URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [bfd/] [elf64-hppa.c] - Rev 225
Compare with Previous | Blame | View Log
/* Support for HPPA 64-bit ELF 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "alloca-conf.h" #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/hppa.h" #include "libhppa.h" #include "elf64-hppa.h" #define ARCH_SIZE 64 #define PLT_ENTRY_SIZE 0x10 #define DLT_ENTRY_SIZE 0x8 #define OPD_ENTRY_SIZE 0x20 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl" /* The stub is supposed to load the target address and target's DP value out of the PLT, then do an external branch to the target address. LDD PLTOFF(%r27),%r1 BVE (%r1) LDD PLTOFF+8(%r27),%r27 Note that we must use the LDD with a 14 bit displacement, not the one with a 5 bit displacement. */ static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00, 0x53, 0x7b, 0x00, 0x00 }; struct elf64_hppa_link_hash_entry { struct elf_link_hash_entry eh; /* Offsets for this symbol in various linker sections. */ bfd_vma dlt_offset; bfd_vma plt_offset; bfd_vma opd_offset; bfd_vma stub_offset; /* The index of the (possibly local) symbol in the input bfd and its associated BFD. Needed so that we can have relocs against local symbols in shared libraries. */ long sym_indx; bfd *owner; /* Dynamic symbols may need to have two different values. One for the dynamic symbol table, one for the normal symbol table. In such cases we store the symbol's real value and section index here so we can restore the real value before we write the normal symbol table. */ bfd_vma st_value; int st_shndx; /* Used to count non-got, non-plt relocations for delayed sizing of relocation sections. */ struct elf64_hppa_dyn_reloc_entry { /* Next relocation in the chain. */ struct elf64_hppa_dyn_reloc_entry *next; /* The type of the relocation. */ int type; /* The input section of the relocation. */ asection *sec; /* Number of relocs copied in this section. */ bfd_size_type count; /* The index of the section symbol for the input section of the relocation. Only needed when building shared libraries. */ int sec_symndx; /* The offset within the input section of the relocation. */ bfd_vma offset; /* The addend for the relocation. */ bfd_vma addend; } *reloc_entries; /* Nonzero if this symbol needs an entry in one of the linker sections. */ unsigned want_dlt; unsigned want_plt; unsigned want_opd; unsigned want_stub; }; struct elf64_hppa_link_hash_table { struct elf_link_hash_table root; /* Shortcuts to get to the various linker defined sections. */ asection *dlt_sec; asection *dlt_rel_sec; asection *plt_sec; asection *plt_rel_sec; asection *opd_sec; asection *opd_rel_sec; asection *other_rel_sec; /* Offset of __gp within .plt section. When the PLT gets large we want to slide __gp into the PLT section so that we can continue to use single DP relative instructions to load values out of the PLT. */ bfd_vma gp_offset; /* Note this is not strictly correct. We should create a stub section for each input section with calls. The stub section should be placed before the section with the call. */ asection *stub_sec; bfd_vma text_segment_base; bfd_vma data_segment_base; /* We build tables to map from an input section back to its symbol index. This is the BFD for which we currently have a map. */ bfd *section_syms_bfd; /* Array of symbol numbers for each input section attached to the current BFD. */ int *section_syms; }; #define hppa_link_hash_table(p) \ ((struct elf64_hppa_link_hash_table *) ((p)->hash)) #define hppa_elf_hash_entry(ent) \ ((struct elf64_hppa_link_hash_entry *)(ent)) #define eh_name(eh) \ (eh ? eh->root.root.string : "<undef>") typedef struct bfd_hash_entry *(*new_hash_entry_func) (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); static struct bfd_link_hash_table *elf64_hppa_hash_table_create (bfd *abfd); /* This must follow the definitions of the various derived linker hash tables and shared functions. */ #include "elf-hppa.h" static bfd_boolean elf64_hppa_object_p (bfd *); static void elf64_hppa_post_process_headers (bfd *, struct bfd_link_info *); static bfd_boolean elf64_hppa_create_dynamic_sections (bfd *, struct bfd_link_info *); static bfd_boolean elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *, struct elf_link_hash_entry *); static bfd_boolean elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *, void *); static bfd_boolean elf64_hppa_size_dynamic_sections (bfd *, struct bfd_link_info *); static int elf64_hppa_link_output_symbol_hook (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *); static bfd_boolean elf64_hppa_finish_dynamic_symbol (bfd *, struct bfd_link_info *, struct elf_link_hash_entry *, Elf_Internal_Sym *); static enum elf_reloc_type_class elf64_hppa_reloc_type_class (const Elf_Internal_Rela *); static bfd_boolean elf64_hppa_finish_dynamic_sections (bfd *, struct bfd_link_info *); static bfd_boolean elf64_hppa_check_relocs (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); static bfd_boolean elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *, struct bfd_link_info *); static bfd_boolean elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *, void *); static bfd_boolean elf64_hppa_finalize_opd (struct elf_link_hash_entry *, void *); static bfd_boolean elf64_hppa_finalize_dlt (struct elf_link_hash_entry *, void *); static bfd_boolean allocate_global_data_dlt (struct elf_link_hash_entry *, void *); static bfd_boolean allocate_global_data_plt (struct elf_link_hash_entry *, void *); static bfd_boolean allocate_global_data_stub (struct elf_link_hash_entry *, void *); static bfd_boolean allocate_global_data_opd (struct elf_link_hash_entry *, void *); static bfd_boolean get_reloc_section (bfd *, struct elf64_hppa_link_hash_table *, asection *); static bfd_boolean count_dyn_reloc (bfd *, struct elf64_hppa_link_hash_entry *, int, asection *, int, bfd_vma, bfd_vma); static bfd_boolean allocate_dynrel_entries (struct elf_link_hash_entry *, void *); static bfd_boolean elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *, void *); static bfd_boolean get_opd (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); static bfd_boolean get_plt (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); static bfd_boolean get_dlt (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); static bfd_boolean get_stub (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *); static int elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *, int); /* Initialize an entry in the link hash table. */ static struct bfd_hash_entry * hppa64_link_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { /* Allocate the structure if it has not already been allocated by a subclass. */ if (entry == NULL) { entry = bfd_hash_allocate (table, sizeof (struct elf64_hppa_link_hash_entry)); if (entry == NULL) return entry; } /* Call the allocation method of the superclass. */ entry = _bfd_elf_link_hash_newfunc (entry, table, string); if (entry != NULL) { struct elf64_hppa_link_hash_entry *hh; /* Initialize our local data. All zeros. */ hh = hppa_elf_hash_entry (entry); memset (&hh->dlt_offset, 0, (sizeof (struct elf64_hppa_link_hash_entry) - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset))); } return entry; } /* Create the derived linker hash table. The PA64 ELF port uses this derived hash table to keep information specific to the PA ElF linker (without using static variables). */ static struct bfd_link_hash_table* elf64_hppa_hash_table_create (bfd *abfd) { struct elf64_hppa_link_hash_table *htab; bfd_size_type amt = sizeof (*htab); htab = bfd_zalloc (abfd, amt); if (htab == NULL) return NULL; if (!_bfd_elf_link_hash_table_init (&htab->root, abfd, hppa64_link_hash_newfunc, sizeof (struct elf64_hppa_link_hash_entry))) { bfd_release (abfd, htab); return NULL; } htab->text_segment_base = (bfd_vma) -1; htab->data_segment_base = (bfd_vma) -1; return &htab->root.root; } /* Return nonzero if ABFD represents a PA2.0 ELF64 file. Additionally we set the default architecture and machine. */ static bfd_boolean elf64_hppa_object_p (bfd *abfd) { Elf_Internal_Ehdr * i_ehdrp; unsigned int flags; i_ehdrp = elf_elfheader (abfd); if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0) { /* GCC on hppa-linux produces binaries with OSABI=Linux, but the kernel produces corefiles with OSABI=SysV. */ if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ return FALSE; } else { /* HPUX produces binaries with OSABI=HPUX, but the kernel produces corefiles with OSABI=SysV. */ if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ return FALSE; } flags = i_ehdrp->e_flags; switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) { case EFA_PARISC_1_0: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); case EFA_PARISC_1_1: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); case EFA_PARISC_2_0: if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64) return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); else return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); case EFA_PARISC_2_0 | EF_PARISC_WIDE: return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); } /* Don't be fussy. */ return TRUE; } /* Given section type (hdr->sh_type), return a boolean indicating whether or not the section is an elf64-hppa specific section. */ static bfd_boolean elf64_hppa_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr, const char *name, int shindex) { asection *newsect; switch (hdr->sh_type) { case SHT_PARISC_EXT: if (strcmp (name, ".PARISC.archext") != 0) return FALSE; break; case SHT_PARISC_UNWIND: if (strcmp (name, ".PARISC.unwind") != 0) return FALSE; break; case SHT_PARISC_DOC: case SHT_PARISC_ANNOT: default: return FALSE; } if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) return FALSE; newsect = hdr->bfd_section; return TRUE; } /* SEC is a section containing relocs for an input BFD when linking; return a suitable section for holding relocs in the output BFD for a link. */ static bfd_boolean get_reloc_section (bfd *abfd, struct elf64_hppa_link_hash_table *hppa_info, asection *sec) { const char *srel_name; asection *srel; bfd *dynobj; srel_name = (bfd_elf_string_from_elf_section (abfd, elf_elfheader(abfd)->e_shstrndx, elf_section_data(sec)->rel_hdr.sh_name)); if (srel_name == NULL) return FALSE; BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela") && strcmp (bfd_get_section_name (abfd, sec), srel_name + 5) == 0) || (CONST_STRNEQ (srel_name, ".rel") && strcmp (bfd_get_section_name (abfd, sec), srel_name + 4) == 0)); dynobj = hppa_info->root.dynobj; if (!dynobj) hppa_info->root.dynobj = dynobj = abfd; srel = bfd_get_section_by_name (dynobj, srel_name); if (srel == NULL) { srel = bfd_make_section_with_flags (dynobj, srel_name, (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); if (srel == NULL || !bfd_set_section_alignment (dynobj, srel, 3)) return FALSE; } hppa_info->other_rel_sec = srel; return TRUE; } /* Add a new entry to the list of dynamic relocations against DYN_H. We use this to keep a record of all the FPTR relocations against a particular symbol so that we can create FPTR relocations in the output file. */ static bfd_boolean count_dyn_reloc (bfd *abfd, struct elf64_hppa_link_hash_entry *hh, int type, asection *sec, int sec_symndx, bfd_vma offset, bfd_vma addend) { struct elf64_hppa_dyn_reloc_entry *rent; rent = (struct elf64_hppa_dyn_reloc_entry *) bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)); if (!rent) return FALSE; rent->next = hh->reloc_entries; rent->type = type; rent->sec = sec; rent->sec_symndx = sec_symndx; rent->offset = offset; rent->addend = addend; hh->reloc_entries = rent; return TRUE; } /* Return a pointer to the local DLT, PLT and OPD reference counts for ABFD. Returns NULL if the storage allocation fails. */ static bfd_signed_vma * hppa64_elf_local_refcounts (bfd *abfd) { Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; bfd_signed_vma *local_refcounts; local_refcounts = elf_local_got_refcounts (abfd); if (local_refcounts == NULL) { bfd_size_type size; /* Allocate space for local DLT, PLT and OPD reference counts. Done this way to save polluting elf_obj_tdata with another target specific pointer. */ size = symtab_hdr->sh_info; size *= 3 * sizeof (bfd_signed_vma); local_refcounts = bfd_zalloc (abfd, size); elf_local_got_refcounts (abfd) = local_refcounts; } return local_refcounts; } /* Scan the RELOCS and record the type of dynamic entries that each referenced symbol needs. */ static bfd_boolean elf64_hppa_check_relocs (bfd *abfd, struct bfd_link_info *info, asection *sec, const Elf_Internal_Rela *relocs) { struct elf64_hppa_link_hash_table *hppa_info; const Elf_Internal_Rela *relend; Elf_Internal_Shdr *symtab_hdr; const Elf_Internal_Rela *rel; asection *dlt, *plt, *stubs; char *buf; size_t buf_len; unsigned int sec_symndx; if (info->relocatable) return TRUE; /* If this is the first dynamic object found in the link, create the special sections required for dynamic linking. */ if (! elf_hash_table (info)->dynamic_sections_created) { if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) return FALSE; } hppa_info = hppa_link_hash_table (info); symtab_hdr = &elf_tdata (abfd)->symtab_hdr; /* If necessary, build a new table holding section symbols indices for this BFD. */ if (info->shared && hppa_info->section_syms_bfd != abfd) { unsigned long i; unsigned int highest_shndx; Elf_Internal_Sym *local_syms = NULL; Elf_Internal_Sym *isym, *isymend; bfd_size_type amt; /* We're done with the old cache of section index to section symbol index information. Free it. ?!? Note we leak the last section_syms array. Presumably we could free it in one of the later routines in this file. */ if (hppa_info->section_syms) free (hppa_info->section_syms); /* Read this BFD's local symbols. */ if (symtab_hdr->sh_info != 0) { local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; if (local_syms == NULL) local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); if (local_syms == NULL) return FALSE; } /* Record the highest section index referenced by the local symbols. */ highest_shndx = 0; isymend = local_syms + symtab_hdr->sh_info; for (isym = local_syms; isym < isymend; isym++) { if (isym->st_shndx > highest_shndx && isym->st_shndx < SHN_LORESERVE) highest_shndx = isym->st_shndx; } /* Allocate an array to hold the section index to section symbol index mapping. Bump by one since we start counting at zero. */ highest_shndx++; amt = highest_shndx; amt *= sizeof (int); hppa_info->section_syms = (int *) bfd_malloc (amt); /* Now walk the local symbols again. If we find a section symbol, record the index of the symbol into the section_syms array. */ for (i = 0, isym = local_syms; isym < isymend; i++, isym++) { if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) hppa_info->section_syms[isym->st_shndx] = i; } /* We are finished with the local symbols. */ if (local_syms != NULL && symtab_hdr->contents != (unsigned char *) local_syms) { if (! info->keep_memory) free (local_syms); else { /* Cache the symbols for elf_link_input_bfd. */ symtab_hdr->contents = (unsigned char *) local_syms; } } /* Record which BFD we built the section_syms mapping for. */ hppa_info->section_syms_bfd = abfd; } /* Record the symbol index for this input section. We may need it for relocations when building shared libraries. When not building shared libraries this value is never really used, but assign it to zero to prevent out of bounds memory accesses in other routines. */ if (info->shared) { sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec); /* If we did not find a section symbol for this section, then something went terribly wrong above. */ if (sec_symndx == SHN_BAD) return FALSE; if (sec_symndx < SHN_LORESERVE) sec_symndx = hppa_info->section_syms[sec_symndx]; else sec_symndx = 0; } else sec_symndx = 0; dlt = plt = stubs = NULL; buf = NULL; buf_len = 0; relend = relocs + sec->reloc_count; for (rel = relocs; rel < relend; ++rel) { enum { NEED_DLT = 1, NEED_PLT = 2, NEED_STUB = 4, NEED_OPD = 8, NEED_DYNREL = 16, }; unsigned long r_symndx = ELF64_R_SYM (rel->r_info); struct elf64_hppa_link_hash_entry *hh; int need_entry; bfd_boolean maybe_dynamic; int dynrel_type = R_PARISC_NONE; static reloc_howto_type *howto; if (r_symndx >= symtab_hdr->sh_info) { /* We're dealing with a global symbol -- find its hash entry and mark it as being referenced. */ long indx = r_symndx - symtab_hdr->sh_info; hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]); while (hh->eh.root.type == bfd_link_hash_indirect || hh->eh.root.type == bfd_link_hash_warning) hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); hh->eh.ref_regular = 1; } else hh = NULL; /* We can only get preliminary data on whether a symbol is locally or externally defined, as not all of the input files have yet been processed. Do something with what we know, as this may help reduce memory usage and processing time later. */ maybe_dynamic = FALSE; if (hh && ((info->shared && (!info->symbolic || info->unresolved_syms_in_shared_libs == RM_IGNORE)) || !hh->eh.def_regular || hh->eh.root.type == bfd_link_hash_defweak)) maybe_dynamic = TRUE; howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info); need_entry = 0; switch (howto->type) { /* These are simple indirect references to symbols through the DLT. We need to create a DLT entry for any symbols which appears in a DLTIND relocation. */ case R_PARISC_DLTIND21L: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14WR: case R_PARISC_DLTIND14DR: need_entry = NEED_DLT; break; /* ?!? These need a DLT entry. But I have no idea what to do with the "link time TP value. */ case R_PARISC_LTOFF_TP21L: case R_PARISC_LTOFF_TP14R: case R_PARISC_LTOFF_TP14F: case R_PARISC_LTOFF_TP64: case R_PARISC_LTOFF_TP14WR: case R_PARISC_LTOFF_TP14DR: case R_PARISC_LTOFF_TP16F: case R_PARISC_LTOFF_TP16WF: case R_PARISC_LTOFF_TP16DF: need_entry = NEED_DLT; break; /* These are function calls. Depending on their precise target we may need to make a stub for them. The stub uses the PLT, so we need to create PLT entries for these symbols too. */ case R_PARISC_PCREL12F: case R_PARISC_PCREL17F: case R_PARISC_PCREL22F: case R_PARISC_PCREL32: case R_PARISC_PCREL64: case R_PARISC_PCREL21L: case R_PARISC_PCREL17R: case R_PARISC_PCREL17C: case R_PARISC_PCREL14R: case R_PARISC_PCREL14F: case R_PARISC_PCREL22C: case R_PARISC_PCREL14WR: case R_PARISC_PCREL14DR: case R_PARISC_PCREL16F: case R_PARISC_PCREL16WF: case R_PARISC_PCREL16DF: /* Function calls might need to go through the .plt, and might need a long branch stub. */ if (hh != NULL && hh->eh.type != STT_PARISC_MILLI) need_entry = (NEED_PLT | NEED_STUB); else need_entry = 0; break; case R_PARISC_PLTOFF21L: case R_PARISC_PLTOFF14R: case R_PARISC_PLTOFF14F: case R_PARISC_PLTOFF14WR: case R_PARISC_PLTOFF14DR: case R_PARISC_PLTOFF16F: case R_PARISC_PLTOFF16WF: case R_PARISC_PLTOFF16DF: need_entry = (NEED_PLT); break; case R_PARISC_DIR64: if (info->shared || maybe_dynamic) need_entry = (NEED_DYNREL); dynrel_type = R_PARISC_DIR64; break; /* This is an indirect reference through the DLT to get the address of a OPD descriptor. Thus we need to make a DLT entry that points to an OPD entry. */ case R_PARISC_LTOFF_FPTR21L: case R_PARISC_LTOFF_FPTR14R: case R_PARISC_LTOFF_FPTR14WR: case R_PARISC_LTOFF_FPTR14DR: case R_PARISC_LTOFF_FPTR32: case R_PARISC_LTOFF_FPTR64: case R_PARISC_LTOFF_FPTR16F: case R_PARISC_LTOFF_FPTR16WF: case R_PARISC_LTOFF_FPTR16DF: if (info->shared || maybe_dynamic) need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); else need_entry = (NEED_DLT | NEED_OPD | NEED_PLT); dynrel_type = R_PARISC_FPTR64; break; /* This is a simple OPD entry. */ case R_PARISC_FPTR64: if (info->shared || maybe_dynamic) need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL); else need_entry = (NEED_OPD | NEED_PLT); dynrel_type = R_PARISC_FPTR64; break; /* Add more cases as needed. */ } if (!need_entry) continue; if (hh) { /* Stash away enough information to be able to find this symbol regardless of whether or not it is local or global. */ hh->owner = abfd; hh->sym_indx = r_symndx; } /* Create what's needed. */ if (need_entry & NEED_DLT) { /* Allocate space for a DLT entry, as well as a dynamic relocation for this entry. */ if (! hppa_info->dlt_sec && ! get_dlt (abfd, info, hppa_info)) goto err_out; if (hh != NULL) { hh->want_dlt = 1; hh->eh.got.refcount += 1; } else { bfd_signed_vma *local_dlt_refcounts; /* This is a DLT entry for a local symbol. */ local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); if (local_dlt_refcounts == NULL) return FALSE; local_dlt_refcounts[r_symndx] += 1; } } if (need_entry & NEED_PLT) { if (! hppa_info->plt_sec && ! get_plt (abfd, info, hppa_info)) goto err_out; if (hh != NULL) { hh->want_plt = 1; hh->eh.needs_plt = 1; hh->eh.plt.refcount += 1; } else { bfd_signed_vma *local_dlt_refcounts; bfd_signed_vma *local_plt_refcounts; /* This is a PLT entry for a local symbol. */ local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); if (local_dlt_refcounts == NULL) return FALSE; local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info; local_plt_refcounts[r_symndx] += 1; } } if (need_entry & NEED_STUB) { if (! hppa_info->stub_sec && ! get_stub (abfd, info, hppa_info)) goto err_out; if (hh) hh->want_stub = 1; } if (need_entry & NEED_OPD) { if (! hppa_info->opd_sec && ! get_opd (abfd, info, hppa_info)) goto err_out; /* FPTRs are not allocated by the dynamic linker for PA64, though it is possible that will change in the future. */ if (hh != NULL) hh->want_opd = 1; else { bfd_signed_vma *local_dlt_refcounts; bfd_signed_vma *local_opd_refcounts; /* This is a OPD for a local symbol. */ local_dlt_refcounts = hppa64_elf_local_refcounts (abfd); if (local_dlt_refcounts == NULL) return FALSE; local_opd_refcounts = (local_dlt_refcounts + 2 * symtab_hdr->sh_info); local_opd_refcounts[r_symndx] += 1; } } /* Add a new dynamic relocation to the chain of dynamic relocations for this symbol. */ if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC)) { if (! hppa_info->other_rel_sec && ! get_reloc_section (abfd, hppa_info, sec)) goto err_out; /* Count dynamic relocations against global symbols. */ if (hh != NULL && !count_dyn_reloc (abfd, hh, dynrel_type, sec, sec_symndx, rel->r_offset, rel->r_addend)) goto err_out; /* If we are building a shared library and we just recorded a dynamic R_PARISC_FPTR64 relocation, then make sure the section symbol for this section ends up in the dynamic symbol table. */ if (info->shared && dynrel_type == R_PARISC_FPTR64 && ! (bfd_elf_link_record_local_dynamic_symbol (info, abfd, sec_symndx))) return FALSE; } } if (buf) free (buf); return TRUE; err_out: if (buf) free (buf); return FALSE; } struct elf64_hppa_allocate_data { struct bfd_link_info *info; bfd_size_type ofs; }; /* Should we do dynamic things to this symbol? */ static bfd_boolean elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh, struct bfd_link_info *info) { /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols and relocations that retrieve a function descriptor? Assume the worst for now. */ if (_bfd_elf_dynamic_symbol_p (eh, info, 1)) { /* ??? Why is this here and not elsewhere is_local_label_name. */ if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$') return FALSE; return TRUE; } else return FALSE; } /* Mark all functions exported by this file so that we can later allocate entries in .opd for them. */ static bfd_boolean elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct bfd_link_info *info = (struct bfd_link_info *)data; struct elf64_hppa_link_hash_table *hppa_info; hppa_info = hppa_link_hash_table (info); if (eh->root.type == bfd_link_hash_warning) eh = (struct elf_link_hash_entry *) eh->root.u.i.link; if (eh && (eh->root.type == bfd_link_hash_defined || eh->root.type == bfd_link_hash_defweak) && eh->root.u.def.section->output_section != NULL && eh->type == STT_FUNC) { if (! hppa_info->opd_sec && ! get_opd (hppa_info->root.dynobj, info, hppa_info)) return FALSE; hh->want_opd = 1; /* Put a flag here for output_symbol_hook. */ hh->st_shndx = -1; eh->needs_plt = 1; } return TRUE; } /* Allocate space for a DLT entry. */ static bfd_boolean allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; if (hh->want_dlt) { if (x->info->shared) { /* Possibly add the symbol to the local dynamic symbol table since we might need to create a dynamic relocation against it. */ if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) { bfd *owner = eh->root.u.def.section->owner; if (! (bfd_elf_link_record_local_dynamic_symbol (x->info, owner, hh->sym_indx))) return FALSE; } } hh->dlt_offset = x->ofs; x->ofs += DLT_ENTRY_SIZE; } return TRUE; } /* Allocate space for a DLT.PLT entry. */ static bfd_boolean allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; if (hh->want_plt && elf64_hppa_dynamic_symbol_p (eh, x->info) && !((eh->root.type == bfd_link_hash_defined || eh->root.type == bfd_link_hash_defweak) && eh->root.u.def.section->output_section != NULL)) { hh->plt_offset = x->ofs; x->ofs += PLT_ENTRY_SIZE; if (hh->plt_offset < 0x2000) hppa_link_hash_table (x->info)->gp_offset = hh->plt_offset; } else hh->want_plt = 0; return TRUE; } /* Allocate space for a STUB entry. */ static bfd_boolean allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; if (hh->want_stub && elf64_hppa_dynamic_symbol_p (eh, x->info) && !((eh->root.type == bfd_link_hash_defined || eh->root.type == bfd_link_hash_defweak) && eh->root.u.def.section->output_section != NULL)) { hh->stub_offset = x->ofs; x->ofs += sizeof (plt_stub); } else hh->want_stub = 0; return TRUE; } /* Allocate space for a FPTR entry. */ static bfd_boolean allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; if (hh && hh->want_opd) { while (hh->eh.root.type == bfd_link_hash_indirect || hh->eh.root.type == bfd_link_hash_warning) hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); /* We never need an opd entry for a symbol which is not defined by this output file. */ if (hh && (hh->eh.root.type == bfd_link_hash_undefined || hh->eh.root.type == bfd_link_hash_undefweak || hh->eh.root.u.def.section->output_section == NULL)) hh->want_opd = 0; /* If we are creating a shared library, took the address of a local function or might export this function from this object file, then we have to create an opd descriptor. */ else if (x->info->shared || hh == NULL || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI) || (hh->eh.root.type == bfd_link_hash_defined || hh->eh.root.type == bfd_link_hash_defweak)) { /* If we are creating a shared library, then we will have to create a runtime relocation for the symbol to properly initialize the .opd entry. Make sure the symbol gets added to the dynamic symbol table. */ if (x->info->shared && (hh == NULL || (hh->eh.dynindx == -1))) { bfd *owner; /* PR 6511: Default to using the dynamic symbol table. */ owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner); if (!bfd_elf_link_record_local_dynamic_symbol (x->info, owner, hh->sym_indx)) return FALSE; } /* This may not be necessary or desirable anymore now that we have some support for dealing with section symbols in dynamic relocs. But name munging does make the result much easier to debug. ie, the EPLT reloc will reference a symbol like .foobar, instead of .text + offset. */ if (x->info->shared && eh) { char *new_name; struct elf_link_hash_entry *nh; new_name = alloca (strlen (eh->root.root.string) + 2); new_name[0] = '.'; strcpy (new_name + 1, eh->root.root.string); nh = elf_link_hash_lookup (elf_hash_table (x->info), new_name, TRUE, TRUE, TRUE); nh->root.type = eh->root.type; nh->root.u.def.value = eh->root.u.def.value; nh->root.u.def.section = eh->root.u.def.section; if (! bfd_elf_link_record_dynamic_symbol (x->info, nh)) return FALSE; } hh->opd_offset = x->ofs; x->ofs += OPD_ENTRY_SIZE; } /* Otherwise we do not need an opd entry. */ else hh->want_opd = 0; } return TRUE; } /* HP requires the EI_OSABI field to be filled in. The assignment to EI_ABIVERSION may not be strictly necessary. */ static void elf64_hppa_post_process_headers (bfd *abfd, struct bfd_link_info *link_info ATTRIBUTE_UNUSED) { Elf_Internal_Ehdr * i_ehdrp; i_ehdrp = elf_elfheader (abfd); i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; i_ehdrp->e_ident[EI_ABIVERSION] = 1; } /* Create function descriptor section (.opd). This section is called .opd because it contains "official procedure descriptors". The "official" refers to the fact that these descriptors are used when taking the address of a procedure, thus ensuring a unique address for each procedure. */ static bfd_boolean get_opd (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, struct elf64_hppa_link_hash_table *hppa_info) { asection *opd; bfd *dynobj; opd = hppa_info->opd_sec; if (!opd) { dynobj = hppa_info->root.dynobj; if (!dynobj) hppa_info->root.dynobj = dynobj = abfd; opd = bfd_make_section_with_flags (dynobj, ".opd", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)); if (!opd || !bfd_set_section_alignment (abfd, opd, 3)) { BFD_ASSERT (0); return FALSE; } hppa_info->opd_sec = opd; } return TRUE; } /* Create the PLT section. */ static bfd_boolean get_plt (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, struct elf64_hppa_link_hash_table *hppa_info) { asection *plt; bfd *dynobj; plt = hppa_info->plt_sec; if (!plt) { dynobj = hppa_info->root.dynobj; if (!dynobj) hppa_info->root.dynobj = dynobj = abfd; plt = bfd_make_section_with_flags (dynobj, ".plt", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)); if (!plt || !bfd_set_section_alignment (abfd, plt, 3)) { BFD_ASSERT (0); return FALSE; } hppa_info->plt_sec = plt; } return TRUE; } /* Create the DLT section. */ static bfd_boolean get_dlt (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, struct elf64_hppa_link_hash_table *hppa_info) { asection *dlt; bfd *dynobj; dlt = hppa_info->dlt_sec; if (!dlt) { dynobj = hppa_info->root.dynobj; if (!dynobj) hppa_info->root.dynobj = dynobj = abfd; dlt = bfd_make_section_with_flags (dynobj, ".dlt", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)); if (!dlt || !bfd_set_section_alignment (abfd, dlt, 3)) { BFD_ASSERT (0); return FALSE; } hppa_info->dlt_sec = dlt; } return TRUE; } /* Create the stubs section. */ static bfd_boolean get_stub (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, struct elf64_hppa_link_hash_table *hppa_info) { asection *stub; bfd *dynobj; stub = hppa_info->stub_sec; if (!stub) { dynobj = hppa_info->root.dynobj; if (!dynobj) hppa_info->root.dynobj = dynobj = abfd; stub = bfd_make_section_with_flags (dynobj, ".stub", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY | SEC_LINKER_CREATED)); if (!stub || !bfd_set_section_alignment (abfd, stub, 3)) { BFD_ASSERT (0); return FALSE; } hppa_info->stub_sec = stub; } return TRUE; } /* Create sections necessary for dynamic linking. This is only a rough cut and will likely change as we learn more about the somewhat unusual dynamic linking scheme HP uses. .stub: Contains code to implement cross-space calls. The first time one of the stubs is used it will call into the dynamic linker, later calls will go straight to the target. The only stub we support right now looks like ldd OFFSET(%dp),%r1 bve %r0(%r1) ldd OFFSET+8(%dp),%dp Other stubs may be needed in the future. We may want the remove the break/nop instruction. It is only used right now to keep the offset of a .plt entry and a .stub entry in sync. .dlt: This is what most people call the .got. HP used a different name. Losers. .rela.dlt: Relocations for the DLT. .plt: Function pointers as address,gp pairs. .rela.plt: Should contain dynamic IPLT (and EPLT?) relocations. .opd: FPTRS .rela.opd: EPLT relocations for symbols exported from shared libraries. */ static bfd_boolean elf64_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) { asection *s; if (! get_stub (abfd, info, hppa_link_hash_table (info))) return FALSE; if (! get_dlt (abfd, info, hppa_link_hash_table (info))) return FALSE; if (! get_plt (abfd, info, hppa_link_hash_table (info))) return FALSE; if (! get_opd (abfd, info, hppa_link_hash_table (info))) return FALSE; s = bfd_make_section_with_flags (abfd, ".rela.dlt", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY | SEC_LINKER_CREATED)); if (s == NULL || !bfd_set_section_alignment (abfd, s, 3)) return FALSE; hppa_link_hash_table (info)->dlt_rel_sec = s; s = bfd_make_section_with_flags (abfd, ".rela.plt", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY | SEC_LINKER_CREATED)); if (s == NULL || !bfd_set_section_alignment (abfd, s, 3)) return FALSE; hppa_link_hash_table (info)->plt_rel_sec = s; s = bfd_make_section_with_flags (abfd, ".rela.data", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY | SEC_LINKER_CREATED)); if (s == NULL || !bfd_set_section_alignment (abfd, s, 3)) return FALSE; hppa_link_hash_table (info)->other_rel_sec = s; s = bfd_make_section_with_flags (abfd, ".rela.opd", (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY | SEC_LINKER_CREATED)); if (s == NULL || !bfd_set_section_alignment (abfd, s, 3)) return FALSE; hppa_link_hash_table (info)->opd_rel_sec = s; return TRUE; } /* Allocate dynamic relocations for those symbols that turned out to be dynamic. */ static bfd_boolean allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data; struct elf64_hppa_link_hash_table *hppa_info; struct elf64_hppa_dyn_reloc_entry *rent; bfd_boolean dynamic_symbol, shared; hppa_info = hppa_link_hash_table (x->info); dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info); shared = x->info->shared; /* We may need to allocate relocations for a non-dynamic symbol when creating a shared library. */ if (!dynamic_symbol && !shared) return TRUE; /* Take care of the normal data relocations. */ for (rent = hh->reloc_entries; rent; rent = rent->next) { /* Allocate one iff we are building a shared library, the relocation isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) continue; hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela); /* Make sure this symbol gets into the dynamic symbol table if it is not already recorded. ?!? This should not be in the loop since the symbol need only be added once. */ if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI) if (!bfd_elf_link_record_local_dynamic_symbol (x->info, rent->sec->owner, hh->sym_indx)) return FALSE; } /* Take care of the GOT and PLT relocations. */ if ((dynamic_symbol || shared) && hh->want_dlt) hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela); /* If we are building a shared library, then every symbol that has an opd entry will need an EPLT relocation to relocate the symbol's address and __gp value based on the runtime load address. */ if (shared && hh->want_opd) hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela); if (hh->want_plt && dynamic_symbol) { bfd_size_type t = 0; /* Dynamic symbols get one IPLT relocation. Local symbols in shared libraries get two REL relocations. Local symbols in main applications get nothing. */ if (dynamic_symbol) t = sizeof (Elf64_External_Rela); else if (shared) t = 2 * sizeof (Elf64_External_Rela); hppa_info->plt_rel_sec->size += t; } return TRUE; } /* Adjust a symbol defined by a dynamic object and referenced by a regular object. */ static bfd_boolean elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, struct elf_link_hash_entry *eh) { /* ??? Undefined symbols with PLT entries should be re-defined to be the PLT entry. */ /* If this is a weak symbol, and there is a real definition, the processor independent code will have arranged for us to see the real definition first, and we can just use the same value. */ if (eh->u.weakdef != NULL) { BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined || eh->u.weakdef->root.type == bfd_link_hash_defweak); eh->root.u.def.section = eh->u.weakdef->root.u.def.section; eh->root.u.def.value = eh->u.weakdef->root.u.def.value; return TRUE; } /* If this is a reference to a symbol defined by a dynamic object which is not a function, we might allocate the symbol in our .dynbss section and allocate a COPY dynamic relocation. But PA64 code is canonically PIC, so as a rule we can avoid this sort of hackery. */ return TRUE; } /* This function is called via elf_link_hash_traverse to mark millicode symbols with a dynindx of -1 and to remove the string table reference from the dynamic symbol table. If the symbol is not a millicode symbol, elf64_hppa_mark_exported_functions is called. */ static bfd_boolean elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh, void *data) { struct elf_link_hash_entry *elf = eh; struct bfd_link_info *info = (struct bfd_link_info *)data; if (elf->root.type == bfd_link_hash_warning) elf = (struct elf_link_hash_entry *) elf->root.u.i.link; if (elf->type == STT_PARISC_MILLI) { if (elf->dynindx != -1) { elf->dynindx = -1; _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, elf->dynstr_index); } return TRUE; } return elf64_hppa_mark_exported_functions (eh, data); } /* Set the final sizes of the dynamic sections and allocate memory for the contents of our special sections. */ static bfd_boolean elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { struct elf64_hppa_link_hash_table *hppa_info; struct elf64_hppa_allocate_data data; bfd *dynobj; bfd *ibfd; asection *sec; bfd_boolean plt; bfd_boolean relocs; bfd_boolean reltext; hppa_info = hppa_link_hash_table (info); dynobj = elf_hash_table (info)->dynobj; BFD_ASSERT (dynobj != NULL); /* Mark each function this program exports so that we will allocate space in the .opd section for each function's FPTR. If we are creating dynamic sections, change the dynamic index of millicode symbols to -1 and remove them from the string table for .dynstr. We have to traverse the main linker hash table since we have to find functions which may not have been mentioned in any relocs. */ elf_link_hash_traverse (elf_hash_table (info), (elf_hash_table (info)->dynamic_sections_created ? elf64_hppa_mark_milli_and_exported_functions : elf64_hppa_mark_exported_functions), info); if (elf_hash_table (info)->dynamic_sections_created) { /* Set the contents of the .interp section to the interpreter. */ if (info->executable) { sec = bfd_get_section_by_name (dynobj, ".interp"); BFD_ASSERT (sec != NULL); sec->size = sizeof ELF_DYNAMIC_INTERPRETER; sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; } } else { /* We may have created entries in the .rela.got section. However, if we are not creating the dynamic sections, we will not actually use these entries. Reset the size of .rela.dlt, which will cause it to get stripped from the output file below. */ sec = bfd_get_section_by_name (dynobj, ".rela.dlt"); if (sec != NULL) sec->size = 0; } /* Set up DLT, PLT and OPD offsets for local syms, and space for local dynamic relocs. */ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) { bfd_signed_vma *local_dlt; bfd_signed_vma *end_local_dlt; bfd_signed_vma *local_plt; bfd_signed_vma *end_local_plt; bfd_signed_vma *local_opd; bfd_signed_vma *end_local_opd; bfd_size_type locsymcount; Elf_Internal_Shdr *symtab_hdr; asection *srel; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) continue; for (sec = ibfd->sections; sec != NULL; sec = sec->next) { struct elf64_hppa_dyn_reloc_entry *hdh_p; for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *) elf_section_data (sec)->local_dynrel); hdh_p != NULL; hdh_p = hdh_p->next) { if (!bfd_is_abs_section (hdh_p->sec) && bfd_is_abs_section (hdh_p->sec->output_section)) { /* Input section has been discarded, either because it is a copy of a linkonce section or due to linker script /DISCARD/, so we'll be discarding the relocs too. */ } else if (hdh_p->count != 0) { srel = elf_section_data (hdh_p->sec)->sreloc; srel->size += hdh_p->count * sizeof (Elf64_External_Rela); if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) info->flags |= DF_TEXTREL; } } } local_dlt = elf_local_got_refcounts (ibfd); if (!local_dlt) continue; symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; locsymcount = symtab_hdr->sh_info; end_local_dlt = local_dlt + locsymcount; sec = hppa_info->dlt_sec; srel = hppa_info->dlt_rel_sec; for (; local_dlt < end_local_dlt; ++local_dlt) { if (*local_dlt > 0) { *local_dlt = sec->size; sec->size += DLT_ENTRY_SIZE; if (info->shared) { srel->size += sizeof (Elf64_External_Rela); } } else *local_dlt = (bfd_vma) -1; } local_plt = end_local_dlt; end_local_plt = local_plt + locsymcount; if (! hppa_info->root.dynamic_sections_created) { /* Won't be used, but be safe. */ for (; local_plt < end_local_plt; ++local_plt) *local_plt = (bfd_vma) -1; } else { sec = hppa_info->plt_sec; srel = hppa_info->plt_rel_sec; for (; local_plt < end_local_plt; ++local_plt) { if (*local_plt > 0) { *local_plt = sec->size; sec->size += PLT_ENTRY_SIZE; if (info->shared) srel->size += sizeof (Elf64_External_Rela); } else *local_plt = (bfd_vma) -1; } } local_opd = end_local_plt; end_local_opd = local_opd + locsymcount; if (! hppa_info->root.dynamic_sections_created) { /* Won't be used, but be safe. */ for (; local_opd < end_local_opd; ++local_opd) *local_opd = (bfd_vma) -1; } else { sec = hppa_info->opd_sec; srel = hppa_info->opd_rel_sec; for (; local_opd < end_local_opd; ++local_opd) { if (*local_opd > 0) { *local_opd = sec->size; sec->size += OPD_ENTRY_SIZE; if (info->shared) srel->size += sizeof (Elf64_External_Rela); } else *local_opd = (bfd_vma) -1; } } } /* Allocate the GOT entries. */ data.info = info; if (hppa_info->dlt_sec) { data.ofs = hppa_info->dlt_sec->size; elf_link_hash_traverse (elf_hash_table (info), allocate_global_data_dlt, &data); hppa_info->dlt_sec->size = data.ofs; } if (hppa_info->plt_sec) { data.ofs = hppa_info->plt_sec->size; elf_link_hash_traverse (elf_hash_table (info), allocate_global_data_plt, &data); hppa_info->plt_sec->size = data.ofs; } if (hppa_info->stub_sec) { data.ofs = 0x0; elf_link_hash_traverse (elf_hash_table (info), allocate_global_data_stub, &data); hppa_info->stub_sec->size = data.ofs; } /* Allocate space for entries in the .opd section. */ if (hppa_info->opd_sec) { data.ofs = hppa_info->opd_sec->size; elf_link_hash_traverse (elf_hash_table (info), allocate_global_data_opd, &data); hppa_info->opd_sec->size = data.ofs; } /* Now allocate space for dynamic relocations, if necessary. */ if (hppa_info->root.dynamic_sections_created) elf_link_hash_traverse (elf_hash_table (info), allocate_dynrel_entries, &data); /* The sizes of all the sections are set. Allocate memory for them. */ plt = FALSE; relocs = FALSE; reltext = FALSE; for (sec = dynobj->sections; sec != NULL; sec = sec->next) { const char *name; if ((sec->flags & SEC_LINKER_CREATED) == 0) continue; /* It's OK to base decisions on the section name, because none of the dynobj section names depend upon the input files. */ name = bfd_get_section_name (dynobj, sec); if (strcmp (name, ".plt") == 0) { /* Remember whether there is a PLT. */ plt = sec->size != 0; } else if (strcmp (name, ".opd") == 0 || CONST_STRNEQ (name, ".dlt") || strcmp (name, ".stub") == 0 || strcmp (name, ".got") == 0) { /* Strip this section if we don't need it; see the comment below. */ } else if (CONST_STRNEQ (name, ".rela")) { if (sec->size != 0) { asection *target; /* Remember whether there are any reloc sections other than .rela.plt. */ if (strcmp (name, ".rela.plt") != 0) { const char *outname; relocs = TRUE; /* If this relocation section applies to a read only section, then we probably need a DT_TEXTREL entry. The entries in the .rela.plt section really apply to the .got section, which we created ourselves and so know is not readonly. */ outname = bfd_get_section_name (output_bfd, sec->output_section); target = bfd_get_section_by_name (output_bfd, outname + 4); if (target != NULL && (target->flags & SEC_READONLY) != 0 && (target->flags & SEC_ALLOC) != 0) reltext = TRUE; } /* We use the reloc_count field as a counter if we need to copy relocs into the output file. */ sec->reloc_count = 0; } } else { /* It's not one of our sections, so don't allocate space. */ continue; } if (sec->size == 0) { /* If we don't need this section, strip it from the output file. This is mostly to handle .rela.bss and .rela.plt. We must create both sections in create_dynamic_sections, because they must be created before the linker maps input sections to output sections. The linker does that before adjust_dynamic_symbol is called, and it is that function which decides whether anything needs to go into these sections. */ sec->flags |= SEC_EXCLUDE; continue; } if ((sec->flags & SEC_HAS_CONTENTS) == 0) continue; /* Allocate memory for the section contents if it has not been allocated already. We use bfd_zalloc here in case unused entries are not reclaimed before the section's contents are written out. This should not happen, but this way if it does, we get a R_PARISC_NONE reloc instead of garbage. */ if (sec->contents == NULL) { sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size); if (sec->contents == NULL) return FALSE; } } if (elf_hash_table (info)->dynamic_sections_created) { /* Always create a DT_PLTGOT. It actually has nothing to do with the PLT, it is how we communicate the __gp value of a load module to the dynamic linker. */ #define add_dynamic_entry(TAG, VAL) \ _bfd_elf_add_dynamic_entry (info, TAG, VAL) if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0) || !add_dynamic_entry (DT_PLTGOT, 0)) return FALSE; /* Add some entries to the .dynamic section. We fill in the values later, in elf64_hppa_finish_dynamic_sections, but we must add the entries now so that we get the correct size for the .dynamic section. The DT_DEBUG entry is filled in by the dynamic linker and used by the debugger. */ if (! info->shared) { if (!add_dynamic_entry (DT_DEBUG, 0) || !add_dynamic_entry (DT_HP_DLD_HOOK, 0) || !add_dynamic_entry (DT_HP_LOAD_MAP, 0)) return FALSE; } /* Force DT_FLAGS to always be set. Required by HPUX 11.00 patch PHSS_26559. */ if (!add_dynamic_entry (DT_FLAGS, (info)->flags)) return FALSE; if (plt) { if (!add_dynamic_entry (DT_PLTRELSZ, 0) || !add_dynamic_entry (DT_PLTREL, DT_RELA) || !add_dynamic_entry (DT_JMPREL, 0)) return FALSE; } if (relocs) { if (!add_dynamic_entry (DT_RELA, 0) || !add_dynamic_entry (DT_RELASZ, 0) || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela))) return FALSE; } if (reltext) { if (!add_dynamic_entry (DT_TEXTREL, 0)) return FALSE; info->flags |= DF_TEXTREL; } } #undef add_dynamic_entry return TRUE; } /* Called after we have output the symbol into the dynamic symbol table, but before we output the symbol into the normal symbol table. For some symbols we had to change their address when outputting the dynamic symbol table. We undo that change here so that the symbols have their expected value in the normal symbol table. Ick. */ static int elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, const char *name, Elf_Internal_Sym *sym, asection *input_sec ATTRIBUTE_UNUSED, struct elf_link_hash_entry *eh) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); /* We may be called with the file symbol or section symbols. They never need munging, so it is safe to ignore them. */ if (!name || !eh) return 1; /* Function symbols for which we created .opd entries *may* have been munged by finish_dynamic_symbol and have to be un-munged here. Note that finish_dynamic_symbol sometimes turns dynamic symbols into non-dynamic ones, so we initialize st_shndx to -1 in mark_exported_functions and check to see if it was overwritten here instead of just checking eh->dynindx. */ if (hh->want_opd && hh->st_shndx != -1) { /* Restore the saved value and section index. */ sym->st_value = hh->st_value; sym->st_shndx = hh->st_shndx; } return 1; } /* Finish up dynamic symbol handling. We set the contents of various dynamic sections here. */ static bfd_boolean elf64_hppa_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info, struct elf_link_hash_entry *eh, Elf_Internal_Sym *sym) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel; struct elf64_hppa_link_hash_table *hppa_info; hppa_info = hppa_link_hash_table (info); stub = hppa_info->stub_sec; splt = hppa_info->plt_sec; sdlt = hppa_info->dlt_sec; sopd = hppa_info->opd_sec; spltrel = hppa_info->plt_rel_sec; sdltrel = hppa_info->dlt_rel_sec; /* Incredible. It is actually necessary to NOT use the symbol's real value when building the dynamic symbol table for a shared library. At least for symbols that refer to functions. We will store a new value and section index into the symbol long enough to output it into the dynamic symbol table, then we restore the original values (in elf64_hppa_link_output_symbol_hook). */ if (hh->want_opd) { BFD_ASSERT (sopd != NULL); /* Save away the original value and section index so that we can restore them later. */ hh->st_value = sym->st_value; hh->st_shndx = sym->st_shndx; /* For the dynamic symbol table entry, we want the value to be address of this symbol's entry within the .opd section. */ sym->st_value = (hh->opd_offset + sopd->output_offset + sopd->output_section->vma); sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, sopd->output_section); } /* Initialize a .plt entry if requested. */ if (hh->want_plt && elf64_hppa_dynamic_symbol_p (eh, info)) { bfd_vma value; Elf_Internal_Rela rel; bfd_byte *loc; BFD_ASSERT (splt != NULL && spltrel != NULL); /* We do not actually care about the value in the PLT entry if we are creating a shared library and the symbol is still undefined, we create a dynamic relocation to fill in the correct value. */ if (info->shared && eh->root.type == bfd_link_hash_undefined) value = 0; else value = (eh->root.u.def.value + eh->root.u.def.section->vma); /* Fill in the entry in the procedure linkage table. The format of a plt entry is <funcaddr> <__gp>. plt_offset is the offset within the PLT section at which to install the PLT entry. We are modifying the in-memory PLT contents here, so we do not add in the output_offset of the PLT section. */ bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset); value = _bfd_get_gp_value (splt->output_section->owner); bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8); /* Create a dynamic IPLT relocation for this entry. We are creating a relocation in the output file's PLT section, which is included within the DLT secton. So we do need to include the PLT's output_offset in the computation of the relocation's address. */ rel.r_offset = (hh->plt_offset + splt->output_offset + splt->output_section->vma); rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT); rel.r_addend = 0; loc = spltrel->contents; loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc); } /* Initialize an external call stub entry if requested. */ if (hh->want_stub && elf64_hppa_dynamic_symbol_p (eh, info)) { bfd_vma value; int insn; unsigned int max_offset; BFD_ASSERT (stub != NULL); /* Install the generic stub template. We are modifying the contents of the stub section, so we do not need to include the stub section's output_offset here. */ memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub)); /* Fix up the first ldd instruction. We are modifying the contents of the STUB section in memory, so we do not need to include its output offset in this computation. Note the plt_offset value is the value of the PLT entry relative to the start of the PLT section. These instructions will reference data relative to the value of __gp, which may not necessarily have the same address as the start of the PLT section. gp_offset contains the offset of __gp within the PLT section. */ value = hh->plt_offset - hppa_info->gp_offset; insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset); if (output_bfd->arch_info->mach >= 25) { /* Wide mode allows 16 bit offsets. */ max_offset = 32768; insn &= ~ 0xfff1; insn |= re_assemble_16 ((int) value); } else { max_offset = 8192; insn &= ~ 0x3ff1; insn |= re_assemble_14 ((int) value); } if ((value & 7) || value + max_offset >= 2*max_offset - 8) { (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"), hh->eh.root.root.string, (long) value); return FALSE; } bfd_put_32 (stub->owner, (bfd_vma) insn, stub->contents + hh->stub_offset); /* Fix up the second ldd instruction. */ value += 8; insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8); if (output_bfd->arch_info->mach >= 25) { insn &= ~ 0xfff1; insn |= re_assemble_16 ((int) value); } else { insn &= ~ 0x3ff1; insn |= re_assemble_14 ((int) value); } bfd_put_32 (stub->owner, (bfd_vma) insn, stub->contents + hh->stub_offset + 8); } return TRUE; } /* The .opd section contains FPTRs for each function this file exports. Initialize the FPTR entries. */ static bfd_boolean elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct bfd_link_info *info = (struct bfd_link_info *)data; struct elf64_hppa_link_hash_table *hppa_info; asection *sopd; asection *sopdrel; hppa_info = hppa_link_hash_table (info); sopd = hppa_info->opd_sec; sopdrel = hppa_info->opd_rel_sec; if (hh->want_opd) { bfd_vma value; /* The first two words of an .opd entry are zero. We are modifying the contents of the OPD section in memory, so we do not need to include its output offset in this computation. */ memset (sopd->contents + hh->opd_offset, 0, 16); value = (eh->root.u.def.value + eh->root.u.def.section->output_section->vma + eh->root.u.def.section->output_offset); /* The next word is the address of the function. */ bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16); /* The last word is our local __gp value. */ value = _bfd_get_gp_value (sopd->output_section->owner); bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24); } /* If we are generating a shared library, we must generate EPLT relocations for each entry in the .opd, even for static functions (they may have had their address taken). */ if (info->shared && hh->want_opd) { Elf_Internal_Rela rel; bfd_byte *loc; int dynindx; /* We may need to do a relocation against a local symbol, in which case we have to look up it's dynamic symbol index off the local symbol hash table. */ if (eh->dynindx != -1) dynindx = eh->dynindx; else dynindx = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, hh->sym_indx); /* The offset of this relocation is the absolute address of the .opd entry for this symbol. */ rel.r_offset = (hh->opd_offset + sopd->output_offset + sopd->output_section->vma); /* If H is non-null, then we have an external symbol. It is imperative that we use a different dynamic symbol for the EPLT relocation if the symbol has global scope. In the dynamic symbol table, the function symbol will have a value which is address of the function's .opd entry. Thus, we can not use that dynamic symbol for the EPLT relocation (if we did, the data in the .opd would reference itself rather than the actual address of the function). Instead we have to use a new dynamic symbol which has the same value as the original global function symbol. We prefix the original symbol with a "." and use the new symbol in the EPLT relocation. This new symbol has already been recorded in the symbol table, we just have to look it up and use it. We do not have such problems with static functions because we do not make their addresses in the dynamic symbol table point to the .opd entry. Ultimately this should be safe since a static function can not be directly referenced outside of its shared library. We do have to play similar games for FPTR relocations in shared libraries, including those for static symbols. See the FPTR handling in elf64_hppa_finalize_dynreloc. */ if (eh) { char *new_name; struct elf_link_hash_entry *nh; new_name = alloca (strlen (eh->root.root.string) + 2); new_name[0] = '.'; strcpy (new_name + 1, eh->root.root.string); nh = elf_link_hash_lookup (elf_hash_table (info), new_name, TRUE, TRUE, FALSE); /* All we really want from the new symbol is its dynamic symbol index. */ if (nh) dynindx = nh->dynindx; } rel.r_addend = 0; rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT); loc = sopdrel->contents; loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc); } return TRUE; } /* The .dlt section contains addresses for items referenced through the dlt. Note that we can have a DLTIND relocation for a local symbol, thus we can not depend on finish_dynamic_symbol to initialize the .dlt. */ static bfd_boolean elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct bfd_link_info *info = (struct bfd_link_info *)data; struct elf64_hppa_link_hash_table *hppa_info; asection *sdlt, *sdltrel; hppa_info = hppa_link_hash_table (info); sdlt = hppa_info->dlt_sec; sdltrel = hppa_info->dlt_rel_sec; /* H/DYN_H may refer to a local variable and we know it's address, so there is no need to create a relocation. Just install the proper value into the DLT, note this shortcut can not be skipped when building a shared library. */ if (! info->shared && hh && hh->want_dlt) { bfd_vma value; /* If we had an LTOFF_FPTR style relocation we want the DLT entry to point to the FPTR entry in the .opd section. We include the OPD's output offset in this computation as we are referring to an absolute address in the resulting object file. */ if (hh->want_opd) { value = (hh->opd_offset + hppa_info->opd_sec->output_offset + hppa_info->opd_sec->output_section->vma); } else if ((eh->root.type == bfd_link_hash_defined || eh->root.type == bfd_link_hash_defweak) && eh->root.u.def.section) { value = eh->root.u.def.value + eh->root.u.def.section->output_offset; if (eh->root.u.def.section->output_section) value += eh->root.u.def.section->output_section->vma; else value += eh->root.u.def.section->vma; } else /* We have an undefined function reference. */ value = 0; /* We do not need to include the output offset of the DLT section here because we are modifying the in-memory contents. */ bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset); } /* Create a relocation for the DLT entry associated with this symbol. When building a shared library the symbol does not have to be dynamic. */ if (hh->want_dlt && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared)) { Elf_Internal_Rela rel; bfd_byte *loc; int dynindx; /* We may need to do a relocation against a local symbol, in which case we have to look up it's dynamic symbol index off the local symbol hash table. */ if (eh && eh->dynindx != -1) dynindx = eh->dynindx; else dynindx = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, hh->sym_indx); /* Create a dynamic relocation for this entry. Do include the output offset of the DLT entry since we need an absolute address in the resulting object file. */ rel.r_offset = (hh->dlt_offset + sdlt->output_offset + sdlt->output_section->vma); if (eh && eh->type == STT_FUNC) rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64); else rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64); rel.r_addend = 0; loc = sdltrel->contents; loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela); bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc); } return TRUE; } /* Finalize the dynamic relocations. Specifically the FPTR relocations for dynamic functions used to initialize static data. */ static bfd_boolean elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh, void *data) { struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); struct bfd_link_info *info = (struct bfd_link_info *)data; struct elf64_hppa_link_hash_table *hppa_info; int dynamic_symbol; dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info); if (!dynamic_symbol && !info->shared) return TRUE; if (hh->reloc_entries) { struct elf64_hppa_dyn_reloc_entry *rent; int dynindx; hppa_info = hppa_link_hash_table (info); /* We may need to do a relocation against a local symbol, in which case we have to look up it's dynamic symbol index off the local symbol hash table. */ if (eh->dynindx != -1) dynindx = eh->dynindx; else dynindx = _bfd_elf_link_lookup_local_dynindx (info, hh->owner, hh->sym_indx); for (rent = hh->reloc_entries; rent; rent = rent->next) { Elf_Internal_Rela rel; bfd_byte *loc; /* Allocate one iff we are building a shared library, the relocation isn't a R_PARISC_FPTR64, or we don't want an opd entry. */ if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) continue; /* Create a dynamic relocation for this entry. We need the output offset for the reloc's section because we are creating an absolute address in the resulting object file. */ rel.r_offset = (rent->offset + rent->sec->output_offset + rent->sec->output_section->vma); /* An FPTR64 relocation implies that we took the address of a function and that the function has an entry in the .opd section. We want the FPTR64 relocation to reference the entry in .opd. We could munge the symbol value in the dynamic symbol table (in fact we already do for functions with global scope) to point to the .opd entry. Then we could use that dynamic symbol in this relocation. Or we could do something sensible, not munge the symbol's address and instead just use a different symbol to reference the .opd entry. At least that seems sensible until you realize there's no local dynamic symbols we can use for that purpose. Thus the hair in the check_relocs routine. We use a section symbol recorded by check_relocs as the base symbol for the relocation. The addend is the difference between the section symbol and the address of the .opd entry. */ if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd) { bfd_vma value, value2; /* First compute the address of the opd entry for this symbol. */ value = (hh->opd_offset + hppa_info->opd_sec->output_section->vma + hppa_info->opd_sec->output_offset); /* Compute the value of the start of the section with the relocation. */ value2 = (rent->sec->output_section->vma + rent->sec->output_offset); /* Compute the difference between the start of the section with the relocation and the opd entry. */ value -= value2; /* The result becomes the addend of the relocation. */ rel.r_addend = value; /* The section symbol becomes the symbol for the dynamic relocation. */ dynindx = _bfd_elf_link_lookup_local_dynindx (info, rent->sec->owner, rent->sec_symndx); } else rel.r_addend = rent->addend; rel.r_info = ELF64_R_INFO (dynindx, rent->type); loc = hppa_info->other_rel_sec->contents; loc += (hppa_info->other_rel_sec->reloc_count++ * sizeof (Elf64_External_Rela)); bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner, &rel, loc); } } return TRUE; } /* Used to decide how to sort relocs in an optimal manner for the dynamic linker, before writing them out. */ static enum elf_reloc_type_class elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela) { if (ELF64_R_SYM (rela->r_info) == 0) return reloc_class_relative; switch ((int) ELF64_R_TYPE (rela->r_info)) { case R_PARISC_IPLT: return reloc_class_plt; case R_PARISC_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Finish up the dynamic sections. */ static bfd_boolean elf64_hppa_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) { bfd *dynobj; asection *sdyn; struct elf64_hppa_link_hash_table *hppa_info; hppa_info = hppa_link_hash_table (info); /* Finalize the contents of the .opd section. */ elf_link_hash_traverse (elf_hash_table (info), elf64_hppa_finalize_opd, info); elf_link_hash_traverse (elf_hash_table (info), elf64_hppa_finalize_dynreloc, info); /* Finalize the contents of the .dlt section. */ dynobj = elf_hash_table (info)->dynobj; /* Finalize the contents of the .dlt section. */ elf_link_hash_traverse (elf_hash_table (info), elf64_hppa_finalize_dlt, info); sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); if (elf_hash_table (info)->dynamic_sections_created) { Elf64_External_Dyn *dyncon, *dynconend; BFD_ASSERT (sdyn != NULL); dyncon = (Elf64_External_Dyn *) sdyn->contents; dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size); for (; dyncon < dynconend; dyncon++) { Elf_Internal_Dyn dyn; asection *s; bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn); switch (dyn.d_tag) { default: break; case DT_HP_LOAD_MAP: /* Compute the absolute address of 16byte scratchpad area for the dynamic linker. By convention the linker script will allocate the scratchpad area at the start of the .data section. So all we have to to is find the start of the .data section. */ s = bfd_get_section_by_name (output_bfd, ".data"); dyn.d_un.d_ptr = s->vma; bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTGOT: /* HP's use PLTGOT to set the GOT register. */ dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd); bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_JMPREL: s = hppa_info->plt_rel_sec; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_PLTRELSZ: s = hppa_info->plt_rel_sec; dyn.d_un.d_val = s->size; bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELA: s = hppa_info->other_rel_sec; if (! s || ! s->size) s = hppa_info->dlt_rel_sec; if (! s || ! s->size) s = hppa_info->opd_rel_sec; dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); break; case DT_RELASZ: s = hppa_info->other_rel_sec; dyn.d_un.d_val = s->size; s = hppa_info->dlt_rel_sec; dyn.d_un.d_val += s->size; s = hppa_info->opd_rel_sec; dyn.d_un.d_val += s->size; /* There is some question about whether or not the size of the PLT relocs should be included here. HP's tools do it, so we'll emulate them. */ s = hppa_info->plt_rel_sec; dyn.d_un.d_val += s->size; bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon); break; } } } return TRUE; } /* Support for core dump NOTE sections. */ static bfd_boolean elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) { int offset; size_t size; switch (note->descsz) { default: return FALSE; case 760: /* Linux/hppa */ /* pr_cursig */ elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); /* pr_pid */ elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32); /* pr_reg */ offset = 112; size = 640; break; } /* Make a ".reg/999" section. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", size, note->descpos + offset); } static bfd_boolean elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) { char * command; int n; switch (note->descsz) { default: return FALSE; case 136: /* Linux/hppa elf_prpsinfo. */ elf_tdata (abfd)->core_program = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16); elf_tdata (abfd)->core_command = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80); } /* Note that for some reason, a spurious space is tacked onto the end of the args in some (at least one anyway) implementations, so strip it off if it exists. */ command = elf_tdata (abfd)->core_command; n = strlen (command); if (0 < n && command[n - 1] == ' ') command[n - 1] = '\0'; return TRUE; } /* Return the number of additional phdrs we will need. The generic ELF code only creates PT_PHDRs for executables. The HP dynamic linker requires PT_PHDRs for dynamic libraries too. This routine indicates that the backend needs one additional program header for that case. Note we do not have access to the link info structure here, so we have to guess whether or not we are building a shared library based on the existence of a .interp section. */ static int elf64_hppa_additional_program_headers (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { asection *s; /* If we are creating a shared library, then we have to create a PT_PHDR segment. HP's dynamic linker chokes without it. */ s = bfd_get_section_by_name (abfd, ".interp"); if (! s) return 1; return 0; } /* Allocate and initialize any program headers required by this specific backend. The generic ELF code only creates PT_PHDRs for executables. The HP dynamic linker requires PT_PHDRs for dynamic libraries too. This allocates the PT_PHDR and initializes it in a manner suitable for the HP linker. Note we do not have access to the link info structure here, so we have to guess whether or not we are building a shared library based on the existence of a .interp section. */ static bfd_boolean elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) { struct elf_segment_map *m; asection *s; s = bfd_get_section_by_name (abfd, ".interp"); if (! s) { for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_PHDR) break; if (m == NULL) { m = ((struct elf_segment_map *) bfd_zalloc (abfd, (bfd_size_type) sizeof *m)); if (m == NULL) return FALSE; m->p_type = PT_PHDR; m->p_flags = PF_R | PF_X; m->p_flags_valid = 1; m->p_paddr_valid = 1; m->includes_phdrs = 1; m->next = elf_tdata (abfd)->segment_map; elf_tdata (abfd)->segment_map = m; } } for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) if (m->p_type == PT_LOAD) { unsigned int i; for (i = 0; i < m->count; i++) { /* The code "hint" is not really a hint. It is a requirement for certain versions of the HP dynamic linker. Worse yet, it must be set even if the shared library does not have any code in its "text" segment (thus the check for .hash to catch this situation). */ if (m->sections[i]->flags & SEC_CODE || (strcmp (m->sections[i]->name, ".hash") == 0)) m->p_flags |= (PF_X | PF_HP_CODE); } } return TRUE; } /* Called when writing out an object file to decide the type of a symbol. */ static int elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) { if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) return STT_PARISC_MILLI; else return type; } /* Support HP specific sections for core files. */ static bfd_boolean elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index, const char *typename) { if (hdr->p_type == PT_HP_CORE_KERNEL) { asection *sect; if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)) return FALSE; sect = bfd_make_section_anyway (abfd, ".kernel"); if (sect == NULL) return FALSE; sect->size = hdr->p_filesz; sect->filepos = hdr->p_offset; sect->flags = SEC_HAS_CONTENTS | SEC_READONLY; return TRUE; } if (hdr->p_type == PT_HP_CORE_PROC) { int sig; if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0) return FALSE; if (bfd_bread (&sig, 4, abfd) != 4) return FALSE; elf_tdata (abfd)->core_signal = sig; if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename)) return FALSE; /* GDB uses the ".reg" section to read register contents. */ return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz, hdr->p_offset); } if (hdr->p_type == PT_HP_CORE_LOADABLE || hdr->p_type == PT_HP_CORE_STACK || hdr->p_type == PT_HP_CORE_MMF) hdr->p_type = PT_LOAD; return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename); } /* Hook called by the linker routine which adds symbols from an object file. HP's libraries define symbols with HP specific section indices, which we have to handle. */ static bfd_boolean elf_hppa_add_symbol_hook (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, const char **namep ATTRIBUTE_UNUSED, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp, bfd_vma *valp) { unsigned int index = sym->st_shndx; switch (index) { case SHN_PARISC_ANSI_COMMON: *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; case SHN_PARISC_HUGE_COMMON: *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common"); (*secp)->flags |= SEC_IS_COMMON; *valp = sym->st_size; break; } return TRUE; } static bfd_boolean elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h, void *data) { struct bfd_link_info *info = data; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* If we are not creating a shared library, and this symbol is referenced by a shared library but is not defined anywhere, then the generic code will warn that it is undefined. This behavior is undesirable on HPs since the standard shared libraries contain references to undefined symbols. So we twiddle the flags associated with such symbols so that they will not trigger the warning. ?!? FIXME. This is horribly fragile. Ultimately we should have better controls over the generic ELF BFD linker code. */ if (! info->relocatable && info->unresolved_syms_in_shared_libs != RM_IGNORE && h->root.type == bfd_link_hash_undefined && h->ref_dynamic && !h->ref_regular) { h->ref_dynamic = 0; h->pointer_equality_needed = 1; } return TRUE; } static bfd_boolean elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h, void *data) { struct bfd_link_info *info = data; if (h->root.type == bfd_link_hash_warning) h = (struct elf_link_hash_entry *) h->root.u.i.link; /* If we are not creating a shared library, and this symbol is referenced by a shared library but is not defined anywhere, then the generic code will warn that it is undefined. This behavior is undesirable on HPs since the standard shared libraries contain references to undefined symbols. So we twiddle the flags associated with such symbols so that they will not trigger the warning. ?!? FIXME. This is horribly fragile. Ultimately we should have better controls over the generic ELF BFD linker code. */ if (! info->relocatable && info->unresolved_syms_in_shared_libs != RM_IGNORE && h->root.type == bfd_link_hash_undefined && !h->ref_dynamic && !h->ref_regular && h->pointer_equality_needed) { h->ref_dynamic = 1; h->pointer_equality_needed = 0; } return TRUE; } static bfd_boolean elf_hppa_is_dynamic_loader_symbol (const char *name) { return (! strcmp (name, "__CPU_REVISION") || ! strcmp (name, "__CPU_KEYBITS_1") || ! strcmp (name, "__SYSTEM_ID_D") || ! strcmp (name, "__FPU_MODEL") || ! strcmp (name, "__FPU_REVISION") || ! strcmp (name, "__ARGC") || ! strcmp (name, "__ARGV") || ! strcmp (name, "__ENVP") || ! strcmp (name, "__TLS_SIZE_D") || ! strcmp (name, "__LOAD_INFO") || ! strcmp (name, "__systab")); } /* Record the lowest address for the data and text segments. */ static void elf_hppa_record_segment_addrs (bfd *abfd, asection *section, void *data) { struct elf64_hppa_link_hash_table *hppa_info = data; if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) { bfd_vma value; Elf_Internal_Phdr *p; p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); BFD_ASSERT (p != NULL); value = p->p_vaddr; if (section->flags & SEC_READONLY) { if (value < hppa_info->text_segment_base) hppa_info->text_segment_base = value; } else { if (value < hppa_info->data_segment_base) hppa_info->data_segment_base = value; } } } /* Called after we have seen all the input files/sections, but before final symbol resolution and section placement has been determined. We use this hook to (possibly) provide a value for __gp, then we fall back to the generic ELF final link routine. */ static bfd_boolean elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info) { bfd_boolean retval; struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); if (! info->relocatable) { struct elf_link_hash_entry *gp; bfd_vma gp_val; /* The linker script defines a value for __gp iff it was referenced by one of the objects being linked. First try to find the symbol in the hash table. If that fails, just compute the value __gp should have had. */ gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE, FALSE, FALSE); if (gp) { /* Adjust the value of __gp as we may want to slide it into the .plt section so that the stubs can access PLT entries without using an addil sequence. */ gp->root.u.def.value += hppa_info->gp_offset; gp_val = (gp->root.u.def.section->output_section->vma + gp->root.u.def.section->output_offset + gp->root.u.def.value); } else { asection *sec; /* First look for a .plt section. If found, then __gp is the address of the .plt + gp_offset. If no .plt is found, then look for .dlt, .opd and .data (in that order) and set __gp to the base address of whichever section is found first. */ sec = hppa_info->plt_sec; if (sec && ! (sec->flags & SEC_EXCLUDE)) gp_val = (sec->output_offset + sec->output_section->vma + hppa_info->gp_offset); else { sec = hppa_info->dlt_sec; if (!sec || (sec->flags & SEC_EXCLUDE)) sec = hppa_info->opd_sec; if (!sec || (sec->flags & SEC_EXCLUDE)) sec = bfd_get_section_by_name (abfd, ".data"); if (!sec || (sec->flags & SEC_EXCLUDE)) gp_val = 0; else gp_val = sec->output_offset + sec->output_section->vma; } } /* Install whatever value we found/computed for __gp. */ _bfd_set_gp_value (abfd, gp_val); } /* We need to know the base of the text and data segments so that we can perform SEGREL relocations. We will record the base addresses when we encounter the first SEGREL relocation. */ hppa_info->text_segment_base = (bfd_vma)-1; hppa_info->data_segment_base = (bfd_vma)-1; /* HP's shared libraries have references to symbols that are not defined anywhere. The generic ELF BFD linker code will complain about such symbols. So we detect the losing case and arrange for the flags on the symbol to indicate that it was never referenced. This keeps the generic ELF BFD link code happy and appears to not create any secondary problems. Ultimately we need a way to control the behavior of the generic ELF BFD link code better. */ elf_link_hash_traverse (elf_hash_table (info), elf_hppa_unmark_useless_dynamic_symbols, info); /* Invoke the regular ELF backend linker to do all the work. */ retval = bfd_elf_final_link (abfd, info); elf_link_hash_traverse (elf_hash_table (info), elf_hppa_remark_useless_dynamic_symbols, info); /* If we're producing a final executable, sort the contents of the unwind section. */ if (retval) retval = elf_hppa_sort_unwind (abfd); return retval; } /* Relocate the given INSN. VALUE should be the actual value we want to insert into the instruction, ie by this point we should not be concerned with computing an offset relative to the DLT, PC, etc. Instead this routine is meant to handle the bit manipulations needed to insert the relocation into the given instruction. */ static int elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type) { switch (r_type) { /* This is any 22 bit branch. In PA2.0 syntax it corresponds to the "B" instruction. */ case R_PARISC_PCREL22F: case R_PARISC_PCREL22C: return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value); /* This is any 12 bit branch. */ case R_PARISC_PCREL12F: return (insn & ~0x1ffd) | re_assemble_12 (sym_value); /* This is any 17 bit branch. In PA2.0 syntax it also corresponds to the "B" instruction as well as BE. */ case R_PARISC_PCREL17F: case R_PARISC_DIR17F: case R_PARISC_DIR17R: case R_PARISC_PCREL17C: case R_PARISC_PCREL17R: return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value); /* ADDIL or LDIL instructions. */ case R_PARISC_DLTREL21L: case R_PARISC_DLTIND21L: case R_PARISC_LTOFF_FPTR21L: case R_PARISC_PCREL21L: case R_PARISC_LTOFF_TP21L: case R_PARISC_DPREL21L: case R_PARISC_PLTOFF21L: case R_PARISC_DIR21L: return (insn & ~0x1fffff) | re_assemble_21 (sym_value); /* LDO and integer loads/stores with 14 bit displacements. */ case R_PARISC_DLTREL14R: case R_PARISC_DLTREL14F: case R_PARISC_DLTIND14R: case R_PARISC_DLTIND14F: case R_PARISC_LTOFF_FPTR14R: case R_PARISC_PCREL14R: case R_PARISC_PCREL14F: case R_PARISC_LTOFF_TP14R: case R_PARISC_LTOFF_TP14F: case R_PARISC_DPREL14R: case R_PARISC_DPREL14F: case R_PARISC_PLTOFF14R: case R_PARISC_PLTOFF14F: case R_PARISC_DIR14R: case R_PARISC_DIR14F: return (insn & ~0x3fff) | low_sign_unext (sym_value, 14); /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */ case R_PARISC_LTOFF_FPTR16F: case R_PARISC_PCREL16F: case R_PARISC_LTOFF_TP16F: case R_PARISC_GPREL16F: case R_PARISC_PLTOFF16F: case R_PARISC_DIR16F: case R_PARISC_LTOFF16F: return (insn & ~0xffff) | re_assemble_16 (sym_value); /* Doubleword loads and stores with a 14 bit displacement. */ case R_PARISC_DLTREL14DR: case R_PARISC_DLTIND14DR: case R_PARISC_LTOFF_FPTR14DR: case R_PARISC_LTOFF_FPTR16DF: case R_PARISC_PCREL14DR: case R_PARISC_PCREL16DF: case R_PARISC_LTOFF_TP14DR: case R_PARISC_LTOFF_TP16DF: case R_PARISC_DPREL14DR: case R_PARISC_GPREL16DF: case R_PARISC_PLTOFF14DR: case R_PARISC_PLTOFF16DF: case R_PARISC_DIR14DR: case R_PARISC_DIR16DF: case R_PARISC_LTOFF16DF: return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13) | ((sym_value & 0x1ff8) << 1)); /* Floating point single word load/store instructions. */ case R_PARISC_DLTREL14WR: case R_PARISC_DLTIND14WR: case R_PARISC_LTOFF_FPTR14WR: case R_PARISC_LTOFF_FPTR16WF: case R_PARISC_PCREL14WR: case R_PARISC_PCREL16WF: case R_PARISC_LTOFF_TP14WR: case R_PARISC_LTOFF_TP16WF: case R_PARISC_DPREL14WR: case R_PARISC_GPREL16WF: case R_PARISC_PLTOFF14WR: case R_PARISC_PLTOFF16WF: case R_PARISC_DIR16WF: case R_PARISC_DIR14WR: case R_PARISC_LTOFF16WF: return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13) | ((sym_value & 0x1ffc) << 1)); default: return insn; } } /* Compute the value for a relocation (REL) during a final link stage, then insert the value into the proper location in CONTENTS. VALUE is a tentative value for the relocation and may be overridden and modified here based on the specific relocation to be performed. For example we do conversions for PC-relative branches in this routine or redirection of calls to external routines to stubs. The work of actually applying the relocation is left to a helper routine in an attempt to reduce the complexity and size of this function. */ static bfd_reloc_status_type elf_hppa_final_link_relocate (Elf_Internal_Rela *rel, bfd *input_bfd, bfd *output_bfd, asection *input_section, bfd_byte *contents, bfd_vma value, struct bfd_link_info *info, asection *sym_sec, struct elf_link_hash_entry *eh) { struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info); struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); bfd_vma *local_offsets; Elf_Internal_Shdr *symtab_hdr; int insn; bfd_vma max_branch_offset = 0; bfd_vma offset = rel->r_offset; bfd_signed_vma addend = rel->r_addend; reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); unsigned int r_symndx = ELF_R_SYM (rel->r_info); unsigned int r_type = howto->type; bfd_byte *hit_data = contents + offset; symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; local_offsets = elf_local_got_offsets (input_bfd); insn = bfd_get_32 (input_bfd, hit_data); switch (r_type) { case R_PARISC_NONE: break; /* Basic function call support. Note for a call to a function defined in another dynamic library we want to redirect the call to a stub. */ /* PC relative relocs without an implicit offset. */ case R_PARISC_PCREL21L: case R_PARISC_PCREL14R: case R_PARISC_PCREL14F: case R_PARISC_PCREL14WR: case R_PARISC_PCREL14DR: case R_PARISC_PCREL16F: case R_PARISC_PCREL16WF: case R_PARISC_PCREL16DF: { /* If this is a call to a function defined in another dynamic library, then redirect the call to the local stub for this function. */ if (sym_sec == NULL || sym_sec->output_section == NULL) value = (hh->stub_offset + hppa_info->stub_sec->output_offset + hppa_info->stub_sec->output_section->vma); /* Turn VALUE into a proper PC relative address. */ value -= (offset + input_section->output_offset + input_section->output_section->vma); /* Adjust for any field selectors. */ if (r_type == R_PARISC_PCREL21L) value = hppa_field_adjust (value, -8 + addend, e_lsel); else if (r_type == R_PARISC_PCREL14F || r_type == R_PARISC_PCREL16F || r_type == R_PARISC_PCREL16WF || r_type == R_PARISC_PCREL16DF) value = hppa_field_adjust (value, -8 + addend, e_fsel); else value = hppa_field_adjust (value, -8 + addend, e_rsel); /* Apply the relocation to the given instruction. */ insn = elf_hppa_relocate_insn (insn, (int) value, r_type); break; } case R_PARISC_PCREL12F: case R_PARISC_PCREL22F: case R_PARISC_PCREL17F: case R_PARISC_PCREL22C: case R_PARISC_PCREL17C: case R_PARISC_PCREL17R: { /* If this is a call to a function defined in another dynamic library, then redirect the call to the local stub for this function. */ if (sym_sec == NULL || sym_sec->output_section == NULL) value = (hh->stub_offset + hppa_info->stub_sec->output_offset + hppa_info->stub_sec->output_section->vma); /* Turn VALUE into a proper PC relative address. */ value -= (offset + input_section->output_offset + input_section->output_section->vma); addend -= 8; if (r_type == (unsigned int) R_PARISC_PCREL22F) max_branch_offset = (1 << (22-1)) << 2; else if (r_type == (unsigned int) R_PARISC_PCREL17F) max_branch_offset = (1 << (17-1)) << 2; else if (r_type == (unsigned int) R_PARISC_PCREL12F) max_branch_offset = (1 << (12-1)) << 2; /* Make sure we can reach the branch target. */ if (max_branch_offset != 0 && value + addend + max_branch_offset >= 2*max_branch_offset) { (*_bfd_error_handler) (_("%B(%A+0x%lx): cannot reach %s"), input_bfd, input_section, offset, eh->root.root.string); bfd_set_error (bfd_error_bad_value); return bfd_reloc_notsupported; } /* Adjust for any field selectors. */ if (r_type == R_PARISC_PCREL17R) value = hppa_field_adjust (value, addend, e_rsel); else value = hppa_field_adjust (value, addend, e_fsel); /* All branches are implicitly shifted by 2 places. */ value >>= 2; /* Apply the relocation to the given instruction. */ insn = elf_hppa_relocate_insn (insn, (int) value, r_type); break; } /* Indirect references to data through the DLT. */ case R_PARISC_DLTIND14R: case R_PARISC_DLTIND14F: case R_PARISC_DLTIND14DR: case R_PARISC_DLTIND14WR: case R_PARISC_DLTIND21L: case R_PARISC_LTOFF_FPTR14R: case R_PARISC_LTOFF_FPTR14DR: case R_PARISC_LTOFF_FPTR14WR: case R_PARISC_LTOFF_FPTR21L: case R_PARISC_LTOFF_FPTR16F: case R_PARISC_LTOFF_FPTR16WF: case R_PARISC_LTOFF_FPTR16DF: case R_PARISC_LTOFF_TP21L: case R_PARISC_LTOFF_TP14R: case R_PARISC_LTOFF_TP14F: case R_PARISC_LTOFF_TP14WR: case R_PARISC_LTOFF_TP14DR: case R_PARISC_LTOFF_TP16F: case R_PARISC_LTOFF_TP16WF: case R_PARISC_LTOFF_TP16DF: case R_PARISC_LTOFF16F: case R_PARISC_LTOFF16WF: case R_PARISC_LTOFF16DF: { bfd_vma off; /* If this relocation was against a local symbol, then we still have not set up the DLT entry (it's not convenient to do so in the "finalize_dlt" routine because it is difficult to get to the local symbol's value). So, if this is a local symbol (h == NULL), then we need to fill in its DLT entry. Similarly we may still need to set up an entry in .opd for a local function which had its address taken. */ if (hh == NULL) { bfd_vma *local_opd_offsets, *local_dlt_offsets; if (local_offsets == NULL) abort (); /* Now do .opd creation if needed. */ if (r_type == R_PARISC_LTOFF_FPTR14R || r_type == R_PARISC_LTOFF_FPTR14DR || r_type == R_PARISC_LTOFF_FPTR14WR || r_type == R_PARISC_LTOFF_FPTR21L || r_type == R_PARISC_LTOFF_FPTR16F || r_type == R_PARISC_LTOFF_FPTR16WF || r_type == R_PARISC_LTOFF_FPTR16DF) { local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; off = local_opd_offsets[r_symndx]; /* The last bit records whether we've already initialised this local .opd entry. */ if ((off & 1) != 0) { BFD_ASSERT (off != (bfd_vma) -1); off &= ~1; } else { local_opd_offsets[r_symndx] |= 1; /* The first two words of an .opd entry are zero. */ memset (hppa_info->opd_sec->contents + off, 0, 16); /* The next word is the address of the function. */ bfd_put_64 (hppa_info->opd_sec->owner, value + addend, (hppa_info->opd_sec->contents + off + 16)); /* The last word is our local __gp value. */ value = _bfd_get_gp_value (hppa_info->opd_sec->output_section->owner); bfd_put_64 (hppa_info->opd_sec->owner, value, (hppa_info->opd_sec->contents + off + 24)); } /* The DLT value is the address of the .opd entry. */ value = (off + hppa_info->opd_sec->output_offset + hppa_info->opd_sec->output_section->vma); addend = 0; } local_dlt_offsets = local_offsets; off = local_dlt_offsets[r_symndx]; if ((off & 1) != 0) { BFD_ASSERT (off != (bfd_vma) -1); off &= ~1; } else { local_dlt_offsets[r_symndx] |= 1; bfd_put_64 (hppa_info->dlt_sec->owner, value + addend, hppa_info->dlt_sec->contents + off); } } else off = hh->dlt_offset; /* We want the value of the DLT offset for this symbol, not the symbol's actual address. Note that __gp may not point to the start of the DLT, so we have to compute the absolute address, then subtract out the value of __gp. */ value = (off + hppa_info->dlt_sec->output_offset + hppa_info->dlt_sec->output_section->vma); value -= _bfd_get_gp_value (output_bfd); /* All DLTIND relocations are basically the same at this point, except that we need different field selectors for the 21bit version vs the 14bit versions. */ if (r_type == R_PARISC_DLTIND21L || r_type == R_PARISC_LTOFF_FPTR21L || r_type == R_PARISC_LTOFF_TP21L) value = hppa_field_adjust (value, 0, e_lsel); else if (r_type == R_PARISC_DLTIND14F || r_type == R_PARISC_LTOFF_FPTR16F || r_type == R_PARISC_LTOFF_FPTR16WF || r_type == R_PARISC_LTOFF_FPTR16DF || r_type == R_PARISC_LTOFF16F || r_type == R_PARISC_LTOFF16DF || r_type == R_PARISC_LTOFF16WF || r_type == R_PARISC_LTOFF_TP16F || r_type == R_PARISC_LTOFF_TP16WF || r_type == R_PARISC_LTOFF_TP16DF) value = hppa_field_adjust (value, 0, e_fsel); else value = hppa_field_adjust (value, 0, e_rsel); insn = elf_hppa_relocate_insn (insn, (int) value, r_type); break; } case R_PARISC_DLTREL14R: case R_PARISC_DLTREL14F: case R_PARISC_DLTREL14DR: case R_PARISC_DLTREL14WR: case R_PARISC_DLTREL21L: case R_PARISC_DPREL21L: case R_PARISC_DPREL14WR: case R_PARISC_DPREL14DR: case R_PARISC_DPREL14R: case R_PARISC_DPREL14F: case R_PARISC_GPREL16F: case R_PARISC_GPREL16WF: case R_PARISC_GPREL16DF: { /* Subtract out the global pointer value to make value a DLT relative address. */ value -= _bfd_get_gp_value (output_bfd); /* All DLTREL relocations are basically the same at this point, except that we need different field selectors for the 21bit version vs the 14bit versions. */ if (r_type == R_PARISC_DLTREL21L || r_type == R_PARISC_DPREL21L) value = hppa_field_adjust (value, addend, e_lrsel); else if (r_type == R_PARISC_DLTREL14F || r_type == R_PARISC_DPREL14F || r_type == R_PARISC_GPREL16F || r_type == R_PARISC_GPREL16WF || r_type == R_PARISC_GPREL16DF) value = hppa_field_adjust (value, addend, e_fsel); else value = hppa_field_adjust (value, addend, e_rrsel); insn = elf_hppa_relocate_insn (insn, (int) value, r_type); break; } case R_PARISC_DIR21L: case R_PARISC_DIR17R: case R_PARISC_DIR17F: case R_PARISC_DIR14R: case R_PARISC_DIR14F: case R_PARISC_DIR14WR: case R_PARISC_DIR14DR: case R_PARISC_DIR16F: case R_PARISC_DIR16WF: case R_PARISC_DIR16DF: { /* All DIR relocations are basically the same at this point, except that branch offsets need to be divided by four, and we need different field selectors. Note that we don't redirect absolute calls to local stubs. */ if (r_type == R_PARISC_DIR21L) value = hppa_field_adjust (value, addend, e_lrsel); else if (r_type == R_PARISC_DIR17F || r_type == R_PARISC_DIR16F || r_type == R_PARISC_DIR16WF || r_type == R_PARISC_DIR16DF || r_type == R_PARISC_DIR14F) value = hppa_field_adjust (value, addend, e_fsel); else value = hppa_field_adjust (value, addend, e_rrsel); if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F) /* All branches are implicitly shifted by 2 places. */ value >>= 2; insn = elf_hppa_relocate_insn (insn, (int) value, r_type); break; } case R_PARISC_PLTOFF21L: case R_PARISC_PLTOFF14R: case R_PARISC_PLTOFF14F: case R_PARISC_PLTOFF14WR: case R_PARISC_PLTOFF14DR: case R_PARISC_PLTOFF16F: case R_PARISC_PLTOFF16WF: case R_PARISC_PLTOFF16DF: { /* We want the value of the PLT offset for this symbol, not the symbol's actual address. Note that __gp may not point to the start of the DLT, so we have to compute the absolute address, then subtract out the value of __gp. */ value = (hh->plt_offset + hppa_info->plt_sec->output_offset + hppa_info->plt_sec->output_section->vma); value -= _bfd_get_gp_value (output_bfd); /* All PLTOFF relocations are basically the same at this point, except that we need different field selectors for the 21bit version vs the 14bit versions. */ if (r_type == R_PARISC_PLTOFF21L) value = hppa_field_adjust (value, addend, e_lrsel); else if (r_type == R_PARISC_PLTOFF14F || r_type == R_PARISC_PLTOFF16F || r_type == R_PARISC_PLTOFF16WF || r_type == R_PARISC_PLTOFF16DF) value = hppa_field_adjust (value, addend, e_fsel); else value = hppa_field_adjust (value, addend, e_rrsel); insn = elf_hppa_relocate_insn (insn, (int) value, r_type); break; } case R_PARISC_LTOFF_FPTR32: { /* We may still need to create the FPTR itself if it was for a local symbol. */ if (hh == NULL) { /* The first two words of an .opd entry are zero. */ memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16); /* The next word is the address of the function. */ bfd_put_64 (hppa_info->opd_sec->owner, value + addend, (hppa_info->opd_sec->contents + hh->opd_offset + 16)); /* The last word is our local __gp value. */ value = _bfd_get_gp_value (hppa_info->opd_sec->output_section->owner); bfd_put_64 (hppa_info->opd_sec->owner, value, hppa_info->opd_sec->contents + hh->opd_offset + 24); /* The DLT value is the address of the .opd entry. */ value = (hh->opd_offset + hppa_info->opd_sec->output_offset + hppa_info->opd_sec->output_section->vma); bfd_put_64 (hppa_info->dlt_sec->owner, value, hppa_info->dlt_sec->contents + hh->dlt_offset); } /* We want the value of the DLT offset for this symbol, not the symbol's actual address. Note that __gp may not point to the start of the DLT, so we have to compute the absolute address, then subtract out the value of __gp. */ value = (hh->dlt_offset + hppa_info->dlt_sec->output_offset + hppa_info->dlt_sec->output_section->vma); value -= _bfd_get_gp_value (output_bfd); bfd_put_32 (input_bfd, value, hit_data); return bfd_reloc_ok; } case R_PARISC_LTOFF_FPTR64: case R_PARISC_LTOFF_TP64: { /* We may still need to create the FPTR itself if it was for a local symbol. */ if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64) { /* The first two words of an .opd entry are zero. */ memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16); /* The next word is the address of the function. */ bfd_put_64 (hppa_info->opd_sec->owner, value + addend, (hppa_info->opd_sec->contents + hh->opd_offset + 16)); /* The last word is our local __gp value. */ value = _bfd_get_gp_value (hppa_info->opd_sec->output_section->owner); bfd_put_64 (hppa_info->opd_sec->owner, value, hppa_info->opd_sec->contents + hh->opd_offset + 24); /* The DLT value is the address of the .opd entry. */ value = (hh->opd_offset + hppa_info->opd_sec->output_offset + hppa_info->opd_sec->output_section->vma); bfd_put_64 (hppa_info->dlt_sec->owner, value, hppa_info->dlt_sec->contents + hh->dlt_offset); } /* We want the value of the DLT offset for this symbol, not the symbol's actual address. Note that __gp may not point to the start of the DLT, so we have to compute the absolute address, then subtract out the value of __gp. */ value = (hh->dlt_offset + hppa_info->dlt_sec->output_offset + hppa_info->dlt_sec->output_section->vma); value -= _bfd_get_gp_value (output_bfd); bfd_put_64 (input_bfd, value, hit_data); return bfd_reloc_ok; } case R_PARISC_DIR32: bfd_put_32 (input_bfd, value + addend, hit_data); return bfd_reloc_ok; case R_PARISC_DIR64: bfd_put_64 (input_bfd, value + addend, hit_data); return bfd_reloc_ok; case R_PARISC_GPREL64: /* Subtract out the global pointer value to make value a DLT relative address. */ value -= _bfd_get_gp_value (output_bfd); bfd_put_64 (input_bfd, value + addend, hit_data); return bfd_reloc_ok; case R_PARISC_LTOFF64: /* We want the value of the DLT offset for this symbol, not the symbol's actual address. Note that __gp may not point to the start of the DLT, so we have to compute the absolute address, then subtract out the value of __gp. */ value = (hh->dlt_offset + hppa_info->dlt_sec->output_offset + hppa_info->dlt_sec->output_section->vma); value -= _bfd_get_gp_value (output_bfd); bfd_put_64 (input_bfd, value + addend, hit_data); return bfd_reloc_ok; case R_PARISC_PCREL32: { /* If this is a call to a function defined in another dynamic library, then redirect the call to the local stub for this function. */ if (sym_sec == NULL || sym_sec->output_section == NULL) value = (hh->stub_offset + hppa_info->stub_sec->output_offset + hppa_info->stub_sec->output_section->vma); /* Turn VALUE into a proper PC relative address. */ value -= (offset + input_section->output_offset + input_section->output_section->vma); value += addend; value -= 8; bfd_put_32 (input_bfd, value, hit_data); return bfd_reloc_ok; } case R_PARISC_PCREL64: { /* If this is a call to a function defined in another dynamic library, then redirect the call to the local stub for this function. */ if (sym_sec == NULL || sym_sec->output_section == NULL) value = (hh->stub_offset + hppa_info->stub_sec->output_offset + hppa_info->stub_sec->output_section->vma); /* Turn VALUE into a proper PC relative address. */ value -= (offset + input_section->output_offset + input_section->output_section->vma); value += addend; value -= 8; bfd_put_64 (input_bfd, value, hit_data); return bfd_reloc_ok; } case R_PARISC_FPTR64: { bfd_vma off; /* We may still need to create the FPTR itself if it was for a local symbol. */ if (hh == NULL) { bfd_vma *local_opd_offsets; if (local_offsets == NULL) abort (); local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info; off = local_opd_offsets[r_symndx]; /* The last bit records whether we've already initialised this local .opd entry. */ if ((off & 1) != 0) { BFD_ASSERT (off != (bfd_vma) -1); off &= ~1; } else { /* The first two words of an .opd entry are zero. */ memset (hppa_info->opd_sec->contents + off, 0, 16); /* The next word is the address of the function. */ bfd_put_64 (hppa_info->opd_sec->owner, value + addend, (hppa_info->opd_sec->contents + off + 16)); /* The last word is our local __gp value. */ value = _bfd_get_gp_value (hppa_info->opd_sec->output_section->owner); bfd_put_64 (hppa_info->opd_sec->owner, value, hppa_info->opd_sec->contents + off + 24); } } else off = hh->opd_offset; if (hh == NULL || hh->want_opd) /* We want the value of the OPD offset for this symbol. */ value = (off + hppa_info->opd_sec->output_offset + hppa_info->opd_sec->output_section->vma); else /* We want the address of the symbol. */ value += addend; bfd_put_64 (input_bfd, value, hit_data); return bfd_reloc_ok; } case R_PARISC_SECREL32: if (sym_sec) value -= sym_sec->output_section->vma; bfd_put_32 (input_bfd, value + addend, hit_data); return bfd_reloc_ok; case R_PARISC_SEGREL32: case R_PARISC_SEGREL64: { /* If this is the first SEGREL relocation, then initialize the segment base values. */ if (hppa_info->text_segment_base == (bfd_vma) -1) bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs, hppa_info); /* VALUE holds the absolute address. We want to include the addend, then turn it into a segment relative address. The segment is derived from SYM_SEC. We assume that there are only two segments of note in the resulting executable/shlib. A readonly segment (.text) and a readwrite segment (.data). */ value += addend; if (sym_sec->flags & SEC_CODE) value -= hppa_info->text_segment_base; else value -= hppa_info->data_segment_base; if (r_type == R_PARISC_SEGREL32) bfd_put_32 (input_bfd, value, hit_data); else bfd_put_64 (input_bfd, value, hit_data); return bfd_reloc_ok; } /* Something we don't know how to handle. */ default: return bfd_reloc_notsupported; } /* Update the instruction word. */ bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); return bfd_reloc_ok; } /* Relocate an HPPA ELF section. */ static bfd_boolean elf64_hppa_relocate_section (bfd *output_bfd, struct bfd_link_info *info, bfd *input_bfd, asection *input_section, bfd_byte *contents, Elf_Internal_Rela *relocs, Elf_Internal_Sym *local_syms, asection **local_sections) { Elf_Internal_Shdr *symtab_hdr; Elf_Internal_Rela *rel; Elf_Internal_Rela *relend; struct elf64_hppa_link_hash_table *hppa_info; hppa_info = hppa_link_hash_table (info); symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; rel = relocs; relend = relocs + input_section->reloc_count; for (; rel < relend; rel++) { int r_type; reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info); unsigned long r_symndx; struct elf_link_hash_entry *eh; Elf_Internal_Sym *sym; asection *sym_sec; bfd_vma relocation; bfd_reloc_status_type r; bfd_boolean warned_undef; r_type = ELF_R_TYPE (rel->r_info); if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED) { bfd_set_error (bfd_error_bad_value); return FALSE; } if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) continue; /* This is a final link. */ r_symndx = ELF_R_SYM (rel->r_info); eh = NULL; sym = NULL; sym_sec = NULL; warned_undef = FALSE; if (r_symndx < symtab_hdr->sh_info) { /* This is a local symbol, hh defaults to NULL. */ sym = local_syms + r_symndx; sym_sec = local_sections[r_symndx]; relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel); } else { /* This is not a local symbol. */ bfd_boolean unresolved_reloc; struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); /* It seems this can happen with erroneous or unsupported input (mixing a.out and elf in an archive, for example.) */ if (sym_hashes == NULL) return FALSE; eh = sym_hashes[r_symndx - symtab_hdr->sh_info]; while (eh->root.type == bfd_link_hash_indirect || eh->root.type == bfd_link_hash_warning) eh = (struct elf_link_hash_entry *) eh->root.u.i.link; warned_undef = FALSE; unresolved_reloc = FALSE; relocation = 0; if (eh->root.type == bfd_link_hash_defined || eh->root.type == bfd_link_hash_defweak) { sym_sec = eh->root.u.def.section; if (sym_sec == NULL || sym_sec->output_section == NULL) /* Set a flag that will be cleared later if we find a relocation value for this symbol. output_section is typically NULL for symbols satisfied by a shared library. */ unresolved_reloc = TRUE; else relocation = (eh->root.u.def.value + sym_sec->output_section->vma + sym_sec->output_offset); } else if (eh->root.type == bfd_link_hash_undefweak) ; else if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) ; else if (!info->relocatable && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string)) continue; else if (!info->relocatable) { bfd_boolean err; err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT); if (!info->callbacks->undefined_symbol (info, eh->root.root.string, input_bfd, input_section, rel->r_offset, err)) return FALSE; warned_undef = TRUE; } if (!info->relocatable && relocation == 0 && eh->root.type != bfd_link_hash_defined && eh->root.type != bfd_link_hash_defweak && eh->root.type != bfd_link_hash_undefweak) { if (info->unresolved_syms_in_objects == RM_IGNORE && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT && eh->type == STT_PARISC_MILLI) { if (! info->callbacks->undefined_symbol (info, eh_name (eh), input_bfd, input_section, rel->r_offset, FALSE)) return FALSE; warned_undef = TRUE; } } } if (sym_sec != NULL && elf_discarded_section (sym_sec)) { /* For relocs against symbols from removed linkonce sections, or sections discarded by a linker script, we just want the section contents zeroed. Avoid any special processing. */ _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); rel->r_info = 0; rel->r_addend = 0; continue; } if (info->relocatable) continue; r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd, input_section, contents, relocation, info, sym_sec, eh); if (r != bfd_reloc_ok) { switch (r) { default: abort (); case bfd_reloc_overflow: { const char *sym_name; if (eh != NULL) sym_name = NULL; else { sym_name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name); if (sym_name == NULL) return FALSE; if (*sym_name == '\0') sym_name = bfd_section_name (input_bfd, sym_sec); } if (!((*info->callbacks->reloc_overflow) (info, (eh ? &eh->root : NULL), sym_name, howto->name, (bfd_vma) 0, input_bfd, input_section, rel->r_offset))) return FALSE; } break; } } } return TRUE; } static const struct bfd_elf_special_section elf64_hppa_special_sections[] = { { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT }, { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS }, { NULL, 0, 0, 0, 0 } }; /* The hash bucket size is the standard one, namely 4. */ const struct elf_size_info hppa64_elf_size_info = { sizeof (Elf64_External_Ehdr), sizeof (Elf64_External_Phdr), sizeof (Elf64_External_Shdr), sizeof (Elf64_External_Rel), sizeof (Elf64_External_Rela), sizeof (Elf64_External_Sym), sizeof (Elf64_External_Dyn), sizeof (Elf_External_Note), 4, 1, 64, 3, ELFCLASS64, EV_CURRENT, bfd_elf64_write_out_phdrs, bfd_elf64_write_shdrs_and_ehdr, bfd_elf64_checksum_contents, bfd_elf64_write_relocs, bfd_elf64_swap_symbol_in, bfd_elf64_swap_symbol_out, bfd_elf64_slurp_reloc_table, bfd_elf64_slurp_symbol_table, bfd_elf64_swap_dyn_in, bfd_elf64_swap_dyn_out, bfd_elf64_swap_reloc_in, bfd_elf64_swap_reloc_out, bfd_elf64_swap_reloca_in, bfd_elf64_swap_reloca_out }; #define TARGET_BIG_SYM bfd_elf64_hppa_vec #define TARGET_BIG_NAME "elf64-hppa" #define ELF_ARCH bfd_arch_hppa #define ELF_MACHINE_CODE EM_PARISC /* This is not strictly correct. The maximum page size for PA2.0 is 64M. But everything still uses 4k. */ #define ELF_MAXPAGESIZE 0x1000 #define ELF_OSABI ELFOSABI_HPUX #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name #define elf_info_to_howto elf_hppa_info_to_howto #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr #define elf_backend_object_p elf64_hppa_object_p #define elf_backend_final_write_processing \ elf_hppa_final_write_processing #define elf_backend_fake_sections elf_hppa_fake_sections #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook #define elf_backend_relocate_section elf_hppa_relocate_section #define bfd_elf64_bfd_final_link elf_hppa_final_link #define elf_backend_create_dynamic_sections \ elf64_hppa_create_dynamic_sections #define elf_backend_post_process_headers elf64_hppa_post_process_headers #define elf_backend_omit_section_dynsym \ ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) #define elf_backend_adjust_dynamic_symbol \ elf64_hppa_adjust_dynamic_symbol #define elf_backend_size_dynamic_sections \ elf64_hppa_size_dynamic_sections #define elf_backend_finish_dynamic_symbol \ elf64_hppa_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ elf64_hppa_finish_dynamic_sections #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo /* Stuff for the BFD linker: */ #define bfd_elf64_bfd_link_hash_table_create \ elf64_hppa_hash_table_create #define elf_backend_check_relocs \ elf64_hppa_check_relocs #define elf_backend_size_info \ hppa64_elf_size_info #define elf_backend_additional_program_headers \ elf64_hppa_additional_program_headers #define elf_backend_modify_segment_map \ elf64_hppa_modify_segment_map #define elf_backend_link_output_symbol_hook \ elf64_hppa_link_output_symbol_hook #define elf_backend_want_got_plt 0 #define elf_backend_plt_readonly 0 #define elf_backend_want_plt_sym 0 #define elf_backend_got_header_size 0 #define elf_backend_type_change_ok TRUE #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class #define elf_backend_rela_normal 1 #define elf_backend_special_sections elf64_hppa_special_sections #define elf_backend_action_discarded elf_hppa_action_discarded #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr #define elf64_bed elf64_hppa_hpux_bed #include "elf64-target.h" #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf64-hppa-linux" #undef ELF_OSABI #define ELF_OSABI ELFOSABI_LINUX #undef elf_backend_post_process_headers #define elf_backend_post_process_headers _bfd_elf_set_osabi #undef elf64_bed #define elf64_bed elf64_hppa_linux_bed #include "elf64-target.h"