URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [bfd/] [elf64-sparc.c] - Rev 174
Go to most recent revision | Compare with Previous | Blame | View Log
/* SPARC-specific support for 64-bit ELF Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc. This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "elf-bfd.h" #include "elf/sparc.h" #include "opcode/sparc.h" #include "elfxx-sparc.h" /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ #define MINUS_ONE (~ (bfd_vma) 0) /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA section can represent up to two relocs, we must tell the user to allocate more space. */ static long elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) { return (sec->reloc_count * 2 + 1) * sizeof (arelent *); } static long elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd) { return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2; } /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of them. We cannot use generic elf routines for this, because R_SPARC_OLO10 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations for the same location, R_SPARC_LO10 and R_SPARC_13. */ static bfd_boolean elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect, Elf_Internal_Shdr *rel_hdr, asymbol **symbols, bfd_boolean dynamic) { PTR allocated = NULL; bfd_byte *native_relocs; arelent *relent; unsigned int i; int entsize; bfd_size_type count; arelent *relents; allocated = (PTR) bfd_malloc (rel_hdr->sh_size); if (allocated == NULL) goto error_return; if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size) goto error_return; native_relocs = (bfd_byte *) allocated; relents = asect->relocation + canon_reloc_count (asect); entsize = rel_hdr->sh_entsize; BFD_ASSERT (entsize == sizeof (Elf64_External_Rela)); count = rel_hdr->sh_size / entsize; for (i = 0, relent = relents; i < count; i++, relent++, native_relocs += entsize) { Elf_Internal_Rela rela; unsigned int r_type; bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela); /* The address of an ELF reloc is section relative for an object file, and absolute for an executable file or shared library. The address of a normal BFD reloc is always section relative, and the address of a dynamic reloc is absolute.. */ if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic) relent->address = rela.r_offset; else relent->address = rela.r_offset - asect->vma; if (ELF64_R_SYM (rela.r_info) == 0) relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; else { asymbol **ps, *s; ps = symbols + ELF64_R_SYM (rela.r_info) - 1; s = *ps; /* Canonicalize ELF section symbols. FIXME: Why? */ if ((s->flags & BSF_SECTION_SYM) == 0) relent->sym_ptr_ptr = ps; else relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; } relent->addend = rela.r_addend; r_type = ELF64_R_TYPE_ID (rela.r_info); if (r_type == R_SPARC_OLO10) { relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10); relent[1].address = relent->address; relent++; relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; relent->addend = ELF64_R_TYPE_DATA (rela.r_info); relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13); } else relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type); } canon_reloc_count (asect) += relent - relents; if (allocated != NULL) free (allocated); return TRUE; error_return: if (allocated != NULL) free (allocated); return FALSE; } /* Read in and swap the external relocs. */ static bfd_boolean elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect, asymbol **symbols, bfd_boolean dynamic) { struct bfd_elf_section_data * const d = elf_section_data (asect); Elf_Internal_Shdr *rel_hdr; Elf_Internal_Shdr *rel_hdr2; bfd_size_type amt; if (asect->relocation != NULL) return TRUE; if (! dynamic) { if ((asect->flags & SEC_RELOC) == 0 || asect->reloc_count == 0) return TRUE; rel_hdr = &d->rel_hdr; rel_hdr2 = d->rel_hdr2; BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset)); } else { /* Note that ASECT->RELOC_COUNT tends not to be accurate in this case because relocations against this section may use the dynamic symbol table, and in that case bfd_section_from_shdr in elf.c does not update the RELOC_COUNT. */ if (asect->size == 0) return TRUE; rel_hdr = &d->this_hdr; asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr); rel_hdr2 = NULL; } amt = asect->reloc_count; amt *= 2 * sizeof (arelent); asect->relocation = (arelent *) bfd_alloc (abfd, amt); if (asect->relocation == NULL) return FALSE; /* The elf64_sparc_slurp_one_reloc_table routine increments canon_reloc_count. */ canon_reloc_count (asect) = 0; if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)) return FALSE; if (rel_hdr2 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols, dynamic)) return FALSE; return TRUE; } /* Canonicalize the relocs. */ static long elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section, arelent **relptr, asymbol **symbols) { arelent *tblptr; unsigned int i; const struct elf_backend_data *bed = get_elf_backend_data (abfd); if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) return -1; tblptr = section->relocation; for (i = 0; i < canon_reloc_count (section); i++) *relptr++ = tblptr++; *relptr = NULL; return canon_reloc_count (section); } /* Canonicalize the dynamic relocation entries. Note that we return the dynamic relocations as a single block, although they are actually associated with particular sections; the interface, which was designed for SunOS style shared libraries, expects that there is only one set of dynamic relocs. Any section that was actually installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the dynamic symbol table, is considered to be a dynamic reloc section. */ static long elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, asymbol **syms) { asection *s; long ret; if (elf_dynsymtab (abfd) == 0) { bfd_set_error (bfd_error_invalid_operation); return -1; } ret = 0; for (s = abfd->sections; s != NULL; s = s->next) { if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) { arelent *p; long count, i; if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE)) return -1; count = canon_reloc_count (s); p = s->relocation; for (i = 0; i < count; i++) *storage++ = p++; ret += count; } } *storage = NULL; return ret; } /* Write out the relocs. */ static void elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data) { bfd_boolean *failedp = (bfd_boolean *) data; Elf_Internal_Shdr *rela_hdr; bfd_vma addr_offset; Elf64_External_Rela *outbound_relocas, *src_rela; unsigned int idx, count; asymbol *last_sym = 0; int last_sym_idx = 0; /* If we have already failed, don't do anything. */ if (*failedp) return; if ((sec->flags & SEC_RELOC) == 0) return; /* The linker backend writes the relocs out itself, and sets the reloc_count field to zero to inhibit writing them here. Also, sometimes the SEC_RELOC flag gets set even when there aren't any relocs. */ if (sec->reloc_count == 0) return; /* We can combine two relocs that refer to the same address into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the latter is R_SPARC_13 with no associated symbol. */ count = 0; for (idx = 0; idx < sec->reloc_count; idx++) { bfd_vma addr; ++count; addr = sec->orelocation[idx]->address; if (sec->orelocation[idx]->howto->type == R_SPARC_LO10 && idx < sec->reloc_count - 1) { arelent *r = sec->orelocation[idx + 1]; if (r->howto->type == R_SPARC_13 && r->address == addr && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) && (*r->sym_ptr_ptr)->value == 0) ++idx; } } rela_hdr = &elf_section_data (sec)->rel_hdr; rela_hdr->sh_size = rela_hdr->sh_entsize * count; rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size); if (rela_hdr->contents == NULL) { *failedp = TRUE; return; } /* Figure out whether the relocations are RELA or REL relocations. */ if (rela_hdr->sh_type != SHT_RELA) abort (); /* The address of an ELF reloc is section relative for an object file, and absolute for an executable file or shared library. The address of a BFD reloc is always section relative. */ addr_offset = 0; if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) addr_offset = sec->vma; /* orelocation has the data, reloc_count has the count... */ outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents; src_rela = outbound_relocas; for (idx = 0; idx < sec->reloc_count; idx++) { Elf_Internal_Rela dst_rela; arelent *ptr; asymbol *sym; int n; ptr = sec->orelocation[idx]; sym = *ptr->sym_ptr_ptr; if (sym == last_sym) n = last_sym_idx; else if (bfd_is_abs_section (sym->section) && sym->value == 0) n = STN_UNDEF; else { last_sym = sym; n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym); if (n < 0) { *failedp = TRUE; return; } last_sym_idx = n; } if ((*ptr->sym_ptr_ptr)->the_bfd != NULL && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec && ! _bfd_elf_validate_reloc (abfd, ptr)) { *failedp = TRUE; return; } if (ptr->howto->type == R_SPARC_LO10 && idx < sec->reloc_count - 1) { arelent *r = sec->orelocation[idx + 1]; if (r->howto->type == R_SPARC_13 && r->address == ptr->address && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) && (*r->sym_ptr_ptr)->value == 0) { idx++; dst_rela.r_info = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend, R_SPARC_OLO10)); } else dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10); } else dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type); dst_rela.r_offset = ptr->address + addr_offset; dst_rela.r_addend = ptr->addend; bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela); ++src_rela; } } /* Hook called by the linker routine which adds symbols from an object file. We use it for STT_REGISTER symbols. */ static bfd_boolean elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, Elf_Internal_Sym *sym, const char **namep, flagword *flagsp ATTRIBUTE_UNUSED, asection **secp ATTRIBUTE_UNUSED, bfd_vma *valp ATTRIBUTE_UNUSED) { static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" }; if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER) { int reg; struct _bfd_sparc_elf_app_reg *p; reg = (int)sym->st_value; switch (reg & ~1) { case 2: reg -= 2; break; case 6: reg -= 4; break; default: (*_bfd_error_handler) (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"), abfd); return FALSE; } if (info->output_bfd->xvec != abfd->xvec || (abfd->flags & DYNAMIC) != 0) { /* STT_REGISTER only works when linking an elf64_sparc object. If STT_REGISTER comes from a dynamic object, don't put it into the output bfd. The dynamic linker will recheck it. */ *namep = NULL; return TRUE; } p = _bfd_sparc_elf_hash_table(info)->app_regs + reg; if (p->name != NULL && strcmp (p->name, *namep)) { (*_bfd_error_handler) (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"), abfd, p->abfd, (int) sym->st_value, **namep ? *namep : "#scratch", *p->name ? p->name : "#scratch"); return FALSE; } if (p->name == NULL) { if (**namep) { struct elf_link_hash_entry *h; h = (struct elf_link_hash_entry *) bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE); if (h != NULL) { unsigned char type = h->type; if (type > STT_FUNC) type = 0; (*_bfd_error_handler) (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"), abfd, p->abfd, *namep, stt_types[type]); return FALSE; } p->name = bfd_hash_allocate (&info->hash->table, strlen (*namep) + 1); if (!p->name) return FALSE; strcpy (p->name, *namep); } else p->name = ""; p->bind = ELF_ST_BIND (sym->st_info); p->abfd = abfd; p->shndx = sym->st_shndx; } else { if (p->bind == STB_WEAK && ELF_ST_BIND (sym->st_info) == STB_GLOBAL) { p->bind = STB_GLOBAL; p->abfd = abfd; } } *namep = NULL; return TRUE; } else if (*namep && **namep && info->output_bfd->xvec == abfd->xvec) { int i; struct _bfd_sparc_elf_app_reg *p; p = _bfd_sparc_elf_hash_table(info)->app_regs; for (i = 0; i < 4; i++, p++) if (p->name != NULL && ! strcmp (p->name, *namep)) { unsigned char type = ELF_ST_TYPE (sym->st_info); if (type > STT_FUNC) type = 0; (*_bfd_error_handler) (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"), abfd, p->abfd, *namep, stt_types[type]); return FALSE; } } return TRUE; } /* This function takes care of emitting STT_REGISTER symbols which we cannot easily keep in the symbol hash table. */ static bfd_boolean elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED, struct bfd_link_info *info, PTR finfo, bfd_boolean (*func) (PTR, const char *, Elf_Internal_Sym *, asection *, struct elf_link_hash_entry *)) { int reg; struct _bfd_sparc_elf_app_reg *app_regs = _bfd_sparc_elf_hash_table(info)->app_regs; Elf_Internal_Sym sym; /* We arranged in size_dynamic_sections to put the STT_REGISTER entries at the end of the dynlocal list, so they came at the end of the local symbols in the symtab. Except that they aren't STB_LOCAL, so we need to back up symtab->sh_info. */ if (elf_hash_table (info)->dynlocal) { bfd * dynobj = elf_hash_table (info)->dynobj; asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym"); struct elf_link_local_dynamic_entry *e; for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) if (e->input_indx == -1) break; if (e) { elf_section_data (dynsymsec->output_section)->this_hdr.sh_info = e->dynindx; } } if (info->strip == strip_all) return TRUE; for (reg = 0; reg < 4; reg++) if (app_regs [reg].name != NULL) { if (info->strip == strip_some && bfd_hash_lookup (info->keep_hash, app_regs [reg].name, FALSE, FALSE) == NULL) continue; sym.st_value = reg < 2 ? reg + 2 : reg + 4; sym.st_size = 0; sym.st_other = 0; sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER); sym.st_shndx = app_regs [reg].shndx; if (! (*func) (finfo, app_regs [reg].name, &sym, sym.st_shndx == SHN_ABS ? bfd_abs_section_ptr : bfd_und_section_ptr, NULL)) return FALSE; } return TRUE; } static int elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) { if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER) return STT_REGISTER; else return type; } /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL even in SHN_UNDEF section. */ static void elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) { elf_symbol_type *elfsym; elfsym = (elf_symbol_type *) asym; if (elfsym->internal_elf_sym.st_info == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER)) { asym->flags |= BSF_GLOBAL; } } /* Functions for dealing with the e_flags field. */ /* Merge backend specific data from an object file to the output object file when linking. */ static bfd_boolean elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd) { bfd_boolean error; flagword new_flags, old_flags; int new_mm, old_mm; if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour || bfd_get_flavour (obfd) != bfd_target_elf_flavour) return TRUE; new_flags = elf_elfheader (ibfd)->e_flags; old_flags = elf_elfheader (obfd)->e_flags; if (!elf_flags_init (obfd)) /* First call, no flags set */ { elf_flags_init (obfd) = TRUE; elf_elfheader (obfd)->e_flags = new_flags; } else if (new_flags == old_flags) /* Compatible flags are ok */ ; else /* Incompatible flags */ { error = FALSE; #define EF_SPARC_ISA_EXTENSIONS \ (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1) if ((ibfd->flags & DYNAMIC) != 0) { /* We don't want dynamic objects memory ordering and architecture to have any role. That's what dynamic linker should do. */ new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS); new_flags |= (old_flags & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS)); } else { /* Choose the highest architecture requirements. */ old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS); new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS); if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3)) && (old_flags & EF_SPARC_HAL_R1)) { error = TRUE; (*_bfd_error_handler) (_("%B: linking UltraSPARC specific with HAL specific code"), ibfd); } /* Choose the most restrictive memory ordering. */ old_mm = (old_flags & EF_SPARCV9_MM); new_mm = (new_flags & EF_SPARCV9_MM); old_flags &= ~EF_SPARCV9_MM; new_flags &= ~EF_SPARCV9_MM; if (new_mm < old_mm) old_mm = new_mm; old_flags |= old_mm; new_flags |= old_mm; } /* Warn about any other mismatches */ if (new_flags != old_flags) { error = TRUE; (*_bfd_error_handler) (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), ibfd, (long) new_flags, (long) old_flags); } elf_elfheader (obfd)->e_flags = old_flags; if (error) { bfd_set_error (bfd_error_bad_value); return FALSE; } } return TRUE; } /* MARCO: Set the correct entry size for the .stab section. */ static bfd_boolean elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED, asection *sec) { const char *name; name = bfd_get_section_name (abfd, sec); if (strcmp (name, ".stab") == 0) { /* Even in the 64bit case the stab entries are only 12 bytes long. */ elf_section_data (sec)->this_hdr.sh_entsize = 12; } return TRUE; } /* Print a STT_REGISTER symbol to file FILE. */ static const char * elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep, asymbol *symbol) { FILE *file = (FILE *) filep; int reg, type; if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info) != STT_REGISTER) return NULL; reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; type = symbol->flags; fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "", ((type & BSF_LOCAL) ? (type & BSF_GLOBAL) ? '!' : 'l' : (type & BSF_GLOBAL) ? 'g' : ' '), (type & BSF_WEAK) ? 'w' : ' '); if (symbol->name == NULL || symbol->name [0] == '\0') return "#scratch"; else return symbol->name; } static enum elf_reloc_type_class elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela) { switch ((int) ELF64_R_TYPE (rela->r_info)) { case R_SPARC_RELATIVE: return reloc_class_relative; case R_SPARC_JMP_SLOT: return reloc_class_plt; case R_SPARC_COPY: return reloc_class_copy; default: return reloc_class_normal; } } /* Relocations in the 64 bit SPARC ELF ABI are more complex than in standard ELF, because R_SPARC_OLO10 has secondary addend in ELF64_R_TYPE_DATA field. This structure is used to redirect the relocation handling routines. */ const struct elf_size_info elf64_sparc_size_info = { sizeof (Elf64_External_Ehdr), sizeof (Elf64_External_Phdr), sizeof (Elf64_External_Shdr), sizeof (Elf64_External_Rel), sizeof (Elf64_External_Rela), sizeof (Elf64_External_Sym), sizeof (Elf64_External_Dyn), sizeof (Elf_External_Note), 4, /* hash-table entry size. */ /* Internal relocations per external relocations. For link purposes we use just 1 internal per 1 external, for assembly and slurp symbol table we use 2. */ 1, 64, /* arch_size. */ 3, /* log_file_align. */ ELFCLASS64, EV_CURRENT, bfd_elf64_write_out_phdrs, bfd_elf64_write_shdrs_and_ehdr, bfd_elf64_checksum_contents, elf64_sparc_write_relocs, bfd_elf64_swap_symbol_in, bfd_elf64_swap_symbol_out, elf64_sparc_slurp_reloc_table, bfd_elf64_slurp_symbol_table, bfd_elf64_swap_dyn_in, bfd_elf64_swap_dyn_out, bfd_elf64_swap_reloc_in, bfd_elf64_swap_reloc_out, bfd_elf64_swap_reloca_in, bfd_elf64_swap_reloca_out }; #define TARGET_BIG_SYM bfd_elf64_sparc_vec #define TARGET_BIG_NAME "elf64-sparc" #define ELF_ARCH bfd_arch_sparc #define ELF_MAXPAGESIZE 0x100000 #define ELF_COMMONPAGESIZE 0x2000 /* This is the official ABI value. */ #define ELF_MACHINE_CODE EM_SPARCV9 /* This is the value that we used before the ABI was released. */ #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9 #define elf_backend_reloc_type_class \ elf64_sparc_reloc_type_class #define bfd_elf64_get_reloc_upper_bound \ elf64_sparc_get_reloc_upper_bound #define bfd_elf64_get_dynamic_reloc_upper_bound \ elf64_sparc_get_dynamic_reloc_upper_bound #define bfd_elf64_canonicalize_reloc \ elf64_sparc_canonicalize_reloc #define bfd_elf64_canonicalize_dynamic_reloc \ elf64_sparc_canonicalize_dynamic_reloc #define elf_backend_add_symbol_hook \ elf64_sparc_add_symbol_hook #define elf_backend_get_symbol_type \ elf64_sparc_get_symbol_type #define elf_backend_symbol_processing \ elf64_sparc_symbol_processing #define elf_backend_print_symbol_all \ elf64_sparc_print_symbol_all #define elf_backend_output_arch_syms \ elf64_sparc_output_arch_syms #define bfd_elf64_bfd_merge_private_bfd_data \ elf64_sparc_merge_private_bfd_data #define elf_backend_fake_sections \ elf64_sparc_fake_sections #define elf_backend_size_info \ elf64_sparc_size_info #define elf_backend_plt_sym_val \ _bfd_sparc_elf_plt_sym_val #define bfd_elf64_bfd_link_hash_table_create \ _bfd_sparc_elf_link_hash_table_create #define elf_info_to_howto \ _bfd_sparc_elf_info_to_howto #define elf_backend_copy_indirect_symbol \ _bfd_sparc_elf_copy_indirect_symbol #define bfd_elf64_bfd_reloc_type_lookup \ _bfd_sparc_elf_reloc_type_lookup #define bfd_elf64_bfd_reloc_name_lookup \ _bfd_sparc_elf_reloc_name_lookup #define bfd_elf64_bfd_relax_section \ _bfd_sparc_elf_relax_section #define bfd_elf64_new_section_hook \ _bfd_sparc_elf_new_section_hook #define elf_backend_create_dynamic_sections \ _bfd_sparc_elf_create_dynamic_sections #define elf_backend_relocs_compatible \ _bfd_elf_relocs_compatible #define elf_backend_check_relocs \ _bfd_sparc_elf_check_relocs #define elf_backend_adjust_dynamic_symbol \ _bfd_sparc_elf_adjust_dynamic_symbol #define elf_backend_omit_section_dynsym \ _bfd_sparc_elf_omit_section_dynsym #define elf_backend_size_dynamic_sections \ _bfd_sparc_elf_size_dynamic_sections #define elf_backend_relocate_section \ _bfd_sparc_elf_relocate_section #define elf_backend_finish_dynamic_symbol \ _bfd_sparc_elf_finish_dynamic_symbol #define elf_backend_finish_dynamic_sections \ _bfd_sparc_elf_finish_dynamic_sections #define bfd_elf64_mkobject \ _bfd_sparc_elf_mkobject #define elf_backend_object_p \ _bfd_sparc_elf_object_p #define elf_backend_gc_mark_hook \ _bfd_sparc_elf_gc_mark_hook #define elf_backend_gc_sweep_hook \ _bfd_sparc_elf_gc_sweep_hook #define elf_backend_init_index_section \ _bfd_elf_init_1_index_section #define elf_backend_can_gc_sections 1 #define elf_backend_can_refcount 1 #define elf_backend_want_got_plt 0 #define elf_backend_plt_readonly 0 #define elf_backend_want_plt_sym 1 #define elf_backend_got_header_size 8 #define elf_backend_rela_normal 1 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */ #define elf_backend_plt_alignment 8 #include "elf64-target.h" /* FreeBSD support */ #undef TARGET_BIG_SYM #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec #undef TARGET_BIG_NAME #define TARGET_BIG_NAME "elf64-sparc-freebsd" #undef ELF_OSABI #define ELF_OSABI ELFOSABI_FREEBSD #undef elf_backend_post_process_headers #define elf_backend_post_process_headers _bfd_elf_set_osabi #undef elf64_bed #define elf64_bed elf64_sparc_fbsd_bed #include "elf64-target.h"
Go to most recent revision | Compare with Previous | Blame | View Log