URL
https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk
Subversion Repositories openrisc_2011-10-31
[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libc/] [time/] [strftime.c] - Rev 277
Go to most recent revision | Compare with Previous | Blame | View Log
/* NOTE: This file defines both strftime() and wcsftime(). Take care when * making changes. See also wcsftime.c, and note the (small) overlap in the * manual description, taking care to edit both as needed. */ /* * strftime.c * Original Author: G. Haley * Additions from: Eric Blake * Changes to allow dual use as wcstime, also: Craig Howland * * Places characters into the array pointed to by s as controlled by the string * pointed to by format. If the total number of resulting characters including * the terminating null character is not more than maxsize, returns the number * of characters placed into the array pointed to by s (not including the * terminating null character); otherwise zero is returned and the contents of * the array indeterminate. */ /* FUNCTION <<strftime>>---convert date and time to a formatted string INDEX strftime ANSI_SYNOPSIS #include <time.h> size_t strftime(char *<[s]>, size_t <[maxsize]>, const char *<[format]>, const struct tm *<[timp]>); TRAD_SYNOPSIS #include <time.h> size_t strftime(<[s]>, <[maxsize]>, <[format]>, <[timp]>) char *<[s]>; size_t <[maxsize]>; char *<[format]>; struct tm *<[timp]>; DESCRIPTION <<strftime>> converts a <<struct tm>> representation of the time (at <[timp]>) into a null-terminated string, starting at <[s]> and occupying no more than <[maxsize]> characters. You control the format of the output using the string at <[format]>. <<*<[format]>>> can contain two kinds of specifications: text to be copied literally into the formatted string, and time conversion specifications. Time conversion specifications are two- and three-character sequences beginning with `<<%>>' (use `<<%%>>' to include a percent sign in the output). Each defined conversion specification selects only the specified field(s) of calendar time data from <<*<[timp]>>>, and converts it to a string in one of the following ways: o+ o %a A three-letter abbreviation for the day of the week. [tm_wday] o %A The full name for the day of the week, one of `<<Sunday>>', `<<Monday>>', `<<Tuesday>>', `<<Wednesday>>', `<<Thursday>>', `<<Friday>>', or `<<Saturday>>'. [tm_wday] o %b A three-letter abbreviation for the month name. [tm_mon] o %B The full name of the month, one of `<<January>>', `<<February>>', `<<March>>', `<<April>>', `<<May>>', `<<June>>', `<<July>>', `<<August>>', `<<September>>', `<<October>>', `<<November>>', `<<December>>'. [tm_mon] o %c A string representing the complete date and time, in the form `<<"%a %b %e %H:%M:%S %Y">>' (example "Mon Apr 01 13:13:13 1992"). [tm_sec, tm_min, tm_hour, tm_mday, tm_mon, tm_year, tm_wday] o %C The century, that is, the year divided by 100 then truncated. For 4-digit years, the result is zero-padded and exactly two characters; but for other years, there may a negative sign or more digits. In this way, `<<%C%y>>' is equivalent to `<<%Y>>'. [tm_year] o %d The day of the month, formatted with two digits (from `<<01>>' to `<<31>>'). [tm_mday] o %D A string representing the date, in the form `<<"%m/%d/%y">>'. [tm_mday, tm_mon, tm_year] o %e The day of the month, formatted with leading space if single digit (from `<<1>>' to `<<31>>'). [tm_mday] o %E<<x>> In some locales, the E modifier selects alternative representations of certain modifiers <<x>>. But in the "C" locale supported by newlib, it is ignored, and treated as %<<x>>. o %F A string representing the ISO 8601:2000 date format, in the form `<<"%Y-%m-%d">>'. [tm_mday, tm_mon, tm_year] o %g The last two digits of the week-based year, see specifier %G (from `<<00>>' to `<<99>>'). [tm_year, tm_wday, tm_yday] o %G The week-based year. In the ISO 8601:2000 calendar, week 1 of the year includes January 4th, and begin on Mondays. Therefore, if January 1st, 2nd, or 3rd falls on a Sunday, that day and earlier belong to the last week of the previous year; and if December 29th, 30th, or 31st falls on Monday, that day and later belong to week 1 of the next year. For consistency with %Y, it always has at least four characters. Example: "%G" for Saturday 2nd January 1999 gives "1998", and for Tuesday 30th December 1997 gives "1998". [tm_year, tm_wday, tm_yday] o %h A three-letter abbreviation for the month name (synonym for "%b"). [tm_mon] o %H The hour (on a 24-hour clock), formatted with two digits (from `<<00>>' to `<<23>>'). [tm_hour] o %I The hour (on a 12-hour clock), formatted with two digits (from `<<01>>' to `<<12>>'). [tm_hour] o %j The count of days in the year, formatted with three digits (from `<<001>>' to `<<366>>'). [tm_yday] o %k The hour (on a 24-hour clock), formatted with leading space if single digit (from `<<0>>' to `<<23>>'). Non-POSIX extension (c.p. %I). [tm_hour] o %l The hour (on a 12-hour clock), formatted with leading space if single digit (from `<<1>>' to `<<12>>'). Non-POSIX extension (c.p. %H). [tm_hour] o %m The month number, formatted with two digits (from `<<01>>' to `<<12>>'). [tm_mon] o %M The minute, formatted with two digits (from `<<00>>' to `<<59>>'). [tm_min] o %n A newline character (`<<\n>>'). o %O<<x>> In some locales, the O modifier selects alternative digit characters for certain modifiers <<x>>. But in the "C" locale supported by newlib, it is ignored, and treated as %<<x>>. o %p Either `<<AM>>' or `<<PM>>' as appropriate. [tm_hour] o %r The 12-hour time, to the second. Equivalent to "%I:%M:%S %p". [tm_sec, tm_min, tm_hour] o %R The 24-hour time, to the minute. Equivalent to "%H:%M". [tm_min, tm_hour] o %S The second, formatted with two digits (from `<<00>>' to `<<60>>'). The value 60 accounts for the occasional leap second. [tm_sec] o %t A tab character (`<<\t>>'). o %T The 24-hour time, to the second. Equivalent to "%H:%M:%S". [tm_sec, tm_min, tm_hour] o %u The weekday as a number, 1-based from Monday (from `<<1>>' to `<<7>>'). [tm_wday] o %U The week number, where weeks start on Sunday, week 1 contains the first Sunday in a year, and earlier days are in week 0. Formatted with two digits (from `<<00>>' to `<<53>>'). See also <<%W>>. [tm_wday, tm_yday] o %V The week number, where weeks start on Monday, week 1 contains January 4th, and earlier days are in the previous year. Formatted with two digits (from `<<01>>' to `<<53>>'). See also <<%G>>. [tm_year, tm_wday, tm_yday] o %w The weekday as a number, 0-based from Sunday (from `<<0>>' to `<<6>>'). [tm_wday] o %W The week number, where weeks start on Monday, week 1 contains the first Monday in a year, and earlier days are in week 0. Formatted with two digits (from `<<00>>' to `<<53>>'). [tm_wday, tm_yday] o %x A string representing the complete date, equivalent to "%m/%d/%y". [tm_mon, tm_mday, tm_year] o %X A string representing the full time of day (hours, minutes, and seconds), equivalent to "%H:%M:%S". [tm_sec, tm_min, tm_hour] o %y The last two digits of the year (from `<<00>>' to `<<99>>'). [tm_year] (Implementation interpretation: always positive, even for negative years.) o %Y The full year, equivalent to <<%C%y>>. It will always have at least four characters, but may have more. The year is accurate even when tm_year added to the offset of 1900 overflows an int. [tm_year] o %z The offset from UTC. The format consists of a sign (negative is west of Greewich), two characters for hour, then two characters for minutes (-hhmm or +hhmm). If tm_isdst is negative, the offset is unknown and no output is generated; if it is zero, the offset is the standard offset for the current time zone; and if it is positive, the offset is the daylight savings offset for the current timezone. The offset is determined from the TZ environment variable, as if by calling tzset(). [tm_isdst] o %Z The time zone name. If tm_isdst is negative, no output is generated. Otherwise, the time zone name is based on the TZ environment variable, as if by calling tzset(). [tm_isdst] o %% A single character, `<<%>>'. o- RETURNS When the formatted time takes up no more than <[maxsize]> characters, the result is the length of the formatted string. Otherwise, if the formatting operation was abandoned due to lack of room, the result is <<0>>, and the string starting at <[s]> corresponds to just those parts of <<*<[format]>>> that could be completely filled in within the <[maxsize]> limit. PORTABILITY ANSI C requires <<strftime>>, but does not specify the contents of <<*<[s]>>> when the formatted string would require more than <[maxsize]> characters. Unrecognized specifiers and fields of <<timp>> that are out of range cause undefined results. Since some formats expand to 0 bytes, it is wise to set <<*<[s]>>> to a nonzero value beforehand to distinguish between failure and an empty string. This implementation does not support <<s>> being NULL, nor overlapping <<s>> and <<format>>. <<strftime>> requires no supporting OS subroutines. BUGS <<strftime>> ignores the LC_TIME category of the current locale, hard-coding the "C" locale settings. */ #include <stddef.h> #include <stdio.h> #include <time.h> #include <string.h> #include <stdlib.h> #include <limits.h> #include "local.h" /* Defines to make the file dual use for either strftime() or wcsftime(). * To get wcsftime, define MAKE_WCSFTIME. * To get strftime, do not define MAKE_WCSFTIME. * Names are kept friendly to strftime() usage. The biggest ugliness is the * use of the CQ() macro to make either regular character constants and * string literals or wide-character constants and wide-character-string * literals, as appropriate. */ #if !defined(MAKE_WCSFTIME) # define CHAR char /* string type basis */ # define CQ(a) a /* character constant qualifier */ # define SFLG /* %s flag (null for normal char) */ # else # define strftime wcsftime /* Alternate function name */ # define CHAR wchar_t /* string type basis */ # define CQ(a) L##a /* character constant qualifier */ # define snprintf swprintf /* wide-char equivalent function name */ # define strncmp wcsncmp /* wide-char equivalent function name */ # define SFLG "l" /* %s flag (l for wide char) */ #endif /* MAKE_WCSFTIME */ /* Enforce the coding assumptions that YEAR_BASE is positive. (%C, %Y, etc.) */ #if YEAR_BASE < 0 # error "YEAR_BASE < 0" #endif static _CONST int dname_len[7] = {6, 6, 7, 9, 8, 6, 8}; static _CONST CHAR *_CONST dname[7] = {CQ("Sunday"), CQ("Monday"), CQ("Tuesday"), CQ("Wednesday"), CQ("Thursday"), CQ("Friday"), CQ("Saturday")}; static _CONST int mname_len[12] = {7, 8, 5, 5, 3, 4, 4, 6, 9, 7, 8, 8}; static _CONST CHAR *_CONST mname[12] = {CQ("January"), CQ("February"), CQ("March"), CQ("April"), CQ("May"), CQ("June"), CQ("July"), CQ("August"), CQ("September"), CQ("October"), CQ("November"), CQ("December")}; /* Using the tm_year, tm_wday, and tm_yday components of TIM_P, return -1, 0, or 1 as the adjustment to add to the year for the ISO week numbering used in "%g%G%V", avoiding overflow. */ static int _DEFUN (iso_year_adjust, (tim_p), _CONST struct tm *tim_p) { /* Account for fact that tm_year==0 is year 1900. */ int leap = isleap (tim_p->tm_year + (YEAR_BASE - (tim_p->tm_year < 0 ? 0 : 2000))); /* Pack the yday, wday, and leap year into a single int since there are so many disparate cases. */ #define PACK(yd, wd, lp) (((yd) << 4) + (wd << 1) + (lp)) switch (PACK (tim_p->tm_yday, tim_p->tm_wday, leap)) { case PACK (0, 5, 0): /* Jan 1 is Fri, not leap. */ case PACK (0, 6, 0): /* Jan 1 is Sat, not leap. */ case PACK (0, 0, 0): /* Jan 1 is Sun, not leap. */ case PACK (0, 5, 1): /* Jan 1 is Fri, leap year. */ case PACK (0, 6, 1): /* Jan 1 is Sat, leap year. */ case PACK (0, 0, 1): /* Jan 1 is Sun, leap year. */ case PACK (1, 6, 0): /* Jan 2 is Sat, not leap. */ case PACK (1, 0, 0): /* Jan 2 is Sun, not leap. */ case PACK (1, 6, 1): /* Jan 2 is Sat, leap year. */ case PACK (1, 0, 1): /* Jan 2 is Sun, leap year. */ case PACK (2, 0, 0): /* Jan 3 is Sun, not leap. */ case PACK (2, 0, 1): /* Jan 3 is Sun, leap year. */ return -1; /* Belongs to last week of previous year. */ case PACK (362, 1, 0): /* Dec 29 is Mon, not leap. */ case PACK (363, 1, 1): /* Dec 29 is Mon, leap year. */ case PACK (363, 1, 0): /* Dec 30 is Mon, not leap. */ case PACK (363, 2, 0): /* Dec 30 is Tue, not leap. */ case PACK (364, 1, 1): /* Dec 30 is Mon, leap year. */ case PACK (364, 2, 1): /* Dec 30 is Tue, leap year. */ case PACK (364, 1, 0): /* Dec 31 is Mon, not leap. */ case PACK (364, 2, 0): /* Dec 31 is Tue, not leap. */ case PACK (364, 3, 0): /* Dec 31 is Wed, not leap. */ case PACK (365, 1, 1): /* Dec 31 is Mon, leap year. */ case PACK (365, 2, 1): /* Dec 31 is Tue, leap year. */ case PACK (365, 3, 1): /* Dec 31 is Wed, leap year. */ return 1; /* Belongs to first week of next year. */ } return 0; /* Belongs to specified year. */ #undef PACK } size_t _DEFUN (strftime, (s, maxsize, format, tim_p), CHAR *s _AND size_t maxsize _AND _CONST CHAR *format _AND _CONST struct tm *tim_p) { size_t count = 0; int i, len; for (;;) { while (*format && *format != CQ('%')) { if (count < maxsize - 1) s[count++] = *format++; else return 0; } if (*format == CQ('\0')) break; format++; if (*format == CQ('E') || *format == CQ('O')) format++; switch (*format) { case CQ('a'): for (i = 0; i < 3; i++) { if (count < maxsize - 1) s[count++] = dname[tim_p->tm_wday][i]; else return 0; } break; case CQ('A'): for (i = 0; i < dname_len[tim_p->tm_wday]; i++) { if (count < maxsize - 1) s[count++] = dname[tim_p->tm_wday][i]; else return 0; } break; case CQ('b'): case CQ('h'): for (i = 0; i < 3; i++) { if (count < maxsize - 1) s[count++] = mname[tim_p->tm_mon][i]; else return 0; } break; case CQ('B'): for (i = 0; i < mname_len[tim_p->tm_mon]; i++) { if (count < maxsize - 1) s[count++] = mname[tim_p->tm_mon][i]; else return 0; } break; case CQ('c'): { /* Recurse to avoid need to replicate %Y formation. */ size_t adjust = strftime (&s[count], maxsize - count, CQ("%a %b %e %H:%M:%S %Y"), tim_p); if (adjust > 0) count += adjust; else return 0; } break; case CQ('C'): { /* Examples of (tm_year + YEAR_BASE) that show how %Y == %C%y with 32-bit int. %Y %C %y 2147485547 21474855 47 10000 100 00 9999 99 99 0999 09 99 0099 00 99 0001 00 01 0000 00 00 -001 -0 01 -099 -0 99 -999 -9 99 -1000 -10 00 -10000 -100 00 -2147481748 -21474817 48 Be careful of both overflow and sign adjustment due to the asymmetric range of years. */ int neg = tim_p->tm_year < -YEAR_BASE; int century = tim_p->tm_year >= 0 ? tim_p->tm_year / 100 + YEAR_BASE / 100 : abs (tim_p->tm_year + YEAR_BASE) / 100; len = snprintf (&s[count], maxsize - count, CQ("%s%.*d"), neg ? CQ("-") : CQ(""), 2 - neg, century); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('d'): case CQ('e'): len = snprintf (&s[count], maxsize - count, *format == CQ('d') ? CQ("%.2d") : CQ("%2d"), tim_p->tm_mday); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('D'): case CQ('x'): /* %m/%d/%y */ len = snprintf (&s[count], maxsize - count, CQ("%.2d/%.2d/%.2d"), tim_p->tm_mon + 1, tim_p->tm_mday, tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('F'): { /* %F is equivalent to "%Y-%m-%d" */ /* Recurse to avoid need to replicate %Y formation. */ size_t adjust = strftime (&s[count], maxsize - count, CQ("%Y-%m-%d"), tim_p); if (adjust > 0) count += adjust; else return 0; } break; case CQ('g'): /* Be careful of both overflow and negative years, thanks to the asymmetric range of years. */ { int adjust = iso_year_adjust (tim_p); int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; if (adjust < 0 && tim_p->tm_year <= -YEAR_BASE) adjust = 1; else if (adjust > 0 && tim_p->tm_year < -YEAR_BASE) adjust = -1; len = snprintf (&s[count], maxsize - count, CQ("%.2d"), ((year + adjust) % 100 + 100) % 100); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('G'): { /* See the comments for 'C' and 'Y'; this is a variable length field. Although there is no requirement for a minimum number of digits, we use 4 for consistency with 'Y'. */ int neg = tim_p->tm_year < -YEAR_BASE; int adjust = iso_year_adjust (tim_p); int century = tim_p->tm_year >= 0 ? tim_p->tm_year / 100 + YEAR_BASE / 100 : abs (tim_p->tm_year + YEAR_BASE) / 100; int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; if (adjust < 0 && tim_p->tm_year <= -YEAR_BASE) neg = adjust = 1; else if (adjust > 0 && neg) adjust = -1; year += adjust; if (year == -1) { year = 99; --century; } else if (year == 100) { year = 0; ++century; } len = snprintf (&s[count], maxsize - count, CQ("%s%.*d%.2d"), neg ? CQ("-") : CQ(""), 2 - neg, century, year); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('H'): case CQ('k'): /* newlib extension */ len = snprintf (&s[count], maxsize - count, *format == CQ('k') ? CQ("%2d") : CQ("%.2d"), tim_p->tm_hour); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('I'): case CQ('l'): /* newlib extension */ { register int h12; h12 = (tim_p->tm_hour == 0 || tim_p->tm_hour == 12) ? 12 : tim_p->tm_hour % 12; len = snprintf (&s[count], maxsize - count, *format == CQ('I') ? CQ("%.2d") : CQ("%2d"), h12); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('j'): len = snprintf (&s[count], maxsize - count, CQ("%.3d"), tim_p->tm_yday + 1); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('m'): len = snprintf (&s[count], maxsize - count, CQ("%.2d"), tim_p->tm_mon + 1); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('M'): len = snprintf (&s[count], maxsize - count, CQ("%.2d"), tim_p->tm_min); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('n'): if (count < maxsize - 1) s[count++] = CQ('\n'); else return 0; break; case CQ('p'): if (count < maxsize - 1) { if (tim_p->tm_hour < 12) s[count++] = CQ('A'); else s[count++] = CQ('P'); } if (count < maxsize - 1) { s[count++] = CQ('M'); } else return 0; break; case CQ('r'): { register int h12; h12 = (tim_p->tm_hour == 0 || tim_p->tm_hour == 12) ? 12 : tim_p->tm_hour % 12; len = snprintf (&s[count], maxsize - count, CQ("%.2d:%.2d:%.2d %cM"), h12, tim_p->tm_min, tim_p->tm_sec, (tim_p->tm_hour < 12) ? CQ('A') : CQ('P')); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('R'): len = snprintf (&s[count], maxsize - count, CQ("%.2d:%.2d"), tim_p->tm_hour, tim_p->tm_min); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('S'): len = snprintf (&s[count], maxsize - count, CQ("%.2d"), tim_p->tm_sec); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('t'): if (count < maxsize - 1) s[count++] = CQ('\t'); else return 0; break; case CQ('T'): case CQ('X'): len = snprintf (&s[count], maxsize - count, CQ("%.2d:%.2d:%.2d"), tim_p->tm_hour, tim_p->tm_min, tim_p->tm_sec); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('u'): if (count < maxsize - 1) { if (tim_p->tm_wday == 0) s[count++] = CQ('7'); else s[count++] = CQ('0') + tim_p->tm_wday; } else return 0; break; case CQ('U'): len = snprintf (&s[count], maxsize - count, CQ("%.2d"), (tim_p->tm_yday + 7 - tim_p->tm_wday) / 7); if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('V'): { int adjust = iso_year_adjust (tim_p); int wday = (tim_p->tm_wday) ? tim_p->tm_wday - 1 : 6; int week = (tim_p->tm_yday + 10 - wday) / 7; if (adjust > 0) week = 1; else if (adjust < 0) /* Previous year has 53 weeks if current year starts on Fri, and also if current year starts on Sat and previous year was leap year. */ week = 52 + (4 >= (wday - tim_p->tm_yday - isleap (tim_p->tm_year + (YEAR_BASE - 1 - (tim_p->tm_year < 0 ? 0 : 2000))))); len = snprintf (&s[count], maxsize - count, CQ("%.2d"), week); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('w'): if (count < maxsize - 1) s[count++] = CQ('0') + tim_p->tm_wday; else return 0; break; case CQ('W'): { int wday = (tim_p->tm_wday) ? tim_p->tm_wday - 1 : 6; len = snprintf (&s[count], maxsize - count, CQ("%.2d"), (tim_p->tm_yday + 7 - wday) / 7); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('y'): { /* Be careful of both overflow and negative years, thanks to the asymmetric range of years. */ int year = tim_p->tm_year >= 0 ? tim_p->tm_year % 100 : abs (tim_p->tm_year + YEAR_BASE) % 100; len = snprintf (&s[count], maxsize - count, CQ("%.2d"), year); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('Y'): /* An implementation choice is to have %Y match %C%y, so that it * gives at least 4 digits, with leading zeros as needed. */ if(tim_p->tm_year <= INT_MAX-YEAR_BASE) { /* For normal, non-overflow case. */ len = snprintf (&s[count], maxsize - count, CQ("%04d"), tim_p->tm_year + YEAR_BASE); } else { /* int would overflow, so use unsigned instead. */ register unsigned year; year = (unsigned) tim_p->tm_year + (unsigned) YEAR_BASE; len = snprintf (&s[count], maxsize - count, CQ("%04u"), tim_p->tm_year + YEAR_BASE); } if (len < 0 || (count+=len) >= maxsize) return 0; break; case CQ('z'): if (tim_p->tm_isdst >= 0) { long offset; __tzinfo_type *tz = __gettzinfo (); TZ_LOCK; /* The sign of this is exactly opposite the envvar TZ. We could directly use the global _timezone for tm_isdst==0, but have to use __tzrule for daylight savings. */ offset = -tz->__tzrule[tim_p->tm_isdst > 0].offset; TZ_UNLOCK; len = snprintf (&s[count], maxsize - count, CQ("%+03ld%.2ld"), offset / SECSPERHOUR, labs (offset / SECSPERMIN) % 60L); if (len < 0 || (count+=len) >= maxsize) return 0; } break; case CQ('Z'): if (tim_p->tm_isdst >= 0) { int size; TZ_LOCK; size = strlen(_tzname[tim_p->tm_isdst > 0]); for (i = 0; i < size; i++) { if (count < maxsize - 1) s[count++] = _tzname[tim_p->tm_isdst > 0][i]; else { TZ_UNLOCK; return 0; } } TZ_UNLOCK; } break; case CQ('%'): if (count < maxsize - 1) s[count++] = CQ('%'); else return 0; break; } if (*format) format++; else break; } if (maxsize) s[count] = CQ('\0'); return count; } /* The remainder of this file can serve as a regression test. Compile * with -D_REGRESSION_TEST. */ #if defined(_REGRESSION_TEST) /* [Test code: */ /* This test code relies on ANSI C features, in particular on the ability * of adjacent strings to be pasted together into one string. */ /* Test output buffer size (should be larger than all expected results) */ #define OUTSIZE 256 struct test { CHAR *fmt; /* Testing format */ size_t max; /* Testing maxsize */ size_t ret; /* Expected return value */ CHAR *out; /* Expected output string */ }; struct list { const struct tm *tms; /* Time used for these vectors */ const struct test *vec; /* Test vectors */ int cnt; /* Number of vectors */ }; const char TZ[]="TZ=EST5EDT"; /* Define list of test inputs and expected outputs, for the given time zone * and time. */ const struct tm tm0 = { /* Tue Dec 30 10:53:47 EST 2008 (time_t=1230648827) */ .tm_sec = 47, .tm_min = 53, .tm_hour = 9, .tm_mday = 30, .tm_mon = 11, .tm_year = 108, .tm_wday = 2, .tm_yday = 364, .tm_isdst = 0 }; const struct test Vec0[] = { /* Testing fields one at a time, expecting to pass, using exact * allowed length as what is needed. */ /* Using tm0 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%a"), 3+1, EXP(CQ("Tue")) }, { CQ("%A"), 7+1, EXP(CQ("Tuesday")) }, { CQ("%b"), 3+1, EXP(CQ("Dec")) }, { CQ("%B"), 8+1, EXP(CQ("December")) }, { CQ("%c"), 24+1, EXP(CQ("Tue Dec 30 09:53:47 2008")) }, { CQ("%C"), 2+1, EXP(CQ("20")) }, { CQ("%d"), 2+1, EXP(CQ("30")) }, { CQ("%D"), 8+1, EXP(CQ("12/30/08")) }, { CQ("%e"), 2+1, EXP(CQ("30")) }, { CQ("%F"), 10+1, EXP(CQ("2008-12-30")) }, { CQ("%g"), 2+1, EXP(CQ("09")) }, { CQ("%G"), 4+1, EXP(CQ("2009")) }, { CQ("%h"), 3+1, EXP(CQ("Dec")) }, { CQ("%H"), 2+1, EXP(CQ("09")) }, { CQ("%I"), 2+1, EXP(CQ("09")) }, { CQ("%j"), 3+1, EXP(CQ("365")) }, { CQ("%k"), 2+1, EXP(CQ(" 9")) }, { CQ("%l"), 2+1, EXP(CQ(" 9")) }, { CQ("%m"), 2+1, EXP(CQ("12")) }, { CQ("%M"), 2+1, EXP(CQ("53")) }, { CQ("%n"), 1+1, EXP(CQ("\n")) }, { CQ("%p"), 2+1, EXP(CQ("AM")) }, { CQ("%r"), 11+1, EXP(CQ("09:53:47 AM")) }, { CQ("%R"), 5+1, EXP(CQ("09:53")) }, { CQ("%S"), 2+1, EXP(CQ("47")) }, { CQ("%t"), 1+1, EXP(CQ("\t")) }, { CQ("%T"), 8+1, EXP(CQ("09:53:47")) }, { CQ("%u"), 1+1, EXP(CQ("2")) }, { CQ("%U"), 2+1, EXP(CQ("52")) }, { CQ("%V"), 2+1, EXP(CQ("01")) }, { CQ("%w"), 1+1, EXP(CQ("2")) }, { CQ("%W"), 2+1, EXP(CQ("52")) }, { CQ("%x"), 8+1, EXP(CQ("12/30/08")) }, { CQ("%X"), 8+1, EXP(CQ("09:53:47")) }, { CQ("%y"), 2+1, EXP(CQ("08")) }, { CQ("%Y"), 4+1, EXP(CQ("2008")) }, { CQ("%z"), 5+1, EXP(CQ("-0500")) }, { CQ("%Z"), 3+1, EXP(CQ("EST")) }, { CQ("%%"), 1+1, EXP(CQ("%")) }, #undef EXP }; /* Define list of test inputs and expected outputs, for the given time zone * and time. */ const struct tm tm1 = { /* Wed Jul 2 23:01:13 EDT 2008 (time_t=1215054073) */ .tm_sec = 13, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = 108, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; const struct test Vec1[] = { /* Testing fields one at a time, expecting to pass, using exact * allowed length as what is needed. */ /* Using tm1 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%a"), 3+1, EXP(CQ("Wed")) }, { CQ("%A"), 9+1, EXP(CQ("Wednesday")) }, { CQ("%b"), 3+1, EXP(CQ("Jul")) }, { CQ("%B"), 4+1, EXP(CQ("July")) }, { CQ("%c"), 24+1, EXP(CQ("Wed Jul 2 23:01:13 2008")) }, { CQ("%C"), 2+1, EXP(CQ("20")) }, { CQ("%d"), 2+1, EXP(CQ("02")) }, { CQ("%D"), 8+1, EXP(CQ("07/02/08")) }, { CQ("%e"), 2+1, EXP(CQ(" 2")) }, { CQ("%F"), 10+1, EXP(CQ("2008-07-02")) }, { CQ("%g"), 2+1, EXP(CQ("08")) }, { CQ("%G"), 4+1, EXP(CQ("2008")) }, { CQ("%h"), 3+1, EXP(CQ("Jul")) }, { CQ("%H"), 2+1, EXP(CQ("23")) }, { CQ("%I"), 2+1, EXP(CQ("11")) }, { CQ("%j"), 3+1, EXP(CQ("184")) }, { CQ("%k"), 2+1, EXP(CQ("23")) }, { CQ("%l"), 2+1, EXP(CQ("11")) }, { CQ("%m"), 2+1, EXP(CQ("07")) }, { CQ("%M"), 2+1, EXP(CQ("01")) }, { CQ("%n"), 1+1, EXP(CQ("\n")) }, { CQ("%p"), 2+1, EXP(CQ("PM")) }, { CQ("%r"), 11+1, EXP(CQ("11:01:13 PM")) }, { CQ("%R"), 5+1, EXP(CQ("23:01")) }, { CQ("%S"), 2+1, EXP(CQ("13")) }, { CQ("%t"), 1+1, EXP(CQ("\t")) }, { CQ("%T"), 8+1, EXP(CQ("23:01:13")) }, { CQ("%u"), 1+1, EXP(CQ("3")) }, { CQ("%U"), 2+1, EXP(CQ("26")) }, { CQ("%V"), 2+1, EXP(CQ("27")) }, { CQ("%w"), 1+1, EXP(CQ("3")) }, { CQ("%W"), 2+1, EXP(CQ("26")) }, { CQ("%x"), 8+1, EXP(CQ("07/02/08")) }, { CQ("%X"), 8+1, EXP(CQ("23:01:13")) }, { CQ("%y"), 2+1, EXP(CQ("08")) }, { CQ("%Y"), 4+1, EXP(CQ("2008")) }, { CQ("%z"), 5+1, EXP(CQ("-0400")) }, { CQ("%Z"), 3+1, EXP(CQ("EDT")) }, { CQ("%%"), 1+1, EXP(CQ("%")) }, #undef EXP #define VEC(s) s, sizeof(s)/sizeof(CHAR), sizeof(s)/sizeof(CHAR)-1, s #define EXP(s) sizeof(s)/sizeof(CHAR), sizeof(s)/sizeof(CHAR)-1, s { VEC(CQ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz")) }, { CQ("0123456789%%%h:`~"), EXP(CQ("0123456789%Jul:`~")) }, { CQ("%R%h:`~ %x %w"), EXP(CQ("23:01Jul:`~ 07/02/08 3")) }, #undef VEC #undef EXP }; #if YEAR_BASE == 1900 /* ( */ /* Checks for very large years. YEAR_BASE value relied upon so that the * answer strings can be predetermined. * Years more than 4 digits are not mentioned in the standard for %C, so the * test for those cases are based on the design intent (which is to print the * whole number, being the century). */ const struct tm tmyr0 = { /* Wed Jul 2 23:01:13 EDT [HUGE#] */ .tm_sec = 13, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = INT_MAX - YEAR_BASE/2, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #if INT_MAX == 32767 # define YEAR CQ("33717") /* INT_MAX + YEAR_BASE/2 */ # define CENT CQ("337") # define Year CQ("17") # elif INT_MAX == 2147483647 # define YEAR CQ("2147484597") # define CENT CQ("21474845") # define Year CQ("97") # elif INT_MAX == 9223372036854775807 # define YEAR CQ("9223372036854776757") # define CENT CQ("92233720368547777") # define Year CQ("57") # else # error "Unrecognized INT_MAX value: enhance me to recognize what you have" #endif const struct test Vecyr0[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyr0 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:13 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year /* Checks for very large negative years. YEAR_BASE value relied upon so that * the answer strings can be predetermined. */ const struct tm tmyr1 = { /* Wed Jul 2 23:01:13 EDT [HUGE#] */ .tm_sec = 13, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = INT_MIN, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #if INT_MAX == 32767 # define YEAR CQ("-30868") /* INT_MIN + YEAR_BASE */ # define CENT CQ("-308") # define Year CQ("68") # elif INT_MAX == 2147483647 # define YEAR CQ("-2147481748") # define CENT CQ("-21474817") # define Year CQ("48") # elif INT_MAX == 9223372036854775807 # define YEAR CQ("-9223372036854773908") # define CENT CQ("-92233720368547739") # define Year CQ("08") # else # error "Unrecognized INT_MAX value: enhance me to recognize what you have" #endif const struct test Vecyr1[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyr1 for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:13 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year #endif /* YEAR_BASE ) */ /* Checks for years just over zero (also test for s=60). * Years less than 4 digits are not mentioned for %Y in the standard, so the * test for that case is based on the design intent. */ const struct tm tmyrzp = { /* Wed Jul 2 23:01:60 EDT 0007 */ .tm_sec = 60, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = 7-YEAR_BASE, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #define YEAR CQ("0007") /* Design intent: %Y=%C%y */ #define CENT CQ("00") #define Year CQ("07") const struct test Vecyrzp[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyrzp for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:60 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year /* Checks for years just under zero. * Negative years are not handled by the standard, so the vectors here are * verifying the chosen implemtation. */ const struct tm tmyrzn = { /* Wed Jul 2 23:01:00 EDT -004 */ .tm_sec = 00, .tm_min = 1, .tm_hour = 23, .tm_mday = 2, .tm_mon = 6, .tm_year = -4-YEAR_BASE, .tm_wday = 3, .tm_yday = 183, .tm_isdst = 1 }; #define YEAR CQ("-004") #define CENT CQ("-0") #define Year CQ("04") const struct test Vecyrzn[] = { /* Testing fields one at a time, expecting to pass, using a larger * allowed length than what is needed. */ /* Using tmyrzn for time: */ #define EXP(s) sizeof(s)/sizeof(CHAR)-1, s { CQ("%C"), OUTSIZE, EXP(CENT) }, { CQ("%c"), OUTSIZE, EXP(CQ("Wed Jul 2 23:01:00 ")YEAR) }, { CQ("%D"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%F"), OUTSIZE, EXP(YEAR CQ("-07-02")) }, { CQ("%x"), OUTSIZE, EXP(CQ("07/02/")Year) }, { CQ("%y"), OUTSIZE, EXP(Year) }, { CQ("%Y"), OUTSIZE, EXP(YEAR) }, #undef EXP }; #undef YEAR #undef CENT #undef Year const struct list ListYr[] = { { &tmyrzp, Vecyrzp, sizeof(Vecyrzp)/sizeof(Vecyrzp[0]) }, { &tmyrzn, Vecyrzn, sizeof(Vecyrzn)/sizeof(Vecyrzn[0]) }, #if YEAR_BASE == 1900 { &tmyr0, Vecyr0, sizeof(Vecyr0)/sizeof(Vecyr0[0]) }, { &tmyr1, Vecyr1, sizeof(Vecyr1)/sizeof(Vecyr1[0]) }, #endif }; /* List of tests to be run */ const struct list List[] = { { &tm0, Vec0, sizeof(Vec0)/sizeof(Vec0[0]) }, { &tm1, Vec1, sizeof(Vec1)/sizeof(Vec1[0]) }, }; #if defined(STUB_getenv_r) char * _getenv_r(struct _reent *p, const char *cp) { return getenv(cp); } #endif int main(void) { int i, l, errr=0, erro=0, tot=0; const char *cp; CHAR out[OUTSIZE]; size_t ret; /* Set timezone so that %z and %Z tests come out right */ cp = TZ; if((i=putenv(cp))) { printf( "putenv(%s) FAILED, ret %d\n", cp, i); return(-1); } if(strcmp(getenv("TZ"),strchr(TZ,'=')+1)) { printf( "TZ not set properly in environment\n"); return(-2); } tzset(); #if defined(VERBOSE) printf("_timezone=%d, _daylight=%d, _tzname[0]=%s, _tzname[1]=%s\n", _timezone, _daylight, _tzname[0], _tzname[1]); { long offset; __tzinfo_type *tz = __gettzinfo (); /* The sign of this is exactly opposite the envvar TZ. We could directly use the global _timezone for tm_isdst==0, but have to use __tzrule for daylight savings. */ printf("tz->__tzrule[0].offset=%d, tz->__tzrule[1].offset=%d\n", tz->__tzrule[0].offset, tz->__tzrule[1].offset); } #endif /* Run all of the exact-length tests as-given--results should match */ for(l=0; l<sizeof(List)/sizeof(List[0]); l++) { const struct list *test = &List[l]; for(i=0; i<test->cnt; i++) { tot++; /* Keep track of number of tests */ ret = strftime(out, test->vec[i].max, test->vec[i].fmt, test->tms); if(ret != test->vec[i].ret) { errr++; fprintf(stderr, "ERROR: return %d != %d expected for List[%d].vec[%d]\n", ret, test->vec[i].ret, l, i); } if(strncmp(out, test->vec[i].out, test->vec[i].max-1)) { erro++; fprintf(stderr, "ERROR: \"%"SFLG"s\" != \"%"SFLG"s\" expected for List[%d].vec[%d]\n", out, test->vec[i].out, l, i); } } } /* Run all of the exact-length tests with the length made too short--expect to * fail. */ for(l=0; l<sizeof(List)/sizeof(List[0]); l++) { const struct list *test = &List[l]; for(i=0; i<test->cnt; i++) { tot++; /* Keep track of number of tests */ ret = strftime(out, test->vec[i].max-1, test->vec[i].fmt, test->tms); if(ret != 0) { errr++; fprintf(stderr, "ERROR: return %d != %d expected for List[%d].vec[%d]\n", ret, 0, l, i); } /* Almost every conversion puts out as many characters as possible, so * go ahead and test the output even though have failed. (The test * times chosen happen to not hit any of the cases that fail this, so it * works.) */ if(strncmp(out, test->vec[i].out, test->vec[i].max-1-1)) { erro++; fprintf(stderr, "ERROR: \"%"SFLG"s\" != \"%"SFLG"s\" expected for List[%d].vec[%d]\n", out, test->vec[i].out, l, i); } } } /* Run all of the special year test cases */ for(l=0; l<sizeof(ListYr)/sizeof(ListYr[0]); l++) { const struct list *test = &ListYr[l]; for(i=0; i<test->cnt; i++) { tot++; /* Keep track of number of tests */ ret = strftime(out, test->vec[i].max, test->vec[i].fmt, test->tms); if(ret != test->vec[i].ret) { errr++; fprintf(stderr, "ERROR: return %d != %d expected for ListYr[%d].vec[%d]\n", ret, test->vec[i].ret, l, i); } if(strncmp(out, test->vec[i].out, test->vec[i].max-1)) { erro++; fprintf(stderr, "ERROR: \"%"SFLG"s\" != \"%"SFLG"s\" expected for ListYr[%d].vec[%d]\n", out, test->vec[i].out, l, i); } } } #define STRIZE(f) #f #define NAME(f) STRIZE(f) printf(NAME(strftime) "() test "); if(errr || erro) printf("FAILED %d/%d of", errr, erro); else printf("passed"); printf(" %d test cases.\n", tot); return(errr || erro); } #endif /* defined(_REGRESSION_TEST) ] */
Go to most recent revision | Compare with Previous | Blame | View Log