URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [libgloss/] [sparc/] [sparclet-stub.c] - Rev 252
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************************************************************** THIS SOFTWARE IS NOT COPYRIGHTED HP offers the following for use in the public domain. HP makes no warranty with regard to the software or it's performance and the user accepts the software "AS IS" with all faults. HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ****************************************************************************/ /**************************************************************************** * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ * * Module name: remcom.c $ * Revision: 1.34 $ * Date: 91/03/09 12:29:49 $ * Contributor: Lake Stevens Instrument Division$ * * Description: low level support for gdb debugger. $ * * Considerations: only works on target hardware $ * * Written by: Glenn Engel $ * ModuleState: Experimental $ * * NOTES: See Below $ * * Modified for SPARC by Stu Grossman, Cygnus Support. * Based on sparc-stub.c, it's modified for SPARClite Debug Unit hardware * breakpoint support to create sparclite-stub.c, by Kung Hsu, Cygnus Support. * * This code has been extensively tested on the Fujitsu SPARClite demo board. * * To enable debugger support, two things need to happen. One, a * call to set_debug_traps() is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint(). Breakpoint() * simulates a breakpoint by executing a trap #1. * ************* * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * P set the value of a single CPU register OK or P01 (???) * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * bBB..BB Set baud rate to BB..BB OK or BNN, then sets * baud rate * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $<packet info>#<checksum>. * * where * <packet info> :: <characters representing the command or response> * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>> * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * ****************************************************************************/ #include <string.h> #include <signal.h> /************************************************************************ * * external low-level support routines */ extern putDebugChar(); /* write a single character */ extern getDebugChar(); /* read and return a single char */ /************************************************************************/ /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/ /* at least NUMREGBYTES*2 are needed for register packets */ #define BUFMAX 2048 static int initialized = 0; /* !0 means we've been initialized */ static int remote_debug = 0; /* turn on verbose debugging */ extern void breakinst(); void _cprint(); static void hw_breakpoint(); static void set_mem_fault_trap(); static void get_in_break_mode(); static unsigned char *mem2hex(); static const char hexchars[]="0123456789abcdef"; #define NUMREGS 121 static unsigned long saved_stack_pointer; /* Number of bytes of registers. */ #define NUMREGBYTES (NUMREGS * 4) enum regnames { G0, G1, G2, G3, G4, G5, G6, G7, O0, O1, O2, O3, O4, O5, SP, O7, L0, L1, L2, L3, L4, L5, L6, L7, I0, I1, I2, I3, I4, I5, FP, I7, F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31, Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR, CCSR, CCPR, CCCRCR, CCOR, CCOBR, CCIBR, CCIR, UNUSED1, ASR1, ASR15, ASR17, ASR18, ASR19, ASR20, ASR21, ASR22, /* the following not actually implemented */ AWR0, AWR1, AWR2, AWR3, AWR4, AWR5, AWR6, AWR7, AWR8, AWR9, AWR10, AWR11, AWR12, AWR13, AWR14, AWR15, AWR16, AWR17, AWR18, AWR19, AWR20, AWR21, AWR22, AWR23, AWR24, AWR25, AWR26, AWR27, AWR28, AWR29, AWR30, AWR31, APSR }; /*************************** ASSEMBLY CODE MACROS *************************/ /* */ extern void trap_low(); asm(" .reserve trapstack, 1000 * 4, \"bss\", 8 .data .align 4 in_trap_handler: .word 0 .text .align 4 ! This function is called when any SPARC trap (except window overflow or ! underflow) occurs. It makes sure that the invalid register window is still ! available before jumping into C code. It will also restore the world if you ! return from handle_exception. ! ! On entry, trap_low expects l1 and l2 to contain pc and npc respectivly. .globl _trap_low _trap_low: mov %psr, %l0 mov %wim, %l3 srl %l3, %l0, %l4 ! wim >> cwp and %l4, 0xff, %l4 ! Mask off windows 28, 29 cmp %l4, 1 bne window_fine ! Branch if not in the invalid window nop ! Handle window overflow mov %g1, %l4 ! Save g1, we use it to hold the wim srl %l3, 1, %g1 ! Rotate wim right and %g1, 0xff, %g1 ! Mask off windows 28, 29 tst %g1 bg good_wim ! Branch if new wim is non-zero nop ! At this point, we need to bring a 1 into the high order bit of the wim. ! Since we don't want to make any assumptions about the number of register ! windows, we figure it out dynamically so as to setup the wim correctly. ! The normal way doesn't work on the sparclet as register windows ! 28 and 29 are special purpose windows. !not %g1 ! Fill g1 with ones !mov %g1, %wim ! Fill the wim with ones !nop !nop !nop !mov %wim, %g1 ! Read back the wim !inc %g1 ! Now g1 has 1 just to left of wim !srl %g1, 1, %g1 ! Now put 1 at top of wim mov 0x80, %g1 ! Hack for sparclet ! This doesn't work on the sparclet. !mov %g0, %wim ! Clear wim so that subsequent save ! won't trap andn %l3, 0xff, %l5 ! Clear wim but not windows 28, 29 mov %l5, %wim nop nop nop good_wim: save %g0, %g0, %g0 ! Slip into next window mov %g1, %wim ! Install the new wim std %l0, [%sp + 0 * 4] ! save L & I registers std %l2, [%sp + 2 * 4] std %l4, [%sp + 4 * 4] std %l6, [%sp + 6 * 4] std %i0, [%sp + 8 * 4] std %i2, [%sp + 10 * 4] std %i4, [%sp + 12 * 4] std %i6, [%sp + 14 * 4] restore ! Go back to trap window. mov %l4, %g1 ! Restore %g1 window_fine: sethi %hi(in_trap_handler), %l4 ld [%lo(in_trap_handler) + %l4], %l5 tst %l5 bg recursive_trap inc %l5 set trapstack+1000*4, %sp ! Switch to trap stack recursive_trap: st %l5, [%lo(in_trap_handler) + %l4] sub %sp,(16+1+6+1+88)*4,%sp ! Make room for input & locals ! + hidden arg + arg spill ! + doubleword alignment ! + registers[121] std %g0, [%sp + (24 + 0) * 4] ! registers[Gx] std %g2, [%sp + (24 + 2) * 4] std %g4, [%sp + (24 + 4) * 4] std %g6, [%sp + (24 + 6) * 4] std %i0, [%sp + (24 + 8) * 4] ! registers[Ox] std %i2, [%sp + (24 + 10) * 4] std %i4, [%sp + (24 + 12) * 4] std %i6, [%sp + (24 + 14) * 4] ! FP regs (sparclet doesn't have fpu) mov %y, %l4 mov %tbr, %l5 st %l4, [%sp + (24 + 64) * 4] ! Y st %l0, [%sp + (24 + 65) * 4] ! PSR st %l3, [%sp + (24 + 66) * 4] ! WIM st %l5, [%sp + (24 + 67) * 4] ! TBR st %l1, [%sp + (24 + 68) * 4] ! PC st %l2, [%sp + (24 + 69) * 4] ! NPC ! CPSR and FPSR not impl or %l0, 0xf20, %l4 mov %l4, %psr ! Turn on traps, disable interrupts nop nop nop ! Save coprocessor state. ! See SK/demo/hdlc_demo/ldc_swap_context.S. mov %psr, %l0 sethi %hi(0x2000), %l5 ! EC bit in PSR or %l5, %l0, %l5 mov %l5, %psr ! enable coprocessor nop ! 3 nops after write to %psr (needed?) nop nop crdcxt %ccsr, %l1 ! capture CCSR mov 0x6, %l2 cwrcxt %l2, %ccsr ! set CCP state machine for CCFR crdcxt %ccfr, %l2 ! capture CCOR cwrcxt %l2, %ccfr ! tickle CCFR crdcxt %ccfr, %l3 ! capture CCOBR cwrcxt %l3, %ccfr ! tickle CCFR crdcxt %ccfr, %l4 ! capture CCIBR cwrcxt %l4, %ccfr ! tickle CCFR crdcxt %ccfr, %l5 ! capture CCIR cwrcxt %l5, %ccfr ! tickle CCFR crdcxt %ccpr, %l6 ! capture CCPR crdcxt %cccrcr, %l7 ! capture CCCRCR st %l1, [%sp + (24 + 72) * 4] ! save CCSR st %l2, [%sp + (24 + 75) * 4] ! save CCOR st %l3, [%sp + (24 + 76) * 4] ! save CCOBR st %l4, [%sp + (24 + 77) * 4] ! save CCIBR st %l5, [%sp + (24 + 78) * 4] ! save CCIR st %l6, [%sp + (24 + 73) * 4] ! save CCPR st %l7, [%sp + (24 + 74) * 4] ! save CCCRCR mov %l0, %psr ! restore original PSR nop ! 3 nops after write to %psr (needed?) nop nop ! End of saving coprocessor state. ! Save asr regs ! Part of this is silly -- we should not display ASR15 or ASR19 at all. sethi %hi(0x01000000), %l6 st %l6, [%sp + (24 + 81) * 4] ! ASR15 == NOP sethi %hi(0xdeadc0de), %l6 or %l6, %lo(0xdeadc0de), %l6 st %l6, [%sp + (24 + 84) * 4] ! ASR19 == DEADC0DE rd %asr1, %l4 st %l4, [%sp + (24 + 80) * 4] ! rd %asr15, %l4 ! must not read ASR15 ! st %l4, [%sp + (24 + 81) * 4] ! (illegal instr trap) rd %asr17, %l4 st %l4, [%sp + (24 + 82) * 4] rd %asr18, %l4 st %l4, [%sp + (24 + 83) * 4] ! rd %asr19, %l4 ! must not read asr19 ! st %l4, [%sp + (24 + 84) * 4] ! (halts the CPU) rd %asr20, %l4 st %l4, [%sp + (24 + 85) * 4] rd %asr21, %l4 st %l4, [%sp + (24 + 86) * 4] rd %asr22, %l4 st %l4, [%sp + (24 + 87) * 4] ! End of saving asr regs call _handle_exception add %sp, 24 * 4, %o0 ! Pass address of registers ! Reload all of the registers that aren't on the stack ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx] ldd [%sp + (24 + 2) * 4], %g2 ldd [%sp + (24 + 4) * 4], %g4 ldd [%sp + (24 + 6) * 4], %g6 ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox] ldd [%sp + (24 + 10) * 4], %i2 ldd [%sp + (24 + 12) * 4], %i4 ldd [%sp + (24 + 14) * 4], %i6 ! FP regs (sparclet doesn't have fpu) ! Update the coprocessor registers. ! See SK/demo/hdlc_demo/ldc_swap_context.S. mov %psr, %l0 sethi %hi(0x2000), %l5 ! EC bit in PSR or %l5, %l0, %l5 mov %l5, %psr ! enable coprocessor nop ! 3 nops after write to %psr (needed?) nop nop mov 0x6, %l2 cwrcxt %l2, %ccsr ! set CCP state machine for CCFR ld [%sp + (24 + 72) * 4], %l1 ! saved CCSR ld [%sp + (24 + 75) * 4], %l2 ! saved CCOR ld [%sp + (24 + 76) * 4], %l3 ! saved CCOBR ld [%sp + (24 + 77) * 4], %l4 ! saved CCIBR ld [%sp + (24 + 78) * 4], %l5 ! saved CCIR ld [%sp + (24 + 73) * 4], %l6 ! saved CCPR ld [%sp + (24 + 74) * 4], %l7 ! saved CCCRCR cwrcxt %l2, %ccfr ! restore CCOR cwrcxt %l3, %ccfr ! restore CCOBR cwrcxt %l4, %ccfr ! restore CCIBR cwrcxt %l5, %ccfr ! restore CCIR cwrcxt %l6, %ccpr ! restore CCPR cwrcxt %l7, %cccrcr ! restore CCCRCR cwrcxt %l1, %ccsr ! restore CCSR mov %l0, %psr ! restore PSR nop ! 3 nops after write to %psr (needed?) nop nop ! End of coprocessor handling stuff. ! Update asr regs ld [%sp + (24 + 80) * 4], %l4 wr %l4, %asr1 ! ld [%sp + (24 + 81) * 4], %l4 ! can't write asr15 ! wr %l4, %asr15 ld [%sp + (24 + 82) * 4], %l4 wr %l4, %asr17 ld [%sp + (24 + 83) * 4], %l4 wr %l4, %asr18 ! ld [%sp + (24 + 84) * 4], %l4 ! can't write asr19 ! wr %l4, %asr19 ! ld [%sp + (24 + 85) * 4], %l4 ! can't write asr20 ! wr %l4, %asr20 ! ld [%sp + (24 + 86) * 4], %l4 ! can't write asr21 ! wr %l4, %asr21 ld [%sp + (24 + 87) * 4], %l4 wr %l4, %asr22 ! End of restoring asr regs ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC restore ! Ensure that previous window is valid save %g0, %g0, %g0 ! by causing a window_underflow trap mov %l0, %y mov %l1, %psr ! Make sure that traps are disabled ! for rett nop ! 3 nops after write to %psr (needed?) nop nop sethi %hi(in_trap_handler), %l4 ld [%lo(in_trap_handler) + %l4], %l5 dec %l5 st %l5, [%lo(in_trap_handler) + %l4] jmpl %l2, %g0 ! Restore old PC rett %l3 ! Restore old nPC "); /* Convert ch from a hex digit to an int */ static int hex(ch) unsigned char ch; { if (ch >= 'a' && ch <= 'f') return ch-'a'+10; if (ch >= '0' && ch <= '9') return ch-'0'; if (ch >= 'A' && ch <= 'F') return ch-'A'+10; return -1; } /* scan for the sequence $<data>#<checksum> */ static void getpacket(buffer) char *buffer; { unsigned char checksum; unsigned char xmitcsum; int i; int count; unsigned char ch; do { /* wait around for the start character, ignore all other characters */ while ((ch = (getDebugChar() & 0x7f)) != '$') ; checksum = 0; xmitcsum = -1; count = 0; /* now, read until a # or end of buffer is found */ while (count < BUFMAX) { ch = getDebugChar() & 0x7f; if (ch == '#') break; checksum = checksum + ch; buffer[count] = ch; count = count + 1; } if (count >= BUFMAX) continue; buffer[count] = 0; if (ch == '#') { xmitcsum = hex(ch = getDebugChar() & 0x7f) << 4; xmitcsum |= hex(ch = getDebugChar() & 0x7f); if (checksum != xmitcsum) putDebugChar('-'); /* failed checksum */ else { putDebugChar('+'); /* successful transfer */ /* if a sequence char is present, reply the sequence ID */ if (buffer[2] == ':') { putDebugChar(buffer[0]); putDebugChar(buffer[1]); /* remove sequence chars from buffer */ count = strlen(buffer); for (i=3; i <= count; i++) buffer[i-3] = buffer[i]; } } } } while (checksum != xmitcsum); } /* send the packet in buffer. */ static void putpacket(buffer) unsigned char *buffer; { unsigned char checksum; int count; unsigned char ch; /* $<packet info>#<checksum>. */ do { putDebugChar('$'); checksum = 0; count = 0; while (ch = buffer[count]) { if (! putDebugChar(ch)) return; checksum += ch; count += 1; } putDebugChar('#'); putDebugChar(hexchars[checksum >> 4]); putDebugChar(hexchars[checksum & 0xf]); } while ((getDebugChar() & 0x7f) != '+'); } static char remcomInBuffer[BUFMAX]; static char remcomOutBuffer[BUFMAX]; /* Indicate to caller of mem2hex or hex2mem that there has been an error. */ static volatile int mem_err = 0; /* Convert the memory pointed to by mem into hex, placing result in buf. * Return a pointer to the last char put in buf (null), in case of mem fault, * return 0. * If MAY_FAULT is non-zero, then we will handle memory faults by returning * a 0, else treat a fault like any other fault in the stub. */ static unsigned char * mem2hex(mem, buf, count, may_fault) unsigned char *mem; unsigned char *buf; int count; int may_fault; { unsigned char ch; set_mem_fault_trap(may_fault); while (count-- > 0) { ch = *mem++; if (mem_err) return 0; *buf++ = hexchars[ch >> 4]; *buf++ = hexchars[ch & 0xf]; } *buf = 0; set_mem_fault_trap(0); return buf; } /* convert the hex array pointed to by buf into binary to be placed in mem * return a pointer to the character AFTER the last byte written */ static char * hex2mem(buf, mem, count, may_fault) unsigned char *buf; unsigned char *mem; int count; int may_fault; { int i; unsigned char ch; set_mem_fault_trap(may_fault); for (i=0; i<count; i++) { ch = hex(*buf++) << 4; ch |= hex(*buf++); *mem++ = ch; if (mem_err) return 0; } set_mem_fault_trap(0); return mem; } /* This table contains the mapping between SPARC hardware trap types, and signals, which are primarily what GDB understands. It also indicates which hardware traps we need to commandeer when initializing the stub. */ static struct hard_trap_info { unsigned char tt; /* Trap type code for SPARClite */ unsigned char signo; /* Signal that we map this trap into */ } hard_trap_info[] = { {1, SIGSEGV}, /* instruction access exception */ {0x3b, SIGSEGV}, /* instruction access error */ {2, SIGILL}, /* illegal instruction */ {3, SIGILL}, /* privileged instruction */ {4, SIGEMT}, /* fp disabled */ {0x24, SIGEMT}, /* cp disabled */ {7, SIGBUS}, /* mem address not aligned */ {0x29, SIGSEGV}, /* data access exception */ {10, SIGEMT}, /* tag overflow */ {128+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */ {0, 0} /* Must be last */ }; /* Set up exception handlers for tracing and breakpoints */ void set_debug_traps() { struct hard_trap_info *ht; for (ht = hard_trap_info; ht->tt && ht->signo; ht++) exceptionHandler(ht->tt, trap_low); /* In case GDB is started before us, ack any packets (presumably "$?#xx") sitting there. */ putDebugChar ('+'); initialized = 1; } asm (" ! Trap handler for memory errors. This just sets mem_err to be non-zero. It ! assumes that %l1 is non-zero. This should be safe, as it is doubtful that ! 0 would ever contain code that could mem fault. This routine will skip ! past the faulting instruction after setting mem_err. .text .align 4 _fltr_set_mem_err: sethi %hi(_mem_err), %l0 st %l1, [%l0 + %lo(_mem_err)] jmpl %l2, %g0 rett %l2+4 "); static void set_mem_fault_trap(enable) int enable; { extern void fltr_set_mem_err(); mem_err = 0; if (enable) exceptionHandler(0x29, fltr_set_mem_err); else exceptionHandler(0x29, trap_low); } asm (" .text .align 4 _dummy_hw_breakpoint: jmpl %l2, %g0 rett %l2+4 nop nop "); static void set_hw_breakpoint_trap(enable) int enable; { extern void dummy_hw_breakpoint(); if (enable) exceptionHandler(255, dummy_hw_breakpoint); else exceptionHandler(255, trap_low); } static void get_in_break_mode() { #if 0 int x; mesg("get_in_break_mode, sp = "); phex(&x); #endif set_hw_breakpoint_trap(1); asm(" sethi %hi(0xff10), %l4 or %l4, %lo(0xff10), %l4 sta %g0, [%l4]0x1 nop nop nop "); set_hw_breakpoint_trap(0); } /* Convert the SPARC hardware trap type code to a unix signal number. */ static int computeSignal(tt) int tt; { struct hard_trap_info *ht; for (ht = hard_trap_info; ht->tt && ht->signo; ht++) if (ht->tt == tt) return ht->signo; return SIGHUP; /* default for things we don't know about */ } /* * While we find nice hex chars, build an int. * Return number of chars processed. */ static int hexToInt(char **ptr, int *intValue) { int numChars = 0; int hexValue; *intValue = 0; while (**ptr) { hexValue = hex(**ptr); if (hexValue < 0) break; *intValue = (*intValue << 4) | hexValue; numChars ++; (*ptr)++; } return (numChars); } /* * This function does all command procesing for interfacing to gdb. It * returns 1 if you should skip the instruction at the trap address, 0 * otherwise. */ static void handle_exception (registers) unsigned long *registers; { int tt; /* Trap type */ int sigval; int addr; int length; char *ptr; unsigned long *sp; unsigned long dsr; /* First, we must force all of the windows to be spilled out */ asm(" ! Ugh. sparclet has broken save !save %sp, -64, %sp save add %fp,-64,%sp !save %sp, -64, %sp save add %fp,-64,%sp !save %sp, -64, %sp save add %fp,-64,%sp !save %sp, -64, %sp save add %fp,-64,%sp !save %sp, -64, %sp save add %fp,-64,%sp !save %sp, -64, %sp save add %fp,-64,%sp !save %sp, -64, %sp save add %fp,-64,%sp !save %sp, -64, %sp save add %fp,-64,%sp restore restore restore restore restore restore restore restore "); if (registers[PC] == (unsigned long)breakinst) { registers[PC] = registers[NPC]; registers[NPC] += 4; } sp = (unsigned long *)registers[SP]; tt = (registers[TBR] >> 4) & 0xff; /* reply to host that an exception has occurred */ sigval = computeSignal(tt); ptr = remcomOutBuffer; *ptr++ = 'T'; *ptr++ = hexchars[sigval >> 4]; *ptr++ = hexchars[sigval & 0xf]; *ptr++ = hexchars[PC >> 4]; *ptr++ = hexchars[PC & 0xf]; *ptr++ = ':'; ptr = mem2hex((char *)®isters[PC], ptr, 4, 0); *ptr++ = ';'; *ptr++ = hexchars[FP >> 4]; *ptr++ = hexchars[FP & 0xf]; *ptr++ = ':'; ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */ *ptr++ = ';'; *ptr++ = hexchars[SP >> 4]; *ptr++ = hexchars[SP & 0xf]; *ptr++ = ':'; ptr = mem2hex((char *)&sp, ptr, 4, 0); *ptr++ = ';'; *ptr++ = hexchars[NPC >> 4]; *ptr++ = hexchars[NPC & 0xf]; *ptr++ = ':'; ptr = mem2hex((char *)®isters[NPC], ptr, 4, 0); *ptr++ = ';'; *ptr++ = hexchars[O7 >> 4]; *ptr++ = hexchars[O7 & 0xf]; *ptr++ = ':'; ptr = mem2hex((char *)®isters[O7], ptr, 4, 0); *ptr++ = ';'; *ptr++ = 0; putpacket(remcomOutBuffer); while (1) { remcomOutBuffer[0] = 0; getpacket(remcomInBuffer); switch (remcomInBuffer[0]) { case '?': remcomOutBuffer[0] = 'S'; remcomOutBuffer[1] = hexchars[sigval >> 4]; remcomOutBuffer[2] = hexchars[sigval & 0xf]; remcomOutBuffer[3] = 0; break; case 'd': remote_debug = !(remote_debug); /* toggle debug flag */ break; case 'g': /* return the value of the CPU registers */ { ptr = remcomOutBuffer; ptr = mem2hex((char *)registers, ptr, 16 * 4, 0); /* G & O regs */ ptr = mem2hex(sp + 0, ptr, 16 * 4, 0); /* L & I regs */ memset(ptr, '0', 32 * 8); /* Floating point */ ptr = mem2hex((char *)®isters[Y], ptr + 32 * 4 * 2, 8 * 4, 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ ptr = mem2hex((char *)®isters[CCSR], ptr, 8 * 4, 0); /* CCSR, CCPR, CCCRCR, CCOR, CCOBR, CCIBR, CCIR */ ptr = mem2hex((char *)®isters[ASR1], ptr, 8 * 4, 0); /* ASR1,ASR15,ASR17,ASR18,ASR19,ASR20,ASR21,ASR22 */ #if 0 /* not implemented */ ptr = mem2hex((char *) ®isters[AWR0], ptr, 32 * 4, 0); /* Alternate Window Registers */ #endif } break; case 'G': /* set value of all the CPU registers - return OK */ case 'P': /* set value of one CPU register - return OK */ { unsigned long *newsp, psr; psr = registers[PSR]; ptr = &remcomInBuffer[1]; if (remcomInBuffer[0] == 'P') /* do a single register */ { int regno; if (hexToInt (&ptr, ®no) && *ptr++ == '=') if (regno >= L0 && regno <= I7) hex2mem (ptr, sp + regno - L0, 4, 0); else hex2mem (ptr, (char *)®isters[regno], 4, 0); else { strcpy (remcomOutBuffer, "P01"); break; } } else { hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */ hex2mem(ptr + 16 * 4 * 2, sp + 0, 16 * 4, 0); /* L & I regs */ hex2mem(ptr + 64 * 4 * 2, (char *)®isters[Y], 8 * 4, 0); /* Y,PSR,WIM,TBR,PC,NPC,FPSR,CPSR */ hex2mem(ptr + 72 * 4 * 2, (char *)®isters[CCSR], 8 * 4, 0); /* CCSR,CCPR,CCCRCR,CCOR,CCOBR,CCIBR,CCIR */ hex2mem(ptr + 80 * 4 * 2, (char *)®isters[ASR1], 8 * 4, 0); /* ASR1 ... ASR22 */ #if 0 /* not implemented */ hex2mem(ptr + 88 * 4 * 2, (char *)®isters[AWR0], 8 * 4, 0); /* Alternate Window Registers */ #endif } /* See if the stack pointer has moved. If so, then copy the saved locals and ins to the new location. This keeps the window overflow and underflow routines happy. */ newsp = (unsigned long *)registers[SP]; if (sp != newsp) sp = memcpy(newsp, sp, 16 * 4); /* Don't allow CWP to be modified. */ if (psr != registers[PSR]) registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f); strcpy(remcomOutBuffer,"OK"); } break; case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ /* Try to read %x,%x. */ ptr = &remcomInBuffer[1]; if (hexToInt(&ptr, &addr) && *ptr++ == ',' && hexToInt(&ptr, &length)) { if (mem2hex((char *)addr, remcomOutBuffer, length, 1)) break; strcpy (remcomOutBuffer, "E03"); } else strcpy(remcomOutBuffer,"E01"); break; case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ /* Try to read '%x,%x:'. */ ptr = &remcomInBuffer[1]; if (hexToInt(&ptr, &addr) && *ptr++ == ',' && hexToInt(&ptr, &length) && *ptr++ == ':') { if (hex2mem(ptr, (char *)addr, length, 1)) strcpy(remcomOutBuffer, "OK"); else strcpy(remcomOutBuffer, "E03"); } else strcpy(remcomOutBuffer, "E02"); break; case 'c': /* cAA..AA Continue at address AA..AA(optional) */ /* try to read optional parameter, pc unchanged if no parm */ ptr = &remcomInBuffer[1]; if (hexToInt(&ptr, &addr)) { registers[PC] = addr; registers[NPC] = addr + 4; } /* Need to flush the instruction cache here, as we may have deposited a breakpoint, and the icache probably has no way of knowing that a data ref to some location may have changed something that is in the instruction cache. */ flush_i_cache(); return; /* kill the program */ case 'k' : /* do nothing */ break; #if 0 case 't': /* Test feature */ asm (" std %f30,[%sp]"); break; #endif case 'r': /* Reset */ asm ("call 0 nop "); break; #if 0 Disabled until we can unscrew this properly case 'b': /* bBB... Set baud rate to BB... */ { int baudrate; extern void set_timer_3(); ptr = &remcomInBuffer[1]; if (!hexToInt(&ptr, &baudrate)) { strcpy(remcomOutBuffer,"B01"); break; } /* Convert baud rate to uart clock divider */ switch (baudrate) { case 38400: baudrate = 16; break; case 19200: baudrate = 33; break; case 9600: baudrate = 65; break; default: strcpy(remcomOutBuffer,"B02"); goto x1; } putpacket("OK"); /* Ack before changing speed */ set_timer_3(baudrate); /* Set it */ } x1: break; #endif } /* switch */ /* reply to the request */ putpacket(remcomOutBuffer); } } /* This function will generate a breakpoint exception. It is used at the beginning of a program to sync up with a debugger and can be used otherwise as a quick means to stop program execution and "break" into the debugger. */ void breakpoint() { if (!initialized) return; asm(" .globl _breakinst _breakinst: ta 1 "); } static void hw_breakpoint() { asm(" ta 127 "); } #if 0 /* experimental and never finished, left here for reference */ static void splet_temp(void) { asm(" sub %sp,(16+1+6+1+121)*4,%sp ! Make room for input & locals ! + hidden arg + arg spill ! + doubleword alignment ! + registers[121] ! Leave a trail of breadcrumbs! (save register save area for debugging) mov %sp, %l0 add %l0, 24*4, %l0 sethi %hi(_debug_registers), %l1 st %l0, [%lo(_debug_registers) + %l1] ! Save the Alternate Register Set: (not implemented yet) ! To save the Alternate Register set, we must: ! 1) Save the current SP in some global location. ! 2) Swap the register sets. ! 3) Save the Alternate SP in the Y register ! 4) Fetch the SP that we saved in step 1. ! 5) Use that to save the rest of the regs (not forgetting ASP in Y) ! 6) Restore the Alternate SP from Y ! 7) Swap the registers back. ! 1) Copy the current stack pointer to global _SAVED_STACK_POINTER: sethi %hi(_saved_stack_pointer), %l0 st %sp, [%lo(_saved_stack_pointer) + %l0] ! 2) Swap the register sets: mov %psr, %l1 sethi %hi(0x10000), %l2 xor %l1, %l2, %l1 mov %l1, %psr nop ! 3 nops after write to %psr (needed?) nop nop ! 3) Save Alternate L0 in Y wr %l0, 0, %y ! 4) Load former SP into alternate SP, using L0 sethi %hi(_saved_stack_pointer), %l0 or %lo(_saved_stack_pointer), %l0, %l0 swap [%l0], %sp ! 4.5) Restore alternate L0 rd %y, %l0 ! 5) Save the Alternate Window Registers st %r0, [%sp + (24 + 88) * 4] ! AWR0 st %r1, [%sp + (24 + 89) * 4] ! AWR1 st %r2, [%sp + (24 + 90) * 4] ! AWR2 st %r3, [%sp + (24 + 91) * 4] ! AWR3 st %r4, [%sp + (24 + 92) * 4] ! AWR4 st %r5, [%sp + (24 + 93) * 4] ! AWR5 st %r6, [%sp + (24 + 94) * 4] ! AWR6 st %r7, [%sp + (24 + 95) * 4] ! AWR7 st %r8, [%sp + (24 + 96) * 4] ! AWR8 st %r9, [%sp + (24 + 97) * 4] ! AWR9 st %r10, [%sp + (24 + 98) * 4] ! AWR10 st %r11, [%sp + (24 + 99) * 4] ! AWR11 st %r12, [%sp + (24 + 100) * 4] ! AWR12 st %r13, [%sp + (24 + 101) * 4] ! AWR13 ! st %r14, [%sp + (24 + 102) * 4] ! AWR14 (SP) st %r15, [%sp + (24 + 103) * 4] ! AWR15 st %r16, [%sp + (24 + 104) * 4] ! AWR16 st %r17, [%sp + (24 + 105) * 4] ! AWR17 st %r18, [%sp + (24 + 106) * 4] ! AWR18 st %r19, [%sp + (24 + 107) * 4] ! AWR19 st %r20, [%sp + (24 + 108) * 4] ! AWR20 st %r21, [%sp + (24 + 109) * 4] ! AWR21 st %r22, [%sp + (24 + 110) * 4] ! AWR22 st %r23, [%sp + (24 + 111) * 4] ! AWR23 st %r24, [%sp + (24 + 112) * 4] ! AWR24 st %r25, [%sp + (24 + 113) * 4] ! AWR25 st %r26, [%sp + (24 + 114) * 4] ! AWR26 st %r27, [%sp + (24 + 115) * 4] ! AWR27 st %r28, [%sp + (24 + 116) * 4] ! AWR28 st %r29, [%sp + (24 + 117) * 4] ! AWR29 st %r30, [%sp + (24 + 118) * 4] ! AWR30 st %r31, [%sp + (24 + 119) * 4] ! AWR21 ! Get the Alternate PSR (I hope...) rd %psr, %l2 st %l2, [%sp + (24 + 120) * 4] ! APSR ! Don't forget the alternate stack pointer rd %y, %l3 st %l3, [%sp + (24 + 102) * 4] ! AWR14 (SP) ! 6) Restore the Alternate SP (saved in Y) rd %y, %o6 ! 7) Swap the registers back: mov %psr, %l1 sethi %hi(0x10000), %l2 xor %l1, %l2, %l1 mov %l1, %psr nop ! 3 nops after write to %psr (needed?) nop nop "); } #endif
Go to most recent revision | Compare with Previous | Blame | View Log