URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.17.0/] [newlib/] [libm/] [mathfp/] [sf_sineh.c] - Rev 438
Go to most recent revision | Compare with Previous | Blame | View Log
/* @(#)z_sinehf.c 1.0 98/08/13 */ /****************************************************************** * The following routines are coded directly from the algorithms * and coefficients given in "Software Manual for the Elementary * Functions" by William J. Cody, Jr. and William Waite, Prentice * Hall, 1980. ******************************************************************/ /****************************************************************** * Hyperbolic Sine * * Input: * x - floating point value * * Output: * hyperbolic sine of x * * Description: * This routine calculates hyperbolic sines. * *****************************************************************/ #include <float.h> #include "fdlibm.h" #include "zmath.h" static const float q[] = { -0.428277109e+2 }; static const float p[] = { -0.713793159e+1, -0.190333399 }; static const float LNV = 0.6931610107; static const float INV_V2 = 0.2499930850; static const float V_OVER2_MINUS1 = 0.1383027787e-4; float _DEFUN (sinehf, (float, int), float x _AND int cosineh) { float y, f, P, Q, R, res, z, w; int sgn = 1; float WBAR = 18.55; /* Check for special values. */ switch (numtestf (x)) { case NAN: errno = EDOM; return (x); case INF: errno = ERANGE; return (ispos (x) ? z_infinity_f.f : -z_infinity_f.f); } y = fabs (x); if (!cosineh && x < 0.0) sgn = -1; if ((y > 1.0 && !cosineh) || cosineh) { if (y > BIGX) { w = y - LNV; /* Check for w > maximum here. */ if (w > BIGX) { errno = ERANGE; return (x); } z = exp (w); if (w > WBAR) res = z * (V_OVER2_MINUS1 + 1.0); } else { z = exp (y); if (cosineh) res = (z + 1 / z) / 2.0; else res = (z - 1 / z) / 2.0; } if (sgn < 0) res = -res; } else { /* Check for y being too small. */ if (y < z_rooteps_f) { res = x; } /* Calculate the Taylor series. */ else { f = x * x; Q = f + q[0]; P = p[1] * f + p[0]; R = f * (P / Q); res = x + x * R; } } return (res); }
Go to most recent revision | Compare with Previous | Blame | View Log