URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [gdb/] [sparc-linux-tdep.c] - Rev 299
Go to most recent revision | Compare with Previous | Blame | View Log
/* Target-dependent code for GNU/Linux SPARC. Copyright (C) 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "dwarf2-frame.h" #include "frame.h" #include "frame-unwind.h" #include "gdbtypes.h" #include "regset.h" #include "gdbarch.h" #include "gdbcore.h" #include "osabi.h" #include "regcache.h" #include "solib-svr4.h" #include "symtab.h" #include "trad-frame.h" #include "tramp-frame.h" #include "sparc-tdep.h" /* Signal trampoline support. */ static void sparc32_linux_sigframe_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func); /* GNU/Linux has two flavors of signals. Normal signal handlers, and "realtime" (RT) signals. The RT signals can provide additional information to the signal handler if the SA_SIGINFO flag is set when establishing a signal handler using `sigaction'. It is not unlikely that future versions of GNU/Linux will support SA_SIGINFO for normal signals too. */ /* When the sparc Linux kernel calls a signal handler and the SA_RESTORER flag isn't set, the return address points to a bit of code on the stack. This code checks whether the PC appears to be within this bit of code. The instruction sequence for normal signals is encoded below. Checking for the code sequence should be somewhat reliable, because the effect is to call the system call sigreturn. This is unlikely to occur anywhere other than a signal trampoline. */ static const struct tramp_frame sparc32_linux_sigframe = { SIGTRAMP_FRAME, 4, { { 0x821020d8, -1 }, /* mov __NR_sugreturn, %g1 */ { 0x91d02010, -1 }, /* ta 0x10 */ { TRAMP_SENTINEL_INSN, -1 } }, sparc32_linux_sigframe_init }; /* The instruction sequence for RT signals is slightly different. The effect is to call the system call rt_sigreturn. */ static const struct tramp_frame sparc32_linux_rt_sigframe = { SIGTRAMP_FRAME, 4, { { 0x82102065, -1 }, /* mov __NR_rt_sigreturn, %g1 */ { 0x91d02010, -1 }, /* ta 0x10 */ { TRAMP_SENTINEL_INSN, -1 } }, sparc32_linux_sigframe_init }; static void sparc32_linux_sigframe_init (const struct tramp_frame *self, struct frame_info *next_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { CORE_ADDR base, addr, sp_addr; int regnum; base = frame_unwind_register_unsigned (next_frame, SPARC_O1_REGNUM); if (self == &sparc32_linux_rt_sigframe) base += 128; /* Offsets from <bits/sigcontext.h>. */ trad_frame_set_reg_addr (this_cache, SPARC32_PSR_REGNUM, base + 0); trad_frame_set_reg_addr (this_cache, SPARC32_PC_REGNUM, base + 4); trad_frame_set_reg_addr (this_cache, SPARC32_NPC_REGNUM, base + 8); trad_frame_set_reg_addr (this_cache, SPARC32_Y_REGNUM, base + 12); /* Since %g0 is always zero, keep the identity encoding. */ addr = base + 20; sp_addr = base + 16 + ((SPARC_SP_REGNUM - SPARC_G0_REGNUM) * 4); for (regnum = SPARC_G1_REGNUM; regnum <= SPARC_O7_REGNUM; regnum++) { trad_frame_set_reg_addr (this_cache, regnum, addr); addr += 4; } base = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM); addr = get_frame_memory_unsigned (next_frame, sp_addr, 4); for (regnum = SPARC_L0_REGNUM; regnum <= SPARC_I7_REGNUM; regnum++) { trad_frame_set_reg_addr (this_cache, regnum, addr); addr += 4; } trad_frame_set_id (this_cache, frame_id_build (base, func)); } /* Return the address of a system call's alternative return address. */ static CORE_ADDR sparc32_linux_step_trap (struct frame_info *frame, unsigned long insn) { if (insn == 0x91d02010) { ULONGEST sc_num = get_frame_register_unsigned (frame, SPARC_G1_REGNUM); /* __NR_rt_sigreturn is 101 and __NR_sigreturn is 216 */ if (sc_num == 101 || sc_num == 216) { ULONGEST sp, pc_offset; sp = get_frame_register_unsigned (frame, SPARC_SP_REGNUM); /* The kernel puts the sigreturn registers on the stack, and this is where the signal unwinding state is take from when returning from a signal. For __NR_sigreturn, this register area sits 96 bytes from the base of the stack. The saved PC sits 4 bytes into the sigreturn register save area. For __NR_rt_sigreturn a siginfo_t, which is 128 bytes, sits right before the sigreturn register save area. */ pc_offset = 96 + 4; if (sc_num == 101) pc_offset += 128; return read_memory_unsigned_integer (sp + pc_offset, 4); } } return 0; } const struct sparc_gregset sparc32_linux_core_gregset = { 32 * 4, /* %psr */ 33 * 4, /* %pc */ 34 * 4, /* %npc */ 35 * 4, /* %y */ -1, /* %wim */ -1, /* %tbr */ 1 * 4, /* %g1 */ 16 * 4, /* %l0 */ 4, /* y size */ }; static void sparc32_linux_supply_core_gregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *gregs, size_t len) { sparc32_supply_gregset (&sparc32_linux_core_gregset, regcache, regnum, gregs); } static void sparc32_linux_collect_core_gregset (const struct regset *regset, const struct regcache *regcache, int regnum, void *gregs, size_t len) { sparc32_collect_gregset (&sparc32_linux_core_gregset, regcache, regnum, gregs); } static void sparc32_linux_supply_core_fpregset (const struct regset *regset, struct regcache *regcache, int regnum, const void *fpregs, size_t len) { sparc32_supply_fpregset (regcache, regnum, fpregs); } static void sparc32_linux_collect_core_fpregset (const struct regset *regset, const struct regcache *regcache, int regnum, void *fpregs, size_t len) { sparc32_collect_fpregset (regcache, regnum, fpregs); } static void sparc32_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); tdep->gregset = regset_alloc (gdbarch, sparc32_linux_supply_core_gregset, sparc32_linux_collect_core_gregset); tdep->sizeof_gregset = 152; tdep->fpregset = regset_alloc (gdbarch, sparc32_linux_supply_core_fpregset, sparc32_linux_collect_core_fpregset); tdep->sizeof_fpregset = 396; tramp_frame_prepend_unwinder (gdbarch, &sparc32_linux_sigframe); tramp_frame_prepend_unwinder (gdbarch, &sparc32_linux_rt_sigframe); /* GNU/Linux has SVR4-style shared libraries... */ set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_ilp32_fetch_link_map_offsets); /* ...which means that we need some special handling when doing prologue analysis. */ tdep->plt_entry_size = 12; /* GNU/Linux doesn't support the 128-bit `long double' from the psABI. */ set_gdbarch_long_double_bit (gdbarch, 64); set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); /* Enable TLS support. */ set_gdbarch_fetch_tls_load_module_address (gdbarch, svr4_fetch_objfile_link_map); /* Make sure we can single-step over signal return system calls. */ tdep->step_trap = sparc32_linux_step_trap; /* Hook in the DWARF CFI frame unwinder. */ frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); } /* Provide a prototype to silence -Wmissing-prototypes. */ extern void _initialize_sparc_linux_tdep (void); void _initialize_sparc_linux_tdep (void) { gdbarch_register_osabi (bfd_arch_sparc, 0, GDB_OSABI_LINUX, sparc32_linux_init_abi); }
Go to most recent revision | Compare with Previous | Blame | View Log