URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-6.8/] [sim/] [mips/] [mdmx.c] - Rev 481
Go to most recent revision | Compare with Previous | Blame | View Log
/* Simulation code for the MIPS MDMX ASE. Copyright (C) 2002, 2007, 2008 Free Software Foundation, Inc. Contributed by Ed Satterthwaite and Chris Demetriou, of Broadcom Corporation (SiByte). This file is part of GDB, the GNU debugger. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stdio.h> #include "sim-main.h" /* Within mdmx.c we refer to the sim_cpu directly. */ #define CPU cpu #define SD (CPU_STATE(CPU)) /* XXX FIXME: temporary hack while the impact of making unpredictable() a "normal" (non-igen) function is evaluated. */ #undef Unpredictable #define Unpredictable() unpredictable_action (cpu, cia) /* MDMX Representations An 8-bit packed byte element (OB) is always unsigned. The 24-bit accumulators are signed and are represented as 32-bit signed values, which are reduced to 24-bit signed values prior to Round and Clamp operations. A 16-bit packed halfword element (QH) is always signed. The 48-bit accumulators are signed and are represented as 64-bit signed values, which are reduced to 48-bit signed values prior to Round and Clamp operations. The code below assumes a 2's-complement representation of signed quantities. Care is required to clear extended sign bits when repacking fields. The code (and the code for arithmetic shifts in mips.igen) also makes the (not guaranteed portable) assumption that right shifts of signed quantities in C do sign extension. */ typedef unsigned64 unsigned48; #define MASK48 (UNSIGNED64 (0xffffffffffff)) typedef unsigned32 unsigned24; #define MASK24 (UNSIGNED32 (0xffffff)) typedef enum { mdmx_ob, /* OB (octal byte) */ mdmx_qh /* QH (quad half-word) */ } MX_fmt; typedef enum { sel_elem, /* element select */ sel_vect, /* vector select */ sel_imm /* immediate select */ } VT_select; #define OB_MAX ((unsigned8)0xFF) #define QH_MIN ((signed16)0x8000) #define QH_MAX ((signed16)0x7FFF) #define OB_CLAMP(x) ((unsigned8)((x) > OB_MAX ? OB_MAX : (x))) #define QH_CLAMP(x) ((signed16)((x) < QH_MIN ? QH_MIN : \ ((x) > QH_MAX ? QH_MAX : (x)))) #define MX_FMT(fmtsel) (((fmtsel) & 0x1) == 0 ? mdmx_ob : mdmx_qh) #define MX_VT(fmtsel) (((fmtsel) & 0x10) == 0 ? sel_elem : \ (((fmtsel) & 0x18) == 0x10 ? sel_vect : sel_imm)) #define QH_ELEM(v,fmtsel) \ ((signed16)(((v) >> (((fmtsel) & 0xC) << 2)) & 0xFFFF)) #define OB_ELEM(v,fmtsel) \ ((unsigned8)(((v) >> (((fmtsel) & 0xE) << 2)) & 0xFF)) typedef signed16 (*QH_FUNC)(signed16, signed16); typedef unsigned8 (*OB_FUNC)(unsigned8, unsigned8); /* vectorized logical operators */ static signed16 AndQH(signed16 ts, signed16 tt) { return (signed16)((unsigned16)ts & (unsigned16)tt); } static unsigned8 AndOB(unsigned8 ts, unsigned8 tt) { return ts & tt; } static signed16 NorQH(signed16 ts, signed16 tt) { return (signed16)(((unsigned16)ts | (unsigned16)tt) ^ 0xFFFF); } static unsigned8 NorOB(unsigned8 ts, unsigned8 tt) { return (ts | tt) ^ 0xFF; } static signed16 OrQH(signed16 ts, signed16 tt) { return (signed16)((unsigned16)ts | (unsigned16)tt); } static unsigned8 OrOB(unsigned8 ts, unsigned8 tt) { return ts | tt; } static signed16 XorQH(signed16 ts, signed16 tt) { return (signed16)((unsigned16)ts ^ (unsigned16)tt); } static unsigned8 XorOB(unsigned8 ts, unsigned8 tt) { return ts ^ tt; } static signed16 SLLQH(signed16 ts, signed16 tt) { unsigned32 s = (unsigned32)tt & 0xF; return (signed16)(((unsigned32)ts << s) & 0xFFFF); } static unsigned8 SLLOB(unsigned8 ts, unsigned8 tt) { unsigned32 s = tt & 0x7; return (ts << s) & 0xFF; } static signed16 SRLQH(signed16 ts, signed16 tt) { unsigned32 s = (unsigned32)tt & 0xF; return (signed16)((unsigned16)ts >> s); } static unsigned8 SRLOB(unsigned8 ts, unsigned8 tt) { unsigned32 s = tt & 0x7; return ts >> s; } /* Vectorized arithmetic operators. */ static signed16 AddQH(signed16 ts, signed16 tt) { signed32 t = (signed32)ts + (signed32)tt; return QH_CLAMP(t); } static unsigned8 AddOB(unsigned8 ts, unsigned8 tt) { unsigned32 t = (unsigned32)ts + (unsigned32)tt; return OB_CLAMP(t); } static signed16 SubQH(signed16 ts, signed16 tt) { signed32 t = (signed32)ts - (signed32)tt; return QH_CLAMP(t); } static unsigned8 SubOB(unsigned8 ts, unsigned8 tt) { signed32 t; t = (signed32)ts - (signed32)tt; if (t < 0) t = 0; return (unsigned8)t; } static signed16 MinQH(signed16 ts, signed16 tt) { return (ts < tt ? ts : tt); } static unsigned8 MinOB(unsigned8 ts, unsigned8 tt) { return (ts < tt ? ts : tt); } static signed16 MaxQH(signed16 ts, signed16 tt) { return (ts > tt ? ts : tt); } static unsigned8 MaxOB(unsigned8 ts, unsigned8 tt) { return (ts > tt ? ts : tt); } static signed16 MulQH(signed16 ts, signed16 tt) { signed32 t = (signed32)ts * (signed32)tt; return QH_CLAMP(t); } static unsigned8 MulOB(unsigned8 ts, unsigned8 tt) { unsigned32 t = (unsigned32)ts * (unsigned32)tt; return OB_CLAMP(t); } /* "msgn" and "sra" are defined only for QH format. */ static signed16 MsgnQH(signed16 ts, signed16 tt) { signed16 t; if (ts < 0) t = (tt == QH_MIN ? QH_MAX : -tt); else if (ts == 0) t = 0; else t = tt; return t; } static signed16 SRAQH(signed16 ts, signed16 tt) { unsigned32 s = (unsigned32)tt & 0xF; return (signed16)((signed32)ts >> s); } /* "pabsdiff" and "pavg" are defined only for OB format. */ static unsigned8 AbsDiffOB(unsigned8 ts, unsigned8 tt) { return (ts >= tt ? ts - tt : tt - ts); } static unsigned8 AvgOB(unsigned8 ts, unsigned8 tt) { return ((unsigned32)ts + (unsigned32)tt + 1) >> 1; } /* Dispatch tables for operations that update a CPR. */ static const QH_FUNC qh_func[] = { AndQH, NorQH, OrQH, XorQH, SLLQH, SRLQH, AddQH, SubQH, MinQH, MaxQH, MulQH, MsgnQH, SRAQH, NULL, NULL }; static const OB_FUNC ob_func[] = { AndOB, NorOB, OrOB, XorOB, SLLOB, SRLOB, AddOB, SubOB, MinOB, MaxOB, MulOB, NULL, NULL, AbsDiffOB, AvgOB }; /* Auxiliary functions for CPR updates. */ /* Vector mapping for QH format. */ static unsigned64 qh_vector_op(unsigned64 v1, unsigned64 v2, QH_FUNC func) { unsigned64 result = 0; int i; signed16 h, h1, h2; for (i = 0; i < 64; i += 16) { h1 = (signed16)(v1 & 0xFFFF); v1 >>= 16; h2 = (signed16)(v2 & 0xFFFF); v2 >>= 16; h = (*func)(h1, h2); result |= ((unsigned64)((unsigned16)h) << i); } return result; } static unsigned64 qh_map_op(unsigned64 v1, signed16 h2, QH_FUNC func) { unsigned64 result = 0; int i; signed16 h, h1; for (i = 0; i < 64; i += 16) { h1 = (signed16)(v1 & 0xFFFF); v1 >>= 16; h = (*func)(h1, h2); result |= ((unsigned64)((unsigned16)h) << i); } return result; } /* Vector operations for OB format. */ static unsigned64 ob_vector_op(unsigned64 v1, unsigned64 v2, OB_FUNC func) { unsigned64 result = 0; int i; unsigned8 b, b1, b2; for (i = 0; i < 64; i += 8) { b1 = v1 & 0xFF; v1 >>= 8; b2 = v2 & 0xFF; v2 >>= 8; b = (*func)(b1, b2); result |= ((unsigned64)b << i); } return result; } static unsigned64 ob_map_op(unsigned64 v1, unsigned8 b2, OB_FUNC func) { unsigned64 result = 0; int i; unsigned8 b, b1; for (i = 0; i < 64; i += 8) { b1 = v1 & 0xFF; v1 >>= 8; b = (*func)(b1, b2); result |= ((unsigned64)b << i); } return result; } /* Primary entry for operations that update CPRs. */ unsigned64 mdmx_cpr_op(sim_cpu *cpu, address_word cia, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel) { unsigned64 op2; unsigned64 result = 0; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = qh_map_op(op1, QH_ELEM(op2, fmtsel), qh_func[op]); break; case sel_vect: result = qh_vector_op(op1, ValueFPR(vt, fmt_mdmx), qh_func[op]); break; case sel_imm: result = qh_map_op(op1, vt, qh_func[op]); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = ob_map_op(op1, OB_ELEM(op2, fmtsel), ob_func[op]); break; case sel_vect: result = ob_vector_op(op1, ValueFPR(vt, fmt_mdmx), ob_func[op]); break; case sel_imm: result = ob_map_op(op1, vt, ob_func[op]); break; } break; default: Unpredictable (); } return result; } /* Operations that update CCs */ static void qh_vector_test(sim_cpu *cpu, unsigned64 v1, unsigned64 v2, int cond) { int i; signed16 h1, h2; int boolean; for (i = 0; i < 4; i++) { h1 = (signed16)(v1 & 0xFFFF); v1 >>= 16; h2 = (signed16)(v2 & 0xFFFF); v2 >>= 16; boolean = ((cond & MX_C_EQ) && (h1 == h2)) || ((cond & MX_C_LT) && (h1 < h2)); SETFCC(i, boolean); } } static void qh_map_test(sim_cpu *cpu, unsigned64 v1, signed16 h2, int cond) { int i; signed16 h1; int boolean; for (i = 0; i < 4; i++) { h1 = (signed16)(v1 & 0xFFFF); v1 >>= 16; boolean = ((cond & MX_C_EQ) && (h1 == h2)) || ((cond & MX_C_LT) && (h1 < h2)); SETFCC(i, boolean); } } static void ob_vector_test(sim_cpu *cpu, unsigned64 v1, unsigned64 v2, int cond) { int i; unsigned8 b1, b2; int boolean; for (i = 0; i < 8; i++) { b1 = v1 & 0xFF; v1 >>= 8; b2 = v2 & 0xFF; v2 >>= 8; boolean = ((cond & MX_C_EQ) && (b1 == b2)) || ((cond & MX_C_LT) && (b1 < b2)); SETFCC(i, boolean); } } static void ob_map_test(sim_cpu *cpu, unsigned64 v1, unsigned8 b2, int cond) { int i; unsigned8 b1; int boolean; for (i = 0; i < 8; i++) { b1 = (unsigned8)(v1 & 0xFF); v1 >>= 8; boolean = ((cond & MX_C_EQ) && (b1 == b2)) || ((cond & MX_C_LT) && (b1 < b2)); SETFCC(i, boolean); } } void mdmx_cc_op(sim_cpu *cpu, address_word cia, int cond, unsigned64 v1, int vt, MX_fmtsel fmtsel) { unsigned64 op2; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); qh_map_test(cpu, v1, QH_ELEM(op2, fmtsel), cond); break; case sel_vect: qh_vector_test(cpu, v1, ValueFPR(vt, fmt_mdmx), cond); break; case sel_imm: qh_map_test(cpu, v1, vt, cond); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); ob_map_test(cpu, v1, OB_ELEM(op2, fmtsel), cond); break; case sel_vect: ob_vector_test(cpu, v1, ValueFPR(vt, fmt_mdmx), cond); break; case sel_imm: ob_map_test(cpu, v1, vt, cond); break; } break; default: Unpredictable (); } } /* Pick operations. */ static unsigned64 qh_vector_pick(sim_cpu *cpu, unsigned64 v1, unsigned64 v2, int tf) { unsigned64 result = 0; int i, s; unsigned16 h; s = 0; for (i = 0; i < 4; i++) { h = ((GETFCC(i) == tf) ? (v1 & 0xFFFF) : (v2 & 0xFFFF)); v1 >>= 16; v2 >>= 16; result |= ((unsigned64)h << s); s += 16; } return result; } static unsigned64 qh_map_pick(sim_cpu *cpu, unsigned64 v1, signed16 h2, int tf) { unsigned64 result = 0; int i, s; unsigned16 h; s = 0; for (i = 0; i < 4; i++) { h = (GETFCC(i) == tf) ? (v1 & 0xFFFF) : (unsigned16)h2; v1 >>= 16; result |= ((unsigned64)h << s); s += 16; } return result; } static unsigned64 ob_vector_pick(sim_cpu *cpu, unsigned64 v1, unsigned64 v2, int tf) { unsigned64 result = 0; int i, s; unsigned8 b; s = 0; for (i = 0; i < 8; i++) { b = (GETFCC(i) == tf) ? (v1 & 0xFF) : (v2 & 0xFF); v1 >>= 8; v2 >>= 8; result |= ((unsigned64)b << s); s += 8; } return result; } static unsigned64 ob_map_pick(sim_cpu *cpu, unsigned64 v1, unsigned8 b2, int tf) { unsigned64 result = 0; int i, s; unsigned8 b; s = 0; for (i = 0; i < 8; i++) { b = (GETFCC(i) == tf) ? (v1 & 0xFF) : b2; v1 >>= 8; result |= ((unsigned64)b << s); s += 8; } return result; } unsigned64 mdmx_pick_op(sim_cpu *cpu, address_word cia, int tf, unsigned64 v1, int vt, MX_fmtsel fmtsel) { unsigned64 result = 0; unsigned64 op2; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = qh_map_pick(cpu, v1, QH_ELEM(op2, fmtsel), tf); break; case sel_vect: result = qh_vector_pick(cpu, v1, ValueFPR(vt, fmt_mdmx), tf); break; case sel_imm: result = qh_map_pick(cpu, v1, vt, tf); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = ob_map_pick(cpu, v1, OB_ELEM(op2, fmtsel), tf); break; case sel_vect: result = ob_vector_pick(cpu, v1, ValueFPR(vt, fmt_mdmx), tf); break; case sel_imm: result = ob_map_pick(cpu, v1, vt, tf); break; } break; default: Unpredictable (); } return result; } /* Accumulators. */ typedef void (*QH_ACC)(signed48 *a, signed16 ts, signed16 tt); static void AccAddAQH(signed48 *a, signed16 ts, signed16 tt) { *a += (signed48)ts + (signed48)tt; } static void AccAddLQH(signed48 *a, signed16 ts, signed16 tt) { *a = (signed48)ts + (signed48)tt; } static void AccMulAQH(signed48 *a, signed16 ts, signed16 tt) { *a += (signed48)ts * (signed48)tt; } static void AccMulLQH(signed48 *a, signed16 ts, signed16 tt) { *a = (signed48)ts * (signed48)tt; } static void SubMulAQH(signed48 *a, signed16 ts, signed16 tt) { *a -= (signed48)ts * (signed48)tt; } static void SubMulLQH(signed48 *a, signed16 ts, signed16 tt) { *a = -((signed48)ts * (signed48)tt); } static void AccSubAQH(signed48 *a, signed16 ts, signed16 tt) { *a += (signed48)ts - (signed48)tt; } static void AccSubLQH(signed48 *a, signed16 ts, signed16 tt) { *a = (signed48)ts - (signed48)tt; } typedef void (*OB_ACC)(signed24 *acc, unsigned8 ts, unsigned8 tt); static void AccAddAOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a += (signed24)ts + (signed24)tt; } static void AccAddLOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a = (signed24)ts + (signed24)tt; } static void AccMulAOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a += (signed24)ts * (signed24)tt; } static void AccMulLOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a = (signed24)ts * (signed24)tt; } static void SubMulAOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a -= (signed24)ts * (signed24)tt; } static void SubMulLOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a = -((signed24)ts * (signed24)tt); } static void AccSubAOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a += (signed24)ts - (signed24)tt; } static void AccSubLOB(signed24 *a, unsigned8 ts, unsigned8 tt) { *a = (signed24)ts - (signed24)tt; } static void AccAbsDiffOB(signed24 *a, unsigned8 ts, unsigned8 tt) { unsigned8 t = (ts >= tt ? ts - tt : tt - ts); *a += (signed24)t; } /* Dispatch tables for operations that update a CPR. */ static const QH_ACC qh_acc[] = { AccAddAQH, AccAddAQH, AccMulAQH, AccMulLQH, SubMulAQH, SubMulLQH, AccSubAQH, AccSubLQH, NULL }; static const OB_ACC ob_acc[] = { AccAddAOB, AccAddLOB, AccMulAOB, AccMulLOB, SubMulAOB, SubMulLOB, AccSubAOB, AccSubLOB, AccAbsDiffOB }; static void qh_vector_acc(signed48 a[], unsigned64 v1, unsigned64 v2, QH_ACC acc) { int i; signed16 h1, h2; for (i = 0; i < 4; i++) { h1 = (signed16)(v1 & 0xFFFF); v1 >>= 16; h2 = (signed16)(v2 & 0xFFFF); v2 >>= 16; (*acc)(&a[i], h1, h2); } } static void qh_map_acc(signed48 a[], unsigned64 v1, signed16 h2, QH_ACC acc) { int i; signed16 h1; for (i = 0; i < 4; i++) { h1 = (signed16)(v1 & 0xFFFF); v1 >>= 16; (*acc)(&a[i], h1, h2); } } static void ob_vector_acc(signed24 a[], unsigned64 v1, unsigned64 v2, OB_ACC acc) { int i; unsigned8 b1, b2; for (i = 0; i < 8; i++) { b1 = v1 & 0xFF; v1 >>= 8; b2 = v2 & 0xFF; v2 >>= 8; (*acc)(&a[i], b1, b2); } } static void ob_map_acc(signed24 a[], unsigned64 v1, unsigned8 b2, OB_ACC acc) { int i; unsigned8 b1; for (i = 0; i < 8; i++) { b1 = v1 & 0xFF; v1 >>= 8; (*acc)(&a[i], b1, b2); } } /* Primary entry for operations that accumulate */ void mdmx_acc_op(sim_cpu *cpu, address_word cia, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel) { unsigned64 op2; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); qh_map_acc(ACC.qh, op1, QH_ELEM(op2, fmtsel), qh_acc[op]); break; case sel_vect: qh_vector_acc(ACC.qh, op1, ValueFPR(vt, fmt_mdmx), qh_acc[op]); break; case sel_imm: qh_map_acc(ACC.qh, op1, vt, qh_acc[op]); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); ob_map_acc(ACC.ob, op1, OB_ELEM(op2, fmtsel), ob_acc[op]); break; case sel_vect: ob_vector_acc(ACC.ob, op1, ValueFPR(vt, fmt_mdmx), ob_acc[op]); break; case sel_imm: ob_map_acc(ACC.ob, op1, vt, ob_acc[op]); break; } break; default: Unpredictable (); } } /* Reading and writing accumulator (no conversion). */ unsigned64 mdmx_rac_op(sim_cpu *cpu, address_word cia, int op, int fmt) { unsigned64 result; unsigned int shift; int i; shift = op; /* L = 00, M = 01, H = 10. */ result = 0; switch (fmt) { case MX_FMT_QH: shift <<= 4; /* 16 bits per element. */ for (i = 3; i >= 0; --i) { result <<= 16; result |= ((ACC.qh[i] >> shift) & 0xFFFF); } break; case MX_FMT_OB: shift <<= 3; /* 8 bits per element. */ for (i = 7; i >= 0; --i) { result <<= 8; result |= ((ACC.ob[i] >> shift) & 0xFF); } break; default: Unpredictable (); } return result; } void mdmx_wacl(sim_cpu *cpu, address_word cia, int fmt, unsigned64 vs, unsigned64 vt) { int i; switch (fmt) { case MX_FMT_QH: for (i = 0; i < 4; i++) { signed32 s = (signed16)(vs & 0xFFFF); ACC.qh[i] = ((signed48)s << 16) | (vt & 0xFFFF); vs >>= 16; vt >>= 16; } break; case MX_FMT_OB: for (i = 0; i < 8; i++) { signed16 s = (signed8)(vs & 0xFF); ACC.ob[i] = ((signed24)s << 8) | (vt & 0xFF); vs >>= 8; vt >>= 8; } break; default: Unpredictable (); } } void mdmx_wach(sim_cpu *cpu, address_word cia, int fmt, unsigned64 vs) { int i; switch (fmt) { case MX_FMT_QH: for (i = 0; i < 4; i++) { signed32 s = (signed16)(vs & 0xFFFF); ACC.qh[i] &= ~((signed48)0xFFFF << 32); ACC.qh[i] |= ((signed48)s << 32); vs >>= 16; } break; case MX_FMT_OB: for (i = 0; i < 8; i++) { ACC.ob[i] &= ~((signed24)0xFF << 16); ACC.ob[i] |= ((signed24)(vs & 0xFF) << 16); vs >>= 8; } break; default: Unpredictable (); } } /* Reading and writing accumulator (rounding conversions). Enumerating function guarantees s >= 0 for QH ops. */ typedef signed16 (*QH_ROUND)(signed48 a, signed16 s); #define QH_BIT(n) ((unsigned48)1 << (n)) #define QH_ONES(n) (((unsigned48)1 << (n))-1) static signed16 RNASQH(signed48 a, signed16 s) { signed48 t; signed16 result = 0; if (s > 48) result = 0; else { t = (a >> s); if ((a & QH_BIT(47)) == 0) { if (s > 0 && ((a >> (s-1)) & 1) == 1) t++; if (t > QH_MAX) t = QH_MAX; } else { if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s > 1 && ((unsigned48)a & QH_ONES(s-1)) != 0) t++; } if (t < QH_MIN) t = QH_MIN; } result = (signed16)t; } return result; } static signed16 RNAUQH(signed48 a, signed16 s) { unsigned48 t; signed16 result; if (s > 48) result = 0; else if (s == 48) result = ((unsigned48)a & MASK48) >> 47; else { t = ((unsigned48)a & MASK48) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) t++; if (t > 0xFFFF) t = 0xFFFF; result = (signed16)t; } return result; } static signed16 RNESQH(signed48 a, signed16 s) { signed48 t; signed16 result = 0; if (s > 47) result = 0; else { t = (a >> s); if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s == 1 || (a & QH_ONES(s-1)) == 0) t += t & 1; else t += 1; } if ((a & QH_BIT(47)) == 0) { if (t > QH_MAX) t = QH_MAX; } else { if (t < QH_MIN) t = QH_MIN; } result = (signed16)t; } return result; } static signed16 RNEUQH(signed48 a, signed16 s) { unsigned48 t; signed16 result; if (s > 48) result = 0; else if (s == 48) result = ((unsigned48)a > QH_BIT(47) ? 1 : 0); else { t = ((unsigned48)a & MASK48) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s > 1 && (a & QH_ONES(s-1)) != 0) t++; else t += t & 1; } if (t > 0xFFFF) t = 0xFFFF; result = (signed16)t; } return result; } static signed16 RZSQH(signed48 a, signed16 s) { signed48 t; signed16 result = 0; if (s > 47) result = 0; else { t = (a >> s); if ((a & QH_BIT(47)) == 0) { if (t > QH_MAX) t = QH_MAX; } else { if (t < QH_MIN) t = QH_MIN; } result = (signed16)t; } return result; } static signed16 RZUQH(signed48 a, signed16 s) { unsigned48 t; signed16 result = 0; if (s > 48) result = 0; else if (s == 48) result = ((unsigned48)a > QH_BIT(47) ? 1 : 0); else { t = ((unsigned48)a & MASK48) >> s; if (t > 0xFFFF) t = 0xFFFF; result = (signed16)t; } return result; } typedef unsigned8 (*OB_ROUND)(signed24 a, unsigned8 s); #define OB_BIT(n) ((unsigned24)1 << (n)) #define OB_ONES(n) (((unsigned24)1 << (n))-1) static unsigned8 RNAUOB(signed24 a, unsigned8 s) { unsigned8 result; unsigned24 t; if (s > 24) result = 0; else if (s == 24) result = ((unsigned24)a & MASK24) >> 23; else { t = ((unsigned24)a & MASK24) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) t ++; result = OB_CLAMP(t); } return result; } static unsigned8 RNEUOB(signed24 a, unsigned8 s) { unsigned8 result; unsigned24 t; if (s > 24) result = 0; else if (s == 24) result = (((unsigned24)a & MASK24) > OB_BIT(23) ? 1 : 0); else { t = ((unsigned24)a & MASK24) >> s; if (s > 0 && ((a >> (s-1)) & 1) == 1) { if (s > 1 && (a & OB_ONES(s-1)) != 0) t++; else t += t & 1; } result = OB_CLAMP(t); } return result; } static unsigned8 RZUOB(signed24 a, unsigned8 s) { unsigned8 result; unsigned24 t; if (s >= 24) result = 0; else { t = ((unsigned24)a & MASK24) >> s; result = OB_CLAMP(t); } return result; } static const QH_ROUND qh_round[] = { RNASQH, RNAUQH, RNESQH, RNEUQH, RZSQH, RZUQH }; static const OB_ROUND ob_round[] = { NULL, RNAUOB, NULL, RNEUOB, NULL, RZUOB }; static unsigned64 qh_vector_round(sim_cpu *cpu, address_word cia, unsigned64 v2, QH_ROUND round) { unsigned64 result = 0; int i, s; signed16 h, h2; s = 0; for (i = 0; i < 4; i++) { h2 = (signed16)(v2 & 0xFFFF); if (h2 >= 0) h = (*round)(ACC.qh[i], h2); else { UnpredictableResult (); h = 0xdead; } v2 >>= 16; result |= ((unsigned64)((unsigned16)h) << s); s += 16; } return result; } static unsigned64 qh_map_round(sim_cpu *cpu, address_word cia, signed16 h2, QH_ROUND round) { unsigned64 result = 0; int i, s; signed16 h; s = 0; for (i = 0; i < 4; i++) { if (h2 >= 0) h = (*round)(ACC.qh[i], h2); else { UnpredictableResult (); h = 0xdead; } result |= ((unsigned64)((unsigned16)h) << s); s += 16; } return result; } static unsigned64 ob_vector_round(sim_cpu *cpu, address_word cia, unsigned64 v2, OB_ROUND round) { unsigned64 result = 0; int i, s; unsigned8 b, b2; s = 0; for (i = 0; i < 8; i++) { b2 = v2 & 0xFF; v2 >>= 8; b = (*round)(ACC.ob[i], b2); result |= ((unsigned64)b << s); s += 8; } return result; } static unsigned64 ob_map_round(sim_cpu *cpu, address_word cia, unsigned8 b2, OB_ROUND round) { unsigned64 result = 0; int i, s; unsigned8 b; s = 0; for (i = 0; i < 8; i++) { b = (*round)(ACC.ob[i], b2); result |= ((unsigned64)b << s); s += 8; } return result; } unsigned64 mdmx_round_op(sim_cpu *cpu, address_word cia, int rm, int vt, MX_fmtsel fmtsel) { unsigned64 op2; unsigned64 result = 0; switch (MX_FMT (fmtsel)) { case mdmx_qh: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = qh_map_round(cpu, cia, QH_ELEM(op2, fmtsel), qh_round[rm]); break; case sel_vect: op2 = ValueFPR(vt, fmt_mdmx); result = qh_vector_round(cpu, cia, op2, qh_round[rm]); break; case sel_imm: result = qh_map_round(cpu, cia, vt, qh_round[rm]); break; } break; case mdmx_ob: switch (MX_VT (fmtsel)) { case sel_elem: op2 = ValueFPR(vt, fmt_mdmx); result = ob_map_round(cpu, cia, OB_ELEM(op2, fmtsel), ob_round[rm]); break; case sel_vect: op2 = ValueFPR(vt, fmt_mdmx); result = ob_vector_round(cpu, cia, op2, ob_round[rm]); break; case sel_imm: result = ob_map_round(cpu, cia, vt, ob_round[rm]); break; } break; default: Unpredictable (); } return result; } /* Shuffle operation. */ typedef struct { enum {vs, ss, vt} source; unsigned int index; } sh_map; static const sh_map ob_shuffle[][8] = { /* MDMX 2.0 encodings (3-4, 6-7). */ /* vr5400 encoding (5), otherwise. */ { }, /* RSVD */ {{vt,4}, {vs,4}, {vt,5}, {vs,5}, {vt,6}, {vs,6}, {vt,7}, {vs,7}}, /* RSVD */ {{vt,0}, {vs,0}, {vt,1}, {vs,1}, {vt,2}, {vs,2}, {vt,3}, {vs,3}}, /* RSVD */ {{vs,0}, {ss,0}, {vs,1}, {ss,1}, {vs,2}, {ss,2}, {vs,3}, {ss,3}}, /* upsl */ {{vt,1}, {vt,3}, {vt,5}, {vt,7}, {vs,1}, {vs,3}, {vs,5}, {vs,7}}, /* pach */ {{vt,0}, {vt,2}, {vt,4}, {vt,6}, {vs,0}, {vs,2}, {vs,4}, {vs,6}}, /* pacl */ {{vt,4}, {vs,4}, {vt,5}, {vs,5}, {vt,6}, {vs,6}, {vt,7}, {vs,7}}, /* mixh */ {{vt,0}, {vs,0}, {vt,1}, {vs,1}, {vt,2}, {vs,2}, {vt,3}, {vs,3}} /* mixl */ }; static const sh_map qh_shuffle[][4] = { {{vt,2}, {vs,2}, {vt,3}, {vs,3}}, /* mixh */ {{vt,0}, {vs,0}, {vt,1}, {vs,1}}, /* mixl */ {{vt,1}, {vt,3}, {vs,1}, {vs,3}}, /* pach */ { }, /* RSVD */ {{vt,1}, {vs,0}, {vt,3}, {vs,2}}, /* bfla */ { }, /* RSVD */ {{vt,2}, {vt,3}, {vs,2}, {vs,3}}, /* repa */ {{vt,0}, {vt,1}, {vs,0}, {vs,1}} /* repb */ }; unsigned64 mdmx_shuffle(sim_cpu *cpu, address_word cia, int shop, unsigned64 op1, unsigned64 op2) { unsigned64 result = 0; int i, s; int op; if ((shop & 0x3) == 0x1) /* QH format. */ { op = shop >> 2; s = 0; for (i = 0; i < 4; i++) { unsigned64 v; switch (qh_shuffle[op][i].source) { case vs: v = op1; break; case vt: v = op2; break; default: Unpredictable (); v = 0; } result |= (((v >> 16*qh_shuffle[op][i].index) & 0xFFFF) << s); s += 16; } } else if ((shop & 0x1) == 0x0) /* OB format. */ { op = shop >> 1; s = 0; for (i = 0; i < 8; i++) { unsigned8 b; unsigned int ishift = 8*ob_shuffle[op][i].index; switch (ob_shuffle[op][i].source) { case vs: b = (op1 >> ishift) & 0xFF; break; case ss: b = ((op1 >> ishift) & 0x80) ? 0xFF : 0; break; case vt: b = (op2 >> ishift) & 0xFF; break; default: Unpredictable (); b = 0; } result |= ((unsigned64)b << s); s += 8; } } else Unpredictable (); return result; }
Go to most recent revision | Compare with Previous | Blame | View Log