URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [block.c] - Rev 612
Go to most recent revision | Compare with Previous | Blame | View Log
/* Block-related functions for the GNU debugger, GDB. Copyright (C) 2003, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "block.h" #include "symtab.h" #include "symfile.h" #include "gdb_obstack.h" #include "cp-support.h" #include "addrmap.h" /* This is used by struct block to store namespace-related info for C++ files, namely using declarations and the current namespace in scope. */ struct block_namespace_info { const char *scope; struct using_direct *using; }; static void block_initialize_namespace (struct block *block, struct obstack *obstack); /* Return Nonzero if block a is lexically nested within block b, or if a and b have the same pc range. Return zero otherwise. */ int contained_in (const struct block *a, const struct block *b) { if (!a || !b) return 0; do { if (a == b) return 1; /* If A is a function block, then A cannot be contained in B, except if A was inlined. */ if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a)) return 0; a = BLOCK_SUPERBLOCK (a); } while (a != NULL); return 0; } /* Return the symbol for the function which contains a specified lexical block, described by a struct block BL. The return value will not be an inlined function; the containing function will be returned instead. */ struct symbol * block_linkage_function (const struct block *bl) { while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl)) && BLOCK_SUPERBLOCK (bl) != NULL) bl = BLOCK_SUPERBLOCK (bl); return BLOCK_FUNCTION (bl); } /* Return one if BL represents an inlined function. */ int block_inlined_p (const struct block *bl) { return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl)); } /* Return the blockvector immediately containing the innermost lexical block containing the specified pc value and section, or 0 if there is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we don't pass this information back to the caller. */ struct blockvector * blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section, struct block **pblock, struct symtab *symtab) { struct block *b; int bot, top, half; struct blockvector *bl; if (symtab == 0) /* if no symtab specified by caller */ { /* First search all symtabs for one whose file contains our pc */ symtab = find_pc_sect_symtab (pc, section); if (symtab == 0) return 0; } bl = BLOCKVECTOR (symtab); /* Then search that symtab for the smallest block that wins. */ /* If we have an addrmap mapping code addresses to blocks, then use that. */ if (BLOCKVECTOR_MAP (bl)) { b = addrmap_find (BLOCKVECTOR_MAP (bl), pc); if (b) { if (pblock) *pblock = b; return bl; } else return 0; } /* Otherwise, use binary search to find the last block that starts before PC. */ bot = 0; top = BLOCKVECTOR_NBLOCKS (bl); while (top - bot > 1) { half = (top - bot + 1) >> 1; b = BLOCKVECTOR_BLOCK (bl, bot + half); if (BLOCK_START (b) <= pc) bot += half; else top = bot + half; } /* Now search backward for a block that ends after PC. */ while (bot >= 0) { b = BLOCKVECTOR_BLOCK (bl, bot); if (BLOCK_END (b) > pc) { if (pblock) *pblock = b; return bl; } bot--; } return 0; } /* Return the blockvector immediately containing the innermost lexical block containing the specified pc value, or 0 if there is none. Backward compatibility, no section. */ struct blockvector * blockvector_for_pc (CORE_ADDR pc, struct block **pblock) { return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc), pblock, NULL); } /* Return the innermost lexical block containing the specified pc value in the specified section, or 0 if there is none. */ struct block * block_for_pc_sect (CORE_ADDR pc, struct obj_section *section) { struct blockvector *bl; struct block *b; bl = blockvector_for_pc_sect (pc, section, &b, NULL); if (bl) return b; return 0; } /* Return the innermost lexical block containing the specified pc value, or 0 if there is none. Backward compatibility, no section. */ struct block * block_for_pc (CORE_ADDR pc) { return block_for_pc_sect (pc, find_pc_mapped_section (pc)); } /* Now come some functions designed to deal with C++ namespace issues. The accessors are safe to use even in the non-C++ case. */ /* This returns the namespace that BLOCK is enclosed in, or "" if it isn't enclosed in a namespace at all. This travels the chain of superblocks looking for a scope, if necessary. */ const char * block_scope (const struct block *block) { for (; block != NULL; block = BLOCK_SUPERBLOCK (block)) { if (BLOCK_NAMESPACE (block) != NULL && BLOCK_NAMESPACE (block)->scope != NULL) return BLOCK_NAMESPACE (block)->scope; } return ""; } /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via OBSTACK. (It won't make a copy of SCOPE, however, so that already has to be allocated correctly.) */ void block_set_scope (struct block *block, const char *scope, struct obstack *obstack) { block_initialize_namespace (block, obstack); BLOCK_NAMESPACE (block)->scope = scope; } /* This returns the using directives list associated with BLOCK, if any. */ struct using_direct * block_using (const struct block *block) { if (block == NULL || BLOCK_NAMESPACE (block) == NULL) return NULL; else return BLOCK_NAMESPACE (block)->using; } /* Set BLOCK's using member to USING; if needed, allocate memory via OBSTACK. (It won't make a copy of USING, however, so that already has to be allocated correctly.) */ void block_set_using (struct block *block, struct using_direct *using, struct obstack *obstack) { block_initialize_namespace (block, obstack); BLOCK_NAMESPACE (block)->using = using; } /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and ititialize its members to zero. */ static void block_initialize_namespace (struct block *block, struct obstack *obstack) { if (BLOCK_NAMESPACE (block) == NULL) { BLOCK_NAMESPACE (block) = obstack_alloc (obstack, sizeof (struct block_namespace_info)); BLOCK_NAMESPACE (block)->scope = NULL; BLOCK_NAMESPACE (block)->using = NULL; } } /* Return the static block associated to BLOCK. Return NULL if block is NULL or if block is a global block. */ const struct block * block_static_block (const struct block *block) { if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL) return NULL; while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL) block = BLOCK_SUPERBLOCK (block); return block; } /* Return the static block associated to BLOCK. Return NULL if block is NULL. */ const struct block * block_global_block (const struct block *block) { if (block == NULL) return NULL; while (BLOCK_SUPERBLOCK (block) != NULL) block = BLOCK_SUPERBLOCK (block); return block; } /* Allocate a block on OBSTACK, and initialize its elements to zero/NULL. This is useful for creating "dummy" blocks that don't correspond to actual source files. Warning: it sets the block's BLOCK_DICT to NULL, which isn't a valid value. If you really don't want the block to have a dictionary, then you should subsequently set its BLOCK_DICT to dict_create_linear (obstack, NULL). */ struct block * allocate_block (struct obstack *obstack) { struct block *bl = obstack_alloc (obstack, sizeof (struct block)); BLOCK_START (bl) = 0; BLOCK_END (bl) = 0; BLOCK_FUNCTION (bl) = NULL; BLOCK_SUPERBLOCK (bl) = NULL; BLOCK_DICT (bl) = NULL; BLOCK_NAMESPACE (bl) = NULL; return bl; }
Go to most recent revision | Compare with Previous | Blame | View Log