URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [sim/] [lm32/] [sem.c] - Rev 321
Go to most recent revision | Compare with Previous | Blame | View Log
/* Simulator instruction semantics for lm32bf. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2010 Free Software Foundation, Inc. This file is part of the GNU simulators. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #define WANT_CPU lm32bf #define WANT_CPU_LM32BF #include "sim-main.h" #include "cgen-mem.h" #include "cgen-ops.h" #undef GET_ATTR #define GET_ATTR(cpu, num, attr) CGEN_ATTR_VALUE (NULL, abuf->idesc->attrs, CGEN_INSN_##attr) /* This is used so that we can compile two copies of the semantic code, one with full feature support and one without that runs fast(er). FAST_P, when desired, is defined on the command line, -DFAST_P=1. */ #if FAST_P #define SEM_FN_NAME(cpu,fn) XCONCAT3 (cpu,_semf_,fn) #undef TRACE_RESULT #define TRACE_RESULT(cpu, abuf, name, type, val) #else #define SEM_FN_NAME(cpu,fn) XCONCAT3 (cpu,_sem_,fn) #endif /* x-invalid: --invalid-- */ static SEM_PC SEM_FN_NAME (lm32bf,x_invalid) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { /* Update the recorded pc in the cpu state struct. Only necessary for WITH_SCACHE case, but to avoid the conditional compilation .... */ SET_H_PC (pc); /* Virtual insns have zero size. Overwrite vpc with address of next insn using the default-insn-bitsize spec. When executing insns in parallel we may want to queue the fault and continue execution. */ vpc = SEM_NEXT_VPC (sem_arg, pc, 4); vpc = sim_engine_invalid_insn (current_cpu, pc, vpc); } return vpc; #undef FLD } /* x-after: --after-- */ static SEM_PC SEM_FN_NAME (lm32bf,x_after) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF lm32bf_pbb_after (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-before: --before-- */ static SEM_PC SEM_FN_NAME (lm32bf,x_before) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF lm32bf_pbb_before (current_cpu, sem_arg); #endif } return vpc; #undef FLD } /* x-cti-chain: --cti-chain-- */ static SEM_PC SEM_FN_NAME (lm32bf,x_cti_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF #ifdef DEFINE_SWITCH vpc = lm32bf_pbb_cti_chain (current_cpu, sem_arg, pbb_br_type, pbb_br_npc); BREAK (sem); #else /* FIXME: Allow provision of explicit ifmt spec in insn spec. */ vpc = lm32bf_pbb_cti_chain (current_cpu, sem_arg, CPU_PBB_BR_TYPE (current_cpu), CPU_PBB_BR_NPC (current_cpu)); #endif #endif } return vpc; #undef FLD } /* x-chain: --chain-- */ static SEM_PC SEM_FN_NAME (lm32bf,x_chain) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF vpc = lm32bf_pbb_chain (current_cpu, sem_arg); #ifdef DEFINE_SWITCH BREAK (sem); #endif #endif } return vpc; #undef FLD } /* x-begin: --begin-- */ static SEM_PC SEM_FN_NAME (lm32bf,x_begin) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 0); { #if WITH_SCACHE_PBB_LM32BF #if defined DEFINE_SWITCH || defined FAST_P /* In the switch case FAST_P is a constant, allowing several optimizations in any called inline functions. */ vpc = lm32bf_pbb_begin (current_cpu, FAST_P); #else #if 0 /* cgen engine can't handle dynamic fast/full switching yet. */ vpc = lm32bf_pbb_begin (current_cpu, STATE_RUN_FAST_P (CPU_STATE (current_cpu))); #else vpc = lm32bf_pbb_begin (current_cpu, 0); #endif #endif #endif } return vpc; #undef FLD } /* add: add $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,add) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* addi: addi $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,addi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* and: and $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,and) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* andi: andi $r1,$r0,$uimm */ static SEM_PC SEM_FN_NAME (lm32bf,andi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* andhii: andhi $r1,$r0,$hi16 */ static SEM_PC SEM_FN_NAME (lm32bf,andhii) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ANDSI (CPU (h_gr[FLD (f_r0)]), SLLSI (FLD (f_uimm), 16)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* b: b $r0 */ static SEM_PC SEM_FN_NAME (lm32bf,b) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_b_insn (current_cpu, CPU (h_gr[FLD (f_r0)]), FLD (f_r0)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bi: bi $call */ static SEM_PC SEM_FN_NAME (lm32bf,bi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = EXTSISI (FLD (i_call)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* be: be $r0,$r1,$branch */ static SEM_PC SEM_FN_NAME (lm32bf,be) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (EQSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bg: bg $r0,$r1,$branch */ static SEM_PC SEM_FN_NAME (lm32bf,bg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GTSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bge: bge $r0,$r1,$branch */ static SEM_PC SEM_FN_NAME (lm32bf,bge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bgeu: bgeu $r0,$r1,$branch */ static SEM_PC SEM_FN_NAME (lm32bf,bgeu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GEUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bgu: bgu $r0,$r1,$branch */ static SEM_PC SEM_FN_NAME (lm32bf,bgu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (GTUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* bne: bne $r0,$r1,$branch */ static SEM_PC SEM_FN_NAME (lm32bf,bne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); if (NESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))) { { USI opval = FLD (i_branch); SEM_BRANCH_VIA_CACHE (current_cpu, sem_arg, opval, vpc); written |= (1 << 3); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } abuf->written = written; SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* call: call $r0 */ static SEM_PC SEM_FN_NAME (lm32bf,call) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_be.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (pc, 4); CPU (h_gr[((UINT) 29)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = CPU (h_gr[FLD (f_r0)]); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* calli: calli $call */ static SEM_PC SEM_FN_NAME (lm32bf,calli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_bi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { { SI opval = ADDSI (pc, 4); CPU (h_gr[((UINT) 29)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } { USI opval = EXTSISI (FLD (i_call)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* cmpe: cmpe $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,cmpe) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EQSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpei: cmpei $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,cmpei) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EQSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpg: cmpg $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,cmpg) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpgi: cmpgi $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,cmpgi) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpge: cmpge $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,cmpge) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpgei: cmpgei $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,cmpgei) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GESI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpgeu: cmpgeu $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,cmpgeu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GEUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpgeui: cmpgeui $r1,$r0,$uimm */ static SEM_PC SEM_FN_NAME (lm32bf,cmpgeui) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GEUSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpgu: cmpgu $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,cmpgu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTUSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpgui: cmpgui $r1,$r0,$uimm */ static SEM_PC SEM_FN_NAME (lm32bf,cmpgui) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GTUSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpne: cmpne $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,cmpne) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = NESI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* cmpnei: cmpnei $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,cmpnei) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = NESI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* divu: divu $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,divu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_divu_insn (current_cpu, pc, FLD (f_r0), FLD (f_r1), FLD (f_r2)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* lb: lb $r1,($r0+$imm) */ static SEM_PC SEM_FN_NAME (lm32bf,lb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTQISI (GETMEMQI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lbu: lbu $r1,($r0+$imm) */ static SEM_PC SEM_FN_NAME (lm32bf,lbu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ZEXTQISI (GETMEMQI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lh: lh $r1,($r0+$imm) */ static SEM_PC SEM_FN_NAME (lm32bf,lh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTHISI (GETMEMHI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lhu: lhu $r1,($r0+$imm) */ static SEM_PC SEM_FN_NAME (lm32bf,lhu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ZEXTHISI (GETMEMHI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* lw: lw $r1,($r0+$imm) */ static SEM_PC SEM_FN_NAME (lm32bf,lw) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = GETMEMSI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm))))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* modu: modu $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,modu) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_modu_insn (current_cpu, pc, FLD (f_r0), FLD (f_r1), FLD (f_r2)); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* mul: mul $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,mul) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = MULSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* muli: muli $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,muli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = MULSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* nor: nor $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,nor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (ORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* nori: nori $r1,$r0,$uimm */ static SEM_PC SEM_FN_NAME (lm32bf,nori) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (ORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* or: or $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,or) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* ori: ori $r1,$r0,$lo16 */ static SEM_PC SEM_FN_NAME (lm32bf,ori) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* orhii: orhi $r1,$r0,$hi16 */ static SEM_PC SEM_FN_NAME (lm32bf,orhii) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = ORSI (CPU (h_gr[FLD (f_r0)]), SLLSI (FLD (f_uimm), 16)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* rcsr: rcsr $r2,$csr */ static SEM_PC SEM_FN_NAME (lm32bf,rcsr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_rcsr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = CPU (h_csr[FLD (f_csr)]); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sb: sb ($r0+$imm),$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,sb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { QI opval = CPU (h_gr[FLD (f_r1)]); SETMEMQI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* sextb: sextb $r2,$r0 */ static SEM_PC SEM_FN_NAME (lm32bf,sextb) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTQISI (TRUNCSIQI (CPU (h_gr[FLD (f_r0)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sexth: sexth $r2,$r0 */ static SEM_PC SEM_FN_NAME (lm32bf,sexth) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = EXTHISI (TRUNCSIHI (CPU (h_gr[FLD (f_r0)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sh: sh ($r0+$imm),$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,sh) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { HI opval = CPU (h_gr[FLD (f_r1)]); SETMEMHI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* sl: sl $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,sl) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sli: sli $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,sli) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SLLSI (CPU (h_gr[FLD (f_r0)]), FLD (f_imm)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sr: sr $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,sr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRASI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sri: sri $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,sri) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRASI (CPU (h_gr[FLD (f_r0)]), FLD (f_imm)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sru: sru $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,sru) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* srui: srui $r1,$r0,$imm */ static SEM_PC SEM_FN_NAME (lm32bf,srui) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SRLSI (CPU (h_gr[FLD (f_r0)]), FLD (f_imm)); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sub: sub $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,sub) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = SUBSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* sw: sw ($r0+$imm),$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,sw) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_addi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = CPU (h_gr[FLD (f_r1)]); SETMEMSI (current_cpu, pc, ADDSI (CPU (h_gr[FLD (f_r0)]), EXTHISI (TRUNCSIHI (FLD (f_imm)))), opval); TRACE_RESULT (current_cpu, abuf, "memory", 'x', opval); } return vpc; #undef FLD } /* user: user $r2,$r0,$r1,$user */ static SEM_PC SEM_FN_NAME (lm32bf,user) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = lm32bf_user_insn (current_cpu, CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]), FLD (f_user)); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* wcsr: wcsr $csr,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,wcsr) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_wcsr.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); lm32bf_wcsr_insn (current_cpu, FLD (f_csr), CPU (h_gr[FLD (f_r1)])); return vpc; #undef FLD } /* xor: xor $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,xor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)])); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* xori: xori $r1,$r0,$uimm */ static SEM_PC SEM_FN_NAME (lm32bf,xori) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = XORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* xnor: xnor $r2,$r0,$r1 */ static SEM_PC SEM_FN_NAME (lm32bf,xnor) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_user.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (XORSI (CPU (h_gr[FLD (f_r0)]), CPU (h_gr[FLD (f_r1)]))); CPU (h_gr[FLD (f_r2)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* xnori: xnori $r1,$r0,$uimm */ static SEM_PC SEM_FN_NAME (lm32bf,xnori) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_andi.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { SI opval = INVSI (XORSI (CPU (h_gr[FLD (f_r0)]), ZEXTSISI (FLD (f_uimm)))); CPU (h_gr[FLD (f_r1)]) = opval; TRACE_RESULT (current_cpu, abuf, "gr", 'x', opval); } return vpc; #undef FLD } /* break: break */ static SEM_PC SEM_FN_NAME (lm32bf,break) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_break_insn (current_cpu, pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* scall: scall */ static SEM_PC SEM_FN_NAME (lm32bf,scall) (SIM_CPU *current_cpu, SEM_ARG sem_arg) { #define FLD(f) abuf->fields.sfmt_empty.f ARGBUF *abuf = SEM_ARGBUF (sem_arg); int UNUSED written = 0; IADDR UNUSED pc = abuf->addr; SEM_BRANCH_INIT SEM_PC vpc = SEM_NEXT_VPC (sem_arg, pc, 4); { USI opval = lm32bf_scall_insn (current_cpu, pc); SEM_BRANCH_VIA_ADDR (current_cpu, sem_arg, opval, vpc); TRACE_RESULT (current_cpu, abuf, "pc", 'x', opval); } SEM_BRANCH_FINI (vpc); return vpc; #undef FLD } /* Table of all semantic fns. */ static const struct sem_fn_desc sem_fns[] = { { LM32BF_INSN_X_INVALID, SEM_FN_NAME (lm32bf,x_invalid) }, { LM32BF_INSN_X_AFTER, SEM_FN_NAME (lm32bf,x_after) }, { LM32BF_INSN_X_BEFORE, SEM_FN_NAME (lm32bf,x_before) }, { LM32BF_INSN_X_CTI_CHAIN, SEM_FN_NAME (lm32bf,x_cti_chain) }, { LM32BF_INSN_X_CHAIN, SEM_FN_NAME (lm32bf,x_chain) }, { LM32BF_INSN_X_BEGIN, SEM_FN_NAME (lm32bf,x_begin) }, { LM32BF_INSN_ADD, SEM_FN_NAME (lm32bf,add) }, { LM32BF_INSN_ADDI, SEM_FN_NAME (lm32bf,addi) }, { LM32BF_INSN_AND, SEM_FN_NAME (lm32bf,and) }, { LM32BF_INSN_ANDI, SEM_FN_NAME (lm32bf,andi) }, { LM32BF_INSN_ANDHII, SEM_FN_NAME (lm32bf,andhii) }, { LM32BF_INSN_B, SEM_FN_NAME (lm32bf,b) }, { LM32BF_INSN_BI, SEM_FN_NAME (lm32bf,bi) }, { LM32BF_INSN_BE, SEM_FN_NAME (lm32bf,be) }, { LM32BF_INSN_BG, SEM_FN_NAME (lm32bf,bg) }, { LM32BF_INSN_BGE, SEM_FN_NAME (lm32bf,bge) }, { LM32BF_INSN_BGEU, SEM_FN_NAME (lm32bf,bgeu) }, { LM32BF_INSN_BGU, SEM_FN_NAME (lm32bf,bgu) }, { LM32BF_INSN_BNE, SEM_FN_NAME (lm32bf,bne) }, { LM32BF_INSN_CALL, SEM_FN_NAME (lm32bf,call) }, { LM32BF_INSN_CALLI, SEM_FN_NAME (lm32bf,calli) }, { LM32BF_INSN_CMPE, SEM_FN_NAME (lm32bf,cmpe) }, { LM32BF_INSN_CMPEI, SEM_FN_NAME (lm32bf,cmpei) }, { LM32BF_INSN_CMPG, SEM_FN_NAME (lm32bf,cmpg) }, { LM32BF_INSN_CMPGI, SEM_FN_NAME (lm32bf,cmpgi) }, { LM32BF_INSN_CMPGE, SEM_FN_NAME (lm32bf,cmpge) }, { LM32BF_INSN_CMPGEI, SEM_FN_NAME (lm32bf,cmpgei) }, { LM32BF_INSN_CMPGEU, SEM_FN_NAME (lm32bf,cmpgeu) }, { LM32BF_INSN_CMPGEUI, SEM_FN_NAME (lm32bf,cmpgeui) }, { LM32BF_INSN_CMPGU, SEM_FN_NAME (lm32bf,cmpgu) }, { LM32BF_INSN_CMPGUI, SEM_FN_NAME (lm32bf,cmpgui) }, { LM32BF_INSN_CMPNE, SEM_FN_NAME (lm32bf,cmpne) }, { LM32BF_INSN_CMPNEI, SEM_FN_NAME (lm32bf,cmpnei) }, { LM32BF_INSN_DIVU, SEM_FN_NAME (lm32bf,divu) }, { LM32BF_INSN_LB, SEM_FN_NAME (lm32bf,lb) }, { LM32BF_INSN_LBU, SEM_FN_NAME (lm32bf,lbu) }, { LM32BF_INSN_LH, SEM_FN_NAME (lm32bf,lh) }, { LM32BF_INSN_LHU, SEM_FN_NAME (lm32bf,lhu) }, { LM32BF_INSN_LW, SEM_FN_NAME (lm32bf,lw) }, { LM32BF_INSN_MODU, SEM_FN_NAME (lm32bf,modu) }, { LM32BF_INSN_MUL, SEM_FN_NAME (lm32bf,mul) }, { LM32BF_INSN_MULI, SEM_FN_NAME (lm32bf,muli) }, { LM32BF_INSN_NOR, SEM_FN_NAME (lm32bf,nor) }, { LM32BF_INSN_NORI, SEM_FN_NAME (lm32bf,nori) }, { LM32BF_INSN_OR, SEM_FN_NAME (lm32bf,or) }, { LM32BF_INSN_ORI, SEM_FN_NAME (lm32bf,ori) }, { LM32BF_INSN_ORHII, SEM_FN_NAME (lm32bf,orhii) }, { LM32BF_INSN_RCSR, SEM_FN_NAME (lm32bf,rcsr) }, { LM32BF_INSN_SB, SEM_FN_NAME (lm32bf,sb) }, { LM32BF_INSN_SEXTB, SEM_FN_NAME (lm32bf,sextb) }, { LM32BF_INSN_SEXTH, SEM_FN_NAME (lm32bf,sexth) }, { LM32BF_INSN_SH, SEM_FN_NAME (lm32bf,sh) }, { LM32BF_INSN_SL, SEM_FN_NAME (lm32bf,sl) }, { LM32BF_INSN_SLI, SEM_FN_NAME (lm32bf,sli) }, { LM32BF_INSN_SR, SEM_FN_NAME (lm32bf,sr) }, { LM32BF_INSN_SRI, SEM_FN_NAME (lm32bf,sri) }, { LM32BF_INSN_SRU, SEM_FN_NAME (lm32bf,sru) }, { LM32BF_INSN_SRUI, SEM_FN_NAME (lm32bf,srui) }, { LM32BF_INSN_SUB, SEM_FN_NAME (lm32bf,sub) }, { LM32BF_INSN_SW, SEM_FN_NAME (lm32bf,sw) }, { LM32BF_INSN_USER, SEM_FN_NAME (lm32bf,user) }, { LM32BF_INSN_WCSR, SEM_FN_NAME (lm32bf,wcsr) }, { LM32BF_INSN_XOR, SEM_FN_NAME (lm32bf,xor) }, { LM32BF_INSN_XORI, SEM_FN_NAME (lm32bf,xori) }, { LM32BF_INSN_XNOR, SEM_FN_NAME (lm32bf,xnor) }, { LM32BF_INSN_XNORI, SEM_FN_NAME (lm32bf,xnori) }, { LM32BF_INSN_BREAK, SEM_FN_NAME (lm32bf,break) }, { LM32BF_INSN_SCALL, SEM_FN_NAME (lm32bf,scall) }, { 0, 0 } }; /* Add the semantic fns to IDESC_TABLE. */ void SEM_FN_NAME (lm32bf,init_idesc_table) (SIM_CPU *current_cpu) { IDESC *idesc_table = CPU_IDESC (current_cpu); const struct sem_fn_desc *sf; int mach_num = MACH_NUM (CPU_MACH (current_cpu)); for (sf = &sem_fns[0]; sf->fn != 0; ++sf) { const CGEN_INSN *insn = idesc_table[sf->index].idata; int valid_p = (CGEN_INSN_VIRTUAL_P (insn) || CGEN_INSN_MACH_HAS_P (insn, mach_num)); #if FAST_P if (valid_p) idesc_table[sf->index].sem_fast = sf->fn; else idesc_table[sf->index].sem_fast = SEM_FN_NAME (lm32bf,x_invalid); #else if (valid_p) idesc_table[sf->index].sem_full = sf->fn; else idesc_table[sf->index].sem_full = SEM_FN_NAME (lm32bf,x_invalid); #endif } }
Go to most recent revision | Compare with Previous | Blame | View Log