URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [gdb-7.2/] [gdb/] [doc/] [gdb.info-5] - Rev 330
Go to most recent revision | Compare with Previous | Blame | View Log
This is gdb.info, produced by makeinfo version 4.8 from ./gdb.texinfo.
INFO-DIR-SECTION Software development
START-INFO-DIR-ENTRY
* Gdb: (gdb). The GNU debugger.
END-INFO-DIR-ENTRY
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Free Software" and "Free Software Needs Free
Documentation", with the Front-Cover Texts being "A GNU Manual," and
with the Back-Cover Texts as in (a) below.
(a) The FSF's Back-Cover Text is: "You are free to copy and modify
this GNU Manual. Buying copies from GNU Press supports the FSF in
developing GNU and promoting software freedom."
This file documents the GNU debugger GDB.
This is the Ninth Edition, of `Debugging with GDB: the GNU
Source-Level Debugger' for GDB (GDB) Version 7.2.
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
2010 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being "Free Software" and "Free Software Needs Free
Documentation", with the Front-Cover Texts being "A GNU Manual," and
with the Back-Cover Texts as in (a) below.
(a) The FSF's Back-Cover Text is: "You are free to copy and modify
this GNU Manual. Buying copies from GNU Press supports the FSF in
developing GNU and promoting software freedom."
File: gdb.info, Node: Bytecode Descriptions, Next: Using Agent Expressions, Prev: General Bytecode Design, Up: Agent Expressions
E.2 Bytecode Descriptions
=========================
Each bytecode description has the following form:
`add' (0x02): A B => A+B
Pop the top two stack items, A and B, as integers; push their sum,
as an integer.
In this example, `add' is the name of the bytecode, and `(0x02)' is
the one-byte value used to encode the bytecode, in hexadecimal. The
phrase "A B => A+B" shows the stack before and after the bytecode
executes. Beforehand, the stack must contain at least two values, A
and B; since the top of the stack is to the right, B is on the top of
the stack, and A is underneath it. After execution, the bytecode will
have popped A and B from the stack, and replaced them with a single
value, A+B. There may be other values on the stack below those shown,
but the bytecode affects only those shown.
Here is another example:
`const8' (0x22) N: => N
Push the 8-bit integer constant N on the stack, without sign
extension.
In this example, the bytecode `const8' takes an operand N directly
from the bytecode stream; the operand follows the `const8' bytecode
itself. We write any such operands immediately after the name of the
bytecode, before the colon, and describe the exact encoding of the
operand in the bytecode stream in the body of the bytecode description.
For the `const8' bytecode, there are no stack items given before the
=>; this simply means that the bytecode consumes no values from the
stack. If a bytecode consumes no values, or produces no values, the
list on either side of the => may be empty.
If a value is written as A, B, or N, then the bytecode treats it as
an integer. If a value is written is ADDR, then the bytecode treats it
as an address.
We do not fully describe the floating point operations here; although
this design can be extended in a clean way to handle floating point
values, they are not of immediate interest to the customer, so we avoid
describing them, to save time.
`float' (0x01): =>
Prefix for floating-point bytecodes. Not implemented yet.
`add' (0x02): A B => A+B
Pop two integers from the stack, and push their sum, as an integer.
`sub' (0x03): A B => A-B
Pop two integers from the stack, subtract the top value from the
next-to-top value, and push the difference.
`mul' (0x04): A B => A*B
Pop two integers from the stack, multiply them, and push the
product on the stack. Note that, when one multiplies two N-bit
numbers yielding another N-bit number, it is irrelevant whether the
numbers are signed or not; the results are the same.
`div_signed' (0x05): A B => A/B
Pop two signed integers from the stack; divide the next-to-top
value by the top value, and push the quotient. If the divisor is
zero, terminate with an error.
`div_unsigned' (0x06): A B => A/B
Pop two unsigned integers from the stack; divide the next-to-top
value by the top value, and push the quotient. If the divisor is
zero, terminate with an error.
`rem_signed' (0x07): A B => A MODULO B
Pop two signed integers from the stack; divide the next-to-top
value by the top value, and push the remainder. If the divisor is
zero, terminate with an error.
`rem_unsigned' (0x08): A B => A MODULO B
Pop two unsigned integers from the stack; divide the next-to-top
value by the top value, and push the remainder. If the divisor is
zero, terminate with an error.
`lsh' (0x09): A B => A<<B
Pop two integers from the stack; let A be the next-to-top value,
and B be the top value. Shift A left by B bits, and push the
result.
`rsh_signed' (0x0a): A B => `(signed)'A>>B
Pop two integers from the stack; let A be the next-to-top value,
and B be the top value. Shift A right by B bits, inserting copies
of the top bit at the high end, and push the result.
`rsh_unsigned' (0x0b): A B => A>>B
Pop two integers from the stack; let A be the next-to-top value,
and B be the top value. Shift A right by B bits, inserting zero
bits at the high end, and push the result.
`log_not' (0x0e): A => !A
Pop an integer from the stack; if it is zero, push the value one;
otherwise, push the value zero.
`bit_and' (0x0f): A B => A&B
Pop two integers from the stack, and push their bitwise `and'.
`bit_or' (0x10): A B => A|B
Pop two integers from the stack, and push their bitwise `or'.
`bit_xor' (0x11): A B => A^B
Pop two integers from the stack, and push their bitwise
exclusive-`or'.
`bit_not' (0x12): A => ~A
Pop an integer from the stack, and push its bitwise complement.
`equal' (0x13): A B => A=B
Pop two integers from the stack; if they are equal, push the value
one; otherwise, push the value zero.
`less_signed' (0x14): A B => A<B
Pop two signed integers from the stack; if the next-to-top value
is less than the top value, push the value one; otherwise, push
the value zero.
`less_unsigned' (0x15): A B => A<B
Pop two unsigned integers from the stack; if the next-to-top value
is less than the top value, push the value one; otherwise, push
the value zero.
`ext' (0x16) N: A => A, sign-extended from N bits
Pop an unsigned value from the stack; treating it as an N-bit
twos-complement value, extend it to full length. This means that
all bits to the left of bit N-1 (where the least significant bit
is bit 0) are set to the value of bit N-1. Note that N may be
larger than or equal to the width of the stack elements of the
bytecode engine; in this case, the bytecode should have no effect.
The number of source bits to preserve, N, is encoded as a single
byte unsigned integer following the `ext' bytecode.
`zero_ext' (0x2a) N: A => A, zero-extended from N bits
Pop an unsigned value from the stack; zero all but the bottom N
bits. This means that all bits to the left of bit N-1 (where the
least significant bit is bit 0) are set to the value of bit N-1.
The number of source bits to preserve, N, is encoded as a single
byte unsigned integer following the `zero_ext' bytecode.
`ref8' (0x17): ADDR => A
`ref16' (0x18): ADDR => A
`ref32' (0x19): ADDR => A
`ref64' (0x1a): ADDR => A
Pop an address ADDR from the stack. For bytecode `ref'N, fetch an
N-bit value from ADDR, using the natural target endianness. Push
the fetched value as an unsigned integer.
Note that ADDR may not be aligned in any particular way; the
`refN' bytecodes should operate correctly for any address.
If attempting to access memory at ADDR would cause a processor
exception of some sort, terminate with an error.
`ref_float' (0x1b): ADDR => D
`ref_double' (0x1c): ADDR => D
`ref_long_double' (0x1d): ADDR => D
`l_to_d' (0x1e): A => D
`d_to_l' (0x1f): D => A
Not implemented yet.
`dup' (0x28): A => A A
Push another copy of the stack's top element.
`swap' (0x2b): A B => B A
Exchange the top two items on the stack.
`pop' (0x29): A =>
Discard the top value on the stack.
`if_goto' (0x20) OFFSET: A =>
Pop an integer off the stack; if it is non-zero, branch to the
given offset in the bytecode string. Otherwise, continue to the
next instruction in the bytecode stream. In other words, if A is
non-zero, set the `pc' register to `start' + OFFSET. Thus, an
offset of zero denotes the beginning of the expression.
The OFFSET is stored as a sixteen-bit unsigned value, stored
immediately following the `if_goto' bytecode. It is always stored
most significant byte first, regardless of the target's normal
endianness. The offset is not guaranteed to fall at any particular
alignment within the bytecode stream; thus, on machines where
fetching a 16-bit on an unaligned address raises an exception, you
should fetch the offset one byte at a time.
`goto' (0x21) OFFSET: =>
Branch unconditionally to OFFSET; in other words, set the `pc'
register to `start' + OFFSET.
The offset is stored in the same way as for the `if_goto' bytecode.
`const8' (0x22) N: => N
`const16' (0x23) N: => N
`const32' (0x24) N: => N
`const64' (0x25) N: => N
Push the integer constant N on the stack, without sign extension.
To produce a small negative value, push a small twos-complement
value, and then sign-extend it using the `ext' bytecode.
The constant N is stored in the appropriate number of bytes
following the `const'B bytecode. The constant N is always stored
most significant byte first, regardless of the target's normal
endianness. The constant is not guaranteed to fall at any
particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an
exception, you should fetch N one byte at a time.
`reg' (0x26) N: => A
Push the value of register number N, without sign extension. The
registers are numbered following GDB's conventions.
The register number N is encoded as a 16-bit unsigned integer
immediately following the `reg' bytecode. It is always stored most
significant byte first, regardless of the target's normal
endianness. The register number is not guaranteed to fall at any
particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an
exception, you should fetch the register number one byte at a time.
`getv' (0x2c) N: => V
Push the value of trace state variable number N, without sign
extension.
The variable number N is encoded as a 16-bit unsigned integer
immediately following the `getv' bytecode. It is always stored
most significant byte first, regardless of the target's normal
endianness. The variable number is not guaranteed to fall at any
particular alignment within the bytecode stream; thus, on machines
where fetching a 16-bit on an unaligned address raises an
exception, you should fetch the register number one byte at a time.
`setv' (0x2d) N: => V
Set trace state variable number N to the value found on the top of
the stack. The stack is unchanged, so that the value is readily
available if the assignment is part of a larger expression. The
handling of N is as described for `getv'.
`trace' (0x0c): ADDR SIZE =>
Record the contents of the SIZE bytes at ADDR in a trace buffer,
for later retrieval by GDB.
`trace_quick' (0x0d) SIZE: ADDR => ADDR
Record the contents of the SIZE bytes at ADDR in a trace buffer,
for later retrieval by GDB. SIZE is a single byte unsigned
integer following the `trace' opcode.
This bytecode is equivalent to the sequence `dup const8 SIZE
trace', but we provide it anyway to save space in bytecode strings.
`trace16' (0x30) SIZE: ADDR => ADDR
Identical to trace_quick, except that SIZE is a 16-bit big-endian
unsigned integer, not a single byte. This should probably have
been named `trace_quick16', for consistency.
`tracev' (0x2e) N: => A
Record the value of trace state variable number N in the trace
buffer. The handling of N is as described for `getv'.
`end' (0x27): =>
Stop executing bytecode; the result should be the top element of
the stack. If the purpose of the expression was to compute an
lvalue or a range of memory, then the next-to-top of the stack is
the lvalue's address, and the top of the stack is the lvalue's
size, in bytes.
File: gdb.info, Node: Using Agent Expressions, Next: Varying Target Capabilities, Prev: Bytecode Descriptions, Up: Agent Expressions
E.3 Using Agent Expressions
===========================
Agent expressions can be used in several different ways by GDB, and the
debugger can generate different bytecode sequences as appropriate.
One possibility is to do expression evaluation on the target rather
than the host, such as for the conditional of a conditional tracepoint.
In such a case, GDB compiles the source expression into a bytecode
sequence that simply gets values from registers or memory, does
arithmetic, and returns a result.
Another way to use agent expressions is for tracepoint data
collection. GDB generates a different bytecode sequence for
collection; in addition to bytecodes that do the calculation, GDB adds
`trace' bytecodes to save the pieces of memory that were used.
* The user selects trace points in the program's code at which GDB
should collect data.
* The user specifies expressions to evaluate at each trace point.
These expressions may denote objects in memory, in which case
those objects' contents are recorded as the program runs, or
computed values, in which case the values themselves are recorded.
* GDB transmits the tracepoints and their associated expressions to
the GDB agent, running on the debugging target.
* The agent arranges to be notified when a trace point is hit.
* When execution on the target reaches a trace point, the agent
evaluates the expressions associated with that trace point, and
records the resulting values and memory ranges.
* Later, when the user selects a given trace event and inspects the
objects and expression values recorded, GDB talks to the agent to
retrieve recorded data as necessary to meet the user's requests.
If the user asks to see an object whose contents have not been
recorded, GDB reports an error.
File: gdb.info, Node: Varying Target Capabilities, Next: Rationale, Prev: Using Agent Expressions, Up: Agent Expressions
E.4 Varying Target Capabilities
===============================
Some targets don't support floating-point, and some would rather not
have to deal with `long long' operations. Also, different targets will
have different stack sizes, and different bytecode buffer lengths.
Thus, GDB needs a way to ask the target about itself. We haven't
worked out the details yet, but in general, GDB should be able to send
the target a packet asking it to describe itself. The reply should be a
packet whose length is explicit, so we can add new information to the
packet in future revisions of the agent, without confusing old versions
of GDB, and it should contain a version number. It should contain at
least the following information:
* whether floating point is supported
* whether `long long' is supported
* maximum acceptable size of bytecode stack
* maximum acceptable length of bytecode expressions
* which registers are actually available for collection
* whether the target supports disabled tracepoints
File: gdb.info, Node: Rationale, Prev: Varying Target Capabilities, Up: Agent Expressions
E.5 Rationale
=============
Some of the design decisions apparent above are arguable.
What about stack overflow/underflow?
GDB should be able to query the target to discover its stack size.
Given that information, GDB can determine at translation time
whether a given expression will overflow the stack. But this spec
isn't about what kinds of error-checking GDB ought to do.
Why are you doing everything in LONGEST?
Speed isn't important, but agent code size is; using LONGEST
brings in a bunch of support code to do things like division, etc.
So this is a serious concern.
First, note that you don't need different bytecodes for different
operand sizes. You can generate code without _knowing_ how big the
stack elements actually are on the target. If the target only
supports 32-bit ints, and you don't send any 64-bit bytecodes,
everything just works. The observation here is that the MIPS and
the Alpha have only fixed-size registers, and you can still get
C's semantics even though most instructions only operate on
full-sized words. You just need to make sure everything is
properly sign-extended at the right times. So there is no need
for 32- and 64-bit variants of the bytecodes. Just implement
everything using the largest size you support.
GDB should certainly check to see what sizes the target supports,
so the user can get an error earlier, rather than later. But this
information is not necessary for correctness.
Why don't you have `>' or `<=' operators?
I want to keep the interpreter small, and we don't need them. We
can combine the `less_' opcodes with `log_not', and swap the order
of the operands, yielding all four asymmetrical comparison
operators. For example, `(x <= y)' is `! (x > y)', which is `! (y
< x)'.
Why do you have `log_not'?
Why do you have `ext'?
Why do you have `zero_ext'?
These are all easily synthesized from other instructions, but I
expect them to be used frequently, and they're simple, so I
include them to keep bytecode strings short.
`log_not' is equivalent to `const8 0 equal'; it's used in half the
relational operators.
`ext N' is equivalent to `const8 S-N lsh const8 S-N rsh_signed',
where S is the size of the stack elements; it follows `refM' and
REG bytecodes when the value should be signed. See the next
bulleted item.
`zero_ext N' is equivalent to `constM MASK log_and'; it's used
whenever we push the value of a register, because we can't assume
the upper bits of the register aren't garbage.
Why not have sign-extending variants of the `ref' operators?
Because that would double the number of `ref' operators, and we
need the `ext' bytecode anyway for accessing bitfields.
Why not have constant-address variants of the `ref' operators?
Because that would double the number of `ref' operators again, and
`const32 ADDRESS ref32' is only one byte longer.
Why do the `refN' operators have to support unaligned fetches?
GDB will generate bytecode that fetches multi-byte values at
unaligned addresses whenever the executable's debugging
information tells it to. Furthermore, GDB does not know the value
the pointer will have when GDB generates the bytecode, so it
cannot determine whether a particular fetch will be aligned or not.
In particular, structure bitfields may be several bytes long, but
follow no alignment rules; members of packed structures are not
necessarily aligned either.
In general, there are many cases where unaligned references occur
in correct C code, either at the programmer's explicit request, or
at the compiler's discretion. Thus, it is simpler to make the GDB
agent bytecodes work correctly in all circumstances than to make
GDB guess in each case whether the compiler did the usual thing.
Why are there no side-effecting operators?
Because our current client doesn't want them? That's a cheap
answer. I think the real answer is that I'm afraid of
implementing function calls. We should re-visit this issue after
the present contract is delivered.
Why aren't the `goto' ops PC-relative?
The interpreter has the base address around anyway for PC bounds
checking, and it seemed simpler.
Why is there only one offset size for the `goto' ops?
Offsets are currently sixteen bits. I'm not happy with this
situation either:
Suppose we have multiple branch ops with different offset sizes.
As I generate code left-to-right, all my jumps are forward jumps
(there are no loops in expressions), so I never know the target
when I emit the jump opcode. Thus, I have to either always assume
the largest offset size, or do jump relaxation on the code after I
generate it, which seems like a big waste of time.
I can imagine a reasonable expression being longer than 256 bytes.
I can't imagine one being longer than 64k. Thus, we need 16-bit
offsets. This kind of reasoning is so bogus, but relaxation is
pathetic.
The other approach would be to generate code right-to-left. Then
I'd always know my offset size. That might be fun.
Where is the function call bytecode?
When we add side-effects, we should add this.
Why does the `reg' bytecode take a 16-bit register number?
Intel's IA-64 architecture has 128 general-purpose registers, and
128 floating-point registers, and I'm sure it has some random
control registers.
Why do we need `trace' and `trace_quick'?
Because GDB needs to record all the memory contents and registers
an expression touches. If the user wants to evaluate an expression
`x->y->z', the agent must record the values of `x' and `x->y' as
well as the value of `x->y->z'.
Don't the `trace' bytecodes make the interpreter less general?
They do mean that the interpreter contains special-purpose code,
but that doesn't mean the interpreter can only be used for that
purpose. If an expression doesn't use the `trace' bytecodes, they
don't get in its way.
Why doesn't `trace_quick' consume its arguments the way everything else does?
In general, you do want your operators to consume their arguments;
it's consistent, and generally reduces the amount of stack
rearrangement necessary. However, `trace_quick' is a kludge to
save space; it only exists so we needn't write `dup const8 SIZE
trace' before every memory reference. Therefore, it's okay for it
not to consume its arguments; it's meant for a specific context in
which we know exactly what it should do with the stack. If we're
going to have a kludge, it should be an effective kludge.
Why does `trace16' exist?
That opcode was added by the customer that contracted Cygnus for
the data tracing work. I personally think it is unnecessary;
objects that large will be quite rare, so it is okay to use `dup
const16 SIZE trace' in those cases.
Whatever we decide to do with `trace16', we should at least leave
opcode 0x30 reserved, to remain compatible with the customer who
added it.
File: gdb.info, Node: Trace File Format, Next: Copying, Prev: Operating System Information, Up: Top
Appendix F Trace File Format
****************************
The trace file comes in three parts: a header, a textual description
section, and a trace frame section with binary data.
The header has the form `\x7fTRACE0\n'. The first byte is `0x7f' so
as to indicate that the file contains binary data, while the `0' is a
version number that may have different values in the future.
The description section consists of multiple lines of ASCII text
separated by newline characters (`0xa'). The lines may include a
variety of optional descriptive or context-setting information, such as
tracepoint definitions or register set size. GDB will ignore any line
that it does not recognize. An empty line marks the end of this
section.
The trace frame section consists of a number of consecutive frames.
Each frame begins with a two-byte tracepoint number, followed by a
four-byte size giving the amount of data in the frame. The data in the
frame consists of a number of blocks, each introduced by a character
indicating its type (at least register, memory, and trace state
variable). The data in this section is raw binary, not a hexadecimal
or other encoding; its endianness matches the target's endianness.
`R BYTES'
Register block. The number and ordering of bytes matches that of a
`g' packet in the remote protocol. Note that these are the actual
bytes, in target order and GDB register order, not a hexadecimal
encoding.
`M ADDRESS LENGTH BYTES...'
Memory block. This is a contiguous block of memory, at the 8-byte
address ADDRESS, with a 2-byte length LENGTH, followed by LENGTH
bytes.
`V NUMBER VALUE'
Trace state variable block. This records the 8-byte signed value
VALUE of trace state variable numbered NUMBER.
Future enhancements of the trace file format may include additional
types of blocks.
File: gdb.info, Node: Target Descriptions, Next: Operating System Information, Prev: Agent Expressions, Up: Top
Appendix G Target Descriptions
******************************
*Warning:* target descriptions are still under active development, and
the contents and format may change between GDB releases. The format is
expected to stabilize in the future.
One of the challenges of using GDB to debug embedded systems is that
there are so many minor variants of each processor architecture in use.
It is common practice for vendors to start with a standard processor
core -- ARM, PowerPC, or MIPS, for example -- and then make changes to
adapt it to a particular market niche. Some architectures have
hundreds of variants, available from dozens of vendors. This leads to
a number of problems:
* With so many different customized processors, it is difficult for
the GDB maintainers to keep up with the changes.
* Since individual variants may have short lifetimes or limited
audiences, it may not be worthwhile to carry information about
every variant in the GDB source tree.
* When GDB does support the architecture of the embedded system at
hand, the task of finding the correct architecture name to give the
`set architecture' command can be error-prone.
To address these problems, the GDB remote protocol allows a target
system to not only identify itself to GDB, but to actually describe its
own features. This lets GDB support processor variants it has never
seen before -- to the extent that the descriptions are accurate, and
that GDB understands them.
GDB must be linked with the Expat library to support XML target
descriptions. *Note Expat::.
* Menu:
* Retrieving Descriptions:: How descriptions are fetched from a target.
* Target Description Format:: The contents of a target description.
* Predefined Target Types:: Standard types available for target
descriptions.
* Standard Target Features:: Features GDB knows about.
File: gdb.info, Node: Retrieving Descriptions, Next: Target Description Format, Up: Target Descriptions
G.1 Retrieving Descriptions
===========================
Target descriptions can be read from the target automatically, or
specified by the user manually. The default behavior is to read the
description from the target. GDB retrieves it via the remote protocol
using `qXfer' requests (*note qXfer: General Query Packets.). The
ANNEX in the `qXfer' packet will be `target.xml'. The contents of the
`target.xml' annex are an XML document, of the form described in *Note
Target Description Format::.
Alternatively, you can specify a file to read for the target
description. If a file is set, the target will not be queried. The
commands to specify a file are:
`set tdesc filename PATH'
Read the target description from PATH.
`unset tdesc filename'
Do not read the XML target description from a file. GDB will use
the description supplied by the current target.
`show tdesc filename'
Show the filename to read for a target description, if any.
File: gdb.info, Node: Target Description Format, Next: Predefined Target Types, Prev: Retrieving Descriptions, Up: Target Descriptions
G.2 Target Description Format
=============================
A target description annex is an XML (http://www.w3.org/XML/) document
which complies with the Document Type Definition provided in the GDB
sources in `gdb/features/gdb-target.dtd'. This means you can use
generally available tools like `xmllint' to check that your feature
descriptions are well-formed and valid. However, to help people
unfamiliar with XML write descriptions for their targets, we also
describe the grammar here.
Target descriptions can identify the architecture of the remote
target and (for some architectures) provide information about custom
register sets. They can also identify the OS ABI of the remote target.
GDB can use this information to autoconfigure for your target, or to
warn you if you connect to an unsupported target.
Here is a simple target description:
<target version="1.0">
<architecture>i386:x86-64</architecture>
</target>
This minimal description only says that the target uses the x86-64
architecture.
A target description has the following overall form, with [ ] marking
optional elements and ... marking repeatable elements. The elements
are explained further below.
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target version="1.0">
[ARCHITECTURE]
[OSABI]
[COMPATIBLE]
[FEATURE...]
</target>
The description is generally insensitive to whitespace and line breaks,
under the usual common-sense rules. The XML version declaration and
document type declaration can generally be omitted (GDB does not
require them), but specifying them may be useful for XML validation
tools. The `version' attribute for `<target>' may also be omitted, but
we recommend including it; if future versions of GDB use an incompatible
revision of `gdb-target.dtd', they will detect and report the version
mismatch.
G.2.1 Inclusion
---------------
It can sometimes be valuable to split a target description up into
several different annexes, either for organizational purposes, or to
share files between different possible target descriptions. You can
divide a description into multiple files by replacing any element of
the target description with an inclusion directive of the form:
<xi:include href="DOCUMENT"/>
When GDB encounters an element of this form, it will retrieve the named
XML DOCUMENT, and replace the inclusion directive with the contents of
that document. If the current description was read using `qXfer', then
so will be the included document; DOCUMENT will be interpreted as the
name of an annex. If the current description was read from a file, GDB
will look for DOCUMENT as a file in the same directory where it found
the original description.
G.2.2 Architecture
------------------
An `<architecture>' element has this form:
<architecture>ARCH</architecture>
ARCH is one of the architectures from the set accepted by `set
architecture' (*note Specifying a Debugging Target: Targets.).
G.2.3 OS ABI
------------
This optional field was introduced in GDB version 7.0. Previous
versions of GDB ignore it.
An `<osabi>' element has this form:
<osabi>ABI-NAME</osabi>
ABI-NAME is an OS ABI name from the same selection accepted by
`set osabi' (*note Configuring the Current ABI: ABI.).
G.2.4 Compatible Architecture
-----------------------------
This optional field was introduced in GDB version 7.0. Previous
versions of GDB ignore it.
A `<compatible>' element has this form:
<compatible>ARCH</compatible>
ARCH is one of the architectures from the set accepted by `set
architecture' (*note Specifying a Debugging Target: Targets.).
A `<compatible>' element is used to specify that the target is able
to run binaries in some other than the main target architecture given
by the `<architecture>' element. For example, on the Cell Broadband
Engine, the main architecture is `powerpc:common' or
`powerpc:common64', but the system is able to run binaries in the `spu'
architecture as well. The way to describe this capability with
`<compatible>' is as follows:
<architecture>powerpc:common</architecture>
<compatible>spu</compatible>
G.2.5 Features
--------------
Each `<feature>' describes some logical portion of the target system.
Features are currently used to describe available CPU registers and the
types of their contents. A `<feature>' element has this form:
<feature name="NAME">
[TYPE...]
REG...
</feature>
Each feature's name should be unique within the description. The name
of a feature does not matter unless GDB has some special knowledge of
the contents of that feature; if it does, the feature should have its
standard name. *Note Standard Target Features::.
G.2.6 Types
-----------
Any register's value is a collection of bits which GDB must interpret.
The default interpretation is a two's complement integer, but other
types can be requested by name in the register description. Some
predefined types are provided by GDB (*note Predefined Target Types::),
and the description can define additional composite types.
Each type element must have an `id' attribute, which gives a unique
(within the containing `<feature>') name to the type. Types must be
defined before they are used.
Some targets offer vector registers, which can be treated as arrays
of scalar elements. These types are written as `<vector>' elements,
specifying the array element type, TYPE, and the number of elements,
COUNT:
<vector id="ID" type="TYPE" count="COUNT"/>
If a register's value is usefully viewed in multiple ways, define it
with a union type containing the useful representations. The `<union>'
element contains one or more `<field>' elements, each of which has a
NAME and a TYPE:
<union id="ID">
<field name="NAME" type="TYPE"/>
...
</union>
If a register's value is composed from several separate values,
define it with a structure type. There are two forms of the `<struct>'
element; a `<struct>' element must either contain only bitfields or
contain no bitfields. If the structure contains only bitfields, its
total size in bytes must be specified, each bitfield must have an
explicit start and end, and bitfields are automatically assigned an
integer type. The field's START should be less than or equal to its
END, and zero represents the least significant bit.
<struct id="ID" size="SIZE">
<field name="NAME" start="START" end="END"/>
...
</struct>
If the structure contains no bitfields, then each field has an
explicit type, and no implicit padding is added.
<struct id="ID">
<field name="NAME" type="TYPE"/>
...
</struct>
If a register's value is a series of single-bit flags, define it with
a flags type. The `<flags>' element has an explicit SIZE and contains
one or more `<field>' elements. Each field has a NAME, a START, and an
END. Only single-bit flags are supported.
<flags id="ID" size="SIZE">
<field name="NAME" start="START" end="END"/>
...
</flags>
G.2.7 Registers
---------------
Each register is represented as an element with this form:
<reg name="NAME"
bitsize="SIZE"
[regnum="NUM"]
[save-restore="SAVE-RESTORE"]
[type="TYPE"]
[group="GROUP"]/>
The components are as follows:
NAME
The register's name; it must be unique within the target
description.
BITSIZE
The register's size, in bits.
REGNUM
The register's number. If omitted, a register's number is one
greater than that of the previous register (either in the current
feature or in a preceeding feature); the first register in the
target description defaults to zero. This register number is used
to read or write the register; e.g. it is used in the remote `p'
and `P' packets, and registers appear in the `g' and `G' packets
in order of increasing register number.
SAVE-RESTORE
Whether the register should be preserved across inferior function
calls; this must be either `yes' or `no'. The default is `yes',
which is appropriate for most registers except for some system
control registers; this is not related to the target's ABI.
TYPE
The type of the register. TYPE may be a predefined type, a type
defined in the current feature, or one of the special types `int'
and `float'. `int' is an integer type of the correct size for
BITSIZE, and `float' is a floating point type (in the
architecture's normal floating point format) of the correct size
for BITSIZE. The default is `int'.
GROUP
The register group to which this register belongs. GROUP must be
either `general', `float', or `vector'. If no GROUP is specified,
GDB will not display the register in `info registers'.
File: gdb.info, Node: Predefined Target Types, Next: Standard Target Features, Prev: Target Description Format, Up: Target Descriptions
G.3 Predefined Target Types
===========================
Type definitions in the self-description can build up composite types
from basic building blocks, but can not define fundamental types.
Instead, standard identifiers are provided by GDB for the fundamental
types. The currently supported types are:
`int8'
`int16'
`int32'
`int64'
`int128'
Signed integer types holding the specified number of bits.
`uint8'
`uint16'
`uint32'
`uint64'
`uint128'
Unsigned integer types holding the specified number of bits.
`code_ptr'
`data_ptr'
Pointers to unspecified code and data. The program counter and
any dedicated return address register may be marked as code
pointers; printing a code pointer converts it into a symbolic
address. The stack pointer and any dedicated address registers
may be marked as data pointers.
`ieee_single'
Single precision IEEE floating point.
`ieee_double'
Double precision IEEE floating point.
`arm_fpa_ext'
The 12-byte extended precision format used by ARM FPA registers.
`i387_ext'
The 10-byte extended precision format used by x87 registers.
`i386_eflags'
32bit EFLAGS register used by x86.
`i386_mxcsr'
32bit MXCSR register used by x86.
File: gdb.info, Node: Standard Target Features, Prev: Predefined Target Types, Up: Target Descriptions
G.4 Standard Target Features
============================
A target description must contain either no registers or all the
target's registers. If the description contains no registers, then GDB
will assume a default register layout, selected based on the
architecture. If the description contains any registers, the default
layout will not be used; the standard registers must be described in
the target description, in such a way that GDB can recognize them.
This is accomplished by giving specific names to feature elements
which contain standard registers. GDB will look for features with
those names and verify that they contain the expected registers; if any
known feature is missing required registers, or if any required feature
is missing, GDB will reject the target description. You can add
additional registers to any of the standard features -- GDB will
display them just as if they were added to an unrecognized feature.
This section lists the known features and their expected contents.
Sample XML documents for these features are included in the GDB source
tree, in the directory `gdb/features'.
Names recognized by GDB should include the name of the company or
organization which selected the name, and the overall architecture to
which the feature applies; so e.g. the feature containing ARM core
registers is named `org.gnu.gdb.arm.core'.
The names of registers are not case sensitive for the purpose of
recognizing standard features, but GDB will only display registers
using the capitalization used in the description.
* Menu:
* ARM Features::
* i386 Features::
* MIPS Features::
* M68K Features::
* PowerPC Features::
File: gdb.info, Node: ARM Features, Next: i386 Features, Up: Standard Target Features
G.4.1 ARM Features
------------------
The `org.gnu.gdb.arm.core' feature is required for ARM targets. It
should contain registers `r0' through `r13', `sp', `lr', `pc', and
`cpsr'.
The `org.gnu.gdb.arm.fpa' feature is optional. If present, it
should contain registers `f0' through `f7' and `fps'.
The `org.gnu.gdb.xscale.iwmmxt' feature is optional. If present, it
should contain at least registers `wR0' through `wR15' and `wCGR0'
through `wCGR3'. The `wCID', `wCon', `wCSSF', and `wCASF' registers
are optional.
The `org.gnu.gdb.arm.vfp' feature is optional. If present, it
should contain at least registers `d0' through `d15'. If they are
present, `d16' through `d31' should also be included. GDB will
synthesize the single-precision registers from halves of the
double-precision registers.
The `org.gnu.gdb.arm.neon' feature is optional. It does not need to
contain registers; it instructs GDB to display the VFP double-precision
registers as vectors and to synthesize the quad-precision registers
from pairs of double-precision registers. If this feature is present,
`org.gnu.gdb.arm.vfp' must also be present and include 32
double-precision registers.
File: gdb.info, Node: i386 Features, Next: MIPS Features, Prev: ARM Features, Up: Standard Target Features
G.4.2 i386 Features
-------------------
The `org.gnu.gdb.i386.core' feature is required for i386/amd64 targets.
It should describe the following registers:
- `eax' through `edi' plus `eip' for i386
- `rax' through `r15' plus `rip' for amd64
- `eflags', `cs', `ss', `ds', `es', `fs', `gs'
- `st0' through `st7'
- `fctrl', `fstat', `ftag', `fiseg', `fioff', `foseg', `fooff' and
`fop'
The register sets may be different, depending on the target.
The `org.gnu.gdb.i386.sse' feature is optional. It should describe
registers:
- `xmm0' through `xmm7' for i386
- `xmm0' through `xmm15' for amd64
- `mxcsr'
The `org.gnu.gdb.i386.avx' feature is optional and requires the
`org.gnu.gdb.i386.sse' feature. It should describe the upper 128 bits
of YMM registers:
- `ymm0h' through `ymm7h' for i386
- `ymm0h' through `ymm15h' for amd64
-
The `org.gnu.gdb.i386.linux' feature is optional. It should
describe a single register, `orig_eax'.
File: gdb.info, Node: MIPS Features, Next: M68K Features, Prev: i386 Features, Up: Standard Target Features
G.4.3 MIPS Features
-------------------
The `org.gnu.gdb.mips.cpu' feature is required for MIPS targets. It
should contain registers `r0' through `r31', `lo', `hi', and `pc'.
They may be 32-bit or 64-bit depending on the target.
The `org.gnu.gdb.mips.cp0' feature is also required. It should
contain at least the `status', `badvaddr', and `cause' registers. They
may be 32-bit or 64-bit depending on the target.
The `org.gnu.gdb.mips.fpu' feature is currently required, though it
may be optional in a future version of GDB. It should contain
registers `f0' through `f31', `fcsr', and `fir'. They may be 32-bit or
64-bit depending on the target.
The `org.gnu.gdb.mips.linux' feature is optional. It should contain
a single register, `restart', which is used by the Linux kernel to
control restartable syscalls.
File: gdb.info, Node: M68K Features, Next: PowerPC Features, Prev: MIPS Features, Up: Standard Target Features
G.4.4 M68K Features
-------------------
``org.gnu.gdb.m68k.core''
``org.gnu.gdb.coldfire.core''
``org.gnu.gdb.fido.core''
One of those features must be always present. The feature that is
present determines which flavor of m68k is used. The feature that
is present should contain registers `d0' through `d7', `a0'
through `a5', `fp', `sp', `ps' and `pc'.
``org.gnu.gdb.coldfire.fp''
This feature is optional. If present, it should contain registers
`fp0' through `fp7', `fpcontrol', `fpstatus' and `fpiaddr'.
File: gdb.info, Node: PowerPC Features, Prev: M68K Features, Up: Standard Target Features
G.4.5 PowerPC Features
----------------------
The `org.gnu.gdb.power.core' feature is required for PowerPC targets.
It should contain registers `r0' through `r31', `pc', `msr', `cr',
`lr', `ctr', and `xer'. They may be 32-bit or 64-bit depending on the
target.
The `org.gnu.gdb.power.fpu' feature is optional. It should contain
registers `f0' through `f31' and `fpscr'.
The `org.gnu.gdb.power.altivec' feature is optional. It should
contain registers `vr0' through `vr31', `vscr', and `vrsave'.
The `org.gnu.gdb.power.vsx' feature is optional. It should contain
registers `vs0h' through `vs31h'. GDB will combine these registers
with the floating point registers (`f0' through `f31') and the altivec
registers (`vr0' through `vr31') to present the 128-bit wide registers
`vs0' through `vs63', the set of vector registers for POWER7.
The `org.gnu.gdb.power.spe' feature is optional. It should contain
registers `ev0h' through `ev31h', `acc', and `spefscr'. SPE targets
should provide 32-bit registers in `org.gnu.gdb.power.core' and provide
the upper halves in `ev0h' through `ev31h'. GDB will combine these to
present registers `ev0' through `ev31' to the user.
File: gdb.info, Node: Operating System Information, Next: Trace File Format, Prev: Target Descriptions, Up: Top
Appendix H Operating System Information
***************************************
* Menu:
* Process list::
Users of GDB often wish to obtain information about the state of the
operating system running on the target--for example the list of
processes, or the list of open files. This section describes the
mechanism that makes it possible. This mechanism is similar to the
target features mechanism (*note Target Descriptions::), but focuses on
a different aspect of target.
Operating system information is retrived from the target via the
remote protocol, using `qXfer' requests (*note qXfer osdata read::).
The object name in the request should be `osdata', and the ANNEX
identifies the data to be fetched.
File: gdb.info, Node: Process list, Up: Operating System Information
H.1 Process list
================
When requesting the process list, the ANNEX field in the `qXfer'
request should be `processes'. The returned data is an XML document.
The formal syntax of this document is defined in
`gdb/features/osdata.dtd'.
An example document is:
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "osdata.dtd">
<osdata type="processes">
<item>
<column name="pid">1</column>
<column name="user">root</column>
<column name="command">/sbin/init</column>
<column name="cores">1,2,3</column>
</item>
</osdata>
Each item should include a column whose name is `pid'. The value of
that column should identify the process on the target. The `user' and
`command' columns are optional, and will be displayed by GDB. The
`cores' column, if present, should contain a comma-separated list of
cores that this process is running on. Target may provide additional
columns, which GDB currently ignores.
File: gdb.info, Node: Copying, Next: GNU Free Documentation License, Prev: Trace File Format, Up: Top
Appendix I GNU GENERAL PUBLIC LICENSE
*************************************
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/'
Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.
Preamble
========
The GNU General Public License is a free, copyleft license for software
and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains
free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply
it to your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the software,
or if you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users' freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those domains
in future versions of the GPL, as needed to protect the freedom of
users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
====================
0. Definitions.
"This License" refers to version 3 of the GNU General Public
License.
"Copyright" also means copyright-like laws that apply to other
kinds of works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the
work in a fashion requiring copyright permission, other than the
making of an exact copy. The resulting work is called a "modified
version" of the earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work
based on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it
on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making
available to the public, and in some countries other activities as
well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to
the extent that warranties are provided), that licensees may
convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or
options, such as a menu, a prominent item in the list meets this
criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any
non-source form of a work.
A "Standard Interface" means an interface that either is an
official standard defined by a recognized standards body, or, in
the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that
language.
The "System Libraries" of an executable work include anything,
other than the work as a whole, that (a) is included in the normal
form of packaging a Major Component, but which is not part of that
Major Component, and (b) serves only to enable use of the work
with that Major Component, or to implement a Standard Interface
for which an implementation is available to the public in source
code form. A "Major Component", in this context, means a major
essential component (kernel, window system, and so on) of the
specific operating system (if any) on which the executable work
runs, or a compiler used to produce the work, or an object code
interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including
scripts to control those activities. However, it does not include
the work's System Libraries, or general-purpose tools or generally
available free programs which are used unmodified in performing
those activities but which are not part of the work. For example,
Corresponding Source includes interface definition files
associated with source files for the work, and the source code for
shared libraries and dynamically linked subprograms that the work
is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other
parts of the work.
The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running
a covered work is covered by this License only if the output,
given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as
provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise
remains in force. You may convey covered works to others for the
sole purpose of having them make modifications exclusively for
you, or provide you with facilities for running those works,
provided that you comply with the terms of this License in
conveying all material for which you do not control copyright.
Those thus making or running the covered works for you must do so
exclusively on your behalf, under your direction and control, on
terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section
10 makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under
article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of
such measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License
with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of
enforcing, against the work's users, your or third parties' legal
rights to forbid circumvention of technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the
code; keep intact all notices of the absence of any warranty; and
give all recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:
a. The work must carry prominent notices stating that you
modified it, and giving a relevant date.
b. The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in
section 4 to "keep intact all notices".
c. You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all
its parts, regardless of how they are packaged. This License
gives no permission to license the work in any other way, but
it does not invalidate such permission if you have separately
received it.
d. If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has
interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered
work, and which are not combined with it such as to form a larger
program, in or on a volume of a storage or distribution medium, is
called an "aggregate" if the compilation and its resulting
copyright are not used to limit the access or legal rights of the
compilation's users beyond what the individual works permit.
Inclusion of a covered work in an aggregate does not cause this
License to apply to the other parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this
License, in one of these ways:
a. Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b. Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for
as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code
either (1) a copy of the Corresponding Source for all the
software in the product that is covered by this License, on a
durable physical medium customarily used for software
interchange, for a price no more than your reasonable cost of
physically performing this conveying of source, or (2) access
to copy the Corresponding Source from a network server at no
charge.
c. Convey individual copies of the object code with a copy of
the written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer,
in accord with subsection 6b.
d. Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access
to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code.
If the place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated
by you or a third party) that supports equivalent copying
facilities, provided you maintain clear directions next to
the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you
remain obligated to ensure that it is available for as long
as needed to satisfy these requirements.
e. Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.
A separable portion of the object code, whose source code is
excluded from the Corresponding Source as a System Library, need
not be included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means
any tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product
is a consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
"normally used" refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the
way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product
regardless of whether the product has substantial commercial,
industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding Source.
The information must suffice to ensure that the continued
functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made.
If you convey an object code work under this section in, or with,
or specifically for use in, a User Product, and the conveying
occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction
is characterized), the Corresponding Source conveyed under this
section must be accompanied by the Installation Information. But
this requirement does not apply if neither you nor any third party
retains the ability to install modified object code on the User
Product (for example, the work has been installed in ROM).
The requirement to provide Installation Information does not
include a requirement to continue to provide support service,
warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it
has been modified or installed. Access to a network may be denied
when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for
communication across the network.
Corresponding Source conveyed, and Installation Information
provided, in accord with this section must be in a format that is
publicly documented (and with an implementation available to the
public in source code form), and must require no special password
or key for unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of
this License by making exceptions from one or more of its
conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in
this License, to the extent that they are valid under applicable
law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but the
entire Program remains governed by this License without regard to
the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part
of it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material
you add to a covered work, you may (if authorized by the copyright
holders of that material) supplement the terms of this License
with terms:
a. Disclaiming warranty or limiting liability differently from
the terms of sections 15 and 16 of this License; or
b. Requiring preservation of specified reasonable legal notices
or author attributions in that material or in the Appropriate
Legal Notices displayed by works containing it; or
c. Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be
marked in reasonable ways as different from the original
version; or
d. Limiting the use for publicity purposes of names of licensors
or authors of the material; or
e. Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f. Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified
versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual
assumptions directly impose on those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as
you received it, or any part of it, contains a notice stating that
it is governed by this License along with a term that is a further
restriction, you may remove that term. If a license document
contains a further restriction but permits relicensing or
conveying under this License, you may add to a covered work
material governed by the terms of that license document, provided
that the further restriction does not survive such relicensing or
conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in
the form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights
under this License (including any patent licenses granted under
the third paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.
Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require
acceptance. However, nothing other than this License grants you
permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore,
by modifying or propagating a covered work, you indicate your
acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this
License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or
could give under the previous paragraph, plus a right to
possession of the Corresponding Source of the work from the
predecessor in interest, if the predecessor has it or can get it
with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you
may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not
initiate litigation (including a cross-claim or counterclaim in a
lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any
portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based.
The work thus licensed is called the contributor's "contributor
version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its
contributor version, but do not include claims that would be
infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, "control"
includes the right to grant patent sublicenses in a manner
consistent with the requirements of this License.
Each contributor grants you a non-exclusive, worldwide,
royalty-free patent license under the contributor's essential
patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its
contributor version.
In the following three paragraphs, a "patent license" is any
express agreement or commitment, however denominated, not to
enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To
"grant" such a patent license to a party means to make such an
agreement or commitment not to enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent
license, and the Corresponding Source of the work is not available
for anyone to copy, free of charge and under the terms of this
License, through a publicly available network server or other
readily accessible means, then you must either (1) cause the
Corresponding Source to be so available, or (2) arrange to deprive
yourself of the benefit of the patent license for this particular
work, or (3) arrange, in a manner consistent with the requirements
of this License, to extend the patent license to downstream
recipients. "Knowingly relying" means you have actual knowledge
that, but for the patent license, your conveying the covered work
in a country, or your recipient's use of the covered work in a
country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the
patent license you grant is automatically extended to all
recipients of the covered work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a
covered work if you are a party to an arrangement with a third
party that is in the business of distributing software, under
which you make payment to the third party based on the extent of
your activity of conveying the work, and under which the third
party grants, to any of the parties who would receive the covered
work from you, a discriminatory patent license (a) in connection
with copies of the covered work conveyed by you (or copies made
from those copies), or (b) primarily for and in connection with
specific products or compilations that contain the covered work,
unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy
simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not convey it
at all. For example, if you agree to terms that obligate you to
collect a royalty for further conveying from those to whom you
convey the Program, the only way you could satisfy both those
terms and this License would be to refrain entirely from conveying
the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a
single combined work, and to convey the resulting work. The terms
of this License will continue to apply to the part which is the
covered work, but the special requirements of the GNU Affero
General Public License, section 13, concerning interaction through
a network will apply to the combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new
versions of the GNU General Public License from time to time.
Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or
concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU
General Public License "or any later version" applies to it, you
have the option of following the terms and conditions either of
that numbered version or of any later version published by the
Free Software Foundation. If the Program does not specify a
version number of the GNU General Public License, you may choose
any version ever published by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that
proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in
connection with the Program, unless a warranty or assumption of
liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
===========================
How to Apply These Terms to Your New Programs
=============================================
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these
terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES.
Copyright (C) YEAR NAME OF AUTHOR
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see `http://www.gnu.org/licenses/'.
Also add information on how to contact you by electronic and paper
mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
PROGRAM Copyright (C) YEAR NAME OF AUTHOR
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the
appropriate parts of the General Public License. Of course, your
program's commands might be different; for a GUI interface, you would
use an "about box".
You should also get your employer (if you work as a programmer) or
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. For more information on this, and how to apply and follow
the GNU GPL, see `http://www.gnu.org/licenses/'.
The GNU General Public License does not permit incorporating your
program into proprietary programs. If your program is a subroutine
library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the
GNU Lesser General Public License instead of this License. But first,
please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.
File: gdb.info, Node: GNU Free Documentation License, Next: Index, Prev: Copying, Up: Top
Appendix J GNU Free Documentation License
*****************************************
Version 1.3, 3 November 2008
Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
`http://fsf.org/'
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.
It complements the GNU General Public License, which is a copyleft
license designed for free software.
We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a
free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is
instruction or reference.
1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The
"Document", below, refers to any such manual or work. Any member
of the public is a licensee, and is addressed as "you". You
accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document
is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or
of legal, commercial, philosophical, ethical or political position
regarding them.
The "Invariant Sections" are certain Secondary Sections whose
titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this
License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The "Cover Texts" are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A
copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include
PNG, XCF and JPG. Opaque formats include proprietary formats that
can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the
work's title, preceding the beginning of the body of the text.
The "publisher" means any person or entity that distributes copies
of the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses
following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".)
To "Preserve the Title" of such a section when you modify the
Document means that it remains a section "Entitled XYZ" according
to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These
Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and
has no effect on the meaning of this License.
2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow
the conditions in section 3.
You may also lend copies, under the same conditions stated above,
and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and
the Document's license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The
front cover must present the full title with all words of the
title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in
other respects.
If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download
using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated
version of the Document.
4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you
release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to
whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the
same title as a previous version if the original publisher of
that version gives permission.
B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the
principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you
from this requirement.
C. State on the Title page the name of the publisher of the
Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in
the Addendum below.
G. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document's
license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title,
and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in
the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in
the previous sentence.
J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for
previous versions it was based on. These may be placed in
the "History" section. You may omit a network location for a
work that was published at least four years before the
Document itself, or if the original publisher of the version
it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section, and preserve in the
section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section
titles.
M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled
"Endorsements" or to conflict in title with any Invariant
Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this,
add their titles to the list of Invariant Sections in the Modified
Version's license notice. These titles must be distinct from any
other section titles.
You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text
has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one
passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity
you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous
publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to
assert or imply endorsement of any Modified Version.
5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for
modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all
their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name
but different contents, make the title of each such section unique
by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in
the list of Invariant Sections in the license notice of the
combined work.
In the combination, you must combine any sections Entitled
"History" in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You
must delete all sections Entitled "Endorsements."
6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the
documents in all other respects.
You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert
a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of
that document.
7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume of
a storage or distribution medium, is called an "aggregate" if the
copyright resulting from the compilation is not used to limit the
legal rights of the compilation's users beyond what the individual
works permit. When the Document is included in an aggregate, this
License does not apply to the other works in the aggregate which
are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half
of the entire aggregate, the Document's Cover Texts may be placed
on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket
the whole aggregate.
8. TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section
4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also
include the original English version of this License and the
original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to
Preserve its Title (section 1) will typically require changing the
actual title.
9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the
copyright holder fails to notify you of the violation by some
reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from
that copyright holder, and you cure the violation prior to 30 days
after your receipt of the notice.
Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from
you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of
the same material does not give you any rights to use it.
10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
`http://www.gnu.org/copyleft/'.
Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered
version of this License "or any later version" applies to it, you
have the option of following the terms and conditions either of
that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the
Free Software Foundation. If the Document specifies that a proxy
can decide which future versions of this License can be used, that
proxy's public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.
11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server.
A "Massive Multiauthor Collaboration" (or "MMC") contained in the
site means any set of copyrightable works thus published on the MMC
site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or
in part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this
License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover
texts or invariant sections, and (2) were thus incorporated prior
to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents
====================================================
To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and license
notices just after the title page:
Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.
If you have Invariant Sections, Front-Cover Texts and Back-Cover
Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.
If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.
If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License, to
permit their use in free software.
Go to most recent revision | Compare with Previous | Blame | View Log