URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [gcc-4.5.1/] [libgomp/] [team.c] - Rev 295
Go to most recent revision | Compare with Previous | Blame | View Log
/* Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by Richard Henderson <rth@redhat.com>. This file is part of the GNU OpenMP Library (libgomp). Libgomp is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ /* This file handles the maintainence of threads in response to team creation and termination. */ #include "libgomp.h" #include <stdlib.h> #include <string.h> /* This attribute contains PTHREAD_CREATE_DETACHED. */ pthread_attr_t gomp_thread_attr; /* This key is for the thread destructor. */ pthread_key_t gomp_thread_destructor; /* This is the libgomp per-thread data structure. */ #ifdef HAVE_TLS __thread struct gomp_thread gomp_tls_data; #else pthread_key_t gomp_tls_key; #endif /* This structure is used to communicate across pthread_create. */ struct gomp_thread_start_data { void (*fn) (void *); void *fn_data; struct gomp_team_state ts; struct gomp_task *task; struct gomp_thread_pool *thread_pool; bool nested; }; /* This function is a pthread_create entry point. This contains the idle loop in which a thread waits to be called up to become part of a team. */ static void * gomp_thread_start (void *xdata) { struct gomp_thread_start_data *data = xdata; struct gomp_thread *thr; struct gomp_thread_pool *pool; void (*local_fn) (void *); void *local_data; #ifdef HAVE_TLS thr = &gomp_tls_data; #else struct gomp_thread local_thr; thr = &local_thr; pthread_setspecific (gomp_tls_key, thr); #endif gomp_sem_init (&thr->release, 0); /* Extract what we need from data. */ local_fn = data->fn; local_data = data->fn_data; thr->thread_pool = data->thread_pool; thr->ts = data->ts; thr->task = data->task; thr->ts.team->ordered_release[thr->ts.team_id] = &thr->release; /* Make thread pool local. */ pool = thr->thread_pool; if (data->nested) { struct gomp_team *team = thr->ts.team; struct gomp_task *task = thr->task; gomp_barrier_wait (&team->barrier); local_fn (local_data); gomp_team_barrier_wait (&team->barrier); gomp_finish_task (task); gomp_barrier_wait_last (&team->barrier); } else { pool->threads[thr->ts.team_id] = thr; gomp_barrier_wait (&pool->threads_dock); do { struct gomp_team *team = thr->ts.team; struct gomp_task *task = thr->task; local_fn (local_data); gomp_team_barrier_wait (&team->barrier); gomp_finish_task (task); gomp_barrier_wait (&pool->threads_dock); local_fn = thr->fn; local_data = thr->data; thr->fn = NULL; } while (local_fn); } gomp_sem_destroy (&thr->release); return NULL; } /* Create a new team data structure. */ struct gomp_team * gomp_new_team (unsigned nthreads) { struct gomp_team *team; size_t size; int i; size = sizeof (*team) + nthreads * (sizeof (team->ordered_release[0]) + sizeof (team->implicit_task[0])); team = gomp_malloc (size); team->work_share_chunk = 8; #ifdef HAVE_SYNC_BUILTINS team->single_count = 0; #else gomp_mutex_init (&team->work_share_list_free_lock); #endif gomp_init_work_share (&team->work_shares[0], false, nthreads); team->work_shares[0].next_alloc = NULL; team->work_share_list_free = NULL; team->work_share_list_alloc = &team->work_shares[1]; for (i = 1; i < 7; i++) team->work_shares[i].next_free = &team->work_shares[i + 1]; team->work_shares[i].next_free = NULL; team->nthreads = nthreads; gomp_barrier_init (&team->barrier, nthreads); gomp_sem_init (&team->master_release, 0); team->ordered_release = (void *) &team->implicit_task[nthreads]; team->ordered_release[0] = &team->master_release; gomp_mutex_init (&team->task_lock); team->task_queue = NULL; team->task_count = 0; team->task_running_count = 0; return team; } /* Free a team data structure. */ static void free_team (struct gomp_team *team) { gomp_barrier_destroy (&team->barrier); gomp_mutex_destroy (&team->task_lock); free (team); } /* Allocate and initialize a thread pool. */ static struct gomp_thread_pool *gomp_new_thread_pool (void) { struct gomp_thread_pool *pool = gomp_malloc (sizeof(struct gomp_thread_pool)); pool->threads = NULL; pool->threads_size = 0; pool->threads_used = 0; pool->last_team = NULL; return pool; } static void gomp_free_pool_helper (void *thread_pool) { struct gomp_thread_pool *pool = (struct gomp_thread_pool *) thread_pool; gomp_barrier_wait_last (&pool->threads_dock); gomp_sem_destroy (&gomp_thread ()->release); pthread_exit (NULL); } /* Free a thread pool and release its threads. */ static void gomp_free_thread (void *arg __attribute__((unused))) { struct gomp_thread *thr = gomp_thread (); struct gomp_thread_pool *pool = thr->thread_pool; if (pool) { if (pool->threads_used > 0) { int i; for (i = 1; i < pool->threads_used; i++) { struct gomp_thread *nthr = pool->threads[i]; nthr->fn = gomp_free_pool_helper; nthr->data = pool; } /* This barrier undocks threads docked on pool->threads_dock. */ gomp_barrier_wait (&pool->threads_dock); /* And this waits till all threads have called gomp_barrier_wait_last in gomp_free_pool_helper. */ gomp_barrier_wait (&pool->threads_dock); /* Now it is safe to destroy the barrier and free the pool. */ gomp_barrier_destroy (&pool->threads_dock); } free (pool->threads); if (pool->last_team) free_team (pool->last_team); free (pool); thr->thread_pool = NULL; } if (thr->task != NULL) { struct gomp_task *task = thr->task; gomp_end_task (); free (task); } } /* Launch a team. */ void gomp_team_start (void (*fn) (void *), void *data, unsigned nthreads, struct gomp_team *team) { struct gomp_thread_start_data *start_data; struct gomp_thread *thr, *nthr; struct gomp_task *task; struct gomp_task_icv *icv; bool nested; struct gomp_thread_pool *pool; unsigned i, n, old_threads_used = 0; pthread_attr_t thread_attr, *attr; thr = gomp_thread (); nested = thr->ts.team != NULL; if (__builtin_expect (thr->thread_pool == NULL, 0)) { thr->thread_pool = gomp_new_thread_pool (); pthread_setspecific (gomp_thread_destructor, thr); } pool = thr->thread_pool; task = thr->task; icv = task ? &task->icv : &gomp_global_icv; /* Always save the previous state, even if this isn't a nested team. In particular, we should save any work share state from an outer orphaned work share construct. */ team->prev_ts = thr->ts; thr->ts.team = team; thr->ts.team_id = 0; ++thr->ts.level; if (nthreads > 1) ++thr->ts.active_level; thr->ts.work_share = &team->work_shares[0]; thr->ts.last_work_share = NULL; #ifdef HAVE_SYNC_BUILTINS thr->ts.single_count = 0; #endif thr->ts.static_trip = 0; thr->task = &team->implicit_task[0]; gomp_init_task (thr->task, task, icv); if (nthreads == 1) return; i = 1; /* We only allow the reuse of idle threads for non-nested PARALLEL regions. This appears to be implied by the semantics of threadprivate variables, but perhaps that's reading too much into things. Certainly it does prevent any locking problems, since only the initial program thread will modify gomp_threads. */ if (!nested) { old_threads_used = pool->threads_used; if (nthreads <= old_threads_used) n = nthreads; else if (old_threads_used == 0) { n = 0; gomp_barrier_init (&pool->threads_dock, nthreads); } else { n = old_threads_used; /* Increase the barrier threshold to make sure all new threads arrive before the team is released. */ gomp_barrier_reinit (&pool->threads_dock, nthreads); } /* Not true yet, but soon will be. We're going to release all threads from the dock, and those that aren't part of the team will exit. */ pool->threads_used = nthreads; /* Release existing idle threads. */ for (; i < n; ++i) { nthr = pool->threads[i]; nthr->ts.team = team; nthr->ts.work_share = &team->work_shares[0]; nthr->ts.last_work_share = NULL; nthr->ts.team_id = i; nthr->ts.level = team->prev_ts.level + 1; nthr->ts.active_level = thr->ts.active_level; #ifdef HAVE_SYNC_BUILTINS nthr->ts.single_count = 0; #endif nthr->ts.static_trip = 0; nthr->task = &team->implicit_task[i]; gomp_init_task (nthr->task, task, icv); nthr->fn = fn; nthr->data = data; team->ordered_release[i] = &nthr->release; } if (i == nthreads) goto do_release; /* If necessary, expand the size of the gomp_threads array. It is expected that changes in the number of threads are rare, thus we make no effort to expand gomp_threads_size geometrically. */ if (nthreads >= pool->threads_size) { pool->threads_size = nthreads + 1; pool->threads = gomp_realloc (pool->threads, pool->threads_size * sizeof (struct gomp_thread_data *)); } } if (__builtin_expect (nthreads > old_threads_used, 0)) { long diff = (long) nthreads - (long) old_threads_used; if (old_threads_used == 0) --diff; #ifdef HAVE_SYNC_BUILTINS __sync_fetch_and_add (&gomp_managed_threads, diff); #else gomp_mutex_lock (&gomp_remaining_threads_lock); gomp_managed_threads += diff; gomp_mutex_unlock (&gomp_remaining_threads_lock); #endif } attr = &gomp_thread_attr; if (__builtin_expect (gomp_cpu_affinity != NULL, 0)) { size_t stacksize; pthread_attr_init (&thread_attr); pthread_attr_setdetachstate (&thread_attr, PTHREAD_CREATE_DETACHED); if (! pthread_attr_getstacksize (&gomp_thread_attr, &stacksize)) pthread_attr_setstacksize (&thread_attr, stacksize); attr = &thread_attr; } start_data = gomp_alloca (sizeof (struct gomp_thread_start_data) * (nthreads-i)); /* Launch new threads. */ for (; i < nthreads; ++i, ++start_data) { pthread_t pt; int err; start_data->fn = fn; start_data->fn_data = data; start_data->ts.team = team; start_data->ts.work_share = &team->work_shares[0]; start_data->ts.last_work_share = NULL; start_data->ts.team_id = i; start_data->ts.level = team->prev_ts.level + 1; start_data->ts.active_level = thr->ts.active_level; #ifdef HAVE_SYNC_BUILTINS start_data->ts.single_count = 0; #endif start_data->ts.static_trip = 0; start_data->task = &team->implicit_task[i]; gomp_init_task (start_data->task, task, icv); start_data->thread_pool = pool; start_data->nested = nested; if (gomp_cpu_affinity != NULL) gomp_init_thread_affinity (attr); err = pthread_create (&pt, attr, gomp_thread_start, start_data); if (err != 0) gomp_fatal ("Thread creation failed: %s", strerror (err)); } if (__builtin_expect (gomp_cpu_affinity != NULL, 0)) pthread_attr_destroy (&thread_attr); do_release: gomp_barrier_wait (nested ? &team->barrier : &pool->threads_dock); /* Decrease the barrier threshold to match the number of threads that should arrive back at the end of this team. The extra threads should be exiting. Note that we arrange for this test to never be true for nested teams. */ if (__builtin_expect (nthreads < old_threads_used, 0)) { long diff = (long) nthreads - (long) old_threads_used; gomp_barrier_reinit (&pool->threads_dock, nthreads); #ifdef HAVE_SYNC_BUILTINS __sync_fetch_and_add (&gomp_managed_threads, diff); #else gomp_mutex_lock (&gomp_remaining_threads_lock); gomp_managed_threads += diff; gomp_mutex_unlock (&gomp_remaining_threads_lock); #endif } } /* Terminate the current team. This is only to be called by the master thread. We assume that we must wait for the other threads. */ void gomp_team_end (void) { struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; /* This barrier handles all pending explicit threads. */ gomp_team_barrier_wait (&team->barrier); gomp_fini_work_share (thr->ts.work_share); gomp_end_task (); thr->ts = team->prev_ts; if (__builtin_expect (thr->ts.team != NULL, 0)) { #ifdef HAVE_SYNC_BUILTINS __sync_fetch_and_add (&gomp_managed_threads, 1L - team->nthreads); #else gomp_mutex_lock (&gomp_remaining_threads_lock); gomp_managed_threads -= team->nthreads - 1L; gomp_mutex_unlock (&gomp_remaining_threads_lock); #endif /* This barrier has gomp_barrier_wait_last counterparts and ensures the team can be safely destroyed. */ gomp_barrier_wait (&team->barrier); } if (__builtin_expect (team->work_shares[0].next_alloc != NULL, 0)) { struct gomp_work_share *ws = team->work_shares[0].next_alloc; do { struct gomp_work_share *next_ws = ws->next_alloc; free (ws); ws = next_ws; } while (ws != NULL); } gomp_sem_destroy (&team->master_release); #ifndef HAVE_SYNC_BUILTINS gomp_mutex_destroy (&team->work_share_list_free_lock); #endif if (__builtin_expect (thr->ts.team != NULL, 0) || __builtin_expect (team->nthreads == 1, 0)) free_team (team); else { struct gomp_thread_pool *pool = thr->thread_pool; if (pool->last_team) free_team (pool->last_team); pool->last_team = team; } } /* Constructors for this file. */ static void __attribute__((constructor)) initialize_team (void) { struct gomp_thread *thr; #ifndef HAVE_TLS static struct gomp_thread initial_thread_tls_data; pthread_key_create (&gomp_tls_key, NULL); pthread_setspecific (gomp_tls_key, &initial_thread_tls_data); #endif if (pthread_key_create (&gomp_thread_destructor, gomp_free_thread) != 0) gomp_fatal ("could not create thread pool destructor."); #ifdef HAVE_TLS thr = &gomp_tls_data; #else thr = &initial_thread_tls_data; #endif gomp_sem_init (&thr->release, 0); } static void __attribute__((destructor)) team_destructor (void) { /* Without this dlclose on libgomp could lead to subsequent crashes. */ pthread_key_delete (gomp_thread_destructor); } struct gomp_task_icv * gomp_new_icv (void) { struct gomp_thread *thr = gomp_thread (); struct gomp_task *task = gomp_malloc (sizeof (struct gomp_task)); gomp_init_task (task, NULL, &gomp_global_icv); thr->task = task; pthread_setspecific (gomp_thread_destructor, thr); return &task->icv; }
Go to most recent revision | Compare with Previous | Blame | View Log