URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [doublest.h] - Rev 493
Go to most recent revision | Compare with Previous | Blame | View Log
/* Floating point definitions for GDB. Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2003, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #ifndef DOUBLEST_H #define DOUBLEST_H struct type; struct floatformat; /* Setup definitions for host and target floating point formats. We need to consider the format for `float', `double', and `long double' for both target and host. We need to do this so that we know what kind of conversions need to be done when converting target numbers to and from the hosts DOUBLEST data type. */ /* This is used to indicate that we don't know the format of the floating point number. Typically, this is useful for native ports, where the actual format is irrelevant, since no conversions will be taking place. */ #include "floatformat.h" /* For struct floatformat */ /* Use `long double' if the host compiler supports it. (Note that this is not necessarily any longer than `double'. On SunOS/gcc, it's the same as double.) This is necessary because GDB internally converts all floating point values to the widest type supported by the host. There are problems however, when the target `long double' is longer than the host's `long double'. In general, we'll probably reduce the precision of any such values and print a warning. */ #if (defined HAVE_LONG_DOUBLE && defined PRINTF_HAS_LONG_DOUBLE \ && defined SCANF_HAS_LONG_DOUBLE) typedef long double DOUBLEST; # define DOUBLEST_PRINT_FORMAT "Lg" # define DOUBLEST_SCAN_FORMAT "Lg" #else typedef double DOUBLEST; # define DOUBLEST_PRINT_FORMAT "g" # define DOUBLEST_SCAN_FORMAT "lg" /* If we can't scan or print long double, we don't want to use it anywhere. */ # undef HAVE_LONG_DOUBLE # undef PRINTF_HAS_LONG_DOUBLE # undef SCANF_HAS_LONG_DOUBLE #endif /* Different kinds of floatformat numbers recognized by floatformat_classify. To avoid portability issues, we use local values instead of the C99 macros (FP_NAN et cetera). */ enum float_kind { float_nan, float_infinite, float_zero, float_normal, float_subnormal }; extern void floatformat_to_doublest (const struct floatformat *, const void *in, DOUBLEST *out); extern void floatformat_from_doublest (const struct floatformat *, const DOUBLEST *in, void *out); extern int floatformat_is_negative (const struct floatformat *, const bfd_byte *); extern enum float_kind floatformat_classify (const struct floatformat *, const bfd_byte *); extern const char *floatformat_mantissa (const struct floatformat *, const bfd_byte *); /* Given TYPE, return its floatformat. TYPE_FLOATFORMAT() may return NULL. type_floatformat() detects that and returns a floatformat based on the type size when FLOATFORMAT is NULL. */ const struct floatformat *floatformat_from_type (const struct type *type); extern DOUBLEST extract_typed_floating (const void *addr, const struct type *type); extern void store_typed_floating (void *addr, const struct type *type, DOUBLEST val); extern void convert_typed_floating (const void *from, const struct type *from_type, void *to, const struct type *to_type); #endif
Go to most recent revision | Compare with Previous | Blame | View Log