URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [tree-ssa-propagate.c] - Rev 280
Compare with Previous | Blame | View Log
/* Generic SSA value propagation engine. Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by Diego Novillo <dnovillo@redhat.com> This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "rtl.h" #include "tm_p.h" #include "ggc.h" #include "basic-block.h" #include "output.h" #include "expr.h" #include "function.h" #include "diagnostic.h" #include "timevar.h" #include "tree-dump.h" #include "tree-flow.h" #include "tree-pass.h" #include "tree-ssa-propagate.h" #include "langhooks.h" #include "varray.h" #include "vec.h" #include "value-prof.h" #include "gimple.h" /* This file implements a generic value propagation engine based on the same propagation used by the SSA-CCP algorithm [1]. Propagation is performed by simulating the execution of every statement that produces the value being propagated. Simulation proceeds as follows: 1- Initially, all edges of the CFG are marked not executable and the CFG worklist is seeded with all the statements in the entry basic block (block 0). 2- Every statement S is simulated with a call to the call-back function SSA_PROP_VISIT_STMT. This evaluation may produce 3 results: SSA_PROP_NOT_INTERESTING: Statement S produces nothing of interest and does not affect any of the work lists. SSA_PROP_VARYING: The value produced by S cannot be determined at compile time. Further simulation of S is not required. If S is a conditional jump, all the outgoing edges for the block are considered executable and added to the work list. SSA_PROP_INTERESTING: S produces a value that can be computed at compile time. Its result can be propagated into the statements that feed from S. Furthermore, if S is a conditional jump, only the edge known to be taken is added to the work list. Edges that are known not to execute are never simulated. 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The return value from SSA_PROP_VISIT_PHI has the same semantics as described in #2. 4- Three work lists are kept. Statements are only added to these lists if they produce one of SSA_PROP_INTERESTING or SSA_PROP_VARYING. CFG_BLOCKS contains the list of blocks to be simulated. Blocks are added to this list if their incoming edges are found executable. VARYING_SSA_EDGES contains the list of statements that feed from statements that produce an SSA_PROP_VARYING result. These are simulated first to speed up processing. INTERESTING_SSA_EDGES contains the list of statements that feed from statements that produce an SSA_PROP_INTERESTING result. 5- Simulation terminates when all three work lists are drained. Before calling ssa_propagate, it is important to clear prop_simulate_again_p for all the statements in the program that should be simulated. This initialization allows an implementation to specify which statements should never be simulated. It is also important to compute def-use information before calling ssa_propagate. References: [1] Constant propagation with conditional branches, Wegman and Zadeck, ACM TOPLAS 13(2):181-210. [2] Building an Optimizing Compiler, Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. [3] Advanced Compiler Design and Implementation, Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ /* Function pointers used to parameterize the propagation engine. */ static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt; static ssa_prop_visit_phi_fn ssa_prop_visit_phi; /* Keep track of statements that have been added to one of the SSA edges worklists. This flag is used to avoid visiting statements unnecessarily when draining an SSA edge worklist. If while simulating a basic block, we find a statement with STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge processing from visiting it again. NOTE: users of the propagation engine are not allowed to use the GF_PLF_1 flag. */ #define STMT_IN_SSA_EDGE_WORKLIST GF_PLF_1 /* A bitmap to keep track of executable blocks in the CFG. */ static sbitmap executable_blocks; /* Array of control flow edges on the worklist. */ static VEC(basic_block,heap) *cfg_blocks; static unsigned int cfg_blocks_num = 0; static int cfg_blocks_tail; static int cfg_blocks_head; static sbitmap bb_in_list; /* Worklist of SSA edges which will need reexamination as their definition has changed. SSA edges are def-use edges in the SSA web. For each D-U edge, we store the target statement or PHI node U. */ static GTY(()) VEC(gimple,gc) *interesting_ssa_edges; /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the list of SSA edges is split into two. One contains all SSA edges who need to be reexamined because their lattice value changed to varying (this worklist), and the other contains all other SSA edges to be reexamined (INTERESTING_SSA_EDGES). Since most values in the program are VARYING, the ideal situation is to move them to that lattice value as quickly as possible. Thus, it doesn't make sense to process any other type of lattice value until all VARYING values are propagated fully, which is one thing using the VARYING worklist achieves. In addition, if we don't use a separate worklist for VARYING edges, we end up with situations where lattice values move from UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */ static GTY(()) VEC(gimple,gc) *varying_ssa_edges; /* Return true if the block worklist empty. */ static inline bool cfg_blocks_empty_p (void) { return (cfg_blocks_num == 0); } /* Add a basic block to the worklist. The block must not be already in the worklist, and it must not be the ENTRY or EXIT block. */ static void cfg_blocks_add (basic_block bb) { bool head = false; gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR); gcc_assert (!TEST_BIT (bb_in_list, bb->index)); if (cfg_blocks_empty_p ()) { cfg_blocks_tail = cfg_blocks_head = 0; cfg_blocks_num = 1; } else { cfg_blocks_num++; if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks)) { /* We have to grow the array now. Adjust to queue to occupy the full space of the original array. We do not need to initialize the newly allocated portion of the array because we keep track of CFG_BLOCKS_HEAD and CFG_BLOCKS_HEAD. */ cfg_blocks_tail = VEC_length (basic_block, cfg_blocks); cfg_blocks_head = 0; VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail); } /* Minor optimization: we prefer to see blocks with more predecessors later, because there is more of a chance that the incoming edges will be executable. */ else if (EDGE_COUNT (bb->preds) >= EDGE_COUNT (VEC_index (basic_block, cfg_blocks, cfg_blocks_head)->preds)) cfg_blocks_tail = ((cfg_blocks_tail + 1) % VEC_length (basic_block, cfg_blocks)); else { if (cfg_blocks_head == 0) cfg_blocks_head = VEC_length (basic_block, cfg_blocks); --cfg_blocks_head; head = true; } } VEC_replace (basic_block, cfg_blocks, head ? cfg_blocks_head : cfg_blocks_tail, bb); SET_BIT (bb_in_list, bb->index); } /* Remove a block from the worklist. */ static basic_block cfg_blocks_get (void) { basic_block bb; bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head); gcc_assert (!cfg_blocks_empty_p ()); gcc_assert (bb); cfg_blocks_head = ((cfg_blocks_head + 1) % VEC_length (basic_block, cfg_blocks)); --cfg_blocks_num; RESET_BIT (bb_in_list, bb->index); return bb; } /* We have just defined a new value for VAR. If IS_VARYING is true, add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add them to INTERESTING_SSA_EDGES. */ static void add_ssa_edge (tree var, bool is_varying) { imm_use_iterator iter; use_operand_p use_p; FOR_EACH_IMM_USE_FAST (use_p, iter, var) { gimple use_stmt = USE_STMT (use_p); if (prop_simulate_again_p (use_stmt) && !gimple_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST)) { gimple_set_plf (use_stmt, STMT_IN_SSA_EDGE_WORKLIST, true); if (is_varying) VEC_safe_push (gimple, gc, varying_ssa_edges, use_stmt); else VEC_safe_push (gimple, gc, interesting_ssa_edges, use_stmt); } } } /* Add edge E to the control flow worklist. */ static void add_control_edge (edge e) { basic_block bb = e->dest; if (bb == EXIT_BLOCK_PTR) return; /* If the edge had already been executed, skip it. */ if (e->flags & EDGE_EXECUTABLE) return; e->flags |= EDGE_EXECUTABLE; /* If the block is already in the list, we're done. */ if (TEST_BIT (bb_in_list, bb->index)) return; cfg_blocks_add (bb); if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n", e->src->index, e->dest->index); } /* Simulate the execution of STMT and update the work lists accordingly. */ static void simulate_stmt (gimple stmt) { enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING; edge taken_edge = NULL; tree output_name = NULL_TREE; /* Don't bother visiting statements that are already considered varying by the propagator. */ if (!prop_simulate_again_p (stmt)) return; if (gimple_code (stmt) == GIMPLE_PHI) { val = ssa_prop_visit_phi (stmt); output_name = gimple_phi_result (stmt); } else val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name); if (val == SSA_PROP_VARYING) { prop_set_simulate_again (stmt, false); /* If the statement produced a new varying value, add the SSA edges coming out of OUTPUT_NAME. */ if (output_name) add_ssa_edge (output_name, true); /* If STMT transfers control out of its basic block, add all outgoing edges to the work list. */ if (stmt_ends_bb_p (stmt)) { edge e; edge_iterator ei; basic_block bb = gimple_bb (stmt); FOR_EACH_EDGE (e, ei, bb->succs) add_control_edge (e); } } else if (val == SSA_PROP_INTERESTING) { /* If the statement produced new value, add the SSA edges coming out of OUTPUT_NAME. */ if (output_name) add_ssa_edge (output_name, false); /* If we know which edge is going to be taken out of this block, add it to the CFG work list. */ if (taken_edge) add_control_edge (taken_edge); } } /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to drain. This pops statements off the given WORKLIST and processes them until there are no more statements on WORKLIST. We take a pointer to WORKLIST because it may be reallocated when an SSA edge is added to it in simulate_stmt. */ static void process_ssa_edge_worklist (VEC(gimple,gc) **worklist) { /* Drain the entire worklist. */ while (VEC_length (gimple, *worklist) > 0) { basic_block bb; /* Pull the statement to simulate off the worklist. */ gimple stmt = VEC_pop (gimple, *worklist); /* If this statement was already visited by simulate_block, then we don't need to visit it again here. */ if (!gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST)) continue; /* STMT is no longer in a worklist. */ gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "\nSimulating statement (from ssa_edges): "); print_gimple_stmt (dump_file, stmt, 0, dump_flags); } bb = gimple_bb (stmt); /* PHI nodes are always visited, regardless of whether or not the destination block is executable. Otherwise, visit the statement only if its block is marked executable. */ if (gimple_code (stmt) == GIMPLE_PHI || TEST_BIT (executable_blocks, bb->index)) simulate_stmt (stmt); } } /* Simulate the execution of BLOCK. Evaluate the statement associated with each variable reference inside the block. */ static void simulate_block (basic_block block) { gimple_stmt_iterator gsi; /* There is nothing to do for the exit block. */ if (block == EXIT_BLOCK_PTR) return; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nSimulating block %d\n", block->index); /* Always simulate PHI nodes, even if we have simulated this block before. */ for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi)) simulate_stmt (gsi_stmt (gsi)); /* If this is the first time we've simulated this block, then we must simulate each of its statements. */ if (!TEST_BIT (executable_blocks, block->index)) { gimple_stmt_iterator j; unsigned int normal_edge_count; edge e, normal_edge; edge_iterator ei; /* Note that we have simulated this block. */ SET_BIT (executable_blocks, block->index); for (j = gsi_start_bb (block); !gsi_end_p (j); gsi_next (&j)) { gimple stmt = gsi_stmt (j); /* If this statement is already in the worklist then "cancel" it. The reevaluation implied by the worklist entry will produce the same value we generate here and thus reevaluating it again from the worklist is pointless. */ if (gimple_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST)) gimple_set_plf (stmt, STMT_IN_SSA_EDGE_WORKLIST, false); simulate_stmt (stmt); } /* We can not predict when abnormal and EH edges will be executed, so once a block is considered executable, we consider any outgoing abnormal edges as executable. TODO: This is not exactly true. Simplifying statement might prove it non-throwing and also computed goto can be handled when destination is known. At the same time, if this block has only one successor that is reached by non-abnormal edges, then add that successor to the worklist. */ normal_edge_count = 0; normal_edge = NULL; FOR_EACH_EDGE (e, ei, block->succs) { if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) add_control_edge (e); else { normal_edge_count++; normal_edge = e; } } if (normal_edge_count == 1) add_control_edge (normal_edge); } } /* Initialize local data structures and work lists. */ static void ssa_prop_init (void) { edge e; edge_iterator ei; basic_block bb; /* Worklists of SSA edges. */ interesting_ssa_edges = VEC_alloc (gimple, gc, 20); varying_ssa_edges = VEC_alloc (gimple, gc, 20); executable_blocks = sbitmap_alloc (last_basic_block); sbitmap_zero (executable_blocks); bb_in_list = sbitmap_alloc (last_basic_block); sbitmap_zero (bb_in_list); if (dump_file && (dump_flags & TDF_DETAILS)) dump_immediate_uses (dump_file); cfg_blocks = VEC_alloc (basic_block, heap, 20); VEC_safe_grow (basic_block, heap, cfg_blocks, 20); /* Initially assume that every edge in the CFG is not executable. (including the edges coming out of ENTRY_BLOCK_PTR). */ FOR_ALL_BB (bb) { gimple_stmt_iterator si; for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false); for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) gimple_set_plf (gsi_stmt (si), STMT_IN_SSA_EDGE_WORKLIST, false); FOR_EACH_EDGE (e, ei, bb->succs) e->flags &= ~EDGE_EXECUTABLE; } /* Seed the algorithm by adding the successors of the entry block to the edge worklist. */ FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) add_control_edge (e); } /* Free allocated storage. */ static void ssa_prop_fini (void) { VEC_free (gimple, gc, interesting_ssa_edges); VEC_free (gimple, gc, varying_ssa_edges); VEC_free (basic_block, heap, cfg_blocks); cfg_blocks = NULL; sbitmap_free (bb_in_list); sbitmap_free (executable_blocks); } /* Return true if EXPR is an acceptable right-hand-side for a GIMPLE assignment. We validate the entire tree, not just the root node, thus catching expressions that embed complex operands that are not permitted in GIMPLE. This function is needed because the folding routines in fold-const.c may return such expressions in some cases, e.g., an array access with an embedded index addition. It may make more sense to have folding routines that are sensitive to the constraints on GIMPLE operands, rather than abandoning any any attempt to fold if the usual folding turns out to be too aggressive. */ bool valid_gimple_rhs_p (tree expr) { enum tree_code code = TREE_CODE (expr); switch (TREE_CODE_CLASS (code)) { case tcc_declaration: if (!is_gimple_variable (expr)) return false; break; case tcc_constant: /* All constants are ok. */ break; case tcc_binary: case tcc_comparison: if (!is_gimple_val (TREE_OPERAND (expr, 0)) || !is_gimple_val (TREE_OPERAND (expr, 1))) return false; break; case tcc_unary: if (!is_gimple_val (TREE_OPERAND (expr, 0))) return false; break; case tcc_expression: switch (code) { case ADDR_EXPR: { tree t; if (is_gimple_min_invariant (expr)) return true; t = TREE_OPERAND (expr, 0); while (handled_component_p (t)) { /* ??? More checks needed, see the GIMPLE verifier. */ if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF) && !is_gimple_val (TREE_OPERAND (t, 1))) return false; t = TREE_OPERAND (t, 0); } if (!is_gimple_id (t)) return false; } break; case TRUTH_NOT_EXPR: if (!is_gimple_val (TREE_OPERAND (expr, 0))) return false; break; case TRUTH_AND_EXPR: case TRUTH_XOR_EXPR: case TRUTH_OR_EXPR: if (!is_gimple_val (TREE_OPERAND (expr, 0)) || !is_gimple_val (TREE_OPERAND (expr, 1))) return false; break; default: return false; } break; case tcc_vl_exp: return false; case tcc_exceptional: if (code != SSA_NAME) return false; break; default: return false; } return true; } /* Return true if EXPR is a CALL_EXPR suitable for representation as a single GIMPLE_CALL statement. If the arguments require further gimplification, return false. */ bool valid_gimple_call_p (tree expr) { unsigned i, nargs; if (TREE_CODE (expr) != CALL_EXPR) return false; nargs = call_expr_nargs (expr); for (i = 0; i < nargs; i++) if (! is_gimple_operand (CALL_EXPR_ARG (expr, i))) return false; return true; } /* Make SSA names defined by OLD_STMT point to NEW_STMT as their defining statement. */ void move_ssa_defining_stmt_for_defs (gimple new_stmt, gimple old_stmt) { tree var; ssa_op_iter iter; if (gimple_in_ssa_p (cfun)) { /* Make defined SSA_NAMEs point to the new statement as their definition. */ FOR_EACH_SSA_TREE_OPERAND (var, old_stmt, iter, SSA_OP_ALL_DEFS) { if (TREE_CODE (var) == SSA_NAME) SSA_NAME_DEF_STMT (var) = new_stmt; } } } /* Update a GIMPLE_CALL statement at iterator *SI_P to reflect the value of EXPR, which is expected to be the result of folding the call. This can only be done if EXPR is a CALL_EXPR with valid GIMPLE operands as arguments, or if it is a suitable RHS expression for a GIMPLE_ASSIGN. More complex expressions will require gimplification, which will introduce addtional statements. In this event, no update is performed, and the function returns false. Note that we cannot mutate a GIMPLE_CALL in-place, so we always replace the statement at *SI_P with an entirely new statement. The new statement need not be a call, e.g., if the original call folded to a constant. */ bool update_call_from_tree (gimple_stmt_iterator *si_p, tree expr) { tree lhs; gimple stmt = gsi_stmt (*si_p); gcc_assert (is_gimple_call (stmt)); lhs = gimple_call_lhs (stmt); if (valid_gimple_call_p (expr)) { /* The call has simplified to another call. */ tree fn = CALL_EXPR_FN (expr); unsigned i; unsigned nargs = call_expr_nargs (expr); VEC(tree, heap) *args = NULL; gimple new_stmt; if (nargs > 0) { args = VEC_alloc (tree, heap, nargs); VEC_safe_grow (tree, heap, args, nargs); for (i = 0; i < nargs; i++) VEC_replace (tree, args, i, CALL_EXPR_ARG (expr, i)); } new_stmt = gimple_build_call_vec (fn, args); gimple_call_set_lhs (new_stmt, lhs); move_ssa_defining_stmt_for_defs (new_stmt, stmt); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); gimple_set_location (new_stmt, gimple_location (stmt)); gsi_replace (si_p, new_stmt, false); VEC_free (tree, heap, args); return true; } else if (valid_gimple_rhs_p (expr)) { gimple new_stmt; /* The call has simplified to an expression that cannot be represented as a GIMPLE_CALL. */ if (lhs) { /* A value is expected. Introduce a new GIMPLE_ASSIGN statement. */ STRIP_USELESS_TYPE_CONVERSION (expr); new_stmt = gimple_build_assign (lhs, expr); move_ssa_defining_stmt_for_defs (new_stmt, stmt); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); } else if (!TREE_SIDE_EFFECTS (expr)) { /* No value is expected, and EXPR has no effect. Replace it with an empty statement. */ new_stmt = gimple_build_nop (); unlink_stmt_vdef (stmt); release_defs (stmt); } else { /* No value is expected, but EXPR has an effect, e.g., it could be a reference to a volatile variable. Create an assignment statement with a dummy (unused) lhs variable. */ STRIP_USELESS_TYPE_CONVERSION (expr); lhs = create_tmp_var (TREE_TYPE (expr), NULL); new_stmt = gimple_build_assign (lhs, expr); add_referenced_var (lhs); lhs = make_ssa_name (lhs, new_stmt); gimple_assign_set_lhs (new_stmt, lhs); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); move_ssa_defining_stmt_for_defs (new_stmt, stmt); } gimple_set_location (new_stmt, gimple_location (stmt)); gsi_replace (si_p, new_stmt, false); return true; } else /* The call simplified to an expression that is not a valid GIMPLE RHS. */ return false; } /* Entry point to the propagation engine. VISIT_STMT is called for every statement visited. VISIT_PHI is called for every PHI node visited. */ void ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt, ssa_prop_visit_phi_fn visit_phi) { ssa_prop_visit_stmt = visit_stmt; ssa_prop_visit_phi = visit_phi; ssa_prop_init (); /* Iterate until the worklists are empty. */ while (!cfg_blocks_empty_p () || VEC_length (gimple, interesting_ssa_edges) > 0 || VEC_length (gimple, varying_ssa_edges) > 0) { if (!cfg_blocks_empty_p ()) { /* Pull the next block to simulate off the worklist. */ basic_block dest_block = cfg_blocks_get (); simulate_block (dest_block); } /* In order to move things to varying as quickly as possible,process the VARYING_SSA_EDGES worklist first. */ process_ssa_edge_worklist (&varying_ssa_edges); /* Now process the INTERESTING_SSA_EDGES worklist. */ process_ssa_edge_worklist (&interesting_ssa_edges); } ssa_prop_fini (); } /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref' is a non-volatile pointer dereference, a structure reference or a reference to a single _DECL. Ignore volatile memory references because they are not interesting for the optimizers. */ bool stmt_makes_single_store (gimple stmt) { tree lhs; if (gimple_code (stmt) != GIMPLE_ASSIGN && gimple_code (stmt) != GIMPLE_CALL) return false; if (!gimple_vdef (stmt)) return false; lhs = gimple_get_lhs (stmt); /* A call statement may have a null LHS. */ if (!lhs) return false; return (!TREE_THIS_VOLATILE (lhs) && (DECL_P (lhs) || REFERENCE_CLASS_P (lhs))); } /* Propagation statistics. */ struct prop_stats_d { long num_const_prop; long num_copy_prop; long num_stmts_folded; long num_dce; }; static struct prop_stats_d prop_stats; /* Replace USE references in statement STMT with the values stored in PROP_VALUE. Return true if at least one reference was replaced. */ static bool replace_uses_in (gimple stmt, prop_value_t *prop_value) { bool replaced = false; use_operand_p use; ssa_op_iter iter; FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE) { tree tuse = USE_FROM_PTR (use); tree val = prop_value[SSA_NAME_VERSION (tuse)].value; if (val == tuse || val == NULL_TREE) continue; if (gimple_code (stmt) == GIMPLE_ASM && !may_propagate_copy_into_asm (tuse)) continue; if (!may_propagate_copy (tuse, val)) continue; if (TREE_CODE (val) != SSA_NAME) prop_stats.num_const_prop++; else prop_stats.num_copy_prop++; propagate_value (use, val); replaced = true; } return replaced; } /* Replace propagated values into all the arguments for PHI using the values from PROP_VALUE. */ static void replace_phi_args_in (gimple phi, prop_value_t *prop_value) { size_t i; bool replaced = false; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Folding PHI node: "); print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); } for (i = 0; i < gimple_phi_num_args (phi); i++) { tree arg = gimple_phi_arg_def (phi, i); if (TREE_CODE (arg) == SSA_NAME) { tree val = prop_value[SSA_NAME_VERSION (arg)].value; if (val && val != arg && may_propagate_copy (arg, val)) { if (TREE_CODE (val) != SSA_NAME) prop_stats.num_const_prop++; else prop_stats.num_copy_prop++; propagate_value (PHI_ARG_DEF_PTR (phi, i), val); replaced = true; /* If we propagated a copy and this argument flows through an abnormal edge, update the replacement accordingly. */ if (TREE_CODE (val) == SSA_NAME && gimple_phi_arg_edge (phi, i)->flags & EDGE_ABNORMAL) SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; } } } if (dump_file && (dump_flags & TDF_DETAILS)) { if (!replaced) fprintf (dump_file, "No folding possible\n"); else { fprintf (dump_file, "Folded into: "); print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); fprintf (dump_file, "\n"); } } } /* Perform final substitution and folding of propagated values. PROP_VALUE[I] contains the single value that should be substituted at every use of SSA name N_I. If PROP_VALUE is NULL, no values are substituted. If FOLD_FN is non-NULL the function will be invoked on all statements before propagating values for pass specific simplification. DO_DCE is true if trivially dead stmts can be removed. Return TRUE when something changed. */ bool substitute_and_fold (prop_value_t *prop_value, ssa_prop_fold_stmt_fn fold_fn, bool do_dce) { basic_block bb; bool something_changed = false; if (prop_value == NULL && !fold_fn) return false; if (dump_file && (dump_flags & TDF_DETAILS)) fprintf (dump_file, "\nSubstituting values and folding statements\n\n"); memset (&prop_stats, 0, sizeof (prop_stats)); /* Substitute values in every statement of every basic block. */ FOR_EACH_BB (bb) { gimple_stmt_iterator i; /* Propagate known values into PHI nodes. */ if (prop_value) for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i)) replace_phi_args_in (gsi_stmt (i), prop_value); /* Propagate known values into stmts. Do a backward walk to expose more trivially deletable stmts. */ for (i = gsi_last_bb (bb); !gsi_end_p (i);) { bool did_replace; gimple stmt = gsi_stmt (i); gimple old_stmt; enum gimple_code code = gimple_code (stmt); gimple_stmt_iterator oldi; oldi = i; gsi_prev (&i); /* Ignore ASSERT_EXPRs. They are used by VRP to generate range information for names and they are discarded afterwards. */ if (code == GIMPLE_ASSIGN && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR) continue; /* No point propagating into a stmt whose result is not used, but instead we might be able to remove a trivially dead stmt. Don't do this when called from VRP, since the SSA_NAME which is going to be released could be still referenced in VRP ranges. */ if (do_dce && gimple_get_lhs (stmt) && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME && has_zero_uses (gimple_get_lhs (stmt)) && !stmt_could_throw_p (stmt) && !gimple_has_side_effects (stmt)) { gimple_stmt_iterator i2; if (dump_file && dump_flags & TDF_DETAILS) { fprintf (dump_file, "Removing dead stmt "); print_gimple_stmt (dump_file, stmt, 0, 0); fprintf (dump_file, "\n"); } prop_stats.num_dce++; i2 = gsi_for_stmt (stmt); gsi_remove (&i2, true); release_defs (stmt); continue; } /* Replace the statement with its folded version and mark it folded. */ did_replace = false; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Folding statement: "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } old_stmt = stmt; /* Some statements may be simplified using propagator specific information. Do this before propagating into the stmt to not disturb pass specific information. */ if (fold_fn && (*fold_fn)(&oldi)) { did_replace = true; prop_stats.num_stmts_folded++; } /* Only replace real uses if we couldn't fold the statement using value range information. */ if (prop_value && !did_replace) did_replace |= replace_uses_in (stmt, prop_value); /* If we made a replacement, fold the statement. */ if (did_replace) fold_stmt (&oldi); /* Now cleanup. */ if (did_replace) { stmt = gsi_stmt (oldi); /* If we cleaned up EH information from the statement, remove EH edges. */ if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) gimple_purge_dead_eh_edges (bb); if (is_gimple_assign (stmt) && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) == GIMPLE_SINGLE_RHS)) { tree rhs = gimple_assign_rhs1 (stmt); if (TREE_CODE (rhs) == ADDR_EXPR) recompute_tree_invariant_for_addr_expr (rhs); } /* Determine what needs to be done to update the SSA form. */ update_stmt (stmt); if (!is_gimple_debug (stmt)) something_changed = true; } if (dump_file && (dump_flags & TDF_DETAILS)) { if (did_replace) { fprintf (dump_file, "Folded into: "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); fprintf (dump_file, "\n"); } else fprintf (dump_file, "Not folded\n"); } } } statistics_counter_event (cfun, "Constants propagated", prop_stats.num_const_prop); statistics_counter_event (cfun, "Copies propagated", prop_stats.num_copy_prop); statistics_counter_event (cfun, "Statements folded", prop_stats.num_stmts_folded); statistics_counter_event (cfun, "Statements deleted", prop_stats.num_dce); return something_changed; } #include "gt-tree-ssa-propagate.h"