URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [gcc/] [tree-tailcall.c] - Rev 280
Compare with Previous | Blame | View Log
/* Tail call optimization on trees. Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "rtl.h" #include "tm_p.h" #include "hard-reg-set.h" #include "basic-block.h" #include "function.h" #include "tree-flow.h" #include "tree-dump.h" #include "diagnostic.h" #include "except.h" #include "tree-pass.h" #include "flags.h" #include "langhooks.h" #include "dbgcnt.h" /* The file implements the tail recursion elimination. It is also used to analyze the tail calls in general, passing the results to the rtl level where they are used for sibcall optimization. In addition to the standard tail recursion elimination, we handle the most trivial cases of making the call tail recursive by creating accumulators. For example the following function int sum (int n) { if (n > 0) return n + sum (n - 1); else return 0; } is transformed into int sum (int n) { int acc = 0; while (n > 0) acc += n--; return acc; } To do this, we maintain two accumulators (a_acc and m_acc) that indicate when we reach the return x statement, we should return a_acc + x * m_acc instead. They are initially initialized to 0 and 1, respectively, so the semantics of the function is obviously preserved. If we are guaranteed that the value of the accumulator never change, we omit the accumulator. There are three cases how the function may exit. The first one is handled in adjust_return_value, the other two in adjust_accumulator_values (the second case is actually a special case of the third one and we present it separately just for clarity): 1) Just return x, where x is not in any of the remaining special shapes. We rewrite this to a gimple equivalent of return m_acc * x + a_acc. 2) return f (...), where f is the current function, is rewritten in a classical tail-recursion elimination way, into assignment of arguments and jump to the start of the function. Values of the accumulators are unchanged. 3) return a + m * f(...), where a and m do not depend on call to f. To preserve the semantics described before we want this to be rewritten in such a way that we finally return a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...). I.e. we increase a_acc by a * m_acc, multiply m_acc by m and eliminate the tail call to f. Special cases when the value is just added or just multiplied are obtained by setting a = 0 or m = 1. TODO -- it is possible to do similar tricks for other operations. */ /* A structure that describes the tailcall. */ struct tailcall { /* The iterator pointing to the call statement. */ gimple_stmt_iterator call_gsi; /* True if it is a call to the current function. */ bool tail_recursion; /* The return value of the caller is mult * f + add, where f is the return value of the call. */ tree mult, add; /* Next tailcall in the chain. */ struct tailcall *next; }; /* The variables holding the value of multiplicative and additive accumulator. */ static tree m_acc, a_acc; static bool suitable_for_tail_opt_p (void); static bool optimize_tail_call (struct tailcall *, bool); static void eliminate_tail_call (struct tailcall *); static void find_tail_calls (basic_block, struct tailcall **); /* Returns false when the function is not suitable for tail call optimization from some reason (e.g. if it takes variable number of arguments). */ static bool suitable_for_tail_opt_p (void) { referenced_var_iterator rvi; tree var; if (cfun->stdarg) return false; /* No local variable nor structure field should be call-used. */ FOR_EACH_REFERENCED_VAR (var, rvi) { if (!is_global_var (var) && is_call_used (var)) return false; } return true; } /* Returns false when the function is not suitable for tail call optimization from some reason (e.g. if it takes variable number of arguments). This test must pass in addition to suitable_for_tail_opt_p in order to make tail call discovery happen. */ static bool suitable_for_tail_call_opt_p (void) { tree param; /* alloca (until we have stack slot life analysis) inhibits sibling call optimizations, but not tail recursion. */ if (cfun->calls_alloca) return false; /* If we are using sjlj exceptions, we may need to add a call to _Unwind_SjLj_Unregister at exit of the function. Which means that we cannot do any sibcall transformations. */ if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ()) return false; /* Any function that calls setjmp might have longjmp called from any called function. ??? We really should represent this properly in the CFG so that this needn't be special cased. */ if (cfun->calls_setjmp) return false; /* ??? It is OK if the argument of a function is taken in some cases, but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */ for (param = DECL_ARGUMENTS (current_function_decl); param; param = TREE_CHAIN (param)) if (TREE_ADDRESSABLE (param)) return false; return true; } /* Checks whether the expression EXPR in stmt AT is independent of the statement pointed to by GSI (in a sense that we already know EXPR's value at GSI). We use the fact that we are only called from the chain of basic blocks that have only single successor. Returns the expression containing the value of EXPR at GSI. */ static tree independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi) { basic_block bb, call_bb, at_bb; edge e; edge_iterator ei; if (is_gimple_min_invariant (expr)) return expr; if (TREE_CODE (expr) != SSA_NAME) return NULL_TREE; /* Mark the blocks in the chain leading to the end. */ at_bb = gimple_bb (at); call_bb = gimple_bb (gsi_stmt (gsi)); for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) bb->aux = &bb->aux; bb->aux = &bb->aux; while (1) { at = SSA_NAME_DEF_STMT (expr); bb = gimple_bb (at); /* The default definition or defined before the chain. */ if (!bb || !bb->aux) break; if (bb == call_bb) { for (; !gsi_end_p (gsi); gsi_next (&gsi)) if (gsi_stmt (gsi) == at) break; if (!gsi_end_p (gsi)) expr = NULL_TREE; break; } if (gimple_code (at) != GIMPLE_PHI) { expr = NULL_TREE; break; } FOR_EACH_EDGE (e, ei, bb->preds) if (e->src->aux) break; gcc_assert (e); expr = PHI_ARG_DEF_FROM_EDGE (at, e); if (TREE_CODE (expr) != SSA_NAME) { /* The value is a constant. */ break; } } /* Unmark the blocks. */ for (bb = call_bb; bb != at_bb; bb = single_succ (bb)) bb->aux = NULL; bb->aux = NULL; return expr; } /* Simulates the effect of an assignment STMT on the return value of the tail recursive CALL passed in ASS_VAR. M and A are the multiplicative and the additive factor for the real return value. */ static bool process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m, tree *a, tree *ass_var) { tree op0, op1, non_ass_var; tree dest = gimple_assign_lhs (stmt); enum tree_code code = gimple_assign_rhs_code (stmt); enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); tree src_var = gimple_assign_rhs1 (stmt); /* See if this is a simple copy operation of an SSA name to the function result. In that case we may have a simple tail call. Ignore type conversions that can never produce extra code between the function call and the function return. */ if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt)) && (TREE_CODE (src_var) == SSA_NAME)) { /* Reject a tailcall if the type conversion might need additional code. */ if (gimple_assign_cast_p (stmt) && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var))) return false; if (src_var != *ass_var) return false; *ass_var = dest; return true; } if (rhs_class != GIMPLE_BINARY_RHS) return false; /* Accumulator optimizations will reverse the order of operations. We can only do that for floating-point types if we're assuming that addition and multiplication are associative. */ if (!flag_associative_math) if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl)))) return false; /* We only handle the code like x = call (); y = m * x; z = y + a; return z; TODO -- Extend it for cases where the linear transformation of the output is expressed in a more complicated way. */ op0 = gimple_assign_rhs1 (stmt); op1 = gimple_assign_rhs2 (stmt); if (op0 == *ass_var && (non_ass_var = independent_of_stmt_p (op1, stmt, call))) ; else if (op1 == *ass_var && (non_ass_var = independent_of_stmt_p (op0, stmt, call))) ; else return false; switch (code) { case PLUS_EXPR: *a = non_ass_var; *ass_var = dest; return true; case MULT_EXPR: *m = non_ass_var; *ass_var = dest; return true; /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR, POINTER_PLUS_EXPR). */ default: return false; } } /* Propagate VAR through phis on edge E. */ static tree propagate_through_phis (tree var, edge e) { basic_block dest = e->dest; gimple_stmt_iterator gsi; for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple phi = gsi_stmt (gsi); if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var) return PHI_RESULT (phi); } return var; } /* Finds tailcalls falling into basic block BB. The list of found tailcalls is added to the start of RET. */ static void find_tail_calls (basic_block bb, struct tailcall **ret) { tree ass_var = NULL_TREE, ret_var, func, param; gimple stmt, call = NULL; gimple_stmt_iterator gsi, agsi; bool tail_recursion; struct tailcall *nw; edge e; tree m, a; basic_block abb; size_t idx; tree var; referenced_var_iterator rvi; if (!single_succ_p (bb)) return; for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) { stmt = gsi_stmt (gsi); /* Ignore labels. */ if (gimple_code (stmt) == GIMPLE_LABEL || is_gimple_debug (stmt)) continue; /* Check for a call. */ if (is_gimple_call (stmt)) { call = stmt; ass_var = gimple_call_lhs (stmt); break; } /* If the statement references memory or volatile operands, fail. */ if (gimple_references_memory_p (stmt) || gimple_has_volatile_ops (stmt)) return; } if (gsi_end_p (gsi)) { edge_iterator ei; /* Recurse to the predecessors. */ FOR_EACH_EDGE (e, ei, bb->preds) find_tail_calls (e->src, ret); return; } /* If the LHS of our call is not just a simple register, we can't transform this into a tail or sibling call. This situation happens, in (e.g.) "*p = foo()" where foo returns a struct. In this case we won't have a temporary here, but we need to carry out the side effect anyway, so tailcall is impossible. ??? In some situations (when the struct is returned in memory via invisible argument) we could deal with this, e.g. by passing 'p' itself as that argument to foo, but it's too early to do this here, and expand_call() will not handle it anyway. If it ever can, then we need to revisit this here, to allow that situation. */ if (ass_var && !is_gimple_reg (ass_var)) return; /* We found the call, check whether it is suitable. */ tail_recursion = false; func = gimple_call_fndecl (call); if (func == current_function_decl) { tree arg; for (param = DECL_ARGUMENTS (func), idx = 0; param && idx < gimple_call_num_args (call); param = TREE_CHAIN (param), idx ++) { arg = gimple_call_arg (call, idx); if (param != arg) { /* Make sure there are no problems with copying. The parameter have a copyable type and the two arguments must have reasonably equivalent types. The latter requirement could be relaxed if we emitted a suitable type conversion statement. */ if (!is_gimple_reg_type (TREE_TYPE (param)) || !useless_type_conversion_p (TREE_TYPE (param), TREE_TYPE (arg))) break; /* The parameter should be a real operand, so that phi node created for it at the start of the function has the meaning of copying the value. This test implies is_gimple_reg_type from the previous condition, however this one could be relaxed by being more careful with copying the new value of the parameter (emitting appropriate GIMPLE_ASSIGN and updating the virtual operands). */ if (!is_gimple_reg (param)) break; } } if (idx == gimple_call_num_args (call) && !param) tail_recursion = true; } /* Make sure the tail invocation of this function does not refer to local variables. */ FOR_EACH_REFERENCED_VAR (var, rvi) { if (TREE_CODE (var) != PARM_DECL && auto_var_in_fn_p (var, cfun->decl) && ref_maybe_used_by_stmt_p (call, var)) return; } /* Now check the statements after the call. None of them has virtual operands, so they may only depend on the call through its return value. The return value should also be dependent on each of them, since we are running after dce. */ m = NULL_TREE; a = NULL_TREE; abb = bb; agsi = gsi; while (1) { tree tmp_a = NULL_TREE; tree tmp_m = NULL_TREE; gsi_next (&agsi); while (gsi_end_p (agsi)) { ass_var = propagate_through_phis (ass_var, single_succ_edge (abb)); abb = single_succ (abb); agsi = gsi_start_bb (abb); } stmt = gsi_stmt (agsi); if (gimple_code (stmt) == GIMPLE_LABEL) continue; if (gimple_code (stmt) == GIMPLE_RETURN) break; if (is_gimple_debug (stmt)) continue; if (gimple_code (stmt) != GIMPLE_ASSIGN) return; /* This is a gimple assign. */ if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var)) return; if (tmp_a) { if (a) a = fold_build2 (PLUS_EXPR, TREE_TYPE (tmp_a), a, tmp_a); else a = tmp_a; } if (tmp_m) { if (m) m = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), m, tmp_m); else m = tmp_m; if (a) a = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), a, tmp_m); } } /* See if this is a tail call we can handle. */ ret_var = gimple_return_retval (stmt); /* We may proceed if there either is no return value, or the return value is identical to the call's return. */ if (ret_var && (ret_var != ass_var)) return; /* If this is not a tail recursive call, we cannot handle addends or multiplicands. */ if (!tail_recursion && (m || a)) return; nw = XNEW (struct tailcall); nw->call_gsi = gsi; nw->tail_recursion = tail_recursion; nw->mult = m; nw->add = a; nw->next = *ret; *ret = nw; } /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */ static void add_successor_phi_arg (edge e, tree var, tree phi_arg) { gimple_stmt_iterator gsi; for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) if (PHI_RESULT (gsi_stmt (gsi)) == var) break; gcc_assert (!gsi_end_p (gsi)); add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION); } /* Creates a GIMPLE statement which computes the operation specified by CODE, OP0 and OP1 to a new variable with name LABEL and inserts the statement in the position specified by GSI and UPDATE. Returns the tree node of the statement's result. */ static tree adjust_return_value_with_ops (enum tree_code code, const char *label, tree acc, tree op1, gimple_stmt_iterator gsi) { tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); tree tmp = create_tmp_var (ret_type, label); gimple stmt; tree result; if (TREE_CODE (ret_type) == COMPLEX_TYPE || TREE_CODE (ret_type) == VECTOR_TYPE) DECL_GIMPLE_REG_P (tmp) = 1; add_referenced_var (tmp); if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))) stmt = gimple_build_assign_with_ops (code, tmp, acc, op1); else { tree rhs = fold_convert (TREE_TYPE (acc), fold_build2 (code, TREE_TYPE (op1), fold_convert (TREE_TYPE (op1), acc), op1)); rhs = force_gimple_operand_gsi (&gsi, rhs, false, NULL, true, GSI_CONTINUE_LINKING); stmt = gimple_build_assign (NULL_TREE, rhs); } result = make_ssa_name (tmp, stmt); gimple_assign_set_lhs (stmt, result); update_stmt (stmt); gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); return result; } /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by the computation specified by CODE and OP1 and insert the statement at the position specified by GSI as a new statement. Returns new SSA name of updated accumulator. */ static tree update_accumulator_with_ops (enum tree_code code, tree acc, tree op1, gimple_stmt_iterator gsi) { gimple stmt; tree var; if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))) stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, op1); else { tree rhs = fold_convert (TREE_TYPE (acc), fold_build2 (code, TREE_TYPE (op1), fold_convert (TREE_TYPE (op1), acc), op1)); rhs = force_gimple_operand_gsi (&gsi, rhs, false, NULL, false, GSI_CONTINUE_LINKING); stmt = gimple_build_assign (NULL_TREE, rhs); } var = make_ssa_name (SSA_NAME_VAR (acc), stmt); gimple_assign_set_lhs (stmt, var); update_stmt (stmt); gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); return var; } /* Adjust the accumulator values according to A and M after GSI, and update the phi nodes on edge BACK. */ static void adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back) { tree var, a_acc_arg, m_acc_arg; if (m) m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT); if (a) a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT); a_acc_arg = a_acc; m_acc_arg = m_acc; if (a) { if (m_acc) { if (integer_onep (a)) var = m_acc; else var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc, a, gsi); } else var = a; a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi); } if (m) m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi); if (a_acc) add_successor_phi_arg (back, a_acc, a_acc_arg); if (m_acc) add_successor_phi_arg (back, m_acc, m_acc_arg); } /* Adjust value of the return at the end of BB according to M and A accumulators. */ static void adjust_return_value (basic_block bb, tree m, tree a) { tree retval; gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb)); gimple_stmt_iterator gsi = gsi_last_bb (bb); gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN); retval = gimple_return_retval (ret_stmt); if (!retval || retval == error_mark_node) return; if (m) retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval, gsi); if (a) retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval, gsi); gimple_return_set_retval (ret_stmt, retval); update_stmt (ret_stmt); } /* Subtract COUNT and FREQUENCY from the basic block and it's outgoing edge. */ static void decrease_profile (basic_block bb, gcov_type count, int frequency) { edge e; bb->count -= count; if (bb->count < 0) bb->count = 0; bb->frequency -= frequency; if (bb->frequency < 0) bb->frequency = 0; if (!single_succ_p (bb)) { gcc_assert (!EDGE_COUNT (bb->succs)); return; } e = single_succ_edge (bb); e->count -= count; if (e->count < 0) e->count = 0; } /* Returns true if argument PARAM of the tail recursive call needs to be copied when the call is eliminated. */ static bool arg_needs_copy_p (tree param) { tree def; if (!is_gimple_reg (param) || !var_ann (param)) return false; /* Parameters that are only defined but never used need not be copied. */ def = gimple_default_def (cfun, param); if (!def) return false; return true; } /* Eliminates tail call described by T. TMP_VARS is a list of temporary variables used to copy the function arguments. */ static void eliminate_tail_call (struct tailcall *t) { tree param, rslt; gimple stmt, call; tree arg; size_t idx; basic_block bb, first; edge e; gimple phi; gimple_stmt_iterator gsi; gimple orig_stmt; stmt = orig_stmt = gsi_stmt (t->call_gsi); bb = gsi_bb (t->call_gsi); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Eliminated tail recursion in bb %d : ", bb->index); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); fprintf (dump_file, "\n"); } gcc_assert (is_gimple_call (stmt)); first = single_succ (ENTRY_BLOCK_PTR); /* Remove the code after call_gsi that will become unreachable. The possibly unreachable code in other blocks is removed later in cfg cleanup. */ gsi = t->call_gsi; gsi_next (&gsi); while (!gsi_end_p (gsi)) { gimple t = gsi_stmt (gsi); /* Do not remove the return statement, so that redirect_edge_and_branch sees how the block ends. */ if (gimple_code (t) == GIMPLE_RETURN) break; gsi_remove (&gsi, true); release_defs (t); } /* Number of executions of function has reduced by the tailcall. */ e = single_succ_edge (gsi_bb (t->call_gsi)); decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e)); decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e)); if (e->dest != EXIT_BLOCK_PTR) decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e)); /* Replace the call by a jump to the start of function. */ e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)), first); gcc_assert (e); PENDING_STMT (e) = NULL; /* Add phi node entries for arguments. The ordering of the phi nodes should be the same as the ordering of the arguments. */ for (param = DECL_ARGUMENTS (current_function_decl), idx = 0, gsi = gsi_start_phis (first); param; param = TREE_CHAIN (param), idx++) { if (!arg_needs_copy_p (param)) continue; arg = gimple_call_arg (stmt, idx); phi = gsi_stmt (gsi); gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi))); add_phi_arg (phi, arg, e, gimple_location (stmt)); gsi_next (&gsi); } /* Update the values of accumulators. */ adjust_accumulator_values (t->call_gsi, t->mult, t->add, e); call = gsi_stmt (t->call_gsi); rslt = gimple_call_lhs (call); if (rslt != NULL_TREE) { /* Result of the call will no longer be defined. So adjust the SSA_NAME_DEF_STMT accordingly. */ SSA_NAME_DEF_STMT (rslt) = gimple_build_nop (); } gsi_remove (&t->call_gsi, true); release_defs (call); } /* Add phi nodes for the virtual operands defined in the function to the header of the loop created by tail recursion elimination. Originally, we used to add phi nodes only for call clobbered variables, as the value of the non-call clobbered ones obviously cannot be used or changed within the recursive call. However, the local variables from multiple calls now share the same location, so the virtual ssa form requires us to say that the location dies on further iterations of the loop, which requires adding phi nodes. */ static void add_virtual_phis (void) { referenced_var_iterator rvi; tree var; /* The problematic part is that there is no way how to know what to put into phi nodes (there in fact does not have to be such ssa name available). A solution would be to have an artificial use/kill for all virtual operands in EXIT node. Unless we have this, we cannot do much better than to rebuild the ssa form for possibly affected virtual ssa names from scratch. */ FOR_EACH_REFERENCED_VAR (var, rvi) { if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE) mark_sym_for_renaming (var); } } /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also mark the tailcalls for the sibcall optimization. */ static bool optimize_tail_call (struct tailcall *t, bool opt_tailcalls) { if (t->tail_recursion) { eliminate_tail_call (t); return true; } if (opt_tailcalls) { gimple stmt = gsi_stmt (t->call_gsi); gimple_call_set_tail (stmt, true); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "Found tail call "); print_gimple_stmt (dump_file, stmt, 0, dump_flags); fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index); } } return false; } /* Creates a tail-call accumulator of the same type as the return type of the current function. LABEL is the name used to creating the temporary variable for the accumulator. The accumulator will be inserted in the phis of a basic block BB with single predecessor with an initial value INIT converted to the current function return type. */ static tree create_tailcall_accumulator (const char *label, basic_block bb, tree init) { tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl)); tree tmp = create_tmp_var (ret_type, label); gimple phi; if (TREE_CODE (ret_type) == COMPLEX_TYPE || TREE_CODE (ret_type) == VECTOR_TYPE) DECL_GIMPLE_REG_P (tmp) = 1; add_referenced_var (tmp); phi = create_phi_node (tmp, bb); /* RET_TYPE can be a float when -ffast-maths is enabled. */ add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb), UNKNOWN_LOCATION); return PHI_RESULT (phi); } /* Optimizes tail calls in the function, turning the tail recursion into iteration. */ static unsigned int tree_optimize_tail_calls_1 (bool opt_tailcalls) { edge e; bool phis_constructed = false; struct tailcall *tailcalls = NULL, *act, *next; bool changed = false; basic_block first = single_succ (ENTRY_BLOCK_PTR); tree param; gimple stmt; edge_iterator ei; if (!suitable_for_tail_opt_p ()) return 0; if (opt_tailcalls) opt_tailcalls = suitable_for_tail_call_opt_p (); FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) { /* Only traverse the normal exits, i.e. those that end with return statement. */ stmt = last_stmt (e->src); if (stmt && gimple_code (stmt) == GIMPLE_RETURN) find_tail_calls (e->src, &tailcalls); } /* Construct the phi nodes and accumulators if necessary. */ a_acc = m_acc = NULL_TREE; for (act = tailcalls; act; act = act->next) { if (!act->tail_recursion) continue; if (!phis_constructed) { /* Ensure that there is only one predecessor of the block or if there are existing degenerate PHI nodes. */ if (!single_pred_p (first) || !gimple_seq_empty_p (phi_nodes (first))) first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR)); /* Copy the args if needed. */ for (param = DECL_ARGUMENTS (current_function_decl); param; param = TREE_CHAIN (param)) if (arg_needs_copy_p (param)) { tree name = gimple_default_def (cfun, param); tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name)); gimple phi; set_default_def (param, new_name); phi = create_phi_node (name, first); SSA_NAME_DEF_STMT (name) = phi; add_phi_arg (phi, new_name, single_pred_edge (first), EXPR_LOCATION (param)); } phis_constructed = true; } if (act->add && !a_acc) a_acc = create_tailcall_accumulator ("add_acc", first, integer_zero_node); if (act->mult && !m_acc) m_acc = create_tailcall_accumulator ("mult_acc", first, integer_one_node); } for (; tailcalls; tailcalls = next) { next = tailcalls->next; changed |= optimize_tail_call (tailcalls, opt_tailcalls); free (tailcalls); } if (a_acc || m_acc) { /* Modify the remaining return statements. */ FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) { stmt = last_stmt (e->src); if (stmt && gimple_code (stmt) == GIMPLE_RETURN) adjust_return_value (e->src, m_acc, a_acc); } } if (changed) free_dominance_info (CDI_DOMINATORS); if (phis_constructed) add_virtual_phis (); if (changed) return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; return 0; } static unsigned int execute_tail_recursion (void) { return tree_optimize_tail_calls_1 (false); } static bool gate_tail_calls (void) { return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call); } static unsigned int execute_tail_calls (void) { return tree_optimize_tail_calls_1 (true); } struct gimple_opt_pass pass_tail_recursion = { { GIMPLE_PASS, "tailr", /* name */ gate_tail_calls, /* gate */ execute_tail_recursion, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ } }; struct gimple_opt_pass pass_tail_calls = { { GIMPLE_PASS, "tailc", /* name */ gate_tail_calls, /* gate */ execute_tail_calls, /* execute */ NULL, /* sub */ NULL, /* next */ 0, /* static_pass_number */ TV_NONE, /* tv_id */ PROP_cfg | PROP_ssa, /* properties_required */ 0, /* properties_provided */ 0, /* properties_destroyed */ 0, /* todo_flags_start */ TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */ } };