URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.1/] [sim/] [m32r/] [cpu.h] - Rev 280
Go to most recent revision | Compare with Previous | Blame | View Log
/* CPU family header for m32rbf. THIS FILE IS MACHINE GENERATED WITH CGEN. Copyright 1996-2010 Free Software Foundation, Inc. This file is part of the GNU simulators. This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef CPU_M32RBF_H #define CPU_M32RBF_H /* Maximum number of instructions that are fetched at a time. This is for LIW type instructions sets (e.g. m32r). */ #define MAX_LIW_INSNS 2 /* Maximum number of instructions that can be executed in parallel. */ #define MAX_PARALLEL_INSNS 1 /* The size of an "int" needed to hold an instruction word. This is usually 32 bits, but some architectures needs 64 bits. */ typedef CGEN_INSN_INT CGEN_INSN_WORD; #include "cgen-engine.h" /* CPU state information. */ typedef struct { /* Hardware elements. */ struct { /* program counter */ USI h_pc; #define GET_H_PC() CPU (h_pc) #define SET_H_PC(x) (CPU (h_pc) = (x)) /* general registers */ SI h_gr[16]; #define GET_H_GR(a1) CPU (h_gr)[a1] #define SET_H_GR(a1, x) (CPU (h_gr)[a1] = (x)) /* control registers */ USI h_cr[16]; #define GET_H_CR(index) m32rbf_h_cr_get_handler (current_cpu, index) #define SET_H_CR(index, x) \ do { \ m32rbf_h_cr_set_handler (current_cpu, (index), (x));\ ;} while (0) /* accumulator */ DI h_accum; #define GET_H_ACCUM() m32rbf_h_accum_get_handler (current_cpu) #define SET_H_ACCUM(x) \ do { \ m32rbf_h_accum_set_handler (current_cpu, (x));\ ;} while (0) /* condition bit */ BI h_cond; #define GET_H_COND() CPU (h_cond) #define SET_H_COND(x) (CPU (h_cond) = (x)) /* psw part of psw */ UQI h_psw; #define GET_H_PSW() m32rbf_h_psw_get_handler (current_cpu) #define SET_H_PSW(x) \ do { \ m32rbf_h_psw_set_handler (current_cpu, (x));\ ;} while (0) /* backup psw */ UQI h_bpsw; #define GET_H_BPSW() CPU (h_bpsw) #define SET_H_BPSW(x) (CPU (h_bpsw) = (x)) /* backup bpsw */ UQI h_bbpsw; #define GET_H_BBPSW() CPU (h_bbpsw) #define SET_H_BBPSW(x) (CPU (h_bbpsw) = (x)) /* lock */ BI h_lock; #define GET_H_LOCK() CPU (h_lock) #define SET_H_LOCK(x) (CPU (h_lock) = (x)) } hardware; #define CPU_CGEN_HW(cpu) (& (cpu)->cpu_data.hardware) } M32RBF_CPU_DATA; /* Cover fns for register access. */ USI m32rbf_h_pc_get (SIM_CPU *); void m32rbf_h_pc_set (SIM_CPU *, USI); SI m32rbf_h_gr_get (SIM_CPU *, UINT); void m32rbf_h_gr_set (SIM_CPU *, UINT, SI); USI m32rbf_h_cr_get (SIM_CPU *, UINT); void m32rbf_h_cr_set (SIM_CPU *, UINT, USI); DI m32rbf_h_accum_get (SIM_CPU *); void m32rbf_h_accum_set (SIM_CPU *, DI); BI m32rbf_h_cond_get (SIM_CPU *); void m32rbf_h_cond_set (SIM_CPU *, BI); UQI m32rbf_h_psw_get (SIM_CPU *); void m32rbf_h_psw_set (SIM_CPU *, UQI); UQI m32rbf_h_bpsw_get (SIM_CPU *); void m32rbf_h_bpsw_set (SIM_CPU *, UQI); UQI m32rbf_h_bbpsw_get (SIM_CPU *); void m32rbf_h_bbpsw_set (SIM_CPU *, UQI); BI m32rbf_h_lock_get (SIM_CPU *); void m32rbf_h_lock_set (SIM_CPU *, BI); /* These must be hand-written. */ extern CPUREG_FETCH_FN m32rbf_fetch_register; extern CPUREG_STORE_FN m32rbf_store_register; typedef struct { UINT h_gr; } MODEL_M32R_D_DATA; typedef struct { int empty; } MODEL_TEST_DATA; /* Instruction argument buffer. */ union sem_fields { struct { /* no operands */ int empty; } sfmt_empty; struct { /* */ UINT f_uimm8; } sfmt_clrpsw; struct { /* */ UINT f_uimm4; } sfmt_trap; struct { /* */ IADDR i_disp24; unsigned char out_h_gr_SI_14; } sfmt_bl24; struct { /* */ IADDR i_disp8; unsigned char out_h_gr_SI_14; } sfmt_bl8; struct { /* */ SI* i_dr; UINT f_hi16; UINT f_r1; unsigned char out_dr; } sfmt_seth; struct { /* */ ADDR i_uimm24; SI* i_dr; UINT f_r1; unsigned char out_dr; } sfmt_ld24; struct { /* */ SI* i_sr; UINT f_r2; unsigned char in_sr; unsigned char out_h_gr_SI_14; } sfmt_jl; struct { /* */ SI* i_sr; INT f_simm16; UINT f_r2; UINT f_uimm3; unsigned char in_sr; } sfmt_bset; struct { /* */ SI* i_dr; UINT f_r1; UINT f_uimm5; unsigned char in_dr; unsigned char out_dr; } sfmt_slli; struct { /* */ SI* i_dr; INT f_simm8; UINT f_r1; unsigned char in_dr; unsigned char out_dr; } sfmt_addi; struct { /* */ SI* i_src1; SI* i_src2; UINT f_r1; UINT f_r2; unsigned char in_src1; unsigned char in_src2; unsigned char out_src2; } sfmt_st_plus; struct { /* */ SI* i_src1; SI* i_src2; INT f_simm16; UINT f_r1; UINT f_r2; unsigned char in_src1; unsigned char in_src2; } sfmt_st_d; struct { /* */ SI* i_dr; SI* i_sr; UINT f_r1; UINT f_r2; unsigned char in_sr; unsigned char out_dr; unsigned char out_sr; } sfmt_ld_plus; struct { /* */ IADDR i_disp16; SI* i_src1; SI* i_src2; UINT f_r1; UINT f_r2; unsigned char in_src1; unsigned char in_src2; } sfmt_beq; struct { /* */ SI* i_dr; SI* i_sr; UINT f_r1; UINT f_r2; UINT f_uimm16; unsigned char in_sr; unsigned char out_dr; } sfmt_and3; struct { /* */ SI* i_dr; SI* i_sr; INT f_simm16; UINT f_r1; UINT f_r2; unsigned char in_sr; unsigned char out_dr; } sfmt_add3; struct { /* */ SI* i_dr; SI* i_sr; UINT f_r1; UINT f_r2; unsigned char in_dr; unsigned char in_sr; unsigned char out_dr; } sfmt_add; #if WITH_SCACHE_PBB /* Writeback handler. */ struct { /* Pointer to argbuf entry for insn whose results need writing back. */ const struct argbuf *abuf; } write; /* x-before handler */ struct { /*const SCACHE *insns[MAX_PARALLEL_INSNS];*/ int first_p; } before; /* x-after handler */ struct { int empty; } after; /* This entry is used to terminate each pbb. */ struct { /* Number of insns in pbb. */ int insn_count; /* Next pbb to execute. */ SCACHE *next; SCACHE *branch_target; } chain; #endif }; /* The ARGBUF struct. */ struct argbuf { /* These are the baseclass definitions. */ IADDR addr; const IDESC *idesc; char trace_p; char profile_p; /* ??? Temporary hack for skip insns. */ char skip_count; char unused; /* cpu specific data follows */ union sem semantic; int written; union sem_fields fields; }; /* A cached insn. ??? SCACHE used to contain more than just argbuf. We could delete the type entirely and always just use ARGBUF, but for future concerns and as a level of abstraction it is left in. */ struct scache { struct argbuf argbuf; }; /* Macros to simplify extraction, reading and semantic code. These define and assign the local vars that contain the insn's fields. */ #define EXTRACT_IFMT_EMPTY_VARS \ unsigned int length; #define EXTRACT_IFMT_EMPTY_CODE \ length = 0; \ #define EXTRACT_IFMT_ADD_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_ADD_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_ADD3_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ INT f_simm16; \ unsigned int length; #define EXTRACT_IFMT_ADD3_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_AND3_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ UINT f_uimm16; \ unsigned int length; #define EXTRACT_IFMT_AND3_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_uimm16 = EXTRACT_MSB0_UINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_OR3_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ UINT f_uimm16; \ unsigned int length; #define EXTRACT_IFMT_OR3_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_uimm16 = EXTRACT_MSB0_UINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_ADDI_VARS \ UINT f_op1; \ UINT f_r1; \ INT f_simm8; \ unsigned int length; #define EXTRACT_IFMT_ADDI_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_simm8 = EXTRACT_MSB0_SINT (insn, 16, 8, 8); \ #define EXTRACT_IFMT_ADDV3_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ INT f_simm16; \ unsigned int length; #define EXTRACT_IFMT_ADDV3_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_BC8_VARS \ UINT f_op1; \ UINT f_r1; \ SI f_disp8; \ unsigned int length; #define EXTRACT_IFMT_BC8_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_disp8 = ((((EXTRACT_MSB0_SINT (insn, 16, 8, 8)) << (2))) + (((pc) & (-4)))); \ #define EXTRACT_IFMT_BC24_VARS \ UINT f_op1; \ UINT f_r1; \ SI f_disp24; \ unsigned int length; #define EXTRACT_IFMT_BC24_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_disp24 = ((((EXTRACT_MSB0_SINT (insn, 32, 8, 24)) << (2))) + (pc)); \ #define EXTRACT_IFMT_BEQ_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ SI f_disp16; \ unsigned int length; #define EXTRACT_IFMT_BEQ_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_disp16 = ((((EXTRACT_MSB0_SINT (insn, 32, 16, 16)) << (2))) + (pc)); \ #define EXTRACT_IFMT_BEQZ_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ SI f_disp16; \ unsigned int length; #define EXTRACT_IFMT_BEQZ_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_disp16 = ((((EXTRACT_MSB0_SINT (insn, 32, 16, 16)) << (2))) + (pc)); \ #define EXTRACT_IFMT_CMP_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_CMP_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_CMPI_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ INT f_simm16; \ unsigned int length; #define EXTRACT_IFMT_CMPI_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_DIV_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ INT f_simm16; \ unsigned int length; #define EXTRACT_IFMT_DIV_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_JL_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_JL_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_LD24_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_uimm24; \ unsigned int length; #define EXTRACT_IFMT_LD24_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_uimm24 = EXTRACT_MSB0_UINT (insn, 32, 8, 24); \ #define EXTRACT_IFMT_LDI16_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ INT f_simm16; \ unsigned int length; #define EXTRACT_IFMT_LDI16_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_MVFACHI_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_MVFACHI_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_MVFC_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_MVFC_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_MVTACHI_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_MVTACHI_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_MVTC_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_MVTC_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_NOP_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_NOP_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_SETH_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ UINT f_hi16; \ unsigned int length; #define EXTRACT_IFMT_SETH_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_hi16 = EXTRACT_MSB0_UINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_SLLI_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_shift_op2; \ UINT f_uimm5; \ unsigned int length; #define EXTRACT_IFMT_SLLI_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_shift_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 3); \ f_uimm5 = EXTRACT_MSB0_UINT (insn, 16, 11, 5); \ #define EXTRACT_IFMT_ST_D_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_r2; \ INT f_simm16; \ unsigned int length; #define EXTRACT_IFMT_ST_D_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_TRAP_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_op2; \ UINT f_uimm4; \ unsigned int length; #define EXTRACT_IFMT_TRAP_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_uimm4 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ #define EXTRACT_IFMT_CLRPSW_VARS \ UINT f_op1; \ UINT f_r1; \ UINT f_uimm8; \ unsigned int length; #define EXTRACT_IFMT_CLRPSW_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \ f_uimm8 = EXTRACT_MSB0_UINT (insn, 16, 8, 8); \ #define EXTRACT_IFMT_BSET_VARS \ UINT f_op1; \ UINT f_bit4; \ UINT f_uimm3; \ UINT f_op2; \ UINT f_r2; \ INT f_simm16; \ unsigned int length; #define EXTRACT_IFMT_BSET_CODE \ length = 4; \ f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \ f_bit4 = EXTRACT_MSB0_UINT (insn, 32, 4, 1); \ f_uimm3 = EXTRACT_MSB0_UINT (insn, 32, 5, 3); \ f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \ f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \ #define EXTRACT_IFMT_BTST_VARS \ UINT f_op1; \ UINT f_bit4; \ UINT f_uimm3; \ UINT f_op2; \ UINT f_r2; \ unsigned int length; #define EXTRACT_IFMT_BTST_CODE \ length = 2; \ f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \ f_bit4 = EXTRACT_MSB0_UINT (insn, 16, 4, 1); \ f_uimm3 = EXTRACT_MSB0_UINT (insn, 16, 5, 3); \ f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \ f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \ /* Collection of various things for the trace handler to use. */ typedef struct trace_record { IADDR pc; /* FIXME:wip */ } TRACE_RECORD; #endif /* CPU_M32RBF_H */
Go to most recent revision | Compare with Previous | Blame | View Log