URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libc/] [sys/] [linux/] [cmath/] [s_cexp.c] - Rev 207
Compare with Previous | Blame | View Log
/* Return value of complex exponential function for double complex value. Copyright (C) 1997 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include <complex.h> #include <fenv.h> #include <math.h> #include "math_private.h" __complex__ double __cexp (__complex__ double x) { __complex__ double retval; int rcls = fpclassify (__real__ x); int icls = fpclassify (__imag__ x); if (rcls >= FP_ZERO) { /* Real part is finite. */ if (icls >= FP_ZERO) { /* Imaginary part is finite. */ double exp_val = __ieee754_exp (__real__ x); double sinix, cosix; __sincos (__imag__ x, &sinix, &cosix); if (isfinite (exp_val)) { __real__ retval = exp_val * cosix; __imag__ retval = exp_val * sinix; } else { __real__ retval = __copysign (exp_val, cosix); __imag__ retval = __copysign (exp_val, sinix); } } else { /* If the imaginary part is +-inf or NaN and the real part is not +-inf the result is NaN + iNaN. */ __real__ retval = __nan (""); __imag__ retval = __nan (""); #ifdef FE_INVALID feraiseexcept (FE_INVALID); #endif } } else if (rcls == FP_INFINITE) { /* Real part is infinite. */ if (icls >= FP_ZERO) { /* Imaginary part is finite. */ double value = signbit (__real__ x) ? 0.0 : HUGE_VAL; if (icls == FP_ZERO) { /* Imaginary part is 0.0. */ __real__ retval = value; __imag__ retval = __imag__ x; } else { double sinix, cosix; __sincos (__imag__ x, &sinix, &cosix); __real__ retval = __copysign (value, cosix); __imag__ retval = __copysign (value, sinix); } } else if (signbit (__real__ x) == 0) { __real__ retval = HUGE_VAL; __imag__ retval = __nan (""); #ifdef FE_INVALID if (icls == FP_INFINITE) feraiseexcept (FE_INVALID); #endif } else { __real__ retval = 0.0; __imag__ retval = __copysign (0.0, __imag__ x); } } else { /* If the real part is NaN the result is NaN + iNaN. */ __real__ retval = __nan (""); __imag__ retval = __nan (""); #ifdef FE_INVALID if (rcls != FP_NAN || icls != FP_NAN) feraiseexcept (FE_INVALID); #endif } return retval; } weak_alias (__cexp, cexp) #ifdef NO_LONG_DOUBLE strong_alias (__cexp, __cexpl) weak_alias (__cexp, cexpl) #endif