URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [gdb/] [printcmd.c] - Rev 310
Go to most recent revision | Compare with Previous | Blame | View Log
/* Print values for GNU debugger GDB. Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "gdb_string.h" #include "frame.h" #include "symtab.h" #include "gdbtypes.h" #include "value.h" #include "language.h" #include "expression.h" #include "gdbcore.h" #include "gdbcmd.h" #include "target.h" #include "breakpoint.h" #include "demangle.h" #include "valprint.h" #include "annotate.h" #include "symfile.h" /* for overlay functions */ #include "objfiles.h" /* ditto */ #include "completer.h" /* for completion functions */ #include "ui-out.h" #include "gdb_assert.h" #include "block.h" #include "disasm.h" #include "dfp.h" #include "valprint.h" #include "exceptions.h" #include "observer.h" #include "solist.h" #include "solib.h" #include "parser-defs.h" #include "charset.h" #include "arch-utils.h" #ifdef TUI #include "tui/tui.h" /* For tui_active et.al. */ #endif #if defined(__MINGW32__) && !defined(PRINTF_HAS_LONG_LONG) # define USE_PRINTF_I64 1 # define PRINTF_HAS_LONG_LONG #else # define USE_PRINTF_I64 0 #endif extern int asm_demangle; /* Whether to demangle syms in asm printouts */ struct format_data { int count; char format; char size; /* True if the value should be printed raw -- that is, bypassing python-based formatters. */ unsigned char raw; }; /* Last specified output format. */ static char last_format = 0; /* Last specified examination size. 'b', 'h', 'w' or `q'. */ static char last_size = 'w'; /* Default address to examine next, and associated architecture. */ static struct gdbarch *next_gdbarch; static CORE_ADDR next_address; /* Number of delay instructions following current disassembled insn. */ static int branch_delay_insns; /* Last address examined. */ static CORE_ADDR last_examine_address; /* Contents of last address examined. This is not valid past the end of the `x' command! */ static struct value *last_examine_value; /* Largest offset between a symbolic value and an address, that will be printed as `0x1234 <symbol+offset>'. */ static unsigned int max_symbolic_offset = UINT_MAX; static void show_max_symbolic_offset (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ The largest offset that will be printed in <symbol+1234> form is %s.\n"), value); } /* Append the source filename and linenumber of the symbol when printing a symbolic value as `<symbol at filename:linenum>' if set. */ static int print_symbol_filename = 0; static void show_print_symbol_filename (struct ui_file *file, int from_tty, struct cmd_list_element *c, const char *value) { fprintf_filtered (file, _("\ Printing of source filename and line number with <symbol> is %s.\n"), value); } /* Number of auto-display expression currently being displayed. So that we can disable it if we get an error or a signal within it. -1 when not doing one. */ int current_display_number; struct display { /* Chain link to next auto-display item. */ struct display *next; /* The expression as the user typed it. */ char *exp_string; /* Expression to be evaluated and displayed. */ struct expression *exp; /* Item number of this auto-display item. */ int number; /* Display format specified. */ struct format_data format; /* Program space associated with `block'. */ struct program_space *pspace; /* Innermost block required by this expression when evaluated */ struct block *block; /* Status of this display (enabled or disabled) */ int enabled_p; }; /* Chain of expressions whose values should be displayed automatically each time the program stops. */ static struct display *display_chain; static int display_number; /* Prototypes for exported functions. */ void output_command (char *, int); void _initialize_printcmd (void); /* Prototypes for local functions. */ static void do_one_display (struct display *); /* Decode a format specification. *STRING_PTR should point to it. OFORMAT and OSIZE are used as defaults for the format and size if none are given in the format specification. If OSIZE is zero, then the size field of the returned value should be set only if a size is explicitly specified by the user. The structure returned describes all the data found in the specification. In addition, *STRING_PTR is advanced past the specification and past all whitespace following it. */ static struct format_data decode_format (char **string_ptr, int oformat, int osize) { struct format_data val; char *p = *string_ptr; val.format = '?'; val.size = '?'; val.count = 1; val.raw = 0; if (*p >= '0' && *p <= '9') val.count = atoi (p); while (*p >= '0' && *p <= '9') p++; /* Now process size or format letters that follow. */ while (1) { if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g') val.size = *p++; else if (*p == 'r') { val.raw = 1; p++; } else if (*p >= 'a' && *p <= 'z') val.format = *p++; else break; } while (*p == ' ' || *p == '\t') p++; *string_ptr = p; /* Set defaults for format and size if not specified. */ if (val.format == '?') { if (val.size == '?') { /* Neither has been specified. */ val.format = oformat; val.size = osize; } else /* If a size is specified, any format makes a reasonable default except 'i'. */ val.format = oformat == 'i' ? 'x' : oformat; } else if (val.size == '?') switch (val.format) { case 'a': /* Pick the appropriate size for an address. This is deferred until do_examine when we know the actual architecture to use. A special size value of 'a' is used to indicate this case. */ val.size = osize ? 'a' : osize; break; case 'f': /* Floating point has to be word or giantword. */ if (osize == 'w' || osize == 'g') val.size = osize; else /* Default it to giantword if the last used size is not appropriate. */ val.size = osize ? 'g' : osize; break; case 'c': /* Characters default to one byte. */ val.size = osize ? 'b' : osize; break; default: /* The default is the size most recently specified. */ val.size = osize; } return val; } /* Print value VAL on stream according to OPTIONS. Do not end with a newline. SIZE is the letter for the size of datum being printed. This is used to pad hex numbers so they line up. SIZE is 0 for print / output and set for examine. */ static void print_formatted (struct value *val, int size, const struct value_print_options *options, struct ui_file *stream) { struct type *type = check_typedef (value_type (val)); int len = TYPE_LENGTH (type); if (VALUE_LVAL (val) == lval_memory) next_address = value_address (val) + len; if (size) { switch (options->format) { case 's': { struct type *elttype = value_type (val); next_address = (value_address (val) + val_print_string (elttype, value_address (val), -1, stream, options)); } return; case 'i': /* We often wrap here if there are long symbolic names. */ wrap_here (" "); next_address = (value_address (val) + gdb_print_insn (get_type_arch (type), value_address (val), stream, &branch_delay_insns)); return; } } if (options->format == 0 || options->format == 's' || TYPE_CODE (type) == TYPE_CODE_REF || TYPE_CODE (type) == TYPE_CODE_ARRAY || TYPE_CODE (type) == TYPE_CODE_STRING || TYPE_CODE (type) == TYPE_CODE_STRUCT || TYPE_CODE (type) == TYPE_CODE_UNION || TYPE_CODE (type) == TYPE_CODE_NAMESPACE) value_print (val, stream, options); else /* User specified format, so don't look to the the type to tell us what to do. */ print_scalar_formatted (value_contents (val), type, options, size, stream); } /* Return builtin floating point type of same length as TYPE. If no such type is found, return TYPE itself. */ static struct type * float_type_from_length (struct type *type) { struct gdbarch *gdbarch = get_type_arch (type); const struct builtin_type *builtin = builtin_type (gdbarch); unsigned int len = TYPE_LENGTH (type); if (len == TYPE_LENGTH (builtin->builtin_float)) type = builtin->builtin_float; else if (len == TYPE_LENGTH (builtin->builtin_double)) type = builtin->builtin_double; else if (len == TYPE_LENGTH (builtin->builtin_long_double)) type = builtin->builtin_long_double; return type; } /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, according to OPTIONS and SIZE on STREAM. Formats s and i are not supported at this level. This is how the elements of an array or structure are printed with a format. */ void print_scalar_formatted (const void *valaddr, struct type *type, const struct value_print_options *options, int size, struct ui_file *stream) { struct gdbarch *gdbarch = get_type_arch (type); LONGEST val_long = 0; unsigned int len = TYPE_LENGTH (type); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); /* If we get here with a string format, try again without it. Go all the way back to the language printers, which may call us again. */ if (options->format == 's') { struct value_print_options opts = *options; opts.format = 0; opts.deref_ref = 0; val_print (type, valaddr, 0, 0, stream, 0, &opts, current_language); return; } if (len > sizeof(LONGEST) && (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_ENUM)) { switch (options->format) { case 'o': print_octal_chars (stream, valaddr, len, byte_order); return; case 'u': case 'd': print_decimal_chars (stream, valaddr, len, byte_order); return; case 't': print_binary_chars (stream, valaddr, len, byte_order); return; case 'x': print_hex_chars (stream, valaddr, len, byte_order); return; case 'c': print_char_chars (stream, type, valaddr, len, byte_order); return; default: break; }; } if (options->format != 'f') val_long = unpack_long (type, valaddr); /* If the value is a pointer, and pointers and addresses are not the same, then at this point, the value's length (in target bytes) is gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */ if (TYPE_CODE (type) == TYPE_CODE_PTR) len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT; /* If we are printing it as unsigned, truncate it in case it is actually a negative signed value (e.g. "print/u (short)-1" should print 65535 (if shorts are 16 bits) instead of 4294967295). */ if (options->format != 'd' || TYPE_UNSIGNED (type)) { if (len < sizeof (LONGEST)) val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1; } switch (options->format) { case 'x': if (!size) { /* No size specified, like in print. Print varying # of digits. */ print_longest (stream, 'x', 1, val_long); } else switch (size) { case 'b': case 'h': case 'w': case 'g': print_longest (stream, size, 1, val_long); break; default: error (_("Undefined output size \"%c\"."), size); } break; case 'd': print_longest (stream, 'd', 1, val_long); break; case 'u': print_longest (stream, 'u', 0, val_long); break; case 'o': if (val_long) print_longest (stream, 'o', 1, val_long); else fprintf_filtered (stream, "0"); break; case 'a': { CORE_ADDR addr = unpack_pointer (type, valaddr); print_address (gdbarch, addr, stream); } break; case 'c': { struct value_print_options opts = *options; opts.format = 0; if (TYPE_UNSIGNED (type)) type = builtin_type (gdbarch)->builtin_true_unsigned_char; else type = builtin_type (gdbarch)->builtin_true_char; value_print (value_from_longest (type, val_long), stream, &opts); } break; case 'f': type = float_type_from_length (type); print_floating (valaddr, type, stream); break; case 0: internal_error (__FILE__, __LINE__, _("failed internal consistency check")); case 't': /* Binary; 't' stands for "two". */ { char bits[8 * (sizeof val_long) + 1]; char buf[8 * (sizeof val_long) + 32]; char *cp = bits; int width; if (!size) width = 8 * (sizeof val_long); else switch (size) { case 'b': width = 8; break; case 'h': width = 16; break; case 'w': width = 32; break; case 'g': width = 64; break; default: error (_("Undefined output size \"%c\"."), size); } bits[width] = '\0'; while (width-- > 0) { bits[width] = (val_long & 1) ? '1' : '0'; val_long >>= 1; } if (!size) { while (*cp && *cp == '0') cp++; if (*cp == '\0') cp--; } strcpy (buf, cp); fputs_filtered (buf, stream); } break; default: error (_("Undefined output format \"%c\"."), options->format); } } /* Specify default address for `x' command. The `info lines' command uses this. */ void set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr) { struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr; next_gdbarch = gdbarch; next_address = addr; /* Make address available to the user as $_. */ set_internalvar (lookup_internalvar ("_"), value_from_pointer (ptr_type, addr)); } /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM, after LEADIN. Print nothing if no symbolic name is found nearby. Optionally also print source file and line number, if available. DO_DEMANGLE controls whether to print a symbol in its native "raw" form, or to interpret it as a possible C++ name and convert it back to source form. However note that DO_DEMANGLE can be overridden by the specific settings of the demangle and asm_demangle variables. */ void print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr, struct ui_file *stream, int do_demangle, char *leadin) { char *name = NULL; char *filename = NULL; int unmapped = 0; int offset = 0; int line = 0; /* Throw away both name and filename. */ struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name); make_cleanup (free_current_contents, &filename); if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset, &filename, &line, &unmapped)) { do_cleanups (cleanup_chain); return; } fputs_filtered (leadin, stream); if (unmapped) fputs_filtered ("<*", stream); else fputs_filtered ("<", stream); fputs_filtered (name, stream); if (offset != 0) fprintf_filtered (stream, "+%u", (unsigned int) offset); /* Append source filename and line number if desired. Give specific line # of this addr, if we have it; else line # of the nearest symbol. */ if (print_symbol_filename && filename != NULL) { if (line != -1) fprintf_filtered (stream, " at %s:%d", filename, line); else fprintf_filtered (stream, " in %s", filename); } if (unmapped) fputs_filtered ("*>", stream); else fputs_filtered (">", stream); do_cleanups (cleanup_chain); } /* Given an address ADDR return all the elements needed to print the address in a symbolic form. NAME can be mangled or not depending on DO_DEMANGLE (and also on the asm_demangle global variable, manipulated via ''set print asm-demangle''). Return 0 in case of success, when all the info in the OUT paramters is valid. Return 1 otherwise. */ int build_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr, /* IN */ int do_demangle, /* IN */ char **name, /* OUT */ int *offset, /* OUT */ char **filename, /* OUT */ int *line, /* OUT */ int *unmapped) /* OUT */ { struct minimal_symbol *msymbol; struct symbol *symbol; CORE_ADDR name_location = 0; struct obj_section *section = NULL; char *name_temp = ""; /* Let's say it is mapped (not unmapped). */ *unmapped = 0; /* Determine if the address is in an overlay, and whether it is mapped. */ if (overlay_debugging) { section = find_pc_overlay (addr); if (pc_in_unmapped_range (addr, section)) { *unmapped = 1; addr = overlay_mapped_address (addr, section); } } /* First try to find the address in the symbol table, then in the minsyms. Take the closest one. */ /* This is defective in the sense that it only finds text symbols. So really this is kind of pointless--we should make sure that the minimal symbols have everything we need (by changing that we could save some memory, but for many debug format--ELF/DWARF or anything/stabs--it would be inconvenient to eliminate those minimal symbols anyway). */ msymbol = lookup_minimal_symbol_by_pc_section (addr, section); symbol = find_pc_sect_function (addr, section); if (symbol) { /* If this is a function (i.e. a code address), strip out any non-address bits. For instance, display a pointer to the first instruction of a Thumb function as <function>; the second instruction will be <function+2>, even though the pointer is <function+3>. This matches the ISA behavior. */ addr = gdbarch_addr_bits_remove (gdbarch, addr); name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol)); if (do_demangle || asm_demangle) name_temp = SYMBOL_PRINT_NAME (symbol); else name_temp = SYMBOL_LINKAGE_NAME (symbol); } if (msymbol != NULL) { if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL) { /* The msymbol is closer to the address than the symbol; use the msymbol instead. */ symbol = 0; name_location = SYMBOL_VALUE_ADDRESS (msymbol); if (do_demangle || asm_demangle) name_temp = SYMBOL_PRINT_NAME (msymbol); else name_temp = SYMBOL_LINKAGE_NAME (msymbol); } } if (symbol == NULL && msymbol == NULL) return 1; /* If the nearest symbol is too far away, don't print anything symbolic. */ /* For when CORE_ADDR is larger than unsigned int, we do math in CORE_ADDR. But when we detect unsigned wraparound in the CORE_ADDR math, we ignore this test and print the offset, because addr+max_symbolic_offset has wrapped through the end of the address space back to the beginning, giving bogus comparison. */ if (addr > name_location + max_symbolic_offset && name_location + max_symbolic_offset > name_location) return 1; *offset = addr - name_location; *name = xstrdup (name_temp); if (print_symbol_filename) { struct symtab_and_line sal; sal = find_pc_sect_line (addr, section, 0); if (sal.symtab) { *filename = xstrdup (sal.symtab->filename); *line = sal.line; } } return 0; } /* Print address ADDR symbolically on STREAM. First print it as a number. Then perhaps print <SYMBOL + OFFSET> after the number. */ void print_address (struct gdbarch *gdbarch, CORE_ADDR addr, struct ui_file *stream) { fputs_filtered (paddress (gdbarch, addr), stream); print_address_symbolic (gdbarch, addr, stream, asm_demangle, " "); } /* Return a prefix for instruction address: "=> " for current instruction, else " ". */ const char * pc_prefix (CORE_ADDR addr) { if (has_stack_frames ()) { struct frame_info *frame; CORE_ADDR pc; frame = get_selected_frame (NULL); pc = get_frame_pc (frame); if (pc == addr) return "=> "; } return " "; } /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE controls whether to print the symbolic name "raw" or demangled. Global setting "addressprint" controls whether to print hex address or not. */ void print_address_demangle (struct gdbarch *gdbarch, CORE_ADDR addr, struct ui_file *stream, int do_demangle) { struct value_print_options opts; get_user_print_options (&opts); if (addr == 0) { fprintf_filtered (stream, "0"); } else if (opts.addressprint) { fputs_filtered (paddress (gdbarch, addr), stream); print_address_symbolic (gdbarch, addr, stream, do_demangle, " "); } else { print_address_symbolic (gdbarch, addr, stream, do_demangle, ""); } } /* Examine data at address ADDR in format FMT. Fetch it from memory and print on gdb_stdout. */ static void do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr) { char format = 0; char size; int count = 1; struct type *val_type = NULL; int i; int maxelts; struct value_print_options opts; format = fmt.format; size = fmt.size; count = fmt.count; next_gdbarch = gdbarch; next_address = addr; /* String or instruction format implies fetch single bytes regardless of the specified size. */ if (format == 's' || format == 'i') size = 'b'; if (size == 'a') { /* Pick the appropriate size for an address. */ if (gdbarch_ptr_bit (next_gdbarch) == 64) size = 'g'; else if (gdbarch_ptr_bit (next_gdbarch) == 32) size = 'w'; else if (gdbarch_ptr_bit (next_gdbarch) == 16) size = 'h'; else /* Bad value for gdbarch_ptr_bit. */ internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } if (size == 'b') val_type = builtin_type (next_gdbarch)->builtin_int8; else if (size == 'h') val_type = builtin_type (next_gdbarch)->builtin_int16; else if (size == 'w') val_type = builtin_type (next_gdbarch)->builtin_int32; else if (size == 'g') val_type = builtin_type (next_gdbarch)->builtin_int64; maxelts = 8; if (size == 'w') maxelts = 4; if (size == 'g') maxelts = 2; if (format == 's' || format == 'i') maxelts = 1; get_formatted_print_options (&opts, format); /* Print as many objects as specified in COUNT, at most maxelts per line, with the address of the next one at the start of each line. */ while (count > 0) { QUIT; if (format == 'i') fputs_filtered (pc_prefix (next_address), gdb_stdout); print_address (next_gdbarch, next_address, gdb_stdout); printf_filtered (":"); for (i = maxelts; i > 0 && count > 0; i--, count--) { printf_filtered ("\t"); /* Note that print_formatted sets next_address for the next object. */ last_examine_address = next_address; if (last_examine_value) value_free (last_examine_value); /* The value to be displayed is not fetched greedily. Instead, to avoid the possibility of a fetched value not being used, its retrieval is delayed until the print code uses it. When examining an instruction stream, the disassembler will perform its own memory fetch using just the address stored in LAST_EXAMINE_VALUE. FIXME: Should the disassembler be modified so that LAST_EXAMINE_VALUE is left with the byte sequence from the last complete instruction fetched from memory? */ last_examine_value = value_at_lazy (val_type, next_address); if (last_examine_value) release_value (last_examine_value); print_formatted (last_examine_value, size, &opts, gdb_stdout); /* Display any branch delay slots following the final insn. */ if (format == 'i' && count == 1) count += branch_delay_insns; } printf_filtered ("\n"); gdb_flush (gdb_stdout); } } static void validate_format (struct format_data fmt, char *cmdname) { if (fmt.size != 0) error (_("Size letters are meaningless in \"%s\" command."), cmdname); if (fmt.count != 1) error (_("Item count other than 1 is meaningless in \"%s\" command."), cmdname); if (fmt.format == 'i') error (_("Format letter \"%c\" is meaningless in \"%s\" command."), fmt.format, cmdname); } /* Evaluate string EXP as an expression in the current language and print the resulting value. EXP may contain a format specifier as the first argument ("/x myvar" for example, to print myvar in hex). */ static void print_command_1 (char *exp, int inspect, int voidprint) { struct expression *expr; struct cleanup *old_chain = 0; char format = 0; struct value *val; struct format_data fmt; int cleanup = 0; if (exp && *exp == '/') { exp++; fmt = decode_format (&exp, last_format, 0); validate_format (fmt, "print"); last_format = format = fmt.format; } else { fmt.count = 1; fmt.format = 0; fmt.size = 0; fmt.raw = 0; } if (exp && *exp) { struct type *type; expr = parse_expression (exp); old_chain = make_cleanup (free_current_contents, &expr); cleanup = 1; val = evaluate_expression (expr); } else val = access_value_history (0); if (voidprint || (val && value_type (val) && TYPE_CODE (value_type (val)) != TYPE_CODE_VOID)) { struct value_print_options opts; int histindex = record_latest_value (val); if (histindex >= 0) annotate_value_history_begin (histindex, value_type (val)); else annotate_value_begin (value_type (val)); if (inspect) printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex); else if (histindex >= 0) printf_filtered ("$%d = ", histindex); if (histindex >= 0) annotate_value_history_value (); get_formatted_print_options (&opts, format); opts.inspect_it = inspect; opts.raw = fmt.raw; print_formatted (val, fmt.size, &opts, gdb_stdout); printf_filtered ("\n"); if (histindex >= 0) annotate_value_history_end (); else annotate_value_end (); if (inspect) printf_unfiltered ("\") )\030"); } if (cleanup) do_cleanups (old_chain); } static void print_command (char *exp, int from_tty) { print_command_1 (exp, 0, 1); } /* Same as print, except in epoch, it gets its own window. */ static void inspect_command (char *exp, int from_tty) { extern int epoch_interface; print_command_1 (exp, epoch_interface, 1); } /* Same as print, except it doesn't print void results. */ static void call_command (char *exp, int from_tty) { print_command_1 (exp, 0, 0); } void output_command (char *exp, int from_tty) { struct expression *expr; struct cleanup *old_chain; char format = 0; struct value *val; struct format_data fmt; struct value_print_options opts; fmt.size = 0; fmt.raw = 0; if (exp && *exp == '/') { exp++; fmt = decode_format (&exp, 0, 0); validate_format (fmt, "output"); format = fmt.format; } expr = parse_expression (exp); old_chain = make_cleanup (free_current_contents, &expr); val = evaluate_expression (expr); annotate_value_begin (value_type (val)); get_formatted_print_options (&opts, format); opts.raw = fmt.raw; print_formatted (val, fmt.size, &opts, gdb_stdout); annotate_value_end (); wrap_here (""); gdb_flush (gdb_stdout); do_cleanups (old_chain); } static void set_command (char *exp, int from_tty) { struct expression *expr = parse_expression (exp); struct cleanup *old_chain = make_cleanup (free_current_contents, &expr); evaluate_expression (expr); do_cleanups (old_chain); } static void sym_info (char *arg, int from_tty) { struct minimal_symbol *msymbol; struct objfile *objfile; struct obj_section *osect; CORE_ADDR addr, sect_addr; int matches = 0; unsigned int offset; if (!arg) error_no_arg (_("address")); addr = parse_and_eval_address (arg); ALL_OBJSECTIONS (objfile, osect) { /* Only process each object file once, even if there's a separate debug file. */ if (objfile->separate_debug_objfile_backlink) continue; sect_addr = overlay_mapped_address (addr, osect); if (obj_section_addr (osect) <= sect_addr && sect_addr < obj_section_endaddr (osect) && (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, osect))) { const char *obj_name, *mapped, *sec_name, *msym_name; char *loc_string; struct cleanup *old_chain; matches = 1; offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol); mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped"); sec_name = osect->the_bfd_section->name; msym_name = SYMBOL_PRINT_NAME (msymbol); /* Don't print the offset if it is zero. We assume there's no need to handle i18n of "sym + offset". */ if (offset) loc_string = xstrprintf ("%s + %u", msym_name, offset); else loc_string = xstrprintf ("%s", msym_name); /* Use a cleanup to free loc_string in case the user quits a pagination request inside printf_filtered. */ old_chain = make_cleanup (xfree, loc_string); gdb_assert (osect->objfile && osect->objfile->name); obj_name = osect->objfile->name; if (MULTI_OBJFILE_P ()) if (pc_in_unmapped_range (addr, osect)) if (section_is_overlay (osect)) printf_filtered (_("%s in load address range of " "%s overlay section %s of %s\n"), loc_string, mapped, sec_name, obj_name); else printf_filtered (_("%s in load address range of " "section %s of %s\n"), loc_string, sec_name, obj_name); else if (section_is_overlay (osect)) printf_filtered (_("%s in %s overlay section %s of %s\n"), loc_string, mapped, sec_name, obj_name); else printf_filtered (_("%s in section %s of %s\n"), loc_string, sec_name, obj_name); else if (pc_in_unmapped_range (addr, osect)) if (section_is_overlay (osect)) printf_filtered (_("%s in load address range of %s overlay " "section %s\n"), loc_string, mapped, sec_name); else printf_filtered (_("%s in load address range of section %s\n"), loc_string, sec_name); else if (section_is_overlay (osect)) printf_filtered (_("%s in %s overlay section %s\n"), loc_string, mapped, sec_name); else printf_filtered (_("%s in section %s\n"), loc_string, sec_name); do_cleanups (old_chain); } } if (matches == 0) printf_filtered (_("No symbol matches %s.\n"), arg); } static void address_info (char *exp, int from_tty) { struct gdbarch *gdbarch; int regno; struct symbol *sym; struct minimal_symbol *msymbol; long val; struct obj_section *section; CORE_ADDR load_addr; int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero if exp is a field of `this'. */ if (exp == 0) error (_("Argument required.")); sym = lookup_symbol (exp, get_selected_block (0), VAR_DOMAIN, &is_a_field_of_this); if (sym == NULL) { if (is_a_field_of_this) { printf_filtered ("Symbol \""); fprintf_symbol_filtered (gdb_stdout, exp, current_language->la_language, DMGL_ANSI); printf_filtered ("\" is a field of the local class variable "); if (current_language->la_language == language_objc) printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */ else printf_filtered ("`this'\n"); return; } msymbol = lookup_minimal_symbol (exp, NULL, NULL); if (msymbol != NULL) { gdbarch = get_objfile_arch (msymbol_objfile (msymbol)); load_addr = SYMBOL_VALUE_ADDRESS (msymbol); printf_filtered ("Symbol \""); fprintf_symbol_filtered (gdb_stdout, exp, current_language->la_language, DMGL_ANSI); printf_filtered ("\" is at "); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); printf_filtered (" in a file compiled without debugging"); section = SYMBOL_OBJ_SECTION (msymbol); if (section_is_overlay (section)) { load_addr = overlay_unmapped_address (load_addr, section); printf_filtered (",\n -- loaded at "); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); printf_filtered (" in overlay section %s", section->the_bfd_section->name); } printf_filtered (".\n"); } else error (_("No symbol \"%s\" in current context."), exp); return; } printf_filtered ("Symbol \""); fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym), current_language->la_language, DMGL_ANSI); printf_filtered ("\" is "); val = SYMBOL_VALUE (sym); section = SYMBOL_OBJ_SECTION (sym); gdbarch = get_objfile_arch (SYMBOL_SYMTAB (sym)->objfile); switch (SYMBOL_CLASS (sym)) { case LOC_CONST: case LOC_CONST_BYTES: printf_filtered ("constant"); break; case LOC_LABEL: printf_filtered ("a label at address "); load_addr = SYMBOL_VALUE_ADDRESS (sym); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); if (section_is_overlay (section)) { load_addr = overlay_unmapped_address (load_addr, section); printf_filtered (",\n -- loaded at "); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); printf_filtered (" in overlay section %s", section->the_bfd_section->name); } break; case LOC_COMPUTED: /* FIXME: cagney/2004-01-26: It should be possible to unconditionally call the SYMBOL_COMPUTED_OPS method when available. Unfortunately DWARF 2 stores the frame-base (instead of the function) location in a function's symbol. Oops! For the moment enable this when/where applicable. */ SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, gdb_stdout); break; case LOC_REGISTER: /* GDBARCH is the architecture associated with the objfile the symbol is defined in; the target architecture may be different, and may provide additional registers. However, we do not know the target architecture at this point. We assume the objfile architecture will contain all the standard registers that occur in debug info in that objfile. */ regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch); if (SYMBOL_IS_ARGUMENT (sym)) printf_filtered (_("an argument in register %s"), gdbarch_register_name (gdbarch, regno)); else printf_filtered (_("a variable in register %s"), gdbarch_register_name (gdbarch, regno)); break; case LOC_STATIC: printf_filtered (_("static storage at address ")); load_addr = SYMBOL_VALUE_ADDRESS (sym); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); if (section_is_overlay (section)) { load_addr = overlay_unmapped_address (load_addr, section); printf_filtered (_(",\n -- loaded at ")); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); printf_filtered (_(" in overlay section %s"), section->the_bfd_section->name); } break; case LOC_REGPARM_ADDR: /* Note comment at LOC_REGISTER. */ regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch); printf_filtered (_("address of an argument in register %s"), gdbarch_register_name (gdbarch, regno)); break; case LOC_ARG: printf_filtered (_("an argument at offset %ld"), val); break; case LOC_LOCAL: printf_filtered (_("a local variable at frame offset %ld"), val); break; case LOC_REF_ARG: printf_filtered (_("a reference argument at offset %ld"), val); break; case LOC_TYPEDEF: printf_filtered (_("a typedef")); break; case LOC_BLOCK: printf_filtered (_("a function at address ")); load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); if (section_is_overlay (section)) { load_addr = overlay_unmapped_address (load_addr, section); printf_filtered (_(",\n -- loaded at ")); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); printf_filtered (_(" in overlay section %s"), section->the_bfd_section->name); } break; case LOC_UNRESOLVED: { struct minimal_symbol *msym; msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym), NULL, NULL); if (msym == NULL) printf_filtered ("unresolved"); else { section = SYMBOL_OBJ_SECTION (msym); load_addr = SYMBOL_VALUE_ADDRESS (msym); if (section && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0) printf_filtered (_("a thread-local variable at offset %s " "in the thread-local storage for `%s'"), paddress (gdbarch, load_addr), section->objfile->name); else { printf_filtered (_("static storage at address ")); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); if (section_is_overlay (section)) { load_addr = overlay_unmapped_address (load_addr, section); printf_filtered (_(",\n -- loaded at ")); fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout); printf_filtered (_(" in overlay section %s"), section->the_bfd_section->name); } } } } break; case LOC_OPTIMIZED_OUT: printf_filtered (_("optimized out")); break; default: printf_filtered (_("of unknown (botched) type")); break; } printf_filtered (".\n"); } static void x_command (char *exp, int from_tty) { struct expression *expr; struct format_data fmt; struct cleanup *old_chain; struct value *val; fmt.format = last_format ? last_format : 'x'; fmt.size = last_size; fmt.count = 1; fmt.raw = 0; if (exp && *exp == '/') { exp++; fmt = decode_format (&exp, last_format, last_size); } /* If we have an expression, evaluate it and use it as the address. */ if (exp != 0 && *exp != 0) { expr = parse_expression (exp); /* Cause expression not to be there any more if this command is repeated with Newline. But don't clobber a user-defined command's definition. */ if (from_tty) *exp = 0; old_chain = make_cleanup (free_current_contents, &expr); val = evaluate_expression (expr); if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF) val = value_ind (val); /* In rvalue contexts, such as this, functions are coerced into pointers to functions. This makes "x/i main" work. */ if (/* last_format == 'i' && */ TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC && VALUE_LVAL (val) == lval_memory) next_address = value_address (val); else next_address = value_as_address (val); next_gdbarch = expr->gdbarch; do_cleanups (old_chain); } if (!next_gdbarch) error_no_arg (_("starting display address")); do_examine (fmt, next_gdbarch, next_address); /* If the examine succeeds, we remember its size and format for next time. */ last_size = fmt.size; last_format = fmt.format; /* Set a couple of internal variables if appropriate. */ if (last_examine_value) { /* Make last address examined available to the user as $_. Use the correct pointer type. */ struct type *pointer_type = lookup_pointer_type (value_type (last_examine_value)); set_internalvar (lookup_internalvar ("_"), value_from_pointer (pointer_type, last_examine_address)); /* Make contents of last address examined available to the user as $__. If the last value has not been fetched from memory then don't fetch it now; instead mark it by voiding the $__ variable. */ if (value_lazy (last_examine_value)) clear_internalvar (lookup_internalvar ("__")); else set_internalvar (lookup_internalvar ("__"), last_examine_value); } } /* Add an expression to the auto-display chain. Specify the expression. */ static void display_command (char *exp, int from_tty) { struct format_data fmt; struct expression *expr; struct display *new; int display_it = 1; #if defined(TUI) /* NOTE: cagney/2003-02-13 The `tui_active' was previously `tui_version'. */ if (tui_active && exp != NULL && *exp == '$') display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE); #endif if (display_it) { if (exp == 0) { do_displays (); return; } if (*exp == '/') { exp++; fmt = decode_format (&exp, 0, 0); if (fmt.size && fmt.format == 0) fmt.format = 'x'; if (fmt.format == 'i' || fmt.format == 's') fmt.size = 'b'; } else { fmt.format = 0; fmt.size = 0; fmt.count = 0; fmt.raw = 0; } innermost_block = NULL; expr = parse_expression (exp); new = (struct display *) xmalloc (sizeof (struct display)); new->exp_string = xstrdup (exp); new->exp = expr; new->block = innermost_block; new->pspace = current_program_space; new->next = display_chain; new->number = ++display_number; new->format = fmt; new->enabled_p = 1; display_chain = new; if (from_tty && target_has_execution) do_one_display (new); dont_repeat (); } } static void free_display (struct display *d) { xfree (d->exp_string); xfree (d->exp); xfree (d); } /* Clear out the display_chain. Done when new symtabs are loaded, since this invalidates the types stored in many expressions. */ void clear_displays (void) { struct display *d; while ((d = display_chain) != NULL) { display_chain = d->next; free_display (d); } } /* Delete the auto-display number NUM. */ static void delete_display (int num) { struct display *d1, *d; if (!display_chain) error (_("No display number %d."), num); if (display_chain->number == num) { d1 = display_chain; display_chain = d1->next; free_display (d1); } else for (d = display_chain;; d = d->next) { if (d->next == 0) error (_("No display number %d."), num); if (d->next->number == num) { d1 = d->next; d->next = d1->next; free_display (d1); break; } } } /* Delete some values from the auto-display chain. Specify the element numbers. */ static void undisplay_command (char *args, int from_tty) { char *p = args; char *p1; int num; if (args == 0) { if (query (_("Delete all auto-display expressions? "))) clear_displays (); dont_repeat (); return; } while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error (_("Arguments must be display numbers.")); num = atoi (p); delete_display (num); p = p1; while (*p == ' ' || *p == '\t') p++; } dont_repeat (); } /* Display a single auto-display. Do nothing if the display cannot be printed in the current context, or if the display is disabled. */ static void do_one_display (struct display *d) { int within_current_scope; if (d->enabled_p == 0) return; /* The expression carries the architecture that was used at parse time. This is a problem if the expression depends on architecture features (e.g. register numbers), and the current architecture is now different. For example, a display statement like "display/i $pc" is expected to display the PC register of the current architecture, not the arch at the time the display command was given. Therefore, we re-parse the expression if the current architecture has changed. */ if (d->exp != NULL && d->exp->gdbarch != get_current_arch ()) { xfree (d->exp); d->exp = NULL; d->block = NULL; } if (d->exp == NULL) { volatile struct gdb_exception ex; TRY_CATCH (ex, RETURN_MASK_ALL) { innermost_block = NULL; d->exp = parse_expression (d->exp_string); d->block = innermost_block; } if (ex.reason < 0) { /* Can't re-parse the expression. Disable this display item. */ d->enabled_p = 0; warning (_("Unable to display \"%s\": %s"), d->exp_string, ex.message); return; } } if (d->block) { if (d->pspace == current_program_space) within_current_scope = contained_in (get_selected_block (0), d->block); else within_current_scope = 0; } else within_current_scope = 1; if (!within_current_scope) return; current_display_number = d->number; annotate_display_begin (); printf_filtered ("%d", d->number); annotate_display_number_end (); printf_filtered (": "); if (d->format.size) { CORE_ADDR addr; struct value *val; annotate_display_format (); printf_filtered ("x/"); if (d->format.count != 1) printf_filtered ("%d", d->format.count); printf_filtered ("%c", d->format.format); if (d->format.format != 'i' && d->format.format != 's') printf_filtered ("%c", d->format.size); printf_filtered (" "); annotate_display_expression (); puts_filtered (d->exp_string); annotate_display_expression_end (); if (d->format.count != 1 || d->format.format == 'i') printf_filtered ("\n"); else printf_filtered (" "); val = evaluate_expression (d->exp); addr = value_as_address (val); if (d->format.format == 'i') addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr); annotate_display_value (); do_examine (d->format, d->exp->gdbarch, addr); } else { struct value_print_options opts; annotate_display_format (); if (d->format.format) printf_filtered ("/%c ", d->format.format); annotate_display_expression (); puts_filtered (d->exp_string); annotate_display_expression_end (); printf_filtered (" = "); annotate_display_expression (); get_formatted_print_options (&opts, d->format.format); opts.raw = d->format.raw; print_formatted (evaluate_expression (d->exp), d->format.size, &opts, gdb_stdout); printf_filtered ("\n"); } annotate_display_end (); gdb_flush (gdb_stdout); current_display_number = -1; } /* Display all of the values on the auto-display chain which can be evaluated in the current scope. */ void do_displays (void) { struct display *d; for (d = display_chain; d; d = d->next) do_one_display (d); } /* Delete the auto-display which we were in the process of displaying. This is done when there is an error or a signal. */ void disable_display (int num) { struct display *d; for (d = display_chain; d; d = d->next) if (d->number == num) { d->enabled_p = 0; return; } printf_unfiltered (_("No display number %d.\n"), num); } void disable_current_display (void) { if (current_display_number >= 0) { disable_display (current_display_number); fprintf_unfiltered (gdb_stderr, _("\ Disabling display %d to avoid infinite recursion.\n"), current_display_number); } current_display_number = -1; } static void display_info (char *ignore, int from_tty) { struct display *d; if (!display_chain) printf_unfiltered (_("There are no auto-display expressions now.\n")); else printf_filtered (_("Auto-display expressions now in effect:\n\ Num Enb Expression\n")); for (d = display_chain; d; d = d->next) { printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]); if (d->format.size) printf_filtered ("/%d%c%c ", d->format.count, d->format.size, d->format.format); else if (d->format.format) printf_filtered ("/%c ", d->format.format); puts_filtered (d->exp_string); if (d->block && !contained_in (get_selected_block (0), d->block)) printf_filtered (_(" (cannot be evaluated in the current context)")); printf_filtered ("\n"); gdb_flush (gdb_stdout); } } static void enable_display (char *args, int from_tty) { char *p = args; char *p1; int num; struct display *d; if (p == 0) { for (d = display_chain; d; d = d->next) d->enabled_p = 1; } else while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error (_("Arguments must be display numbers.")); num = atoi (p); for (d = display_chain; d; d = d->next) if (d->number == num) { d->enabled_p = 1; goto win; } printf_unfiltered (_("No display number %d.\n"), num); win: p = p1; while (*p == ' ' || *p == '\t') p++; } } static void disable_display_command (char *args, int from_tty) { char *p = args; char *p1; struct display *d; if (p == 0) { for (d = display_chain; d; d = d->next) d->enabled_p = 0; } else while (*p) { p1 = p; while (*p1 >= '0' && *p1 <= '9') p1++; if (*p1 && *p1 != ' ' && *p1 != '\t') error (_("Arguments must be display numbers.")); disable_display (atoi (p)); p = p1; while (*p == ' ' || *p == '\t') p++; } } /* Return 1 if D uses SOLIB (and will become dangling when SOLIB is unloaded), otherwise return 0. */ static int display_uses_solib_p (const struct display *d, const struct so_list *solib) { int endpos; struct expression *const exp = d->exp; const union exp_element *const elts = exp->elts; if (d->block != NULL && d->pspace == solib->pspace && solib_contains_address_p (solib, d->block->startaddr)) return 1; for (endpos = exp->nelts; endpos > 0; ) { int i, args, oplen = 0; exp->language_defn->la_exp_desc->operator_length (exp, endpos, &oplen, &args); gdb_assert (oplen > 0); i = endpos - oplen; if (elts[i].opcode == OP_VAR_VALUE) { const struct block *const block = elts[i + 1].block; const struct symbol *const symbol = elts[i + 2].symbol; if (block != NULL && solib_contains_address_p (solib, block->startaddr)) return 1; /* SYMBOL_OBJ_SECTION (symbol) may be NULL. */ if (SYMBOL_SYMTAB (symbol)->objfile == solib->objfile) return 1; } endpos -= oplen; } return 0; } /* display_chain items point to blocks and expressions. Some expressions in turn may point to symbols. Both symbols and blocks are obstack_alloc'd on objfile_stack, and are obstack_free'd when a shared library is unloaded. Clear pointers that are about to become dangling. Both .exp and .block fields will be restored next time we need to display an item by re-parsing .exp_string field in the new execution context. */ static void clear_dangling_display_expressions (struct so_list *solib) { struct display *d; struct objfile *objfile = NULL; for (d = display_chain; d; d = d->next) { if (d->exp && display_uses_solib_p (d, solib)) { xfree (d->exp); d->exp = NULL; d->block = NULL; } } } /* Print the value in stack frame FRAME of a variable specified by a struct symbol. NAME is the name to print; if NULL then VAR's print name will be used. STREAM is the ui_file on which to print the value. INDENT specifies the number of indent levels to print before printing the variable name. */ void print_variable_and_value (const char *name, struct symbol *var, struct frame_info *frame, struct ui_file *stream, int indent) { struct value *val; struct value_print_options opts; if (!name) name = SYMBOL_PRINT_NAME (var); fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name); val = read_var_value (var, frame); get_user_print_options (&opts); common_val_print (val, stream, indent, &opts, current_language); fprintf_filtered (stream, "\n"); } static void printf_command (char *arg, int from_tty) { char *f = NULL; char *s = arg; char *string = NULL; struct value **val_args; char *substrings; char *current_substring; int nargs = 0; int allocated_args = 20; struct cleanup *old_cleanups; val_args = xmalloc (allocated_args * sizeof (struct value *)); old_cleanups = make_cleanup (free_current_contents, &val_args); if (s == 0) error_no_arg (_("format-control string and values to print")); /* Skip white space before format string */ while (*s == ' ' || *s == '\t') s++; /* A format string should follow, enveloped in double quotes. */ if (*s++ != '"') error (_("Bad format string, missing '\"'.")); /* Parse the format-control string and copy it into the string STRING, processing some kinds of escape sequence. */ f = string = (char *) alloca (strlen (s) + 1); while (*s != '"') { int c = *s++; switch (c) { case '\0': error (_("Bad format string, non-terminated '\"'.")); case '\\': switch (c = *s++) { case '\\': *f++ = '\\'; break; case 'a': *f++ = '\a'; break; case 'b': *f++ = '\b'; break; case 'f': *f++ = '\f'; break; case 'n': *f++ = '\n'; break; case 'r': *f++ = '\r'; break; case 't': *f++ = '\t'; break; case 'v': *f++ = '\v'; break; case '"': *f++ = '"'; break; default: /* ??? TODO: handle other escape sequences */ error (_("Unrecognized escape character \\%c in format string."), c); } break; default: *f++ = c; } } /* Skip over " and following space and comma. */ s++; *f++ = '\0'; while (*s == ' ' || *s == '\t') s++; if (*s != ',' && *s != 0) error (_("Invalid argument syntax")); if (*s == ',') s++; while (*s == ' ' || *s == '\t') s++; /* Need extra space for the '\0's. Doubling the size is sufficient. */ substrings = alloca (strlen (string) * 2); current_substring = substrings; { /* Now scan the string for %-specs and see what kinds of args they want. argclass[I] classifies the %-specs so we can give printf_filtered something of the right size. */ enum argclass { int_arg, long_arg, long_long_arg, ptr_arg, string_arg, wide_string_arg, wide_char_arg, double_arg, long_double_arg, decfloat_arg }; enum argclass *argclass; enum argclass this_argclass; char *last_arg; int nargs_wanted; int i; argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass); nargs_wanted = 0; f = string; last_arg = string; while (*f) if (*f++ == '%') { int seen_hash = 0, seen_zero = 0, lcount = 0, seen_prec = 0; int seen_space = 0, seen_plus = 0; int seen_big_l = 0, seen_h = 0, seen_big_h = 0; int seen_big_d = 0, seen_double_big_d = 0; int bad = 0; /* Check the validity of the format specifier, and work out what argument it expects. We only accept C89 format strings, with the exception of long long (which we autoconf for). */ /* Skip over "%%". */ if (*f == '%') { f++; continue; } /* The first part of a format specifier is a set of flag characters. */ while (strchr ("0-+ #", *f)) { if (*f == '#') seen_hash = 1; else if (*f == '0') seen_zero = 1; else if (*f == ' ') seen_space = 1; else if (*f == '+') seen_plus = 1; f++; } /* The next part of a format specifier is a width. */ while (strchr ("0123456789", *f)) f++; /* The next part of a format specifier is a precision. */ if (*f == '.') { seen_prec = 1; f++; while (strchr ("0123456789", *f)) f++; } /* The next part of a format specifier is a length modifier. */ if (*f == 'h') { seen_h = 1; f++; } else if (*f == 'l') { f++; lcount++; if (*f == 'l') { f++; lcount++; } } else if (*f == 'L') { seen_big_l = 1; f++; } /* Decimal32 modifier. */ else if (*f == 'H') { seen_big_h = 1; f++; } /* Decimal64 and Decimal128 modifiers. */ else if (*f == 'D') { f++; /* Check for a Decimal128. */ if (*f == 'D') { f++; seen_double_big_d = 1; } else seen_big_d = 1; } switch (*f) { case 'u': if (seen_hash) bad = 1; /* FALLTHROUGH */ case 'o': case 'x': case 'X': if (seen_space || seen_plus) bad = 1; /* FALLTHROUGH */ case 'd': case 'i': if (lcount == 0) this_argclass = int_arg; else if (lcount == 1) this_argclass = long_arg; else this_argclass = long_long_arg; if (seen_big_l) bad = 1; break; case 'c': this_argclass = lcount == 0 ? int_arg : wide_char_arg; if (lcount > 1 || seen_h || seen_big_l) bad = 1; if (seen_prec || seen_zero || seen_space || seen_plus) bad = 1; break; case 'p': this_argclass = ptr_arg; if (lcount || seen_h || seen_big_l) bad = 1; if (seen_prec || seen_zero || seen_space || seen_plus) bad = 1; break; case 's': this_argclass = lcount == 0 ? string_arg : wide_string_arg; if (lcount > 1 || seen_h || seen_big_l) bad = 1; if (seen_zero || seen_space || seen_plus) bad = 1; break; case 'e': case 'f': case 'g': case 'E': case 'G': if (seen_big_h || seen_big_d || seen_double_big_d) this_argclass = decfloat_arg; else if (seen_big_l) this_argclass = long_double_arg; else this_argclass = double_arg; if (lcount || seen_h) bad = 1; break; case '*': error (_("`*' not supported for precision or width in printf")); case 'n': error (_("Format specifier `n' not supported in printf")); case '\0': error (_("Incomplete format specifier at end of format string")); default: error (_("Unrecognized format specifier '%c' in printf"), *f); } if (bad) error (_("Inappropriate modifiers to format specifier '%c' in printf"), *f); f++; if (lcount > 1 && USE_PRINTF_I64) { /* Windows' printf does support long long, but not the usual way. Convert %lld to %I64d. */ int length_before_ll = f - last_arg - 1 - lcount; strncpy (current_substring, last_arg, length_before_ll); strcpy (current_substring + length_before_ll, "I64"); current_substring[length_before_ll + 3] = last_arg[length_before_ll + lcount]; current_substring += length_before_ll + 4; } else if (this_argclass == wide_string_arg || this_argclass == wide_char_arg) { /* Convert %ls or %lc to %s. */ int length_before_ls = f - last_arg - 2; strncpy (current_substring, last_arg, length_before_ls); strcpy (current_substring + length_before_ls, "s"); current_substring += length_before_ls + 2; } else { strncpy (current_substring, last_arg, f - last_arg); current_substring += f - last_arg; } *current_substring++ = '\0'; last_arg = f; argclass[nargs_wanted++] = this_argclass; } /* Now, parse all arguments and evaluate them. Store the VALUEs in VAL_ARGS. */ while (*s != '\0') { char *s1; if (nargs == allocated_args) val_args = (struct value **) xrealloc ((char *) val_args, (allocated_args *= 2) * sizeof (struct value *)); s1 = s; val_args[nargs] = parse_to_comma_and_eval (&s1); nargs++; s = s1; if (*s == ',') s++; } if (nargs != nargs_wanted) error (_("Wrong number of arguments for specified format-string")); /* Now actually print them. */ current_substring = substrings; for (i = 0; i < nargs; i++) { switch (argclass[i]) { case string_arg: { gdb_byte *str; CORE_ADDR tem; int j; tem = value_as_address (val_args[i]); /* This is a %s argument. Find the length of the string. */ for (j = 0;; j++) { gdb_byte c; QUIT; read_memory (tem + j, &c, 1); if (c == 0) break; } /* Copy the string contents into a string inside GDB. */ str = (gdb_byte *) alloca (j + 1); if (j != 0) read_memory (tem, str, j); str[j] = 0; printf_filtered (current_substring, (char *) str); } break; case wide_string_arg: { gdb_byte *str; CORE_ADDR tem; int j; struct gdbarch *gdbarch = get_type_arch (value_type (val_args[i])); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); struct type *wctype = lookup_typename (current_language, gdbarch, "wchar_t", NULL, 0); int wcwidth = TYPE_LENGTH (wctype); gdb_byte *buf = alloca (wcwidth); struct obstack output; struct cleanup *inner_cleanup; tem = value_as_address (val_args[i]); /* This is a %s argument. Find the length of the string. */ for (j = 0;; j += wcwidth) { QUIT; read_memory (tem + j, buf, wcwidth); if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0) break; } /* Copy the string contents into a string inside GDB. */ str = (gdb_byte *) alloca (j + wcwidth); if (j != 0) read_memory (tem, str, j); memset (&str[j], 0, wcwidth); obstack_init (&output); inner_cleanup = make_cleanup_obstack_free (&output); convert_between_encodings (target_wide_charset (byte_order), host_charset (), str, j, wcwidth, &output, translit_char); obstack_grow_str0 (&output, ""); printf_filtered (current_substring, obstack_base (&output)); do_cleanups (inner_cleanup); } break; case wide_char_arg: { struct gdbarch *gdbarch = get_type_arch (value_type (val_args[i])); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); struct type *wctype = lookup_typename (current_language, gdbarch, "wchar_t", NULL, 0); struct type *valtype; struct obstack output; struct cleanup *inner_cleanup; const gdb_byte *bytes; valtype = value_type (val_args[i]); if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype) || TYPE_CODE (valtype) != TYPE_CODE_INT) error (_("expected wchar_t argument for %%lc")); bytes = value_contents (val_args[i]); obstack_init (&output); inner_cleanup = make_cleanup_obstack_free (&output); convert_between_encodings (target_wide_charset (byte_order), host_charset (), bytes, TYPE_LENGTH (valtype), TYPE_LENGTH (valtype), &output, translit_char); obstack_grow_str0 (&output, ""); printf_filtered (current_substring, obstack_base (&output)); do_cleanups (inner_cleanup); } break; case double_arg: { struct type *type = value_type (val_args[i]); DOUBLEST val; int inv; /* If format string wants a float, unchecked-convert the value to floating point of the same size. */ type = float_type_from_length (type); val = unpack_double (type, value_contents (val_args[i]), &inv); if (inv) error (_("Invalid floating value found in program.")); printf_filtered (current_substring, (double) val); break; } case long_double_arg: #ifdef HAVE_LONG_DOUBLE { struct type *type = value_type (val_args[i]); DOUBLEST val; int inv; /* If format string wants a float, unchecked-convert the value to floating point of the same size. */ type = float_type_from_length (type); val = unpack_double (type, value_contents (val_args[i]), &inv); if (inv) error (_("Invalid floating value found in program.")); printf_filtered (current_substring, (long double) val); break; } #else error (_("long double not supported in printf")); #endif case long_long_arg: #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG) { long long val = value_as_long (val_args[i]); printf_filtered (current_substring, val); break; } #else error (_("long long not supported in printf")); #endif case int_arg: { int val = value_as_long (val_args[i]); printf_filtered (current_substring, val); break; } case long_arg: { long val = value_as_long (val_args[i]); printf_filtered (current_substring, val); break; } /* Handles decimal floating values. */ case decfloat_arg: { const gdb_byte *param_ptr = value_contents (val_args[i]); #if defined (PRINTF_HAS_DECFLOAT) /* If we have native support for Decimal floating printing, handle it here. */ printf_filtered (current_substring, param_ptr); #else /* As a workaround until vasprintf has native support for DFP we convert the DFP values to string and print them using the %s format specifier. */ char *eos, *sos; int nnull_chars = 0; /* Parameter data. */ struct type *param_type = value_type (val_args[i]); unsigned int param_len = TYPE_LENGTH (param_type); struct gdbarch *gdbarch = get_type_arch (param_type); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); /* DFP output data. */ struct value *dfp_value = NULL; gdb_byte *dfp_ptr; int dfp_len = 16; gdb_byte dec[16]; struct type *dfp_type = NULL; char decstr[MAX_DECIMAL_STRING]; /* Points to the end of the string so that we can go back and check for DFP length modifiers. */ eos = current_substring + strlen (current_substring); /* Look for the float/double format specifier. */ while (*eos != 'f' && *eos != 'e' && *eos != 'E' && *eos != 'g' && *eos != 'G') eos--; sos = eos; /* Search for the '%' char and extract the size and type of the output decimal value based on its modifiers (%Hf, %Df, %DDf). */ while (*--sos != '%') { if (*sos == 'H') { dfp_len = 4; dfp_type = builtin_type (gdbarch)->builtin_decfloat; } else if (*sos == 'D' && *(sos - 1) == 'D') { dfp_len = 16; dfp_type = builtin_type (gdbarch)->builtin_declong; sos--; } else { dfp_len = 8; dfp_type = builtin_type (gdbarch)->builtin_decdouble; } } /* Replace %Hf, %Df and %DDf with %s's. */ *++sos = 's'; /* Go through the whole format string and pull the correct number of chars back to compensate for the change in the format specifier. */ while (nnull_chars < nargs - i) { if (*eos == '\0') nnull_chars++; *++sos = *++eos; } /* Conversion between different DFP types. */ if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT) decimal_convert (param_ptr, param_len, byte_order, dec, dfp_len, byte_order); else /* If this is a non-trivial conversion, just output 0. A correct converted value can be displayed by explicitly casting to a DFP type. */ decimal_from_string (dec, dfp_len, byte_order, "0"); dfp_value = value_from_decfloat (dfp_type, dec); dfp_ptr = (gdb_byte *) value_contents (dfp_value); decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr); /* Print the DFP value. */ printf_filtered (current_substring, decstr); break; #endif } case ptr_arg: { /* We avoid the host's %p because pointers are too likely to be the wrong size. The only interesting modifier for %p is a width; extract that, and then handle %p as glibc would: %#x or a literal "(nil)". */ char *p, *fmt, *fmt_p; #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG) long long val = value_as_long (val_args[i]); #else long val = value_as_long (val_args[i]); #endif fmt = alloca (strlen (current_substring) + 5); /* Copy up to the leading %. */ p = current_substring; fmt_p = fmt; while (*p) { int is_percent = (*p == '%'); *fmt_p++ = *p++; if (is_percent) { if (*p == '%') *fmt_p++ = *p++; else break; } } if (val != 0) *fmt_p++ = '#'; /* Copy any width. */ while (*p >= '0' && *p < '9') *fmt_p++ = *p++; gdb_assert (*p == 'p' && *(p + 1) == '\0'); if (val != 0) { #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG) *fmt_p++ = 'l'; #endif *fmt_p++ = 'l'; *fmt_p++ = 'x'; *fmt_p++ = '\0'; printf_filtered (fmt, val); } else { *fmt_p++ = 's'; *fmt_p++ = '\0'; printf_filtered (fmt, "(nil)"); } break; } default: internal_error (__FILE__, __LINE__, _("failed internal consistency check")); } /* Skip to the next substring. */ current_substring += strlen (current_substring) + 1; } /* Print the portion of the format string after the last argument. Note that this will not include any ordinary %-specs, but it might include "%%". That is why we use printf_filtered and not puts_filtered here. Also, we pass a dummy argument because some platforms have modified GCC to include -Wformat-security by default, which will warn here if there is no argument. */ printf_filtered (last_arg, 0); } do_cleanups (old_cleanups); } void _initialize_printcmd (void) { struct cmd_list_element *c; current_display_number = -1; observer_attach_solib_unloaded (clear_dangling_display_expressions); add_info ("address", address_info, _("Describe where symbol SYM is stored.")); add_info ("symbol", sym_info, _("\ Describe what symbol is at location ADDR.\n\ Only for symbols with fixed locations (global or static scope).")); add_com ("x", class_vars, x_command, _("\ Examine memory: x/FMT ADDRESS.\n\ ADDRESS is an expression for the memory address to examine.\n\ FMT is a repeat count followed by a format letter and a size letter.\n\ Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\ t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\ Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\ The specified number of objects of the specified size are printed\n\ according to the format.\n\n\ Defaults for format and size letters are those previously used.\n\ Default count is 1. Default address is following last thing printed\n\ with this command or \"print\".")); #if 0 add_com ("whereis", class_vars, whereis_command, _("Print line number and file of definition of variable.")); #endif add_info ("display", display_info, _("\ Expressions to display when program stops, with code numbers.")); add_cmd ("undisplay", class_vars, undisplay_command, _("\ Cancel some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to stop displaying.\n\ No argument means cancel all automatic-display expressions.\n\ \"delete display\" has the same effect as this command.\n\ Do \"info display\" to see current list of code numbers."), &cmdlist); add_com ("display", class_vars, display_command, _("\ Print value of expression EXP each time the program stops.\n\ /FMT may be used before EXP as in the \"print\" command.\n\ /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\ as in the \"x\" command, and then EXP is used to get the address to examine\n\ and examining is done as in the \"x\" command.\n\n\ With no argument, display all currently requested auto-display expressions.\n\ Use \"undisplay\" to cancel display requests previously made.")); add_cmd ("display", class_vars, enable_display, _("\ Enable some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to resume displaying.\n\ No argument means enable all automatic-display expressions.\n\ Do \"info display\" to see current list of code numbers."), &enablelist); add_cmd ("display", class_vars, disable_display_command, _("\ Disable some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to stop displaying.\n\ No argument means disable all automatic-display expressions.\n\ Do \"info display\" to see current list of code numbers."), &disablelist); add_cmd ("display", class_vars, undisplay_command, _("\ Cancel some expressions to be displayed when program stops.\n\ Arguments are the code numbers of the expressions to stop displaying.\n\ No argument means cancel all automatic-display expressions.\n\ Do \"info display\" to see current list of code numbers."), &deletelist); add_com ("printf", class_vars, printf_command, _("\ printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\ This is useful for formatted output in user-defined commands.")); add_com ("output", class_vars, output_command, _("\ Like \"print\" but don't put in value history and don't print newline.\n\ This is useful in user-defined commands.")); add_prefix_cmd ("set", class_vars, set_command, _("\ Evaluate expression EXP and assign result to variable VAR, using assignment\n\ syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\ example). VAR may be a debugger \"convenience\" variable (names starting\n\ with $), a register (a few standard names starting with $), or an actual\n\ variable in the program being debugged. EXP is any valid expression.\n\ Use \"set variable\" for variables with names identical to set subcommands.\n\ \n\ With a subcommand, this command modifies parts of the gdb environment.\n\ You can see these environment settings with the \"show\" command."), &setlist, "set ", 1, &cmdlist); if (dbx_commands) add_com ("assign", class_vars, set_command, _("\ Evaluate expression EXP and assign result to variable VAR, using assignment\n\ syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\ example). VAR may be a debugger \"convenience\" variable (names starting\n\ with $), a register (a few standard names starting with $), or an actual\n\ variable in the program being debugged. EXP is any valid expression.\n\ Use \"set variable\" for variables with names identical to set subcommands.\n\ \nWith a subcommand, this command modifies parts of the gdb environment.\n\ You can see these environment settings with the \"show\" command.")); /* "call" is the same as "set", but handy for dbx users to call fns. */ c = add_com ("call", class_vars, call_command, _("\ Call a function in the program.\n\ The argument is the function name and arguments, in the notation of the\n\ current working language. The result is printed and saved in the value\n\ history, if it is not void.")); set_cmd_completer (c, expression_completer); add_cmd ("variable", class_vars, set_command, _("\ Evaluate expression EXP and assign result to variable VAR, using assignment\n\ syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\ example). VAR may be a debugger \"convenience\" variable (names starting\n\ with $), a register (a few standard names starting with $), or an actual\n\ variable in the program being debugged. EXP is any valid expression.\n\ This may usually be abbreviated to simply \"set\"."), &setlist); c = add_com ("print", class_vars, print_command, _("\ Print value of expression EXP.\n\ Variables accessible are those of the lexical environment of the selected\n\ stack frame, plus all those whose scope is global or an entire file.\n\ \n\ $NUM gets previous value number NUM. $ and $$ are the last two values.\n\ $$NUM refers to NUM'th value back from the last one.\n\ Names starting with $ refer to registers (with the values they would have\n\ if the program were to return to the stack frame now selected, restoring\n\ all registers saved by frames farther in) or else to debugger\n\ \"convenience\" variables (any such name not a known register).\n\ Use assignment expressions to give values to convenience variables.\n\ \n\ {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\ @ is a binary operator for treating consecutive data objects\n\ anywhere in memory as an array. FOO@NUM gives an array whose first\n\ element is FOO, whose second element is stored in the space following\n\ where FOO is stored, etc. FOO must be an expression whose value\n\ resides in memory.\n\ \n\ EXP may be preceded with /FMT, where FMT is a format letter\n\ but no count or size letter (see \"x\" command).")); set_cmd_completer (c, expression_completer); add_com_alias ("p", "print", class_vars, 1); c = add_com ("inspect", class_vars, inspect_command, _("\ Same as \"print\" command, except that if you are running in the epoch\n\ environment, the value is printed in its own window.")); set_cmd_completer (c, expression_completer); add_setshow_uinteger_cmd ("max-symbolic-offset", no_class, &max_symbolic_offset, _("\ Set the largest offset that will be printed in <symbol+1234> form."), _("\ Show the largest offset that will be printed in <symbol+1234> form."), NULL, NULL, show_max_symbolic_offset, &setprintlist, &showprintlist); add_setshow_boolean_cmd ("symbol-filename", no_class, &print_symbol_filename, _("\ Set printing of source filename and line number with <symbol>."), _("\ Show printing of source filename and line number with <symbol>."), NULL, NULL, show_print_symbol_filename, &setprintlist, &showprintlist); }
Go to most recent revision | Compare with Previous | Blame | View Log