPR_REFERENCE (expr); gimple def; gimple_stmt_iterator gsi; unsigned id = get_expression_id (expr); bool res = false; ao_ref ref; if (!vuse) return false; /* Lookup a previously calculated result. */ if (EXPR_DIES (block) && bitmap_bit_p (EXPR_DIES (block), id * 2)) return bitmap_bit_p (EXPR_DIES (block), id * 2 + 1); /* A memory expression {e, VUSE} dies in the block if there is a statement that may clobber e. If, starting statement walk from the top of the basic block, a statement uses VUSE there can be no kill inbetween that use and the original statement that loaded {e, VUSE}, so we can stop walking. */ ref.base = NULL_TREE; for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { tree def_vuse, def_vdef; def = gsi_stmt (gsi); def_vuse = gimple_vuse (def); def_vdef = gimple_vdef (def); /* Not a memory statement. */ if (!def_vuse) continue; /* Not a may-def. */ if (!def_vdef) { /* A load with the same VUSE, we're done. */ if (def_vuse == vuse) break; continue; } /* Init ref only if we really need it. */ if (ref.base == NULL_TREE && !ao_ref_init_from_vn_reference (&ref, refx->set, refx->type, refx->operands)) { res = true; break; } /* If the statement may clobber expr, it dies. */ if (stmt_may_clobber_ref_p_1 (def, &ref)) { res = true; break; } } /* Remember the result. */ if (!EXPR_DIES (block)) EXPR_DIES (block) = BITMAP_ALLOC (&grand_bitmap_obstack); bitmap_set_bit (EXPR_DIES (block), id * 2); if (res) bitmap_set_bit (EXPR_DIES (block), id * 2 + 1); return res; } #define union_contains_value(SET1, SET2, VAL) \ (bitmap_set_contains_value ((SET1), (VAL)) \ || ((SET2) && bitmap_set_contains_value ((SET2), (VAL)))) /* Determine if vn_reference_op_t VRO is legal in SET1 U SET2. */ static bool vro_valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, vn_reference_op_t vro) { if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME) { struct pre_expr_d temp; temp.kind = NAME; temp.id = 0; PRE_EXPR_NAME (&temp) = vro->op0; temp.id = lookup_expression_id (&temp); if (temp.id == 0) return false; if (!union_contains_value (set1, set2, get_expr_value_id (&temp))) return false; } if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME) { struct pre_expr_d temp; temp.kind = NAME; temp.id = 0; PRE_EXPR_NAME (&temp) = vro->op1; temp.id = lookup_expression_id (&temp); if (temp.id == 0) return false; if (!union_contains_value (set1, set2, get_expr_value_id (&temp))) return false; } if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME) { struct pre_expr_d temp; temp.kind = NAME; temp.id = 0; PRE_EXPR_NAME (&temp) = vro->op2; temp.id = lookup_expression_id (&temp); if (temp.id == 0) return false; if (!union_contains_value (set1, set2, get_expr_value_id (&temp))) return false; } return true; } /* Determine if the expression EXPR is valid in SET1 U SET2. ONLY SET2 CAN BE NULL. This means that we have a leader for each part of the expression (if it consists of values), or the expression is an SSA_NAME. For loads/calls, we also see if the vuse is killed in this block. */ static bool valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, pre_expr expr, basic_block block) { switch (expr->kind) { case NAME: return bitmap_set_contains_expr (AVAIL_OUT (block), expr); case NARY: { unsigned int i; vn_nary_op_t nary = PRE_EXPR_NARY (expr); for (i = 0; i < nary->length; i++) { if (TREE_CODE (nary->op[i]) == SSA_NAME) { struct pre_expr_d temp; temp.kind = NAME; temp.id = 0; PRE_EXPR_NAME (&temp) = nary->op[i]; temp.id = lookup_expression_id (&temp); if (temp.id == 0) return false; if (!union_contains_value (set1, set2, get_expr_value_id (&temp))) return false; } } /* If the NARY may trap make sure the block does not contain a possible exit point. ??? This is overly conservative if we translate AVAIL_OUT as the available expression might be after the exit point. */ if (BB_MAY_NOTRETURN (block) && vn_nary_may_trap (nary)) return false; return true; } break; case REFERENCE: { vn_reference_t ref = PRE_EXPR_REFERENCE (expr); vn_reference_op_t vro; unsigned int i; for (i = 0; VEC_iterate (vn_reference_op_s, ref->operands, i, vro); i++) { if (!vro_valid_in_sets (set1, set2, vro)) return false; } if (ref->vuse) { gimple def_stmt = SSA_NAME_DEF_STMT (ref->vuse); if (!gimple_nop_p (def_stmt) && gimple_bb (def_stmt) != block && !dominated_by_p (CDI_DOMINATORS, block, gimple_bb (def_stmt))) return false; } return !value_dies_in_block_x (expr, block); } default: gcc_unreachable (); } } /* Clean the set of expressions that are no longer valid in SET1 or SET2. This means expressions that are made up of values we have no leaders for in SET1 or SET2. This version is used for partial anticipation, which means it is not valid in either ANTIC_IN or PA_IN. */ static void dependent_clean (bitmap_set_t set1, bitmap_set_t set2, basic_block block) { VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set1); pre_expr expr; int i; for (i = 0; VEC_iterate (pre_expr, exprs, i, expr); i++) { if (!valid_in_sets (set1, set2, expr, block)) bitmap_remove_from_set (set1, expr); } VEC_free (pre_expr, heap, exprs); } /* Clean the set of expressions that are no longer valid in SET. This means expressions that are made up of values we have no leaders for in SET. */ static void clean (bitmap_set_t set, basic_block block) { VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set); pre_expr expr; int i; for (i = 0; VEC_iterate (pre_expr, exprs, i, expr); i++) { if (!valid_in_sets (set, NULL, expr, block)) bitmap_remove_from_set (set, expr); } VEC_free (pre_expr, heap, exprs); } static sbitmap has_abnormal_preds; /* List of blocks that may have changed during ANTIC computation and thus need to be iterated over. */ static sbitmap changed_blocks; /* Decide whether to defer a block for a later iteration, or PHI translate SOURCE to DEST using phis in PHIBLOCK. Return false if we should defer the block, and true if we processed it. */ static bool defer_or_phi_translate_block (bitmap_set_t dest, bitmap_set_t source, basic_block block, basic_block phiblock) { if (!BB_VISITED (phiblock)) { SET_BIT (changed_blocks, block->index); BB_VISITED (block) = 0; BB_DEFERRED (block) = 1; return false; } else phi_translate_set (dest, source, block, phiblock); return true; } /* Compute the ANTIC set for BLOCK. If succs(BLOCK) > 1 then ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK) else if succs(BLOCK) == 1 then ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)]) ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK]) */ static bool compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge) { bool changed = false; bitmap_set_t S, old, ANTIC_OUT; bitmap_iterator bi; unsigned int bii; edge e; edge_iterator ei; old = ANTIC_OUT = S = NULL; BB_VISITED (block) = 1; /* If any edges from predecessors are abnormal, antic_in is empty, so do nothing. */ if (block_has_abnormal_pred_edge) goto maybe_dump_sets; old = ANTIC_IN (block); ANTIC_OUT = bitmap_set_new (); /* If the block has no successors, ANTIC_OUT is empty. */ if (EDGE_COUNT (block->succs) == 0) ; /* If we have one successor, we could have some phi nodes to translate through. */ else if (single_succ_p (block)) { basic_block succ_bb = single_succ (block); /* We trade iterations of the dataflow equations for having to phi translate the maximal set, which is incredibly slow (since the maximal set often has 300+ members, even when you have a small number of blocks). Basically, we defer the computation of ANTIC for this block until we have processed it's successor, which will inevitably have a *much* smaller set of values to phi translate once clean has been run on it. The cost of doing this is that we technically perform more iterations, however, they are lower cost iterations. Timings for PRE on tramp3d-v4: without maximal set fix: 11 seconds with maximal set fix/without deferring: 26 seconds with maximal set fix/with deferring: 11 seconds */ if (!defer_or_phi_translate_block (ANTIC_OUT, ANTIC_IN (succ_bb), block, succ_bb)) { changed = true; goto maybe_dump_sets; } } /* If we have multiple successors, we take the intersection of all of them. Note that in the case of loop exit phi nodes, we may have phis to translate through. */ else { VEC(basic_block, heap) * worklist; size_t i; basic_block bprime, first = NULL; worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs)); FOR_EACH_EDGE (e, ei, block->succs) { if (!first && BB_VISITED (e->dest)) first = e->dest; else if (BB_VISITED (e->dest)) VEC_quick_push (basic_block, worklist, e->dest); } /* Of multiple successors we have to have visited one already. */ if (!first) { SET_BIT (changed_blocks, block->index); BB_VISITED (block) = 0; BB_DEFERRED (block) = 1; changed = true; VEC_free (basic_block, heap, worklist); goto maybe_dump_sets; } if (!gimple_seq_empty_p (phi_nodes (first))) phi_translate_set (ANTIC_OUT, ANTIC_IN (first), block, first); else bitmap_set_copy (ANTIC_OUT, ANTIC_IN (first)); for (i = 0; VEC_iterate (basic_block, worklist, i, bprime); i++) { if (!gimple_seq_empty_p (phi_nodes (bprime))) { bitmap_set_t tmp = bitmap_set_new (); phi_translate_set (tmp, ANTIC_IN (bprime), block, bprime); bitmap_set_and (ANTIC_OUT, tmp); bitmap_set_free (tmp); } else bitmap_set_and (ANTIC_OUT, ANTIC_IN (bprime)); } VEC_free (basic_block, heap, worklist); } /* Generate ANTIC_OUT - TMP_GEN. */ S = bitmap_set_subtract (ANTIC_OUT, TMP_GEN (block)); /* Start ANTIC_IN with EXP_GEN - TMP_GEN. */ ANTIC_IN (block) = bitmap_set_subtract (EXP_GEN (block), TMP_GEN (block)); /* Then union in the ANTIC_OUT - TMP_GEN values, to get ANTIC_OUT U EXP_GEN - TMP_GEN */ FOR_EACH_EXPR_ID_IN_SET (S, bii, bi) bitmap_value_insert_into_set (ANTIC_IN (block), expression_for_id (bii)); clean (ANTIC_IN (block), block); /* !old->expressions can happen when we deferred a block. */ if (!old->expressions || !bitmap_set_equal (old, ANTIC_IN (block))) { changed = true; SET_BIT (changed_blocks, block->index); FOR_EACH_EDGE (e, ei, block->preds) SET_BIT (changed_blocks, e->src->index); } else RESET_BIT (changed_blocks, block->index); maybe_dump_sets: if (dump_file && (dump_flags & TDF_DETAILS)) { if (!BB_DEFERRED (block) || BB_VISITED (block)) { if (ANTIC_OUT) print_bitmap_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index); print_bitmap_set (dump_file, ANTIC_IN (block), "ANTIC_IN", block->index); if (S) print_bitmap_set (dump_file, S, "S", block->index); } else { fprintf (dump_file, "Block %d was deferred for a future iteration.\n", block->index); } } if (old) bitmap_set_free (old); if (S) bitmap_set_free (S); if (ANTIC_OUT) bitmap_set_free (ANTIC_OUT); return changed; } /* Compute PARTIAL_ANTIC for BLOCK. If succs(BLOCK) > 1 then PA_OUT[BLOCK] = value wise union of PA_IN[b] + all ANTIC_IN not in ANTIC_OUT for all succ(BLOCK) else if succs(BLOCK) == 1 then PA_OUT[BLOCK] = phi_translate (PA_IN[succ(BLOCK)]) PA_IN[BLOCK] = dependent_clean(PA_OUT[BLOCK] - TMP_GEN[BLOCK] - ANTIC_IN[BLOCK]) */ static bool compute_partial_antic_aux (basic_block block, bool block_has_abnormal_pred_edge) { bool changed = false; bitmap_set_t old_PA_IN; bitmap_set_t PA_OUT; edge e; edge_iterator ei; unsigned long max_pa = PARAM_VALUE (PARAM_MAX_PARTIAL_ANTIC_LENGTH); old_PA_IN = PA_OUT = NULL; /* If any edges from predecessors are abnormal, antic_in is empty, so do nothing. */ if (block_has_abnormal_pred_edge) goto maybe_dump_sets; /* If there are too many partially anticipatable values in the block, phi_translate_set can take an exponential time: stop before the translation starts. */ if (max_pa && single_succ_p (block) && bitmap_count_bits (PA_IN (single_succ (block))->values) > max_pa) goto maybe_dump_sets; old_PA_IN = PA_IN (block); PA_OUT = bitmap_set_new (); /* If the block has no successors, ANTIC_OUT is empty. */ if (EDGE_COUNT (block->succs) == 0) ; /* If we have one successor, we could have some phi nodes to translate through. Note that we can't phi translate across DFS back edges in partial antic, because it uses a union operation on the successors. For recurrences like IV's, we will end up generating a new value in the set on each go around (i + 3 (VH.1) VH.1 + 1 (VH.2), VH.2 + 1 (VH.3), etc), forever. */ else if (single_succ_p (block)) { basic_block succ = single_succ (block); if (!(single_succ_edge (block)->flags & EDGE_DFS_BACK)) phi_translate_set (PA_OUT, PA_IN (succ), block, succ); } /* If we have multiple successors, we take the union of all of them. */ else { VEC(basic_block, heap) * worklist; size_t i; basic_block bprime; worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs)); FOR_EACH_EDGE (e, ei, block->succs) { if (e->flags & EDGE_DFS_BACK) continue; VEC_quick_push (basic_block, worklist, e->dest); } if (VEC_length (basic_block, worklist) > 0) { for (i = 0; VEC_iterate (basic_block, worklist, i, bprime); i++) { unsigned int i; bitmap_iterator bi; FOR_EACH_EXPR_ID_IN_SET (ANTIC_IN (bprime), i, bi) bitmap_value_insert_into_set (PA_OUT, expression_for_id (i)); if (!gimple_seq_empty_p (phi_nodes (bprime))) { bitmap_set_t pa_in = bitmap_set_new (); phi_translate_set (pa_in, PA_IN (bprime), block, bprime); FOR_EACH_EXPR_ID_IN_SET (pa_in, i, bi) bitmap_value_insert_into_set (PA_OUT, expression_for_id (i)); bitmap_set_free (pa_in); } else FOR_EACH_EXPR_ID_IN_SET (PA_IN (bprime), i, bi) bitmap_value_insert_into_set (PA_OUT, expression_for_id (i)); } } VEC_free (basic_block, heap, worklist); } /* PA_IN starts with PA_OUT - TMP_GEN. Then we subtract things from ANTIC_IN. */ PA_IN (block) = bitmap_set_subtract (PA_OUT, TMP_GEN (block)); /* For partial antic, we want to put back in the phi results, since we will properly avoid making them partially antic over backedges. */ bitmap_ior_into (PA_IN (block)->values, PHI_GEN (block)->values); bitmap_ior_into (PA_IN (block)->expressions, PHI_GEN (block)->expressions); /* PA_IN[block] = PA_IN[block] - ANTIC_IN[block] */ bitmap_set_subtract_values (PA_IN (block), ANTIC_IN (block)); dependent_clean (PA_IN (block), ANTIC_IN (block), block); if (!bitmap_set_equal (old_PA_IN, PA_IN (block))) { changed = true; SET_BIT (changed_blocks, block->index); FOR_EACH_EDGE (e, ei, block->preds) SET_BIT (changed_blocks, e->src->index); } else RESET_BIT (changed_blocks, block->index); maybe_dump_sets: if (dump_file && (dump_flags & TDF_DETAILS)) { if (PA_OUT) print_bitmap_set (dump_file, PA_OUT, "PA_OUT", block->index); print_bitmap_set (dump_file, PA_IN (block), "PA_IN", block->index); } if (old_PA_IN) bitmap_set_free (old_PA_IN); if (PA_OUT) bitmap_set_free (PA_OUT); return changed; } /* Compute ANTIC and partial ANTIC sets. */ static void compute_antic (void) { bool changed = true; int num_iterations = 0; basic_block block; int i; /* If any predecessor edges are abnormal, we punt, so antic_in is empty. We pre-build the map of blocks with incoming abnormal edges here. */ has_abnormal_preds = sbitmap_alloc (last_basic_block); sbitmap_zero (has_abnormal_preds); FOR_EACH_BB (block) { edge_iterator ei; edge e; FOR_EACH_EDGE (e, ei, block->preds) { e->flags &= ~EDGE_DFS_BACK; if (e->flags & EDGE_ABNORMAL) { SET_BIT (has_abnormal_preds, block->index); break; } } BB_VISITED (block) = 0; BB_DEFERRED (block) = 0; /* While we are here, give empty ANTIC_IN sets to each block. */ ANTIC_IN (block) = bitmap_set_new (); PA_IN (block) = bitmap_set_new (); } /* At the exit block we anticipate nothing. */ ANTIC_IN (EXIT_BLOCK_PTR) = bitmap_set_new (); BB_VISITED (EXIT_BLOCK_PTR) = 1; PA_IN (EXIT_BLOCK_PTR) = bitmap_set_new (); changed_blocks = sbitmap_alloc (last_basic_block + 1); sbitmap_ones (changed_blocks); while (changed) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Starting iteration %d\n", num_iterations); num_iterations++; changed = false; for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1; i >= 0; i--) { if (TEST_BIT (changed_blocks, postorder[i])) { basic_block block = BASIC_BLOCK (postorder[i]); changed |= compute_antic_aux (block, TEST_BIT (has_abnormal_preds, block->index)); } } #ifdef ENABLE_CHECKING /* Theoretically possible, but *highly* unlikely. */ gcc_assert (num_iterations < 500); #endif } statistics_histogram_event (cfun, "compute_antic iterations", num_iterations); if (do_partial_partial) { sbitmap_ones (changed_blocks); mark_dfs_back_edges (); num_iterations = 0; changed = true; while (changed) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Starting iteration %d\n", num_iterations); num_iterations++; changed = false; for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1 ; i >= 0; i--) { if (TEST_BIT (changed_blocks, postorder[i])) { basic_block block = BASIC_BLOCK (postorder[i]); changed |= compute_partial_antic_aux (block, TEST_BIT (has_abnormal_preds, block->index)); } } #ifdef ENABLE_CHECKING /* Theoretically possible, but *highly* unlikely. */ gcc_assert (num_iterations < 500); #endif } statistics_histogram_event (cfun, "compute_partial_antic iterations", num_iterations); } sbitmap_free (has_abnormal_preds); sbitmap_free (changed_blocks); } /* Return true if we can value number the call in STMT. This is true if we have a pure or constant call. */ static bool can_value_number_call (gimple stmt) { if (gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST)) return true; return false; } /* Return true if OP is a tree which we can perform PRE on. This may not match the operations we can value number, but in a perfect world would. */ static bool can_PRE_operation (tree op) { return UNARY_CLASS_P (op) || BINARY_CLASS_P (op) || COMPARISON_CLASS_P (op) || TREE_CODE (op) == INDIRECT_REF || TREE_CODE (op) == COMPONENT_REF || TREE_CODE (op) == VIEW_CONVERT_EXPR || TREE_CODE (op) == CALL_EXPR || TREE_CODE (op) == ARRAY_REF; } /* Inserted expressions are placed onto this worklist, which is used for performing quick dead code elimination of insertions we made that didn't turn out to be necessary. */ static VEC(gimple,heap) *inserted_exprs; static bitmap inserted_phi_names; /* Pool allocated fake store expressions are placed onto this worklist, which, after performing dead code elimination, is walked to see which expressions need to be put into GC'able memory */ static VEC(gimple, heap) *need_creation; /* The actual worker for create_component_ref_by_pieces. */ static tree create_component_ref_by_pieces_1 (basic_block block, vn_reference_t ref, unsigned int *operand, gimple_seq *stmts, gimple domstmt) { vn_reference_op_t currop = VEC_index (vn_reference_op_s, ref->operands, *operand); tree genop; ++*operand; switch (currop->opcode) { case CALL_EXPR: { tree folded, sc = NULL_TREE; unsigned int nargs = 0; tree fn, *args; if (TREE_CODE (currop->op0) == FUNCTION_DECL) fn = currop->op0; else { pre_expr op0 = get_or_alloc_expr_for (currop->op0); fn = find_or_generate_expression (block, op0, stmts, domstmt); if (!fn) return NULL_TREE; } if (currop->op1) { pre_expr scexpr = get_or_alloc_expr_for (currop->op1); sc = find_or_generate_expression (block, scexpr, stmts, domstmt); if (!sc) return NULL_TREE; } args = XNEWVEC (tree, VEC_length (vn_reference_op_s, ref->operands) - 1); while (*operand < VEC_length (vn_reference_op_s, ref->operands)) { args[nargs] = create_component_ref_by_pieces_1 (block, ref, operand, stmts, domstmt); if (!args[nargs]) { free (args); return NULL_TREE; } nargs++; } folded = build_call_array (currop->type, (TREE_CODE (fn) == FUNCTION_DECL ? build_fold_addr_expr (fn) : fn), nargs, args); free (args); if (sc) CALL_EXPR_STATIC_CHAIN (folded) = sc; return folded; } break; case TARGET_MEM_REF: { vn_reference_op_t nextop = VEC_index (vn_reference_op_s, ref->operands, *operand); pre_expr op0expr; tree genop0 = NULL_TREE; tree baseop = create_component_ref_by_pieces_1 (block, ref, operand, stmts, domstmt); if (!baseop) return NULL_TREE; if (currop->op0) { op0expr = get_or_alloc_expr_for (currop->op0); genop0 = find_or_generate_expression (block, op0expr, stmts, domstmt); if (!genop0) return NULL_TREE; } if (DECL_P (baseop)) return build6 (TARGET_MEM_REF, currop->type, baseop, NULL_TREE, genop0, currop->op1, currop->op2, unshare_expr (nextop->op1)); else return build6 (TARGET_MEM_REF, currop->type, NULL_TREE, baseop, genop0, currop->op1, currop->op2, unshare_expr (nextop->op1)); } break; case ADDR_EXPR: if (currop->op0) { gcc_assert (is_gimple_min_invariant (currop->op0)); return currop->op0; } /* Fallthrough. */ case REALPART_EXPR: case IMAGPART_EXPR: case VIEW_CONVERT_EXPR: { tree folded; tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand, stmts, domstmt); if (!genop0) return NULL_TREE; folded = fold_build1 (currop->opcode, currop->type, genop0); return folded; } break; case ALIGN_INDIRECT_REF: case MISALIGNED_INDIRECT_REF: case INDIRECT_REF: { tree folded; tree genop1 = create_component_ref_by_pieces_1 (block, ref, operand, stmts, domstmt); if (!genop1) return NULL_TREE; genop1 = fold_convert (build_pointer_type (currop->type), genop1); if (currop->opcode == MISALIGNED_INDIRECT_REF) folded = fold_build2 (currop->opcode, currop->type, genop1, currop->op1); else folded = fold_build1 (currop->opcode, currop->type, genop1); return folded; } break; case BIT_FIELD_REF: { tree folded; tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand, stmts, domstmt); pre_expr op1expr = get_or_alloc_expr_for (currop->op0); pre_expr op2expr = get_or_alloc_expr_for (currop->op1); tree genop1; tree genop2; if (!genop0) return NULL_TREE; genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt); if (!genop1) return NULL_TREE; genop2 = find_or_generate_expression (block, op2expr, stmts, domstmt); if (!genop2) return NULL_TREE; folded = fold_build3 (BIT_FIELD_REF, currop->type, genop0, genop1, genop2); return folded; } /* For array ref vn_reference_op's, operand 1 of the array ref is op0 of the reference op and operand 3 of the array ref is op1. */ case ARRAY_RANGE_REF: case ARRAY_REF: { tree genop0; tree genop1 = currop->op0; pre_expr op1expr; tree genop2 = currop->op1; pre_expr op2expr; tree genop3 = currop->op2; pre_expr op3expr; genop0 = create_component_ref_by_pieces_1 (block, ref, operand, stmts, domstmt); if (!genop0) return NULL_TREE; op1expr = get_or_alloc_expr_for (genop1); genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt); if (!genop1) return NULL_TREE; if (genop2) { /* Drop zero minimum index. */ if (tree_int_cst_equal (genop2, integer_zero_node)) genop2 = NULL_TREE; else { op2expr = get_or_alloc_expr_for (genop2); genop2 = find_or_generate_expression (block, op2expr, stmts, domstmt); if (!genop2) return NULL_TREE; } } if (genop3) { tree elmt_type = TREE_TYPE (TREE_TYPE (genop0)); /* We can't always put a size in units of the element alignment here as the element alignment may be not visible. See PR43783. Simply drop the element size for constant sizes. */ if (tree_int_cst_equal (genop3, TYPE_SIZE_UNIT (elmt_type))) genop3 = NULL_TREE; else { genop3 = size_binop (EXACT_DIV_EXPR, genop3, size_int (TYPE_ALIGN_UNIT (elmt_type))); op3expr = get_or_alloc_expr_for (genop3); genop3 = find_or_generate_expression (block, op3expr, stmts, domstmt); if (!genop3) return NULL_TREE; } } return build4 (currop->opcode, currop->type, genop0, genop1, genop2, genop3); } case COMPONENT_REF: { tree op0; tree op1; tree genop2 = currop->op1; pre_expr op2expr; op0 = create_component_ref_by_pieces_1 (block, ref, operand, stmts, domstmt); if (!op0) return NULL_TREE; /* op1 should be a FIELD_DECL, which are represented by themselves. */ op1 = currop->op0; if (genop2) { op2expr = get_or_alloc_expr_for (genop2); genop2 = find_or_generate_expression (block, op2expr, stmts, domstmt); if (!genop2) return NULL_TREE; } return fold_build3 (COMPONENT_REF, TREE_TYPE (op1), op0, op1, genop2); } break; case SSA_NAME: { pre_expr op0expr = get_or_alloc_expr_for (currop->op0); genop = find_or_generate_expression (block, op0expr, stmts, domstmt); return genop; } case STRING_CST: case INTEGER_CST: case COMPLEX_CST: case VECTOR_CST: case REAL_CST: case CONSTRUCTOR: case VAR_DECL: case PARM_DECL: case CONST_DECL: case RESULT_DECL: case FUNCTION_DECL: return currop->op0; default: gcc_unreachable (); } } /* For COMPONENT_REF's and ARRAY_REF's, we can't have any intermediates for the COMPONENT_REF or INDIRECT_REF or ARRAY_REF portion, because we'd end up with trying to rename aggregates into ssa form directly, which is a no no. Thus, this routine doesn't create temporaries, it just builds a single access expression for the array, calling find_or_generate_expression to build the innermost pieces. This function is a subroutine of create_expression_by_pieces, and should not be called on it's own unless you really know what you are doing. */ static tree create_component_ref_by_pieces (basic_block block, vn_reference_t ref, gimple_seq *stmts, gimple domstmt) { unsigned int op = 0; return create_component_ref_by_pieces_1 (block, ref, &op, stmts, domstmt); } /* Find a leader for an expression, or generate one using create_expression_by_pieces if it's ANTIC but complex. BLOCK is the basic_block we are looking for leaders in. EXPR is the expression to find a leader or generate for. STMTS is the statement list to put the inserted expressions on. Returns the SSA_NAME of the LHS of the generated expression or the leader. DOMSTMT if non-NULL is a statement that should be dominated by all uses in the generated expression. If DOMSTMT is non-NULL this routine can fail and return NULL_TREE. Otherwise it will assert on failure. */ static tree find_or_generate_expression (basic_block block, pre_expr expr, gimple_seq *stmts, gimple domstmt) { pre_expr leader = bitmap_find_leader (AVAIL_OUT (block), get_expr_value_id (expr), domstmt); tree genop = NULL; if (leader) { if (leader->kind == NAME) genop = PRE_EXPR_NAME (leader); else if (leader->kind == CONSTANT) genop = PRE_EXPR_CONSTANT (leader); } /* If it's still NULL, it must be a complex expression, so generate it recursively. Not so for FRE though. */ if (genop == NULL && !in_fre) { bitmap_set_t exprset; unsigned int lookfor = get_expr_value_id (expr); bool handled = false; bitmap_iterator bi; unsigned int i; exprset = VEC_index (bitmap_set_t, value_expressions, lookfor); FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi) { pre_expr temp = expression_for_id (i); if (temp->kind != NAME) { handled = true; genop = create_expression_by_pieces (block, temp, stmts, domstmt, get_expr_type (expr)); break; } } if (!handled && domstmt) return NULL_TREE; gcc_assert (handled); } return genop; } #define NECESSARY GF_PLF_1 /* Create an expression in pieces, so that we can handle very complex expressions that may be ANTIC, but not necessary GIMPLE. BLOCK is the basic block the expression will be inserted into, EXPR is the expression to insert (in value form) STMTS is a statement list to append the necessary insertions into. This function will die if we hit some value that shouldn't be ANTIC but is (IE there is no leader for it, or its components). This function may also generate expressions that are themselves partially or fully redundant. Those that are will be either made fully redundant during the next iteration of insert (for partially redundant ones), or eliminated by eliminate (for fully redundant ones). If DOMSTMT is non-NULL then we make sure that all uses in the expressions dominate that statement. In this case the function can return NULL_TREE to signal failure. */ static tree create_expression_by_pieces (basic_block block, pre_expr expr, gimple_seq *stmts, gimple domstmt, tree type) { tree temp, name; tree folded; gimple_seq forced_stmts = NULL; unsigned int value_id; gimple_stmt_iterator gsi; tree exprtype = type ? type : get_expr_type (expr); pre_expr nameexpr; gimple newstmt; switch (expr->kind) { /* We may hit the NAME/CONSTANT case if we have to convert types that value numbering saw through. */ case NAME: folded = PRE_EXPR_NAME (expr); break; case CONSTANT: folded = PRE_EXPR_CONSTANT (expr); break; case REFERENCE: { vn_reference_t ref = PRE_EXPR_REFERENCE (expr); folded = create_component_ref_by_pieces (block, ref, stmts, domstmt); } break; case NARY: { vn_nary_op_t nary = PRE_EXPR_NARY (expr); switch (nary->length) { case 2: { pre_expr op1 = get_or_alloc_expr_for (nary->op[0]); pre_expr op2 = get_or_alloc_expr_for (nary->op[1]); tree genop1 = find_or_generate_expression (block, op1, stmts, domstmt); tree genop2 = find_or_generate_expression (block, op2, stmts, domstmt); if (!genop1 || !genop2) return NULL_TREE; /* Ensure op2 is a sizetype for POINTER_PLUS_EXPR. It may be a constant with the wrong type. */ if (nary->opcode == POINTER_PLUS_EXPR) { genop1 = fold_convert (nary->type, genop1); genop2 = fold_convert (sizetype, genop2); } else { genop1 = fold_convert (TREE_TYPE (nary->op[0]), genop1); genop2 = fold_convert (TREE_TYPE (nary->op[1]), genop2); } folded = fold_build2 (nary->opcode, nary->type, genop1, genop2); } break; case 1: { pre_expr op1 = get_or_alloc_expr_for (nary->op[0]); tree genop1 = find_or_generate_expression (block, op1, stmts, domstmt); if (!genop1) return NULL_TREE; genop1 = fold_convert (TREE_TYPE (nary->op[0]), genop1); folded = fold_build1 (nary->opcode, nary->type, genop1); } break; default: return NULL_TREE; } } break; default: return NULL_TREE; } if (!useless_type_conversion_p (exprtype, TREE_TYPE (folded))) folded = fold_convert (exprtype, folded); /* Force the generated expression to be a sequence of GIMPLE statements. We have to call unshare_expr because force_gimple_operand may modify the tree we pass to it. */ folded = force_gimple_operand (unshare_expr (folded), &forced_stmts, false, NULL); /* If we have any intermediate expressions to the value sets, add them to the value sets and chain them in the instruction stream. */ if (forced_stmts) { gsi = gsi_start (forced_stmts); for (; !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); tree forcedname = gimple_get_lhs (stmt); pre_expr nameexpr; VEC_safe_push (gimple, heap, inserted_exprs, stmt); if (TREE_CODE (forcedname) == SSA_NAME) { VN_INFO_GET (forcedname)->valnum = forcedname; VN_INFO (forcedname)->value_id = get_next_value_id (); nameexpr = get_or_alloc_expr_for_name (forcedname); add_to_value (VN_INFO (forcedname)->value_id, nameexpr); if (!in_fre) bitmap_value_replace_in_set (NEW_SETS (block), nameexpr); bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr); } mark_symbols_for_renaming (stmt); } gimple_seq_add_seq (stmts, forced_stmts); } /* Build and insert the assignment of the end result to the temporary that we will return. */ if (!pretemp || exprtype != TREE_TYPE (pretemp)) { pretemp = create_tmp_var (exprtype, "pretmp"); get_var_ann (pretemp); } temp = pretemp; add_referenced_var (temp); if (TREE_CODE (exprtype) == COMPLEX_TYPE || TREE_CODE (exprtype) == VECTOR_TYPE) DECL_GIMPLE_REG_P (temp) = 1; newstmt = gimple_build_assign (temp, folded); name = make_ssa_name (temp, newstmt); gimple_assign_set_lhs (newstmt, name); gimple_set_plf (newstmt, NECESSARY, false); gimple_seq_add_stmt (stmts, newstmt); VEC_safe_push (gimple, heap, inserted_exprs, newstmt); /* All the symbols in NEWEXPR should be put into SSA form. */ mark_symbols_for_renaming (newstmt); /* Add a value number to the temporary. The value may already exist in either NEW_SETS, or AVAIL_OUT, because we are creating the expression by pieces, and this particular piece of the expression may have been represented. There is no harm in replacing here. */ VN_INFO_GET (name)->valnum = name; value_id = get_expr_value_id (expr); VN_INFO (name)->value_id = value_id; nameexpr = get_or_alloc_expr_for_name (name); add_to_value (value_id, nameexpr); if (!in_fre) bitmap_value_replace_in_set (NEW_SETS (block), nameexpr); bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr); pre_stats.insertions++; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Inserted "); print_gimple_stmt (dump_file, newstmt, 0, 0); fprintf (dump_file, " in predecessor %d\n", block->index); } return name; } /* Returns true if we want to inhibit the insertions of PHI nodes for the given EXPR for basic block BB (a member of a loop). We want to do this, when we fear that the induction variable we create might inhibit vectorization. */ static bool inhibit_phi_insertion (basic_block bb, pre_expr expr) { vn_reference_t vr = PRE_EXPR_REFERENCE (expr); VEC (vn_reference_op_s, heap) *ops = vr->operands; vn_reference_op_t op; unsigned i; /* If we aren't going to vectorize we don't inhibit anything. */ if (!flag_tree_vectorize) return false; /* Otherwise we inhibit the insertion when the address of the memory reference is a simple induction variable. In other cases the vectorizer won't do anything anyway (either it's loop invariant or a complicated expression). */ for (i = 0; VEC_iterate (vn_reference_op_s, ops, i, op); ++i) { switch (op->opcode) { case ARRAY_REF: case ARRAY_RANGE_REF: if (TREE_CODE (op->op0) != SSA_NAME) break; /* Fallthru. */ case SSA_NAME: { basic_block defbb = gimple_bb (SSA_NAME_DEF_STMT (op->op0)); affine_iv iv; /* Default defs are loop invariant. */ if (!defbb) break; /* Defined outside this loop, also loop invariant. */ if (!flow_bb_inside_loop_p (bb->loop_father, defbb)) break; /* If it's a simple induction variable inhibit insertion, the vectorizer might be interested in this one. */ if (simple_iv (bb->loop_father, bb->loop_father, op->op0, &iv, true)) return true; /* No simple IV, vectorizer can't do anything, hence no reason to inhibit the transformation for this operand. */ break; } default: break; } } return false; } /* Insert the to-be-made-available values of expression EXPRNUM for each predecessor, stored in AVAIL, into the predecessors of BLOCK, and merge the result with a phi node, given the same value number as NODE. Return true if we have inserted new stuff. */ static bool insert_into_preds_of_block (basic_block block, unsigned int exprnum, pre_expr *avail) { pre_expr expr = expression_for_id (exprnum); pre_expr newphi; unsigned int val = get_expr_value_id (expr); edge pred; bool insertions = false; bool nophi = false; basic_block bprime; pre_expr eprime; edge_iterator ei; tree type = get_expr_type (expr); tree temp; gimple phi; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found partial redundancy for expression "); print_pre_expr (dump_file, expr); fprintf (dump_file, " (%04d)\n", val); } /* Make sure we aren't creating an induction variable. */ if (block->loop_depth > 0 && EDGE_COUNT (block->preds) == 2) { bool firstinsideloop = false; bool secondinsideloop = false; firstinsideloop = flow_bb_inside_loop_p (block->loop_father, EDGE_PRED (block, 0)->src); secondinsideloop = flow_bb_inside_loop_p (block->loop_father, EDGE_PRED (block, 1)->src); /* Induction variables only have one edge inside the loop. */ if ((firstinsideloop ^ secondinsideloop) && (expr->kind != REFERENCE || inhibit_phi_insertion (block, expr))) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n"); nophi = true; } } /* Make the necessary insertions. */ FOR_EACH_EDGE (pred, ei, block->preds) { gimple_seq stmts = NULL; tree builtexpr; bprime = pred->src; eprime = avail[bprime->index]; if (eprime->kind != NAME && eprime->kind != CONSTANT) { builtexpr = create_expression_by_pieces (bprime, eprime, &stmts, NULL, type); gcc_assert (!(pred->flags & EDGE_ABNORMAL)); gsi_insert_seq_on_edge (pred, stmts); avail[bprime->index] = get_or_alloc_expr_for_name (builtexpr); insertions = true; } else if (eprime->kind == CONSTANT) { /* Constants may not have the right type, fold_convert should give us back a constant with the right type. */ tree constant = PRE_EXPR_CONSTANT (eprime); if (!useless_type_conversion_p (type, TREE_TYPE (constant))) { tree builtexpr = fold_convert (type, constant); if (!is_gimple_min_invariant (builtexpr)) { tree forcedexpr = force_gimple_operand (builtexpr, &stmts, true, NULL); if (!is_gimple_min_invariant (forcedexpr)) { if (forcedexpr != builtexpr) { VN_INFO_GET (forcedexpr)->valnum = PRE_EXPR_CONSTANT (eprime); VN_INFO (forcedexpr)->value_id = get_expr_value_id (eprime); } if (stmts) { gimple_stmt_iterator gsi; gsi = gsi_start (stmts); for (; !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); VEC_safe_push (gimple, heap, inserted_exprs, stmt); gimple_set_plf (stmt, NECESSARY, false); } gsi_insert_seq_on_edge (pred, stmts); } avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr); } } } } else if (eprime->kind == NAME) { /* We may have to do a conversion because our value numbering can look through types in certain cases, but our IL requires all operands of a phi node have the same type. */ tree name = PRE_EXPR_NAME (eprime); if (!useless_type_conversion_p (type, TREE_TYPE (name))) { tree builtexpr; tree forcedexpr; builtexpr = fold_convert (type, name); forcedexpr = force_gimple_operand (builtexpr, &stmts, true, NULL); if (forcedexpr != name) { VN_INFO_GET (forcedexpr)->valnum = VN_INFO (name)->valnum; VN_INFO (forcedexpr)->value_id = VN_INFO (name)->value_id; } if (stmts) { gimple_stmt_iterator gsi; gsi = gsi_start (stmts); for (; !gsi_end_p (gsi); gsi_next (&gsi)) { gimple stmt = gsi_stmt (gsi); VEC_safe_push (gimple, heap, inserted_exprs, stmt); gimple_set_plf (stmt, NECESSARY, false); } gsi_insert_seq_on_edge (pred, stmts); } avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr); } } } /* If we didn't want a phi node, and we made insertions, we still have inserted new stuff, and thus return true. If we didn't want a phi node, and didn't make insertions, we haven't added anything new, so return false. */ if (nophi && insertions) return true; else if (nophi && !insertions) return false; /* Now build a phi for the new variable. */ if (!prephitemp || TREE_TYPE (prephitemp) != type) { prephitemp = create_tmp_var (type, "prephitmp"); get_var_ann (prephitemp); } temp = prephitemp; add_referenced_var (temp); if (TREE_CODE (type) == COMPLEX_TYPE || TREE_CODE (type) == VECTOR_TYPE) DECL_GIMPLE_REG_P (temp) = 1; phi = create_phi_node (temp, block); gimple_set_plf (phi, NECESSARY, false); VN_INFO_GET (gimple_phi_result (phi))->valnum = gimple_phi_result (phi); VN_INFO (gimple_phi_result (phi))->value_id = val; VEC_safe_push (gimple, heap, inserted_exprs, phi); bitmap_set_bit (inserted_phi_names, SSA_NAME_VERSION (gimple_phi_result (phi))); FOR_EACH_EDGE (pred, ei, block->preds) { pre_expr ae = avail[pred->src->index]; gcc_assert (get_expr_type (ae) == type || useless_type_conversion_p (type, get_expr_type (ae))); if (ae->kind == CONSTANT) add_phi_arg (phi, PRE_EXPR_CONSTANT (ae), pred, UNKNOWN_LOCATION); else add_phi_arg (phi, PRE_EXPR_NAME (avail[pred->src->index]), pred, UNKNOWN_LOCATION); } newphi = get_or_alloc_expr_for_name (gimple_phi_result (phi)); add_to_value (val, newphi); /* The value should *not* exist in PHI_GEN, or else we wouldn't be doing this insertion, since we test for the existence of this value in PHI_GEN before proceeding with the partial redundancy checks in insert_aux. The value may exist in AVAIL_OUT, in particular, it could be represented by the expression we are trying to eliminate, in which case we want the replacement to occur. If it's not existing in AVAIL_OUT, we want it inserted there. Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of this block, because if it did, it would have existed in our dominator's AVAIL_OUT, and would have been skipped due to the full redundancy check. */ bitmap_insert_into_set (PHI_GEN (block), newphi); bitmap_value_replace_in_set (AVAIL_OUT (block), newphi); bitmap_insert_into_set (NEW_SETS (block), newphi); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Created phi "); print_gimple_stmt (dump_file, phi, 0, 0); fprintf (dump_file, " in block %d\n", block->index); } pre_stats.phis++; return true; } /* Perform insertion of partially redundant values. For BLOCK, do the following: 1. Propagate the NEW_SETS of the dominator into the current block. If the block has multiple predecessors, 2a. Iterate over the ANTIC expressions for the block to see if any of them are partially redundant. 2b. If so, insert them into the necessary predecessors to make the expression fully redundant. 2c. Insert a new PHI merging the values of the predecessors. 2d. Insert the new PHI, and the new expressions, into the NEW_SETS set. 3. Recursively call ourselves on the dominator children of BLOCK. Steps 1, 2a, and 3 are done by insert_aux. 2b, 2c and 2d are done by do_regular_insertion and do_partial_insertion. */ static bool do_regular_insertion (basic_block block, basic_block dom) { bool new_stuff = false; VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (ANTIC_IN (block)); pre_expr expr; int i; for (i = 0; VEC_iterate (pre_expr, exprs, i, expr); i++) { if (expr->kind != NAME) { pre_expr *avail; unsigned int val; bool by_some = false; bool cant_insert = false; bool all_same = true; pre_expr first_s = NULL; edge pred; basic_block bprime; pre_expr eprime = NULL; edge_iterator ei; pre_expr edoubleprime = NULL; bool do_insertion = false; val = get_expr_value_id (expr); if (bitmap_set_contains_value (PHI_GEN (block), val)) continue; if (bitmap_set_contains_value (AVAIL_OUT (dom), val)) { if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Found fully redundant value\n"); continue; } avail = XCNEWVEC (pre_expr, last_basic_block); FOR_EACH_EDGE (pred, ei, block->preds) { unsigned int vprime; /* We should never run insertion for the exit block and so not come across fake pred edges. */ gcc_assert (!(pred->flags & EDGE_FAKE)); bprime = pred->src; eprime = phi_translate (expr, ANTIC_IN (block), NULL, bprime, block); /* eprime will generally only be NULL if the value of the expression, translated through the PHI for this predecessor, is undefined. If that is the case, we can't make the expression fully redundant, because its value is undefined along a predecessor path. We can thus break out early because it doesn't matter what the rest of the results are. */ if (eprime == NULL) { cant_insert = true; break; } eprime = fully_constant_expression (eprime); vprime = get_expr_value_id (eprime); edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime), vprime, NULL); if (edoubleprime == NULL) { avail[bprime->index] = eprime; all_same = false; } else { avail[bprime->index] = edoubleprime; by_some = true; /* We want to perform insertions to remove a redundancy on a path in the CFG we want to optimize for speed. */ if (optimize_edge_for_speed_p (pred)) do_insertion = true; if (first_s == NULL) first_s = edoubleprime; else if (!pre_expr_eq (first_s, edoubleprime)) all_same = false; } } /* If we can insert it, it's not the same value already existing along every predecessor, and it's defined by some predecessor, it is partially redundant. */ if (!cant_insert && !all_same && by_some && do_insertion && dbg_cnt (treepre_insert)) { if (insert_into_preds_of_block (block, get_expression_id (expr), avail)) new_stuff = true; } /* If all edges produce the same value and that value is an invariant, then the PHI has the same value on all edges. Note this. */ else if (!cant_insert && all_same && eprime && (edoubleprime->kind == CONSTANT || edoubleprime->kind == NAME) && !value_id_constant_p (val)) { unsigned int j; bitmap_iterator bi; bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val); unsigned int new_val = get_expr_value_id (edoubleprime); FOR_EACH_EXPR_ID_IN_SET (exprset, j, bi) { pre_expr expr = expression_for_id (j); if (expr->kind == NAME) { vn_ssa_aux_t info = VN_INFO (PRE_EXPR_NAME (expr)); /* Just reset the value id and valnum so it is the same as the constant we have discovered. */ if (edoubleprime->kind == CONSTANT) { info->valnum = PRE_EXPR_CONSTANT (edoubleprime); pre_stats.constified++; } else info->valnum = VN_INFO (PRE_EXPR_NAME (edoubleprime))->valnum; info->value_id = new_val; } } } free (avail); } } VEC_free (pre_expr, heap, exprs); return new_stuff; } /* Perform insertion for partially anticipatable expressions. There is only one case we will perform insertion for these. This case is if the expression is partially anticipatable, and fully available. In this case, we know that putting it earlier will enable us to remove the later computation. */ static bool do_partial_partial_insertion (basic_block block, basic_block dom) { bool new_stuff = false; VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (PA_IN (block)); pre_expr expr; int i; for (i = 0; VEC_iterate (pre_expr, exprs, i, expr); i++) { if (expr->kind != NAME) { pre_expr *avail; unsigned int val; bool by_all = true; bool cant_insert = false; edge pred; basic_block bprime; pre_expr eprime = NULL; edge_iterator ei; val = get_expr_value_id (expr); if (bitmap_set_contains_value (PHI_GEN (block), val)) continue; if (bitmap_set_contains_value (AVAIL_OUT (dom), val)) continue; avail = XCNEWVEC (pre_expr, last_basic_block); FOR_EACH_EDGE (pred, ei, block->preds) { unsigned int vprime; pre_expr edoubleprime; /* We should never run insertion for the exit block and so not come across fake pred edges. */ gcc_assert (!(pred->flags & EDGE_FAKE)); bprime = pred->src; eprime = phi_translate (expr, ANTIC_IN (block), PA_IN (block), bprime, block); /* eprime will generally only be NULL if the value of the expression, translated through the PHI for this predecessor, is undefined. If that is the case, we can't make the expression fully redundant, because its value is undefined along a predecessor path. We can thus break out early because it doesn't matter what the rest of the results are. */ if (eprime == NULL) { cant_insert = true; break; } eprime = fully_constant_expression (eprime); vprime = get_expr_value_id (eprime); edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime), vprime, NULL); if (edoubleprime == NULL) { by_all = false; break; } else avail[bprime->index] = edoubleprime; } /* If we can insert it, it's not the same value already existing along every predecessor, and it's defined by some predecessor, it is partially redundant. */ if (!cant_insert && by_all && dbg_cnt (treepre_insert)) { pre_stats.pa_insert++; if (insert_into_preds_of_block (block, get_expression_id (expr), avail)) new_stuff = true; } free (avail); } } VEC_free (pre_expr, heap, exprs); return new_stuff; } static bool insert_aux (basic_block block) { basic_block son; bool new_stuff = false; if (block) { basic_block dom; dom = get_immediate_dominator (CDI_DOMINATORS, block); if (dom) { unsigned i; bitmap_iterator bi; bitmap_set_t newset = NEW_SETS (dom); if (newset) { /* Note that we need to value_replace both NEW_SETS, and AVAIL_OUT. For both the case of NEW_SETS, the value may be represented by some non-simple expression here that we want to replace it with. */ FOR_EACH_EXPR_ID_IN_SET (newset, i, bi) { pre_expr expr = expression_for_id (i); bitmap_value_replace_in_set (NEW_SETS (block), expr); bitmap_value_replace_in_set (AVAIL_OUT (block), expr); } } if (!single_pred_p (block)) { new_stuff |= do_regular_insertion (block, dom); if (do_partial_partial) new_stuff |= do_partial_partial_insertion (block, dom); } } } for (son = first_dom_son (CDI_DOMINATORS, block); son; son = next_dom_son (CDI_DOMINATORS, son)) { new_stuff |= insert_aux (son); } return new_stuff; } /* Perform insertion of partially redundant values. */ static void insert (void) { bool new_stuff = true; basic_block bb; int num_iterations = 0; FOR_ALL_BB (bb) NEW_SETS (bb) = bitmap_set_new (); while (new_stuff) { num_iterations++; new_stuff = insert_aux (ENTRY_BLOCK_PTR); } statistics_histogram_event (cfun, "insert iterations", num_iterations); } /* Add OP to EXP_GEN (block), and possibly to the maximal set. */ static void add_to_exp_gen (basic_block block, tree op) { if (!in_fre) { pre_expr result; if (TREE_CODE (op) == SSA_NAME && ssa_undefined_value_p (op)) return; result = get_or_alloc_expr_for_name (op); bitmap_value_insert_into_set (EXP_GEN (block), result); } } /* Create value ids for PHI in BLOCK. */ static void make_values_for_phi (gimple phi, basic_block block) { tree result = gimple_phi_result (phi); /* We have no need for virtual phis, as they don't represent actual computations. */ if (is_gimple_reg (result)) { pre_expr e = get_or_alloc_expr_for_name (result); add_to_value (get_expr_value_id (e), e); bitmap_insert_into_set (PHI_GEN (block), e); bitmap_value_insert_into_set (AVAIL_OUT (block), e); if (!in_fre) { unsigned i; for (i = 0; i < gimple_phi_num_args (phi); ++i) { tree arg = gimple_phi_arg_def (phi, i); if (TREE_CODE (arg) == SSA_NAME) { e = get_or_alloc_expr_for_name (arg); add_to_value (get_expr_value_id (e), e); } } } } } /* Compute the AVAIL set for all basic blocks. This function performs value numbering of the statements in each basic block. The AVAIL sets are built from information we glean while doing this value numbering, since the AVAIL sets contain only one entry per value. AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)]. AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK]. */ static void compute_avail (void) { basic_block block, son; basic_block *worklist; size_t sp = 0; unsigned i; /* We pretend that default definitions are defined in the entry block. This includes function arguments and the static chain decl. */ for (i = 1; i < num_ssa_names; ++i) { tree name = ssa_name (i); pre_expr e; if (!name || !SSA_NAME_IS_DEFAULT_DEF (name) || has_zero_uses (name) || !is_gimple_reg (name)) continue; e = get_or_alloc_expr_for_name (name); add_to_value (get_expr_value_id (e), e); if (!in_fre) bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), e); bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), e); } /* Allocate the worklist. */ worklist = XNEWVEC (basic_block, n_basic_blocks); /* Seed the algorithm by putting the dominator children of the entry block on the worklist. */ for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR); son; son = next_dom_son (CDI_DOMINATORS, son)) worklist[sp++] = son; /* Loop until the worklist is empty. */ while (sp) { gimple_stmt_iterator gsi; gimple stmt; basic_block dom; unsigned int stmt_uid = 1; /* Pick a block from the worklist. */ block = worklist[--sp]; /* Initially, the set of available values in BLOCK is that of its immediate dominator. */ dom = get_immediate_dominator (CDI_DOMINATORS, block); if (dom) bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom)); /* Generate values for PHI nodes. */ for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi)) make_values_for_phi (gsi_stmt (gsi), block); BB_MAY_NOTRETURN (block) = 0; /* Now compute value numbers and populate value sets with all the expressions computed in BLOCK. */ for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi)) { ssa_op_iter iter; tree op; stmt = gsi_stmt (gsi); gimple_set_uid (stmt, stmt_uid++); /* Cache whether the basic-block has any non-visible side-effect or control flow. If this isn't a call or it is the last stmt in the basic-block then the CFG represents things correctly. */ if (is_gimple_call (stmt) && !stmt_ends_bb_p (stmt)) { /* Non-looping const functions always return normally. Otherwise the call might not return or have side-effects that forbids hoisting possibly trapping expressions before it. */ int flags = gimple_call_flags (stmt); if (!(flags & ECF_CONST) || (flags & ECF_LOOPING_CONST_OR_PURE)) BB_MAY_NOTRETURN (block) = 1; } FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF) { pre_expr e = get_or_alloc_expr_for_name (op); add_to_value (get_expr_value_id (e), e); if (!in_fre) bitmap_insert_into_set (TMP_GEN (block), e); bitmap_value_insert_into_set (AVAIL_OUT (block), e); } if (gimple_has_volatile_ops (stmt) || stmt_could_throw_p (stmt)) continue; switch (gimple_code (stmt)) { case GIMPLE_RETURN: FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE) add_to_exp_gen (block, op); continue; case GIMPLE_CALL: { vn_reference_t ref; unsigned int i; vn_reference_op_t vro; pre_expr result = NULL; VEC(vn_reference_op_s, heap) *ops = NULL; if (!can_value_number_call (stmt)) continue; copy_reference_ops_from_call (stmt, &ops); vn_reference_lookup_pieces (gimple_vuse (stmt), 0, gimple_expr_type (stmt), ops, &ref, false); VEC_free (vn_reference_op_s, heap, ops); if (!ref) continue; for (i = 0; VEC_iterate (vn_reference_op_s, ref->operands, i, vro); i++) { if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME) add_to_exp_gen (block, vro->op0); if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME) add_to_exp_gen (block, vro->op1); if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME) add_to_exp_gen (block, vro->op2); } result = (pre_expr) pool_alloc (pre_expr_pool); result->kind = REFERENCE; result->id = 0; PRE_EXPR_REFERENCE (result) = ref; get_or_alloc_expression_id (result); add_to_value (get_expr_value_id (result), result); if (!in_fre) bitmap_value_insert_into_set (EXP_GEN (block), result); continue; } case GIMPLE_ASSIGN: { pre_expr result = NULL; switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))) { case tcc_unary: case tcc_binary: case tcc_comparison: { vn_nary_op_t nary; unsigned int i; vn_nary_op_lookup_pieces (gimple_num_ops (stmt) - 1, gimple_assign_rhs_code (stmt), gimple_expr_type (stmt), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), NULL_TREE, NULL_TREE, &nary); if (!nary) continue; for (i = 0; i < nary->length; i++) if (TREE_CODE (nary->op[i]) == SSA_NAME) add_to_exp_gen (block, nary->op[i]); result = (pre_expr) pool_alloc (pre_expr_pool); result->kind = NARY; result->id = 0; PRE_EXPR_NARY (result) = nary; break; } case tcc_declaration: case tcc_reference: { vn_reference_t ref; unsigned int i; vn_reference_op_t vro; vn_reference_lookup (gimple_assign_rhs1 (stmt), gimple_vuse (stmt), true, &ref); if (!ref) continue; for (i = 0; VEC_iterate (vn_reference_op_s, ref->operands, i, vro); i++) { if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME) add_to_exp_gen (block, vro->op0); if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME) add_to_exp_gen (block, vro->op1); if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME) add_to_exp_gen (block, vro->op2); } result = (pre_expr) pool_alloc (pre_expr_pool); result->kind = REFERENCE; result->id = 0; PRE_EXPR_REFERENCE (result) = ref; break; } default: /* For any other statement that we don't recognize, simply add all referenced SSA_NAMEs to EXP_GEN. */ FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE) add_to_exp_gen (block, op); continue; } get_or_alloc_expression_id (result); add_to_value (get_expr_value_id (result), result); if (!in_fre) bitmap_value_insert_into_set (EXP_GEN (block), result); continue; } default: break; } } /* Put the dominator children of BLOCK on the worklist of blocks to compute available sets for. */ for (son = first_dom_son (CDI_DOMINATORS, block); son; son = next_dom_son (CDI_DOMINATORS, son)) worklist[sp++] = son; } free (worklist); } /* Insert the expression for SSA_VN that SCCVN thought would be simpler than the available expressions for it. The insertion point is right before the first use in STMT. Returns the SSA_NAME that should be used for replacement. */ static tree do_SCCVN_insertion (gimple stmt, tree ssa_vn) { basic_block bb = gimple_bb (stmt); gimple_stmt_iterator gsi; gimple_seq stmts = NULL; tree expr; pre_expr e; /* First create a value expression from the expression we want to insert and associate it with the value handle for SSA_VN. */ e = get_or_alloc_expr_for (vn_get_expr_for (ssa_vn)); if (e == NULL) return NULL_TREE; /* Then use create_expression_by_pieces to generate a valid expression to insert at this point of the IL stream. */ expr = create_expression_by_pieces (bb, e, &stmts, stmt, NULL); if (expr == NULL_TREE) return NULL_TREE; gsi = gsi_for_stmt (stmt); gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); return expr; } /* Eliminate fully redundant computations. */ static unsigned int eliminate (void) { VEC (gimple, heap) *to_remove = NULL; basic_block b; unsigned int todo = 0; gimple_stmt_iterator gsi; gimple stmt; unsigned i; FOR_EACH_BB (b) { for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi)) { stmt = gsi_stmt (gsi); /* Lookup the RHS of the expression, see if we have an available computation for it. If so, replace the RHS with the available computation. */ if (gimple_has_lhs (stmt) && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME && !gimple_assign_ssa_name_copy_p (stmt) && (!gimple_assign_single_p (stmt) || !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))) && !gimple_has_volatile_ops (stmt) && !has_zero_uses (gimple_get_lhs (stmt))) { tree lhs = gimple_get_lhs (stmt); tree rhs = NULL_TREE; tree sprime = NULL; pre_expr lhsexpr = get_or_alloc_expr_for_name (lhs); pre_expr sprimeexpr; if (gimple_assign_single_p (stmt)) rhs = gimple_assign_rhs1 (stmt); sprimeexpr = bitmap_find_leader (AVAIL_OUT (b), get_expr_value_id (lhsexpr), NULL); if (sprimeexpr) { if (sprimeexpr->kind == CONSTANT) sprime = PRE_EXPR_CONSTANT (sprimeexpr); else if (sprimeexpr->kind == NAME) sprime = PRE_EXPR_NAME (sprimeexpr); else gcc_unreachable (); } /* If there is no existing leader but SCCVN knows this value is constant, use that constant. */ if (!sprime && is_gimple_min_invariant (VN_INFO (lhs)->valnum)) { sprime = VN_INFO (lhs)->valnum; if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (sprime))) sprime = fold_convert (TREE_TYPE (lhs), sprime); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Replaced "); print_gimple_expr (dump_file, stmt, 0, 0); fprintf (dump_file, " with "); print_generic_expr (dump_file, sprime, 0); fprintf (dump_file, " in "); print_gimple_stmt (dump_file, stmt, 0, 0); } pre_stats.eliminations++; propagate_tree_value_into_stmt (&gsi, sprime); stmt = gsi_stmt (gsi); update_stmt (stmt); continue; } /* If there is no existing usable leader but SCCVN thinks it has an expression it wants to use as replacement, insert that. */ if (!sprime || sprime == lhs) { tree val = VN_INFO (lhs)->valnum; if (val != VN_TOP && TREE_CODE (val) == SSA_NAME && VN_INFO (val)->needs_insertion && can_PRE_operation (vn_get_expr_for (val))) sprime = do_SCCVN_insertion (stmt, val); } if (sprime && sprime != lhs && (rhs == NULL_TREE || TREE_CODE (rhs) != SSA_NAME || may_propagate_copy (rhs, sprime))) { gcc_assert (sprime != rhs); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Replaced "); print_gimple_expr (dump_file, stmt, 0, 0); fprintf (dump_file, " with "); print_generic_expr (dump_file, sprime, 0); fprintf (dump_file, " in "); print_gimple_stmt (dump_file, stmt, 0, 0); } if (TREE_CODE (sprime) == SSA_NAME) gimple_set_plf (SSA_NAME_DEF_STMT (sprime), NECESSARY, true); /* We need to make sure the new and old types actually match, which may require adding a simple cast, which fold_convert will do for us. */ if ((!rhs || TREE_CODE (rhs) != SSA_NAME) && !useless_type_conversion_p (gimple_expr_type (stmt), TREE_TYPE (sprime))) sprime = fold_convert (gimple_expr_type (stmt), sprime); pre_stats.eliminations++; propagate_tree_value_into_stmt (&gsi, sprime); stmt = gsi_stmt (gsi); update_stmt (stmt); /* If we removed EH side effects from the statement, clean its EH information. */ if (maybe_clean_or_replace_eh_stmt (stmt, stmt)) { bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Removed EH side effects.\n"); } } } /* If the statement is a scalar store, see if the expression has the same value number as its rhs. If so, the store is dead. */ else if (gimple_assign_single_p (stmt) && !is_gimple_reg (gimple_assign_lhs (stmt)) && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))) { tree rhs = gimple_assign_rhs1 (stmt); tree val; val = vn_reference_lookup (gimple_assign_lhs (stmt), gimple_vuse (stmt), true, NULL); if (TREE_CODE (rhs) == SSA_NAME) rhs = VN_INFO (rhs)->valnum; if (val && operand_equal_p (val, rhs, 0)) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Deleted redundant store "); print_gimple_stmt (dump_file, stmt, 0, 0); } /* Queue stmt for removal. */ VEC_safe_push (gimple, heap, to_remove, stmt); } } /* Visit COND_EXPRs and fold the comparison with the available value-numbers. */ else if (gimple_code (stmt) == GIMPLE_COND) { tree op0 = gimple_cond_lhs (stmt); tree op1 = gimple_cond_rhs (stmt); tree result; if (TREE_CODE (op0) == SSA_NAME) op0 = VN_INFO (op0)->valnum; if (TREE_CODE (op1) == SSA_NAME) op1 = VN_INFO (op1)->valnum; result = fold_binary (gimple_cond_code (stmt), boolean_type_node, op0, op1); if (result && TREE_CODE (result) == INTEGER_CST) { if (integer_zerop (result)) gimple_cond_make_false (stmt); else gimple_cond_make_true (stmt); update_stmt (stmt); todo = TODO_cleanup_cfg; } } /* Visit indirect calls and turn them into direct calls if possible. */ if (gimple_code (stmt) == GIMPLE_CALL && TREE_CODE (gimple_call_fn (stmt)) == SSA_NAME) { tree fn = VN_INFO (gimple_call_fn (stmt))->valnum; if (TREE_CODE (fn) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Replacing call target with "); print_generic_expr (dump_file, fn, 0); fprintf (dump_file, " in "); print_gimple_stmt (dump_file, stmt, 0, 0); } gimple_call_set_fn (stmt, fn); update_stmt (stmt); if (maybe_clean_or_replace_eh_stmt (stmt, stmt)) { bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, " Removed EH side effects.\n"); } /* Changing an indirect call to a direct call may have exposed different semantics. This may require an SSA update. */ todo |= TODO_update_ssa_only_virtuals; } } } for (gsi = gsi_start_phis (b); !gsi_end_p (gsi);) { gimple stmt, phi = gsi_stmt (gsi); tree sprime = NULL_TREE, res = PHI_RESULT (phi); pre_expr sprimeexpr, resexpr; gimple_stmt_iterator gsi2; /* We want to perform redundant PHI elimination. Do so by replacing the PHI with a single copy if possible. Do not touch inserted, single-argument or virtual PHIs. */ if (gimple_phi_num_args (phi) == 1 || !is_gimple_reg (res) || bitmap_bit_p (inserted_phi_names, SSA_NAME_VERSION (res))) { gsi_next (&gsi); continue; } resexpr = get_or_alloc_expr_for_name (res); sprimeexpr = bitmap_find_leader (AVAIL_OUT (b), get_expr_value_id (resexpr), NULL); if (sprimeexpr) { if (sprimeexpr->kind == CONSTANT) sprime = PRE_EXPR_CONSTANT (sprimeexpr); else if (sprimeexpr->kind == NAME) sprime = PRE_EXPR_NAME (sprimeexpr); else gcc_unreachable (); } if (!sprimeexpr || sprime == res) { gsi_next (&gsi); continue; } if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Replaced redundant PHI node defining "); print_generic_expr (dump_file, res, 0); fprintf (dump_file, " with "); print_generic_expr (dump_file, sprime, 0); fprintf (dump_file, "\n"); } remove_phi_node (&gsi, false); if (!useless_type_conversion_p (TREE_TYPE (res), TREE_TYPE (sprime))) sprime = fold_convert (TREE_TYPE (res), sprime); stmt = gimple_build_assign (res, sprime); SSA_NAME_DEF_STMT (res) = stmt; if (TREE_CODE (sprime) == SSA_NAME) gimple_set_plf (SSA_NAME_DEF_STMT (sprime), NECESSARY, true); gsi2 = gsi_after_labels (b); gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT); /* Queue the copy for eventual removal. */ VEC_safe_push (gimple, heap, to_remove, stmt); pre_stats.eliminations++; } } /* We cannot remove stmts during BB walk, especially not release SSA names there as this confuses the VN machinery. The stmts ending up in to_remove are either stores or simple copies. */ for (i = 0; VEC_iterate (gimple, to_remove, i, stmt); ++i) { tree lhs = gimple_assign_lhs (stmt); tree rhs = gimple_assign_rhs1 (stmt); use_operand_p use_p; gimple use_stmt; /* If there is a single use only, propagate the equivalency instead of keeping the copy. */ if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME && single_imm_use (lhs, &use_p, &use_stmt) && may_propagate_copy (USE_FROM_PTR (use_p), rhs)) { SET_USE (use_p, gimple_assign_rhs1 (stmt)); update_stmt (use_stmt); } /* If this is a store or a now unused copy, remove it. */ if (TREE_CODE (lhs) != SSA_NAME || has_zero_uses (lhs)) { gsi = gsi_for_stmt (stmt); unlink_stmt_vdef (stmt); gsi_remove (&gsi, true); release_defs (stmt); } } VEC_free (gimple, heap, to_remove); return todo; } /* Borrow a bit of tree-ssa-dce.c for the moment. XXX: In 4.1, we should be able to just run a DCE pass after PRE, though this may be a bit faster, and we may want critical edges kept split. */ /* If OP's defining statement has not already been determined to be necessary, mark that statement necessary. Return the stmt, if it is newly necessary. */ static inline gimple mark_operand_necessary (tree op) { gimple stmt; gcc_assert (op); if (TREE_CODE (op) != SSA_NAME) return NULL; stmt = SSA_NAME_DEF_STMT (op); gcc_assert (stmt); if (gimple_plf (stmt, NECESSARY) || gimple_nop_p (stmt)) return NULL; gimple_set_plf (stmt, NECESSARY, true); return stmt; } /* Because we don't follow exactly the standard PRE algorithm, and decide not to insert PHI nodes sometimes, and because value numbering of casts isn't perfect, we sometimes end up inserting dead code. This simple DCE-like pass removes any insertions we made that weren't actually used. */ static void remove_dead_inserted_code (void) { VEC(gimple,heap) *worklist = NULL; int i; gimple t; worklist = VEC_alloc (gimple, heap, VEC_length (gimple, inserted_exprs)); for (i = 0; VEC_iterate (gimple, inserted_exprs, i, t); i++) { if (gimple_plf (t, NECESSARY)) VEC_quick_push (gimple, worklist, t); } while (VEC_length (gimple, worklist) > 0) { t = VEC_pop (gimple, worklist); /* PHI nodes are somewhat special in that each PHI alternative has data and control dependencies. All the statements feeding the PHI node's arguments are always necessary. */ if (gimple_code (t) == GIMPLE_PHI) { unsigned k; VEC_reserve (gimple, heap, worklist, gimple_phi_num_args (t)); for (k = 0; k < gimple_phi_num_args (t); k++) { tree arg = PHI_ARG_DEF (t, k); if (TREE_CODE (arg) == SSA_NAME) { gimple n = mark_operand_necessary (arg); if (n) VEC_quick_push (gimple, worklist, n); } } } else { /* Propagate through the operands. Examine all the USE, VUSE and VDEF operands in this statement. Mark all the statements which feed this statement's uses as necessary. */ ssa_op_iter iter; tree use; /* The operands of VDEF expressions are also needed as they represent potential definitions that may reach this statement (VDEF operands allow us to follow def-def links). */ FOR_EACH_SSA_TREE_OPERAND (use, t, iter, SSA_OP_ALL_USES) { gimple n = mark_operand_necessary (use); if (n) VEC_safe_push (gimple, heap, worklist, n); } } } for (i = 0; VEC_iterate (gimple, inserted_exprs, i, t); i++) { if (!gimple_plf (t, NECESSARY)) { gimple_stmt_iterator gsi; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Removing unnecessary insertion:"); print_gimple_stmt (dump_file, t, 0, 0); } gsi = gsi_for_stmt (t); if (gimple_code (t) == GIMPLE_PHI) remove_phi_node (&gsi, true); else { gsi_remove (&gsi, true); release_defs (t); } } } VEC_free (gimple, heap, worklist); } /* Compute a reverse post-order in *POST_ORDER. If INCLUDE_ENTRY_EXIT is true, then then ENTRY_BLOCK and EXIT_BLOCK are included. Returns the number of visited blocks. */ static int my_rev_post_order_compute (int *post_order, bool include_entry_exit) { edge_iterator *stack; int sp; int post_order_num = 0; sbitmap visited; int count; if (include_entry_exit) post_order[post_order_num++] = EXIT_BLOCK; /* Allocate stack for back-tracking up CFG. */ stack = XNEWVEC (edge_iterator, n_basic_blocks + 1); sp = 0; /* Allocate bitmap to track nodes that have been visited. */ visited = sbitmap_alloc (last_basic_block); /* None of the nodes in the CFG have been visited yet. */ sbitmap_zero (visited); /* Push the last edge on to the stack. */ stack[sp++] = ei_start (EXIT_BLOCK_PTR->preds); while (sp) { edge_iterator ei; basic_block src; basic_block dest; /* Look at the edge on the top of the stack. */ ei = stack[sp - 1]; src = ei_edge (ei)->src; dest = ei_edge (ei)->dest; /* Check if the edge destination has been visited yet. */ if (src != ENTRY_BLOCK_PTR && ! TEST_BIT (visited, src->index)) { /* Mark that we have visited the destination. */ SET_BIT (visited, src->index); if (EDGE_COUNT (src->preds) > 0) /* Since the DEST node has been visited for the first time, check its successors. */ stack[sp++] = ei_start (src->preds); else post_order[post_order_num++] = src->index; } else { if (ei_one_before_end_p (ei) && dest != EXIT_BLOCK_PTR) post_order[post_order_num++] = dest->index; if (!ei_one_before_end_p (ei)) ei_next (&stack[sp - 1]); else sp--; } } if (include_entry_exit) { post_order[post_order_num++] = ENTRY_BLOCK; count = post_order_num; } else count = post_order_num + 2; free (stack); sbitmap_free (visited); return post_order_num; } /* Initialize data structures used by PRE. */ static void init_pre (bool do_fre) { basic_block bb; next_expression_id = 1; expressions = NULL; VEC_safe_push (pre_expr, heap, expressions, NULL); value_expressions = VEC_alloc (bitmap_set_t, heap, get_max_value_id () + 1); VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions, get_max_value_id() + 1); name_to_id = NULL; in_fre = do_fre; inserted_exprs = NULL; need_creation = NULL; pretemp = NULL_TREE; storetemp = NULL_TREE; prephitemp = NULL_TREE; connect_infinite_loops_to_exit (); memset (&pre_stats, 0, sizeof (pre_stats)); postorder = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS); my_rev_post_order_compute (postorder, false); FOR_ALL_BB (bb) bb->aux = XCNEWVEC (struct bb_bitmap_sets, 1); calculate_dominance_info (CDI_POST_DOMINATORS); calculate_dominance_info (CDI_DOMINATORS); bitmap_obstack_initialize (&grand_bitmap_obstack); inserted_phi_names = BITMAP_ALLOC (&grand_bitmap_obstack); phi_translate_table = htab_create (5110, expr_pred_trans_hash, expr_pred_trans_eq, free); expression_to_id = htab_create (num_ssa_names * 3, pre_expr_hash, pre_expr_eq, NULL); bitmap_set_pool = create_alloc_pool ("Bitmap sets", sizeof (struct bitmap_set), 30); pre_expr_pool = create_alloc_pool ("pre_expr nodes", sizeof (struct pre_expr_d), 30); FOR_ALL_BB (bb) { EXP_GEN (bb) = bitmap_set_new (); PHI_GEN (bb) = bitmap_set_new (); TMP_GEN (bb) = bitmap_set_new (); AVAIL_OUT (bb) = bitmap_set_new (); } need_eh_cleanup = BITMAP_ALLOC (NULL); } /* Deallocate data structures used by PRE. */ static void fini_pre (bool do_fre) { basic_block bb; free (postorder); VEC_free (bitmap_set_t, heap, value_expressions); VEC_free (gimple, heap, inserted_exprs); VEC_free (gimple, heap, need_creation); bitmap_obstack_release (&grand_bitmap_obstack); free_alloc_pool (bitmap_set_pool); free_alloc_pool (pre_expr_pool); htab_delete (phi_translate_table); htab_delete (expression_to_id); VEC_free (unsigned, heap, name_to_id); FOR_ALL_BB (bb) { free (bb->aux); bb->aux = NULL; } free_dominance_info (CDI_POST_DOMINATORS); if (!bitmap_empty_p (need_eh_cleanup)) { gimple_purge_all_dead_eh_edges (need_eh_cleanup); cleanup_tree_cfg (); } BITMAP_FREE (need_eh_cleanup); if (!do_fre) loop_optimizer_finalize (); } /* Main entry point to the SSA-PRE pass. DO_FRE is true if the caller only wants to do full redundancy elimination. */ static unsigned int execute_pre (bool do_fre) { unsigned int todo = 0; do_partial_partial = optimize > 2 && optimize_function_for_speed_p (cfun); /* This has to happen before SCCVN runs because loop_optimizer_init may create new phis, etc. */ if (!do_fre) loop_optimizer_init (LOOPS_NORMAL); if (!run_scc_vn (do_fre)) { if (!do_fre) { remove_dead_inserted_code (); loop_optimizer_finalize (); } return 0; } init_pre (do_fre); scev_initialize (); /* Collect and value number expressions computed in each basic block. */ compute_avail (); if (dump_file && (dump_flags & TDF_DETAILS)) { basic_block bb; FOR_ALL_BB (bb) { print_bitmap_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index); print_bitmap_set (dump_file, PHI_GEN (bb), "phi_gen", bb->index); print_bitmap_set (dump_file, TMP_GEN (bb), "tmp_gen", bb->index); print_bitmap_set (dump_file, AVAIL_OUT (bb), "avail_out", bb->index); } } /* Insert can get quite slow on an incredibly large number of basic blocks due to some quadratic behavior. Until this behavior is fixed, don't run it when he have an incredibly large number of bb's. If we aren't going to run insert, there is no point in computing ANTIC, either, even though it's plenty fast. */ if (!do_fre && n_basic_blocks < 4000) { compute_antic (); insert (); } /* Remove all the redundant expressions. */ todo |= eliminate (); statistics_counter_event (cfun, "Insertions", pre_stats.insertions); statistics_counter_event (cfun, "PA inserted", pre_stats.pa_insert); statistics_counter_event (cfun, "New PHIs", pre_stats.phis); statistics_counter_event (cfun, "Eliminated", pre_stats.eliminations); statistics_counter_event (cfun, "Constified", pre_stats.constified); /* Make sure to remove fake edges before committing our inserts. This makes sure we don't end up with extra critical edges that we would need to split. */ remove_fake_exit_edges (); gsi_commit_edge_inserts (); clear_expression_ids (); free_scc_vn (); if (!do_fre) remove_dead_inserted_code (); scev_finalize (); fini_pre (do_fre); return todo; } /* Gate and execute functions for PRE. */ static unsigned int do_pre (void) { return execute_pre (false); } static bool gate_pre (void) { return flag_tree_pre != 0; } struct gimple_opt_pass pass_pre = { { GIMPLE_PASS, "pre", /* name */ gate_pre, /* gate */ do_pre, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_PRE, /* tv_id */ PROP_no_crit_edges | PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ TODO_rebuild_alias, /* todo_flags_start */ TODO_update_ssa_only_virtuals | TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ } }; /* Gate and execute functions for FRE. */ static unsigned int execute_fre (void) { return execute_pre (true); } static bool gate_fre (void) { return flag_tree_fre != 0; } struct gimple_opt_pass pass_fre = { { GIMPLE_PASS, "fre", /* name */ gate_fre, /* gate */ execute_fre, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_TREE_FRE, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */ } };
Go to most recent revision | Compare with Previous | Blame | View Log