URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [sim/] [cris/] [crisv32f.c] - Rev 291
Go to most recent revision | Compare with Previous | Blame | View Log
/* CRIS v32 simulator support code Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by Axis Communications. This file is part of the GNU simulators. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* The infrastructure is based on that of i960.c. */ #define WANT_CPU_CRISV32F #define SPECIFIC_U_EXEC_FN #define SPECIFIC_U_SKIP4_FN #define SPECIFIC_U_CONST16_FN #define SPECIFIC_U_CONST32_FN #define SPECIFIC_U_MEM_FN #define SPECIFIC_U_MOVEM_FN #define BASENUM 32 #include "cris-tmpl.c" #if WITH_PROFILE_MODEL_P /* Re-use the bit position for the BZ register, since there are no stall cycles for reading or writing it. */ #define CRIS_BZ_REGNO 16 #define CRIS_MODF_JUMP_MASK (1 << CRIS_BZ_REGNO) /* Likewise for the WZ register, marking memory writes. */ #define CRIS_WZ_REGNO 20 #define CRIS_MODF_MEM_WRITE_MASK (1 << CRIS_WZ_REGNO) #define CRIS_MOF_REGNO (16 + 7) #define CRIS_ALWAYS_CONDITION 14 /* This macro must only be used in context where there's only one dynamic cause for a penalty, except in the u-exec unit. */ #define PENALIZE1(CNT) \ do \ { \ CPU_CRIS_MISC_PROFILE (current_cpu)->CNT++; \ model_data->prev_prev_prev_modf_regs \ = model_data->prev_prev_modf_regs; \ model_data->prev_prev_modf_regs \ = model_data->prev_modf_regs; \ model_data->prev_modf_regs = 0; \ model_data->prev_prev_prev_movem_dest_regs \ = model_data->prev_prev_movem_dest_regs; \ model_data->prev_prev_movem_dest_regs \ = model_data->prev_movem_dest_regs; \ model_data->prev_movem_dest_regs = 0; \ } \ while (0) /* Model function for u-skip4 unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_skip4)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED) { /* Handle PC not being updated with pbb. FIXME: What if not pbb? */ CPU (h_pc) += 4; return 0; } /* Model function for u-exec unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_exec)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, INT destreg_in, INT srcreg, INT destreg_out) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); UINT modf_regs = ((destreg_out == -1 ? 0 : (1 << destreg_out)) | model_data->modf_regs); if (srcreg != -1) { if (model_data->prev_movem_dest_regs & (1 << srcreg)) { PENALIZE1 (movemdst_stall_count); PENALIZE1 (movemdst_stall_count); PENALIZE1 (movemdst_stall_count); } else if (model_data->prev_prev_movem_dest_regs & (1 << srcreg)) { PENALIZE1 (movemdst_stall_count); PENALIZE1 (movemdst_stall_count); } else if (model_data->prev_prev_prev_movem_dest_regs & (1 << srcreg)) PENALIZE1 (movemdst_stall_count); } if (destreg_in != -1) { if (model_data->prev_movem_dest_regs & (1 << destreg_in)) { PENALIZE1 (movemdst_stall_count); PENALIZE1 (movemdst_stall_count); PENALIZE1 (movemdst_stall_count); } else if (model_data->prev_prev_movem_dest_regs & (1 << destreg_in)) { PENALIZE1 (movemdst_stall_count); PENALIZE1 (movemdst_stall_count); } else if (model_data->prev_prev_prev_movem_dest_regs & (1 << destreg_in)) PENALIZE1 (movemdst_stall_count); } model_data->prev_prev_prev_modf_regs = model_data->prev_prev_modf_regs; model_data->prev_prev_modf_regs = model_data->prev_modf_regs; model_data->prev_modf_regs = modf_regs; model_data->modf_regs = 0; model_data->prev_prev_prev_movem_dest_regs = model_data->prev_prev_movem_dest_regs; model_data->prev_prev_movem_dest_regs = model_data->prev_movem_dest_regs; model_data->prev_movem_dest_regs = model_data->movem_dest_regs; model_data->movem_dest_regs = 0; /* Handle PC not being updated with pbb. FIXME: What if not pbb? */ CPU (h_pc) += 2; return 1; } /* Special case used when the destination is a special register. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_exec_to_sr)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, INT srcreg, INT specreg) { int specdest; if (specreg != -1) specdest = specreg + 16; else abort (); return MY (XCONCAT3 (f_model_crisv,BASENUM,_u_exec)) (current_cpu, NULL, 0, 0, -1, srcreg, /* The positions for constant-zero registers BZ and WZ are recycled for jump and memory-write markers. We must take precautions here not to add false markers for them. It might be that the hardware inserts stall cycles for instructions that actually try and write those registers, but we'll burn that bridge when we get to it; we'd have to find other free bits or make new model_data variables. However, it's doubtful that there will ever be a need to be cycle-correct for useless code, at least in this particular simulator, mainly used for GCC testing. */ specdest == CRIS_BZ_REGNO || specdest == CRIS_WZ_REGNO ? -1 : specdest); } /* Special case for movem. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_exec_movem)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, INT srcreg, INT destreg_out) { return MY (XCONCAT3 (f_model_crisv,BASENUM,_u_exec)) (current_cpu, NULL, 0, 0, -1, srcreg, destreg_out); } /* Model function for u-const16 unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_const16)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); /* If the previous insn was a jump of some sort and this insn straddles a cache-line, there's a one-cycle penalty. FIXME: Test-cases for normal const16 and others, like branch. */ if ((model_data->prev_modf_regs & CRIS_MODF_JUMP_MASK) && (CPU (h_pc) & 0x1e) == 0x1e) PENALIZE1 (jumptarget_stall_count); /* Handle PC not being updated with pbb. FIXME: What if not pbb? */ CPU (h_pc) += 2; return 0; } /* Model function for u-const32 unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_const32)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); /* If the previous insn was a jump of some sort and this insn straddles a cache-line, there's a one-cycle penalty. */ if ((model_data->prev_modf_regs & CRIS_MODF_JUMP_MASK) && (CPU (h_pc) & 0x1e) == 0x1c) PENALIZE1 (jumptarget_stall_count); /* Handle PC not being updated with pbb. FIXME: What if not pbb? */ CPU (h_pc) += 4; return 0; } /* Model function for u-mem unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_mem)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, INT srcreg) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); if (srcreg == -1) abort (); /* If srcreg references a register modified in the previous cycle through other than autoincrement, then there's a penalty: one cycle. */ if (model_data->prev_modf_regs & (1 << srcreg)) PENALIZE1 (memsrc_stall_count); return 0; } /* Model function for u-mem-r unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_mem_r)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); /* There's a two-cycle penalty for read after a memory write in any of the two previous cycles, known as a cache read-after-write hazard. This model function (the model_data member access) depends on being executed before the u-exec unit. */ if ((model_data->prev_modf_regs & CRIS_MODF_MEM_WRITE_MASK) || (model_data->prev_prev_modf_regs & CRIS_MODF_MEM_WRITE_MASK)) { PENALIZE1 (memraw_stall_count); PENALIZE1 (memraw_stall_count); } return 0; } /* Model function for u-mem-w unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_mem_w)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); /* Mark that memory has been written. This model function (the model_data member access) depends on being executed after the u-exec unit. */ model_data->prev_modf_regs |= CRIS_MODF_MEM_WRITE_MASK; return 0; } /* Model function for u-movem-rtom unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_movem_rtom)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, /* Deliberate order. */ INT addrreg, INT limreg) { USI addr; MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); if (limreg == -1 || addrreg == -1) abort (); addr = GET_H_GR (addrreg); /* The movem-to-memory instruction must not move a register modified in one of the previous two cycles. Enforce by adding penalty cycles. */ if (model_data->prev_modf_regs & ((1 << (limreg + 1)) - 1)) { PENALIZE1 (movemsrc_stall_count); PENALIZE1 (movemsrc_stall_count); } else if (model_data->prev_prev_modf_regs & ((1 << (limreg + 1)) - 1)) PENALIZE1 (movemsrc_stall_count); /* One-cycle penalty for each cache-line straddled. Use the documented expressions. Unfortunately no penalty cycles are eliminated by any penalty cycles above. We file these numbers separately, since they aren't schedulable for all cases. */ if ((addr >> 5) == (((addr + 4 * (limreg + 1)) - 1) >> 5)) ; else if ((addr >> 5) == (((addr + 4 * (limreg + 1)) - 1) >> 5) - 1) PENALIZE1 (movemaddr_stall_count); else if ((addr >> 5) == (((addr + 4 * (limreg + 1)) - 1) >> 5) - 2) { PENALIZE1 (movemaddr_stall_count); PENALIZE1 (movemaddr_stall_count); } else abort (); return 0; } /* Model function for u-movem-mtor unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_movem_mtor)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, /* Deliberate order. */ INT addrreg, INT limreg) { USI addr; int nregs = limreg + 1; MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); if (limreg == -1 || addrreg == -1) abort (); addr = GET_H_GR (addrreg); /* One-cycle penalty for each cache-line straddled. Use the documented expressions. One cycle is the norm; more cycles are counted as penalties. Unfortunately no penalty cycles here eliminate penalty cycles indicated in ->movem_dest_regs. */ if ((addr >> 5) == (((addr + 4 * nregs) - 1) >> 5) - 1) PENALIZE1 (movemaddr_stall_count); else if ((addr >> 5) == (((addr + 4 * nregs) - 1) >> 5) - 2) { PENALIZE1 (movemaddr_stall_count); PENALIZE1 (movemaddr_stall_count); } model_data->modf_regs |= ((1 << nregs) - 1); model_data->movem_dest_regs |= ((1 << nregs) - 1); return 0; } /* Model function for u-branch unit. FIXME: newpc and cc are always wrong. */ int MY (XCONCAT3 (f_model_crisv,BASENUM,_u_branch)) (SIM_CPU *current_cpu, const IDESC *idesc, int unit_num, int referenced) { CRIS_MISC_PROFILE *profp = CPU_CRIS_MISC_PROFILE (current_cpu); USI pc = profp->old_pc; MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); int taken = profp->branch_taken; int branch_index = (pc & (N_CRISV32_BRANCH_PREDICTORS - 1)) >> 1; int pred_taken = (profp->branch_predictors[branch_index] & 2) != 0; if (taken != pred_taken) { PENALIZE1 (branch_stall_count); PENALIZE1 (branch_stall_count); } if (taken) { if (profp->branch_predictors[branch_index] < 3) profp->branch_predictors[branch_index]++; return MY (XCONCAT3 (f_model_crisv,BASENUM,_u_jump)) (current_cpu, idesc, unit_num, referenced, -1); } if (profp->branch_predictors[branch_index] != 0) profp->branch_predictors[branch_index]--; return 0; } /* Model function for u-jump-r unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_jump_r)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, int regno) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); if (regno == -1) abort (); /* For jump-to-register, the register must not have been modified the last two cycles. Penalty: two cycles from the modifying insn. */ if ((1 << regno) & model_data->prev_modf_regs) { PENALIZE1 (jumpsrc_stall_count); PENALIZE1 (jumpsrc_stall_count); } else if ((1 << regno) & model_data->prev_prev_modf_regs) PENALIZE1 (jumpsrc_stall_count); return 0; } /* Model function for u-jump-sr unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM,_u_jump_sr)) (SIM_CPU *current_cpu, const IDESC *idesc, int unit_num, int referenced, int sr_regno) { int regno; MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); if (sr_regno == -1) abort (); regno = sr_regno + 16; /* For jump-to-register, the register must not have been modified the last two cycles. Penalty: two cycles from the modifying insn. */ if ((1 << regno) & model_data->prev_modf_regs) { PENALIZE1 (jumpsrc_stall_count); PENALIZE1 (jumpsrc_stall_count); } else if ((1 << regno) & model_data->prev_prev_modf_regs) PENALIZE1 (jumpsrc_stall_count); return MY (XCONCAT3 (f_model_crisv,BASENUM,_u_jump)) (current_cpu, idesc, unit_num, referenced, -1); } /* Model function for u-jump unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_jump)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, int out_sr_regno) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); /* Mark that we made a jump. */ model_data->modf_regs |= (CRIS_MODF_JUMP_MASK | (out_sr_regno == -1 || out_sr_regno == CRIS_BZ_REGNO ? 0 : (1 << (out_sr_regno + 16)))); return 0; } /* Model function for u-multiply unit. */ int MY (XCONCAT3 (f_model_crisv,BASENUM, _u_multiply)) (SIM_CPU *current_cpu, const IDESC *idesc ATTRIBUTE_UNUSED, int unit_num ATTRIBUTE_UNUSED, int referenced ATTRIBUTE_UNUSED, int srcreg, int destreg) { MODEL_CRISV32_DATA *model_data = (MODEL_CRISV32_DATA *) CPU_MODEL_DATA (current_cpu); /* Sanity-check for cases that should never happen. */ if (srcreg == -1 || destreg == -1) abort (); /* This takes extra cycles when one of the inputs has been modified through other than autoincrement in the previous cycle. Penalty: one cycle. */ if (((1 << srcreg) | (1 << destreg)) & model_data->prev_modf_regs) PENALIZE1 (mulsrc_stall_count); /* We modified the multiplication destination (marked in u-exec) and the MOF register. */ model_data->modf_regs |= (1 << CRIS_MOF_REGNO); return 0; } #endif /* WITH_PROFILE_MODEL_P */ int MY (deliver_interrupt) (SIM_CPU *current_cpu, enum cris_interrupt_type type, unsigned int vec) { unsigned32 old_ccs, shifted_ccs, new_ccs; unsigned char entryaddr_le[4]; int was_user; SIM_DESC sd = CPU_STATE (current_cpu); unsigned32 entryaddr; /* We haven't implemented other interrupt-types yet. */ if (type != CRIS_INT_INT) abort (); /* We're called outside of branch delay slots etc, so we don't check for that. */ if (!GET_H_IBIT_V32 ()) return 0; old_ccs = GET_H_SR_V32 (H_SR_CCS); shifted_ccs = (old_ccs << 10) & ((1 << 30) - 1); /* The M bit is handled by code below and the M bit setter function, but we need to preserve the Q bit. */ new_ccs = shifted_ccs | (old_ccs & (unsigned32) 0x80000000UL); was_user = GET_H_UBIT_V32 (); /* We need to force kernel mode since the setter method doesn't allow it. Then we can use setter methods at will, since they then recognize that we're in kernel mode. */ CPU (h_ubit_v32) = 0; SET_H_SR (H_SR_CCS, new_ccs); if (was_user) { /* These methods require that user mode is unset. */ SET_H_SR (H_SR_USP, GET_H_GR (H_GR_SP)); SET_H_GR (H_GR_SP, GET_H_KERNEL_SP ()); } /* ERP setting is simplified by not taking interrupts in delay-slots or when halting. */ /* For all other exceptions than guru and NMI, store the return address in ERP and set EXS and EXD here. */ SET_H_SR (H_SR_ERP, GET_H_PC ()); /* Simplified by not having exception types (fault indications). */ SET_H_SR_V32 (H_SR_EXS, (vec * 256)); SET_H_SR_V32 (H_SR_EDA, 0); if (sim_core_read_buffer (sd, current_cpu, read_map, entryaddr_le, GET_H_SR (H_SR_EBP) + vec * 4, 4) == 0) { /* Nothing to do actually; either abort or send a signal. */ sim_core_signal (sd, current_cpu, CIA_GET (current_cpu), 0, 4, GET_H_SR (H_SR_EBP) + vec * 4, read_transfer, sim_core_unmapped_signal); return 0; } entryaddr = bfd_getl32 (entryaddr_le); SET_H_PC (entryaddr); return 1; }
Go to most recent revision | Compare with Previous | Blame | View Log