URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libc/] [sys/] [linux/] [linuxthreads/] [pthread.c] - Rev 207
Compare with Previous | Blame | View Log
/* Linuxthreads - a simple clone()-based implementation of Posix */ /* threads for Linux. */ /* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */ /* */ /* This program is free software; you can redistribute it and/or */ /* modify it under the terms of the GNU Library General Public License */ /* as published by the Free Software Foundation; either version 2 */ /* of the License, or (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU Library General Public License for more details. */ /* Thread creation, initialization, and basic low-level routines */ #include <errno.h> #include <stddef.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <fcntl.h> #include <sys/wait.h> #include <sys/resource.h> #include <sys/sysctl.h> #include <shlib-compat.h> #include "pthread.h" #include "internals.h" #include "spinlock.h" #include "restart.h" #include <machine/syscall.h> /* for threading we use processes so we require a few EL/IX level 2 and level 3 syscalls. We only allow this file to see them to preserve the interface. */ #if defined(_ELIX_LEVEL) && _ELIX_LEVEL < 3 static _syscall1_base(int,pipe,int *,filedes) #endif /* _ELIX_LEVEL < 3 */ #if defined(_ELIX_LEVEL) && _ELIX_LEVEL < 2 static _syscall2_base(int,setrlimit,int,resource,const struct rlimit *,rlp) int on_exit (void (*fn)(int, void *), void *arg) { register struct _atexit *p; void (*x)(void) = (void (*)(void))fn; /* _REENT_SMALL on_exit() doesn't allow more than the required 32 entries. */ #ifndef _REENT_SMALL if ((p = _REENT->_atexit) == NULL) _REENT->_atexit = p = &_REENT->_atexit0; if (p->_ind >= _ATEXIT_SIZE) { if ((p = (struct _atexit *) malloc (sizeof *p)) == NULL) return -1; p->_ind = 0; p->_fntypes = 0; p->_next = _REENT->_atexit; _REENT->_atexit = p; } #else p = &_REENT->_atexit; if (p->_ind >= _ATEXIT_SIZE) return -1; #endif p->_fntypes |= (1 << p->_ind); p->_fnargs[p->_ind] = arg; p->_fns[p->_ind++] = x; return 0; } #endif /* _ELIX_LEVEL < 2 */ /* We need the global/static resolver state here. */ #include <resolv.h> #undef _res /* FIXME: for now, set up _res here */ struct __res_state _res; /* Sanity check. */ #if __ASSUME_REALTIME_SIGNALS && !defined __SIGRTMIN # error "This must not happen; new kernel assumed but old headers" #endif /* These variables are used by the setup code. */ /* Descriptor of the initial thread */ struct _pthread_descr_struct __pthread_initial_thread = { { { &__pthread_initial_thread /* pthread_descr self */ } }, &__pthread_initial_thread, /* pthread_descr p_nextlive */ &__pthread_initial_thread, /* pthread_descr p_prevlive */ NULL, /* pthread_descr p_nextwaiting */ NULL, /* pthread_descr p_nextlock */ PTHREAD_THREADS_MAX, /* pthread_t p_tid */ 0, /* int p_pid */ 0, /* int p_priority */ &__pthread_handles[0].h_lock, /* struct _pthread_fastlock * p_lock */ 0, /* int p_signal */ NULL, /* sigjmp_buf * p_signal_buf */ NULL, /* sigjmp_buf * p_cancel_buf */ 0, /* char p_terminated */ 0, /* char p_detached */ 0, /* char p_exited */ NULL, /* void * p_retval */ 0, /* int p_retval */ NULL, /* pthread_descr p_joining */ NULL, /* struct _pthread_cleanup_buffer * p_cleanup */ 0, /* char p_cancelstate */ 0, /* char p_canceltype */ 0, /* char p_canceled */ &__pthread_initial_thread.p_reent, /* struct _reent *p_reentp */ _REENT_INIT(__pthread_initial_thread.p_reent), /* struct _reent p_reent */ NULL, /* int *p_h_errnop */ 0, /* int p_h_errno */ NULL, /* char * p_in_sighandler */ 0, /* char p_sigwaiting */ PTHREAD_START_ARGS_INITIALIZER(NULL), /* struct pthread_start_args p_start_args */ {NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */ {NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */ 1, /* int p_userstack */ NULL, /* void * p_guardaddr */ 0, /* size_t p_guardsize */ 0, /* Always index 0 */ 0, /* int p_report_events */ {{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */ __ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */ 0, /* char p_woken_by_cancel */ 0, /* char p_condvar_avail */ 0, /* char p_sem_avail */ NULL, /* struct pthread_extricate_if *p_extricate */ NULL, /* pthread_readlock_info *p_readlock_list; */ NULL, /* pthread_readlock_info *p_readlock_free; */ 0 /* int p_untracked_readlock_count; */ }; /* Descriptor of the manager thread; none of this is used but the error variables, the p_pid and p_priority fields, and the address for identification. */ struct _pthread_descr_struct __pthread_manager_thread = { { { &__pthread_manager_thread /* pthread_descr self */ } }, NULL, /* pthread_descr p_nextlive */ NULL, /* pthread_descr p_prevlive */ NULL, /* pthread_descr p_nextwaiting */ NULL, /* pthread_descr p_nextlock */ 0, /* int p_tid */ 0, /* int p_pid */ 0, /* int p_priority */ &__pthread_handles[1].h_lock, /* struct _pthread_fastlock * p_lock */ 0, /* int p_signal */ NULL, /* sigjmp_buf * p_signal_buf */ NULL, /* sigjmp_buf * p_cancel_buf */ 0, /* char p_terminated */ 0, /* char p_detached */ 0, /* char p_exited */ NULL, /* void * p_retval */ 0, /* int p_retval */ NULL, /* pthread_descr p_joining */ NULL, /* struct _pthread_cleanup_buffer * p_cleanup */ 0, /* char p_cancelstate */ 0, /* char p_canceltype */ 0, /* char p_canceled */ &__pthread_manager_thread.p_reent, /* struct _reent *p_reentp */ _REENT_INIT(__pthread_manager_thread.p_reent), /* struct _reent p_reent */ NULL, /* int *p_h_errnop */ 0, /* int p_h_errno */ NULL, /* char * p_in_sighandler */ 0, /* char p_sigwaiting */ PTHREAD_START_ARGS_INITIALIZER(__pthread_manager), /* struct pthread_start_args p_start_args */ {NULL}, /* void ** p_specific[PTHREAD_KEY_1STLEVEL_SIZE] */ {NULL}, /* void * p_libc_specific[_LIBC_TSD_KEY_N] */ 0, /* int p_userstack */ NULL, /* void * p_guardaddr */ 0, /* size_t p_guardsize */ 1, /* Always index 1 */ 0, /* int p_report_events */ {{{0, }}, 0, NULL}, /* td_eventbuf_t p_eventbuf */ __ATOMIC_INITIALIZER, /* struct pthread_atomic p_resume_count */ 0, /* char p_woken_by_cancel */ 0, /* char p_condvar_avail */ 0, /* char p_sem_avail */ NULL, /* struct pthread_extricate_if *p_extricate */ NULL, /* pthread_readlock_info *p_readlock_list; */ NULL, /* pthread_readlock_info *p_readlock_free; */ 0 /* int p_untracked_readlock_count; */ }; /* Pointer to the main thread (the father of the thread manager thread) */ /* Originally, this is the initial thread, but this changes after fork() */ pthread_descr __pthread_main_thread = &__pthread_initial_thread; /* Limit between the stack of the initial thread (above) and the stacks of other threads (below). Aligned on a STACK_SIZE boundary. */ char *__pthread_initial_thread_bos; /* File descriptor for sending requests to the thread manager. */ /* Initially -1, meaning that the thread manager is not running. */ int __pthread_manager_request = -1; /* Other end of the pipe for sending requests to the thread manager. */ int __pthread_manager_reader; /* Limits of the thread manager stack */ char *__pthread_manager_thread_bos; char *__pthread_manager_thread_tos; /* For process-wide exit() */ int __pthread_exit_requested; int __pthread_exit_code; /* Maximum stack size. */ size_t __pthread_max_stacksize; /* Nozero if the machine has more than one processor. */ int __pthread_smp_kernel; #if !__ASSUME_REALTIME_SIGNALS /* Pointers that select new or old suspend/resume functions based on availability of rt signals. */ void (*__pthread_restart)(pthread_descr) = __pthread_restart_old; void (*__pthread_suspend)(pthread_descr) = __pthread_suspend_old; int (*__pthread_timedsuspend)(pthread_descr, const struct timespec *) = __pthread_timedsuspend_old; #endif /* __ASSUME_REALTIME_SIGNALS */ /* Communicate relevant LinuxThreads constants to gdb */ const int __pthread_threads_max = PTHREAD_THREADS_MAX; const int __pthread_sizeof_handle = sizeof(struct pthread_handle_struct); const int __pthread_offsetof_descr = offsetof(struct pthread_handle_struct, h_descr); const int __pthread_offsetof_pid = offsetof(struct _pthread_descr_struct, p_pid); const int __linuxthreads_pthread_sizeof_descr = sizeof(struct _pthread_descr_struct); /* Forward declarations */ static void pthread_onexit_process(int retcode, void *arg); #ifndef HAVE_Z_NODELETE static void pthread_atexit_process(void *arg, int retcode); static void pthread_atexit_retcode(void *arg, int retcode); #endif static void pthread_handle_sigcancel(int sig); static void pthread_handle_sigrestart(int sig); static void pthread_handle_sigdebug(int sig); /* CPU clock handling. */ #if HP_TIMING_AVAIL extern hp_timing_t _dl_cpuclock_offset; #endif /* Signal numbers used for the communication. In these variables we keep track of the used variables. If the platform does not support any real-time signals we will define the values to some unreasonable value which will signal failing of all the functions below. */ #ifndef __SIGRTMIN static int current_rtmin = -1; static int current_rtmax = -1; int __pthread_sig_restart = SIGUSR1; int __pthread_sig_cancel = SIGUSR2; int __pthread_sig_debug; #else static int current_rtmin; static int current_rtmax; #if __SIGRTMAX - __SIGRTMIN >= 3 int __pthread_sig_restart = __SIGRTMIN; int __pthread_sig_cancel = __SIGRTMIN + 1; int __pthread_sig_debug = __SIGRTMIN + 2; #else int __pthread_sig_restart = SIGUSR1; int __pthread_sig_cancel = SIGUSR2; int __pthread_sig_debug; #endif static int rtsigs_initialized; #if !__ASSUME_REALTIME_SIGNALS # include "testrtsig.h" #endif static void init_rtsigs (void) { #if !__ASSUME_REALTIME_SIGNALS if (__builtin_expect (!kernel_has_rtsig (), 0)) { current_rtmin = -1; current_rtmax = -1; # if __SIGRTMAX - __SIGRTMIN >= 3 __pthread_sig_restart = SIGUSR1; __pthread_sig_cancel = SIGUSR2; __pthread_sig_debug = 0; # endif } else #endif /* __ASSUME_REALTIME_SIGNALS */ { #if __SIGRTMAX - __SIGRTMIN >= 3 current_rtmin = __SIGRTMIN + 3; # if !__ASSUME_REALTIME_SIGNALS __pthread_restart = __pthread_restart_new; __pthread_suspend = __pthread_wait_for_restart_signal; __pthread_timedsuspend = __pthread_timedsuspend_new; # endif /* __ASSUME_REALTIME_SIGNALS */ #else current_rtmin = __SIGRTMIN; #endif current_rtmax = __SIGRTMAX; } rtsigs_initialized = 1; } #endif /* Return number of available real-time signal with highest priority. */ int __libc_current_sigrtmin (void) { #ifdef __SIGRTMIN if (__builtin_expect (!rtsigs_initialized, 0)) init_rtsigs (); #endif return current_rtmin; } /* Return number of available real-time signal with lowest priority. */ int __libc_current_sigrtmax (void) { #ifdef __SIGRTMIN if (__builtin_expect (!rtsigs_initialized, 0)) init_rtsigs (); #endif return current_rtmax; } /* Allocate real-time signal with highest/lowest available priority. Please note that we don't use a lock since we assume this function to be called at program start. */ int __libc_allocate_rtsig (int high) { #ifndef __SIGRTMIN return -1; #else if (__builtin_expect (!rtsigs_initialized, 0)) init_rtsigs (); if (__builtin_expect (current_rtmin == -1, 0) || __builtin_expect (current_rtmin > current_rtmax, 0)) /* We don't have anymore signal available. */ return -1; return high ? current_rtmin++ : current_rtmax--; #endif } /* The function we use to get the kernel revision. */ extern int __sysctl (int *name, int nlen, void *oldval, size_t *oldlenp, void *newval, size_t newlen); /* Test whether the machine has more than one processor. This is not the best test but good enough. More complicated tests would require `malloc' which is not available at that time. */ static int is_smp_system (void) { static const int sysctl_args[] = { CTL_KERN, KERN_VERSION }; char buf[512]; size_t reslen = sizeof (buf); /* Try reading the number using `sysctl' first. */ if (__sysctl ((int *) sysctl_args, sizeof (sysctl_args) / sizeof (sysctl_args[0]), buf, &reslen, NULL, 0) < 0) { /* This was not successful. Now try reading the /proc filesystem. */ int fd = __open ("/proc/sys/kernel/version", O_RDONLY); if (__builtin_expect (fd, 0) == -1 || (reslen = __read (fd, buf, sizeof (buf))) <= 0) /* This also didn't work. We give up and say it's a UP machine. */ buf[0] = '\0'; __close (fd); } return strstr (buf, "SMP") != NULL; } /* Initialize the pthread library. Initialization is split in two functions: - a constructor function that blocks the __pthread_sig_restart signal (must do this very early, since the program could capture the signal mask with e.g. sigsetjmp before creating the first thread); - a regular function called from pthread_create when needed. */ static void pthread_initialize(void) __attribute__((constructor)); #ifndef HAVE_Z_NODELETE extern void *__dso_handle __attribute__ ((weak)); #endif /* Do some minimal initialization which has to be done during the startup of the C library. */ void __pthread_initialize_minimal(void) { /* If we have special thread_self processing, initialize that for the main thread now. */ #ifdef INIT_THREAD_SELF INIT_THREAD_SELF(&__pthread_initial_thread, 0); #endif #if HP_TIMING_AVAIL __pthread_initial_thread.p_cpuclock_offset = _dl_cpuclock_offset; #endif } void __pthread_init_max_stacksize(void) { struct rlimit limit; size_t max_stack; getrlimit(RLIMIT_STACK, &limit); #ifdef FLOATING_STACKS if (limit.rlim_cur == RLIM_INFINITY) limit.rlim_cur = ARCH_STACK_MAX_SIZE; # ifdef NEED_SEPARATE_REGISTER_STACK max_stack = limit.rlim_cur / 2; # else max_stack = limit.rlim_cur; # endif #else /* Play with the stack size limit to make sure that no stack ever grows beyond STACK_SIZE minus one page (to act as a guard page). */ # ifdef NEED_SEPARATE_REGISTER_STACK /* STACK_SIZE bytes hold both the main stack and register backing store. The rlimit value applies to each individually. */ max_stack = STACK_SIZE/2 - __getpagesize (); # else max_stack = STACK_SIZE - __getpagesize(); # endif if (limit.rlim_cur > max_stack) { limit.rlim_cur = max_stack; __libc_setrlimit(RLIMIT_STACK, &limit); } #endif __pthread_max_stacksize = max_stack; } static void pthread_initialize(void) { struct sigaction sa; sigset_t mask; /* If already done (e.g. by a constructor called earlier!), bail out */ if (__pthread_initial_thread_bos != NULL) return; #ifdef TEST_FOR_COMPARE_AND_SWAP /* Test if compare-and-swap is available */ __pthread_has_cas = compare_and_swap_is_available(); #endif #ifdef FLOATING_STACKS /* We don't need to know the bottom of the stack. Give the pointer some value to signal that initialization happened. */ __pthread_initial_thread_bos = (void *) -1l; #else /* Determine stack size limits . */ __pthread_init_max_stacksize (); # ifdef _STACK_GROWS_UP /* The initial thread already has all the stack it needs */ __pthread_initial_thread_bos = (char *) ((long)CURRENT_STACK_FRAME &~ (STACK_SIZE - 1)); # else /* For the initial stack, reserve at least STACK_SIZE bytes of stack below the current stack address, and align that on a STACK_SIZE boundary. */ __pthread_initial_thread_bos = (char *)(((long)CURRENT_STACK_FRAME - 2 * STACK_SIZE) & ~(STACK_SIZE - 1)); # endif #endif /* Update the descriptor for the initial thread. */ __pthread_initial_thread.p_pid = __getpid(); /* Likewise for the resolver state _res. */ __pthread_initial_thread.p_resp = &_res; #ifdef __SIGRTMIN /* Initialize real-time signals. */ init_rtsigs (); #endif /* Setup signal handlers for the initial thread. Since signal handlers are shared between threads, these settings will be inherited by all other threads. */ sa.sa_handler = pthread_handle_sigrestart; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; __libc_sigaction(__pthread_sig_restart, &sa, NULL); sa.sa_handler = pthread_handle_sigcancel; // sa.sa_flags = 0; __libc_sigaction(__pthread_sig_cancel, &sa, NULL); if (__pthread_sig_debug > 0) { sa.sa_handler = pthread_handle_sigdebug; sigemptyset(&sa.sa_mask); // sa.sa_flags = 0; __libc_sigaction(__pthread_sig_debug, &sa, NULL); } /* Initially, block __pthread_sig_restart. Will be unblocked on demand. */ sigemptyset(&mask); sigaddset(&mask, __pthread_sig_restart); sigprocmask(SIG_BLOCK, &mask, NULL); /* Register an exit function to kill all other threads. */ /* Do it early so that user-registered atexit functions are called before pthread_*exit_process. */ #ifndef HAVE_Z_NODELETE if (__builtin_expect (&__dso_handle != NULL, 1)) __cxa_atexit ((void (*) (void *)) pthread_atexit_process, NULL, __dso_handle); else #endif on_exit (pthread_onexit_process, NULL); /* How many processors. */ __pthread_smp_kernel = is_smp_system (); } void __pthread_initialize(void) { pthread_initialize(); } int __pthread_initialize_manager(void) { int manager_pipe[2]; int pid; struct pthread_request request; #ifndef HAVE_Z_NODELETE if (__builtin_expect (&__dso_handle != NULL, 1)) __cxa_atexit ((void (*) (void *)) pthread_atexit_retcode, NULL, __dso_handle); #endif if (__pthread_max_stacksize == 0) __pthread_init_max_stacksize (); /* If basic initialization not done yet (e.g. we're called from a constructor run before our constructor), do it now */ if (__pthread_initial_thread_bos == NULL) pthread_initialize(); /* Setup stack for thread manager */ __pthread_manager_thread_bos = malloc(THREAD_MANAGER_STACK_SIZE); if (__pthread_manager_thread_bos == NULL) return -1; __pthread_manager_thread_tos = __pthread_manager_thread_bos + THREAD_MANAGER_STACK_SIZE; /* Setup pipe to communicate with thread manager */ if (__libc_pipe(manager_pipe) == -1) { free(__pthread_manager_thread_bos); return -1; } /* Start the thread manager */ pid = 0; if (__builtin_expect (__pthread_initial_thread.p_report_events, 0)) { /* It's a bit more complicated. We have to report the creation of the manager thread. */ int idx = __td_eventword (TD_CREATE); uint32_t mask = __td_eventmask (TD_CREATE); if ((mask & (__pthread_threads_events.event_bits[idx] | __pthread_initial_thread.p_eventbuf.eventmask.event_bits[idx])) != 0) { __pthread_lock(__pthread_manager_thread.p_lock, NULL); #ifdef NEED_SEPARATE_REGISTER_STACK pid = __clone2(__pthread_manager_event, (void **) __pthread_manager_thread_bos, THREAD_MANAGER_STACK_SIZE, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, (void *)(long)manager_pipe[0]); #elif _STACK_GROWS_UP pid = __clone(__pthread_manager_event, (void **) __pthread_manager_thread_bos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, (void *)(long)manager_pipe[0]); #else pid = __clone(__pthread_manager_event, (void **) __pthread_manager_thread_tos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, (void *)(long)manager_pipe[0]); #endif if (pid != -1) { /* Now fill in the information about the new thread in the newly created thread's data structure. We cannot let the new thread do this since we don't know whether it was already scheduled when we send the event. */ __pthread_manager_thread.p_eventbuf.eventdata = &__pthread_manager_thread; __pthread_manager_thread.p_eventbuf.eventnum = TD_CREATE; __pthread_last_event = &__pthread_manager_thread; __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1; __pthread_manager_thread.p_pid = pid; /* Now call the function which signals the event. */ __linuxthreads_create_event (); } /* Now restart the thread. */ __pthread_unlock(__pthread_manager_thread.p_lock); } } if (__builtin_expect (pid, 0) == 0) { #ifdef NEED_SEPARATE_REGISTER_STACK pid = __clone2(__pthread_manager, (void **) __pthread_manager_thread_bos, THREAD_MANAGER_STACK_SIZE, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, (void *)(long)manager_pipe[0]); #elif _STACK_GROWS_UP pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_bos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, (void *)(long)manager_pipe[0]); #else pid = __clone(__pthread_manager, (void **) __pthread_manager_thread_tos, CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, (void *)(long)manager_pipe[0]); #endif } if (__builtin_expect (pid, 0) == -1) { free(__pthread_manager_thread_bos); __libc_close(manager_pipe[0]); __libc_close(manager_pipe[1]); return -1; } __pthread_manager_request = manager_pipe[1]; /* writing end */ __pthread_manager_reader = manager_pipe[0]; /* reading end */ __pthread_manager_thread.p_tid = 2* PTHREAD_THREADS_MAX + 1; __pthread_manager_thread.p_pid = pid; /* Make gdb aware of new thread manager */ if (__builtin_expect (__pthread_threads_debug, 0) && __pthread_sig_debug > 0) { raise(__pthread_sig_debug); /* We suspend ourself and gdb will wake us up when it is ready to handle us. */ __pthread_wait_for_restart_signal(thread_self()); } /* Synchronize debugging of the thread manager */ request.req_kind = REQ_DEBUG; TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request, (char *) &request, sizeof(request))); return 0; } /* Thread creation */ int __pthread_create_2_1(pthread_t *thread, const pthread_attr_t *attr, void * (*start_routine)(void *), void *arg) { pthread_descr self = thread_self(); struct pthread_request request; int retval; if (__builtin_expect (__pthread_manager_request, 0) < 0) { if (__pthread_initialize_manager() < 0) return EAGAIN; } request.req_thread = self; request.req_kind = REQ_CREATE; request.req_args.create.attr = attr; request.req_args.create.fn = start_routine; request.req_args.create.arg = arg; sigprocmask(SIG_SETMASK, (const sigset_t *) NULL, &request.req_args.create.mask); TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request, (char *) &request, sizeof(request))); suspend(self); retval = THREAD_GETMEM(self, p_retcode); if (__builtin_expect (retval, 0) == 0) *thread = (pthread_t) THREAD_GETMEM(self, p_retval); return retval; } versioned_symbol (libpthread, __pthread_create_2_1, pthread_create, GLIBC_2_1); #if SHLIB_COMPAT (libpthread, GLIBC_2_0, GLIBC_2_1) int __pthread_create_2_0(pthread_t *thread, const pthread_attr_t *attr, void * (*start_routine)(void *), void *arg) { /* The ATTR attribute is not really of type `pthread_attr_t *'. It has the old size and access to the new members might crash the program. We convert the struct now. */ pthread_attr_t new_attr; if (attr != NULL) { size_t ps = __getpagesize (); memcpy (&new_attr, attr, (size_t) &(((pthread_attr_t*)NULL)->__guardsize)); new_attr.__guardsize = ps; new_attr.__stackaddr_set = 0; new_attr.__stackaddr = NULL; new_attr.__stacksize = STACK_SIZE - ps; attr = &new_attr; } return __pthread_create_2_1 (thread, attr, start_routine, arg); } compat_symbol (libpthread, __pthread_create_2_0, pthread_create, GLIBC_2_0); #endif /* Simple operations on thread identifiers */ pthread_t pthread_self(void) { pthread_descr self = thread_self(); return THREAD_GETMEM(self, p_tid); } int pthread_equal(pthread_t thread1, pthread_t thread2) { return thread1 == thread2; } /* Helper function for thread_self in the case of user-provided stacks */ #ifndef THREAD_SELF pthread_descr __pthread_find_self(void) { char * sp = CURRENT_STACK_FRAME; pthread_handle h; /* __pthread_handles[0] is the initial thread, __pthread_handles[1] is the manager threads handled specially in thread_self(), so start at 2 */ h = __pthread_handles + 2; while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++; return h->h_descr; } #else static pthread_descr thread_self_stack(void) { char *sp = CURRENT_STACK_FRAME; pthread_handle h; if (sp >= __pthread_manager_thread_bos && sp < __pthread_manager_thread_tos) return &__pthread_manager_thread; h = __pthread_handles + 2; while (! (sp <= (char *) h->h_descr && sp >= h->h_bottom)) h++; return h->h_descr; } #endif /* Thread scheduling */ int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param) { pthread_handle handle = thread_handle(thread); pthread_descr th; __pthread_lock(&handle->h_lock, NULL); if (__builtin_expect (invalid_handle(handle, thread), 0)) { __pthread_unlock(&handle->h_lock); return ESRCH; } th = handle->h_descr; if (__builtin_expect (__sched_setscheduler(th->p_pid, policy, param) == -1, 0)) { __pthread_unlock(&handle->h_lock); return errno; } th->p_priority = policy == SCHED_OTHER ? 0 : param->sched_priority; __pthread_unlock(&handle->h_lock); if (__pthread_manager_request >= 0) __pthread_manager_adjust_prio(th->p_priority); return 0; } int pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param) { pthread_handle handle = thread_handle(thread); int pid, pol; __pthread_lock(&handle->h_lock, NULL); if (__builtin_expect (invalid_handle(handle, thread), 0)) { __pthread_unlock(&handle->h_lock); return ESRCH; } pid = handle->h_descr->p_pid; __pthread_unlock(&handle->h_lock); pol = __sched_getscheduler(pid); if (__builtin_expect (pol, 0) == -1) return errno; if (__sched_getparam(pid, param) == -1) return errno; *policy = pol; return 0; } int __pthread_yield (void) { /* For now this is equivalent with the POSIX call. */ return sched_yield (); } weak_alias (__pthread_yield, pthread_yield) /* Process-wide exit() request */ static void pthread_onexit_process(int retcode, void *arg) { if (__builtin_expect (__pthread_manager_request, 0) >= 0) { struct pthread_request request; pthread_descr self = thread_self(); request.req_thread = self; request.req_kind = REQ_PROCESS_EXIT; request.req_args.exit.code = retcode; TEMP_FAILURE_RETRY(__libc_write(__pthread_manager_request, (char *) &request, sizeof(request))); suspend(self); /* Main thread should accumulate times for thread manager and its children, so that timings for main thread account for all threads. */ if (self == __pthread_main_thread) { __waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE); /* Since all threads have been asynchronously terminated (possibly holding locks), free cannot be used any more. */ /*free (__pthread_manager_thread_bos);*/ __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL; } } } #ifndef HAVE_Z_NODELETE static int __pthread_atexit_retcode; static void pthread_atexit_process(void *arg, int retcode) { pthread_onexit_process (retcode ?: __pthread_atexit_retcode, arg); } static void pthread_atexit_retcode(void *arg, int retcode) { __pthread_atexit_retcode = retcode; } #endif /* The handler for the RESTART signal just records the signal received in the thread descriptor, and optionally performs a siglongjmp (for pthread_cond_timedwait). */ static void pthread_handle_sigrestart(int sig) { pthread_descr self = thread_self(); THREAD_SETMEM(self, p_signal, sig); if (THREAD_GETMEM(self, p_signal_jmp) != NULL) siglongjmp(*THREAD_GETMEM(self, p_signal_jmp), 1); } /* The handler for the CANCEL signal checks for cancellation (in asynchronous mode), for process-wide exit and exec requests. For the thread manager thread, redirect the signal to __pthread_manager_sighandler. */ static void pthread_handle_sigcancel(int sig) { pthread_descr self = thread_self(); sigjmp_buf * jmpbuf; if (self == &__pthread_manager_thread) { #ifdef THREAD_SELF /* A new thread might get a cancel signal before it is fully initialized, so that the thread register might still point to the manager thread. Double check that this is really the manager thread. */ pthread_descr real_self = thread_self_stack(); if (real_self == &__pthread_manager_thread) { __pthread_manager_sighandler(sig); return; } /* Oops, thread_self() isn't working yet.. */ self = real_self; # ifdef INIT_THREAD_SELF INIT_THREAD_SELF(self, self->p_nr); # endif #else __pthread_manager_sighandler(sig); return; #endif } if (__builtin_expect (__pthread_exit_requested, 0)) { /* Main thread should accumulate times for thread manager and its children, so that timings for main thread account for all threads. */ if (self == __pthread_main_thread) __waitpid(__pthread_manager_thread.p_pid, NULL, __WCLONE); _exit(__pthread_exit_code); } if (__builtin_expect (THREAD_GETMEM(self, p_canceled), 0) && THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE) { if (THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS) __pthread_do_exit(PTHREAD_CANCELED, CURRENT_STACK_FRAME); jmpbuf = THREAD_GETMEM(self, p_cancel_jmp); if (jmpbuf != NULL) { THREAD_SETMEM(self, p_cancel_jmp, NULL); siglongjmp(*jmpbuf, 1); } } } /* Handler for the DEBUG signal. The debugging strategy is as follows: On reception of a REQ_DEBUG request (sent by new threads created to the thread manager under debugging mode), the thread manager throws __pthread_sig_debug to itself. The debugger (if active) intercepts this signal, takes into account new threads and continue execution of the thread manager by propagating the signal because it doesn't know what it is specifically done for. In the current implementation, the thread manager simply discards it. */ static void pthread_handle_sigdebug(int sig) { /* Nothing */ } /* Reset the state of the thread machinery after a fork(). Close the pipe used for requests and set the main thread to the forked thread. Notice that we can't free the stack segments, as the forked thread may hold pointers into them. */ void __pthread_reset_main_thread(void) { pthread_descr self = thread_self(); struct rlimit limit; if (__pthread_manager_request != -1) { /* Free the thread manager stack */ free(__pthread_manager_thread_bos); __pthread_manager_thread_bos = __pthread_manager_thread_tos = NULL; /* Close the two ends of the pipe */ __libc_close(__pthread_manager_request); __libc_close(__pthread_manager_reader); __pthread_manager_request = __pthread_manager_reader = -1; } /* Update the pid of the main thread */ THREAD_SETMEM(self, p_pid, __getpid()); /* Make the forked thread the main thread */ __pthread_main_thread = self; THREAD_SETMEM(self, p_nextlive, self); THREAD_SETMEM(self, p_prevlive, self); /* Now this thread modifies the global variables. */ THREAD_SETMEM(self, p_resp, &_res); if (getrlimit (RLIMIT_STACK, &limit) == 0 && limit.rlim_cur != limit.rlim_max) { limit.rlim_cur = limit.rlim_max; __libc_setrlimit(RLIMIT_STACK, &limit); } } /* Process-wide exec() request */ #if !defined(_ELIX_LEVEL) || _ELIX_LEVEL >= 2 void __pthread_kill_other_threads_np(void) { struct sigaction sa; /* Terminate all other threads and thread manager */ pthread_onexit_process(0, NULL); /* Make current thread the main thread in case the calling thread changes its mind, does not exec(), and creates new threads instead. */ __pthread_reset_main_thread(); /* Reset the signal handlers behaviour for the signals the implementation uses since this would be passed to the new process. */ sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = SIG_DFL; __libc_sigaction(__pthread_sig_restart, &sa, NULL); __libc_sigaction(__pthread_sig_cancel, &sa, NULL); if (__pthread_sig_debug > 0) __libc_sigaction(__pthread_sig_debug, &sa, NULL); } weak_alias (__pthread_kill_other_threads_np, pthread_kill_other_threads_np) #endif /* !_ELIX_LEVEL || _ELIX_LEVEL >= 2 */ /* Concurrency symbol level. */ static int current_level; int __pthread_setconcurrency(int level) { /* We don't do anything unless we have found a useful interpretation. */ current_level = level; return 0; } weak_alias (__pthread_setconcurrency, pthread_setconcurrency) int __pthread_getconcurrency(void) { return current_level; } weak_alias (__pthread_getconcurrency, pthread_getconcurrency) /* Primitives for controlling thread execution */ void __pthread_wait_for_restart_signal(pthread_descr self) { sigset_t mask; sigprocmask(SIG_SETMASK, NULL, &mask); /* Get current signal mask */ sigdelset(&mask, __pthread_sig_restart); /* Unblock the restart signal */ THREAD_SETMEM(self, p_signal, 0); do { sigsuspend(&mask); /* Wait for signal */ } while (THREAD_GETMEM(self, p_signal) !=__pthread_sig_restart); READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */ } #if !__ASSUME_REALTIME_SIGNALS /* The _old variants are for 2.0 and early 2.1 kernels which don't have RT signals. On these kernels, we use SIGUSR1 and SIGUSR2 for restart and cancellation. Since the restart signal does not queue, we use an atomic counter to create queuing semantics. This is needed to resolve a rare race condition in pthread_cond_timedwait_relative. */ void __pthread_restart_old(pthread_descr th) { if (atomic_increment(&th->p_resume_count) == -1) kill(th->p_pid, __pthread_sig_restart); } void __pthread_suspend_old(pthread_descr self) { if (atomic_decrement(&self->p_resume_count) <= 0) __pthread_wait_for_restart_signal(self); } int __pthread_timedsuspend_old(pthread_descr self, const struct timespec *abstime) { sigset_t unblock, initial_mask; int was_signalled = 0; sigjmp_buf jmpbuf; if (atomic_decrement(&self->p_resume_count) == 0) { /* Set up a longjmp handler for the restart signal, unblock the signal and sleep. */ if (sigsetjmp(jmpbuf, 1) == 0) { THREAD_SETMEM(self, p_signal_jmp, &jmpbuf); THREAD_SETMEM(self, p_signal, 0); /* Unblock the restart signal */ sigemptyset(&unblock); sigaddset(&unblock, __pthread_sig_restart); sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask); while (1) { struct timeval now; struct timespec reltime; /* Compute a time offset relative to now. */ __gettimeofday (&now, NULL); reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000; reltime.tv_sec = abstime->tv_sec - now.tv_sec; if (reltime.tv_nsec < 0) { reltime.tv_nsec += 1000000000; reltime.tv_sec -= 1; } /* Sleep for the required duration. If woken by a signal, resume waiting as required by Single Unix Specification. */ if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0) break; } /* Block the restart signal again */ sigprocmask(SIG_SETMASK, &initial_mask, NULL); was_signalled = 0; } else { was_signalled = 1; } THREAD_SETMEM(self, p_signal_jmp, NULL); } /* Now was_signalled is true if we exited the above code due to the delivery of a restart signal. In that case, we know we have been dequeued and resumed and that the resume count is balanced. Otherwise, there are some cases to consider. First, try to bump up the resume count back to zero. If it goes to 1, it means restart() was invoked on this thread. The signal must be consumed and the count bumped down and everything is cool. We can return a 1 to the caller. Otherwise, no restart was delivered yet, so a potential race exists; we return a 0 to the caller which must deal with this race in an appropriate way; for example by atomically removing the thread from consideration for a wakeup---if such a thing fails, it means a restart is being delivered. */ if (!was_signalled) { if (atomic_increment(&self->p_resume_count) != -1) { __pthread_wait_for_restart_signal(self); atomic_decrement(&self->p_resume_count); /* should be zero now! */ /* woke spontaneously and consumed restart signal */ return 1; } /* woke spontaneously but did not consume restart---caller must resolve */ return 0; } /* woken due to restart signal */ return 1; } #endif /* __ASSUME_REALTIME_SIGNALS */ void __pthread_restart_new(pthread_descr th) { /* The barrier is proabably not needed, in which case it still documents our assumptions. The intent is to commit previous writes to shared memory so the woken thread will have a consistent view. Complementary read barriers are present to the suspend functions. */ WRITE_MEMORY_BARRIER(); kill(th->p_pid, __pthread_sig_restart); } /* There is no __pthread_suspend_new because it would just be a wasteful wrapper for __pthread_wait_for_restart_signal */ int __pthread_timedsuspend_new(pthread_descr self, const struct timespec *abstime) { sigset_t unblock, initial_mask; int was_signalled = 0; sigjmp_buf jmpbuf; if (sigsetjmp(jmpbuf, 1) == 0) { THREAD_SETMEM(self, p_signal_jmp, &jmpbuf); THREAD_SETMEM(self, p_signal, 0); /* Unblock the restart signal */ sigemptyset(&unblock); sigaddset(&unblock, __pthread_sig_restart); sigprocmask(SIG_UNBLOCK, &unblock, &initial_mask); while (1) { struct timeval now; struct timespec reltime; /* Compute a time offset relative to now. */ __gettimeofday (&now, NULL); reltime.tv_nsec = abstime->tv_nsec - now.tv_usec * 1000; reltime.tv_sec = abstime->tv_sec - now.tv_sec; if (reltime.tv_nsec < 0) { reltime.tv_nsec += 1000000000; reltime.tv_sec -= 1; } /* Sleep for the required duration. If woken by a signal, resume waiting as required by Single Unix Specification. */ if (reltime.tv_sec < 0 || __libc_nanosleep(&reltime, NULL) == 0) break; } /* Block the restart signal again */ sigprocmask(SIG_SETMASK, &initial_mask, NULL); was_signalled = 0; } else { was_signalled = 1; } THREAD_SETMEM(self, p_signal_jmp, NULL); /* Now was_signalled is true if we exited the above code due to the delivery of a restart signal. In that case, everything is cool. We have been removed from whatever we were waiting on by the other thread, and consumed its signal. Otherwise we this thread woke up spontaneously, or due to a signal other than restart. This is an ambiguous case that must be resolved by the caller; the thread is still eligible for a restart wakeup so there is a race. */ READ_MEMORY_BARRIER(); /* See comment in __pthread_restart_new */ return was_signalled; } /* Debugging aid */ #ifdef DEBUG #include <stdarg.h> void __pthread_message(char * fmt, ...) { char buffer[1024]; va_list args; sprintf(buffer, "%05d : ", __getpid()); va_start(args, fmt); vsnprintf(buffer + 8, sizeof(buffer) - 8, fmt, args); va_end(args); TEMP_FAILURE_RETRY(__libc_write(2, buffer, strlen(buffer))); } #endif #ifndef SHARED /* We need a hook to force the cancelation wrappers and file locking to be linked in when static libpthread is used. */ extern const int __pthread_provide_wrappers; static const int *const __pthread_require_wrappers = &__pthread_provide_wrappers; extern const int __pthread_provide_lockfile; static const int *const __pthread_require_lockfile = &__pthread_provide_lockfile; #endif