URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libm/] [machine/] [spu/] [headers/] [lgammaf4.h] - Rev 328
Go to most recent revision | Compare with Previous | Blame | View Log
/* -------------------------------------------------------------- */ /* (C)Copyright 2007,2008, */ /* International Business Machines Corporation */ /* All Rights Reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the */ /* following conditions are met: */ /* */ /* - Redistributions of source code must retain the above copyright*/ /* notice, this list of conditions and the following disclaimer. */ /* */ /* - Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* - Neither the name of IBM Corporation nor the names of its */ /* contributors may be used to endorse or promote products */ /* derived from this software without specific prior written */ /* permission. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */ /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */ /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */ /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */ /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */ /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */ /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */ /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */ /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */ /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* -------------------------------------------------------------- */ /* PROLOG END TAG zYx */ #ifdef __SPU__ #ifndef _LGAMMAF4_H_ #define _LGAMMAF4_H_ 1 #include <spu_intrinsics.h> #include "logf4.h" #include "divf4.h" #include "recipf4.h" #include "truncf4.h" #include "sinf4.h" /* * FUNCTION * vector float _lgammaf4(vector float x) - Natural Log of Gamma Function * * DESCRIPTION * _lgammaf4 calculates the natural logarithm of the absolute value of the gamma * function for the corresponding elements of the input vector. * * C99 Special Cases: * lgamma(0) returns +infinity * lgamma(1) returns +0 * lgamma(2) returns +0 * lgamma(negative integer) returns +infinity * lgamma(+infinity) returns +infinity * lgamma(-infinity) returns +infinity * * Other Cases: * lgamma(Nan) returns Nan * lgamma(Denorm) treated as lgamma(0) and returns +infinity * */ static __inline vector float _lgammaf4(vector float x) { vec_float4 result; vec_float4 halflog2pi = spu_splats(9.189385332046727417803297364056E-1f); vec_float4 logpi = spu_splats(1.1447298858494001741434273513530587116472948129153f); vec_float4 inff = (vec_float4)spu_splats(0x7F800000); vec_float4 zerof = spu_splats(0.0f); vec_float4 onef = spu_splats(1.0f); vec_float4 twof = spu_splats(2.0f); vec_float4 sign_maskf = spu_splats(-0.0f); vec_float4 pi = spu_splats(3.14159265358979323846264338328f); /* * Unfortunately, some of the approximation methods for lgamma require * other basic math computations. Get those out of the way now. The * compiler seems to good a good job of scheduling this code with * the code that follows. */ vec_uint4 gt0 = spu_cmpgt(x, zerof); vec_float4 xabs = spu_andc(x, sign_maskf); vec_float4 ln_x = _logf4(xabs); vec_float4 inv_x = _recipf4(xabs); vec_float4 xtrunc = _truncf4(x); vec_float4 inv_xsqu = spu_mul(inv_x, inv_x); vec_uint4 isnaninf = spu_cmpgt((vec_uint4)xabs, 0x7F7FFFFF); vec_uint4 ret_zero = spu_or(spu_cmpeq(x, onef), spu_cmpeq(x, twof)); /* * First thing we do is setup the description of each partition. * This consists of: * - Start x of partition * - Offset (used for evaluating power series expanded around a point) * - Truncation adjustment. * - Is approx method in region a rational approximation or just a polynomial * - The coefficients used in the poly or rational approximation */ /*************************************************************** * REGION 0: Approximation Near 0 from Above * * Use Maclaurin Expansion of lgamma() * * lgamma(z) = -ln(z) - z * EulerMascheroni + Sum[(-1)^n * z^n * Zeta(n)/n] */ #define SDM_LGF4_0_START 0.0f #define SDM_LGF4_0_OFF 0.0f #define SDM_LGF4_0_TRUNC 2u #define SDM_LGF4_0_RATIONAL 0x0u #define SDM_LGF4_0_00 0.0f #define SDM_LGF4_0_01 -0.5772156649015328606065121f #define SDM_LGF4_0_02 0.8224670334241132182362076f #define SDM_LGF4_0_03 -0.4006856343865314284665794f #define SDM_LGF4_0_04 0.2705808084277845478790009f #define SDM_LGF4_0_05 -0.2073855510286739852662731f #define SDM_LGF4_0_06 1.6955717699740818995241965496515E-1f #define SDM_LGF4_0_07 -1.4404989676884611811997107854997E-1f #define SDM_LGF4_0_08 1.2550966952474304242233565481358E-1f #define SDM_LGF4_0_09 -1.1133426586956469049087252991471E-1f #define SDM_LGF4_0_10 1.0009945751278180853371459589003E-1f #define SDM_LGF4_0_11 -9.0954017145829042232609298411497E-2f /*************************************************************** * REGION 1: Above 0 and Below 1 */ #define SDM_LGF4_1_START 0.20f #define SDM_LGF4_1_OFF 0.0f #define SDM_LGF4_1_TRUNC 0u #define SDM_LGF4_1_RATIONAL 0xFFFFFFFFu /* Numerator */ #define SDM_LGF4_1_06 5.5247592697706124892083167601451981186889952720891079f #define SDM_LGF4_1_07 188.42248906442882644741346270888237140890625699348872f #define SDM_LGF4_1_08 730.89115027907050579364152184942040244662318995470771f #define SDM_LGF4_1_09 -517.93391251349155395618464682404141737699116911423096f #define SDM_LGF4_1_10 -866.81293419754982917624255525168901081630973644141406f #define SDM_LGF4_1_11 459.90872804523394478152324135956113729930154636775805f /* Denominator */ #define SDM_LGF4_1_00 1.0f #define SDM_LGF4_1_01 62.356015559548850893358835861387218304619374633480009f #define SDM_LGF4_1_02 553.64875642095755724931612658933597252336243693499682f #define SDM_LGF4_1_03 997.28805670393557265195865662557219661414263910835386f #define SDM_LGF4_1_04 257.10520661440946455560646958565998121417179154677712f #define SDM_LGF4_1_05 -15.398409585547124178878369413880017200739911288666830f /*************************************************************** * REGION 2: Above 0 and Below 1 */ #define SDM_LGF4_2_START 0.60f #define SDM_LGF4_2_OFF 0.69f #define SDM_LGF4_2_TRUNC 1u #define SDM_LGF4_2_RATIONAL 0x0u /* This is a power series expanson of LogGamma around 0.69 */ #define SDM_LGF4_2_00 0.27321026793030387025442491383648273204234f #define SDM_LGF4_2_01 -1.24869016926209356266849815723905575347988f #define SDM_LGF4_2_02 1.44985879780363867173410158693003578927407f #define SDM_LGF4_2_03 -1.11686573274718166516744313082147691068190f #define SDM_LGF4_2_04 1.14079150485439143731395820215710950729505f #define SDM_LGF4_2_05 -1.29512166953091144888197173527810141620764f #define SDM_LGF4_2_06 1.55206382120790061136858894716459302629069f #define SDM_LGF4_2_07 -1.92227237154565289482911310272968704445560f #define SDM_LGF4_2_08 2.43478939488445894670349784581009987461638f #define SDM_LGF4_2_09 -3.13512449573283650741385084753752461908870f #define SDM_LGF4_2_10 4.08851456399492725127969680590409811177590f #define SDM_LGF4_2_11 5.38629680478093362448042704719642976375265f /*************************************************************** * REGION 3: Around 1 */ #define SDM_LGF4_3_START 0.74f #define SDM_LGF4_3_OFF 1.0f #define SDM_LGF4_3_TRUNC 2u #define SDM_LGF4_3_RATIONAL 0x0u #define SDM_LGF4_3_11 -0.90954017145829042232609298411497266951691494159836e-1f #define SDM_LGF4_3_10 0.10009945751278180853371459589003190170060195315645f #define SDM_LGF4_3_09 -0.11133426586956469049087252991471245116506731682165f #define SDM_LGF4_3_08 0.12550966952474304242233565481358155815737009883123f #define SDM_LGF4_3_07 -0.14404989676884611811997107854997096565712336579503f #define SDM_LGF4_3_06 0.16955717699740818995241965496515342131696958167214f #define SDM_LGF4_3_05 -0.20738555102867398526627309729140683361141618390038f #define SDM_LGF4_3_04 0.27058080842778454787900092413529197569368773797968f #define SDM_LGF4_3_03 -0.40068563438653142846657938717048333025499543078016f #define SDM_LGF4_3_02 0.82246703342411321823620758332301259460947495060340f #define SDM_LGF4_3_01 -0.57721566490153286060651209008240243104215933593992f #define SDM_LGF4_3_00 0.0f /*************************************************************** * REGION 4: Above 1 to Below 2 */ #define SDM_LGF4_4_START 1.25f #define SDM_LGF4_4_OFF 1.4616321449683623412626595423257213284681962040064f #define SDM_LGF4_4_TRUNC 1u #define SDM_LGF4_4_RATIONAL 0x0u #define SDM_LGF4_4_00 -0.12148629053584960809551455717769158215135617313000f #define SDM_LGF4_4_01 0.0f #define SDM_LGF4_4_02 0.48383612272381058521372238085482537020562860838860f #define SDM_LGF4_4_03 -0.14758772299453070203095509395083641661852764909458f #define SDM_LGF4_4_04 0.064624940238912752656100346425238557063086033931734f #define SDM_LGF4_4_05 -0.032788541088481305500850258549331278505894787737970f #define SDM_LGF4_4_06 0.017970675115210394292863824811126161810628596070981f #define SDM_LGF4_4_07 -0.010314223036636387275160254800730296612070784399082f #define SDM_LGF4_4_08 0.0061005360205178884031365656884883648099463048507839f #define SDM_LGF4_4_09 -0.0036845696083163732546953776004972425913603137160767f #define SDM_LGF4_4_10 0.00225976482322181046596248251178293952686321035f #define SDM_LGF4_4_11 -0.00140225144590445083080002880374741201782467331f /*************************************************************** * REGION 5: Around 2 */ #define SDM_LGF4_5_START 1.50f #define SDM_LGF4_5_OFF 2.0f #define SDM_LGF4_5_TRUNC 1u #define SDM_LGF4_5_RATIONAL 0x0u #define SDM_LGF4_5_00 0.0f #define SDM_LGF4_5_01 0.42278433509846713939348790991759756895784066406008f #define SDM_LGF4_5_02 0.32246703342411321823620758332301259460947495060340f #define SDM_LGF4_5_03 -0.6735230105319809513324605383714999692166209744683e-1f #define SDM_LGF4_5_04 0.2058080842778454787900092413529197569368773797968e-1f #define SDM_LGF4_5_05 -0.738555102867398526627309729140683361141618390038e-2f #define SDM_LGF4_5_06 0.289051033074152328575298829848675465030291500547e-2f #define SDM_LGF4_5_07 -0.119275391170326097711393569282810851426622293789e-2f #define SDM_LGF4_5_08 0.50966952474304242233565481358155815737009883123e-3f #define SDM_LGF4_5_09 -0.22315475845357937976141880360134005395620571054e-3f #define SDM_LGF4_5_10 0.9945751278180853371459589003190170060195315645e-4f #define SDM_LGF4_5_11 -0.44926236738133141700207502406357860782403250745e-4f /*************************************************************** * REGION 6: Above 2 to Below Stirlings */ #define SDM_LGF4_6_START 2.48f #define SDM_LGF4_6_OFF 0.0f #define SDM_LGF4_6_TRUNC 2u #define SDM_LGF4_6_RATIONAL 0xFFFFFFFFu /* Numerator */ #define SDM_LGF4_6_06 2.8952045264375719070927153893062450394256201846894266f #define SDM_LGF4_6_07 0.9017557380149600532583460408941390566399250566546766f #define SDM_LGF4_6_08 -5.0120743649109868270726470406381462995568837028633266f #define SDM_LGF4_6_09 0.5723176665030477945174549923532715487712277062412760f #define SDM_LGF4_6_10 0.6107282478237180956153912232438073421489100296366786f #define SDM_LGF4_6_11 0.0312308625200519550078820867041868696010490562277303f /* Denominator */ #define SDM_LGF4_6_00 1.0f #define SDM_LGF4_6_01 4.3592151369378598515798083402849838078885877442021500f #define SDM_LGF4_6_02 2.6245676641191702420707093818412405820501009602499853f #define SDM_LGF4_6_03 0.3438846837443412565179153619145215759074092780311669f #define SDM_LGF4_6_04 0.0078092905528158343621764949220712317164193605131159f #define SDM_LGF4_6_05 -0.000015217018272713076443927141674684568030697337620f /*************************************************************** * REGION 7: Stirlings - Above 6.0 * */ #define SDM_LGF4_7_START 7.80f #define SDM_LGF4_7_OFF 0.0f #define SDM_LGF4_7_TRUNC 5u #define SDM_LGF4_7_RATIONAL 0x0u #define SDM_LGF4_7_00 8.3333333333333333333333333333333333333333333333333333333333333333333333E-2f #define SDM_LGF4_7_01 -2.7777777777777777777777777777777777777777777777777777777777777777777778E-3f #define SDM_LGF4_7_02 7.9365079365079365079365079365079365079365079365079365079365079365079365E-4f #define SDM_LGF4_7_03 -5.9523809523809523809523809523809523809523809523809523809523809523809524E-4f #define SDM_LGF4_7_04 8.4175084175084175084175084175084175084175084175084175084175084175084175E-4f #define SDM_LGF4_7_05 -1.9175269175269175269175269175269175269175269175269175269175269175269175E-3f #define SDM_LGF4_7_06 6.4102564102564102564102564102564102564102564102564102564102564102564103E-3f #define SDM_LGF4_7_07 0.0f #define SDM_LGF4_7_08 0.0f #define SDM_LGF4_7_09 0.0f #define SDM_LGF4_7_10 0.0f #define SDM_LGF4_7_11 0.0f /* * Now we load the description of each partition. */ /* Start point for each partition */ vec_float4 r1start = spu_splats(SDM_LGF4_1_START); vec_float4 r2start = spu_splats(SDM_LGF4_2_START); vec_float4 r3start = spu_splats(SDM_LGF4_3_START); vec_float4 r4start = spu_splats(SDM_LGF4_4_START); vec_float4 r5start = spu_splats(SDM_LGF4_5_START); vec_float4 r6start = spu_splats(SDM_LGF4_6_START); vec_float4 r7start = spu_splats(SDM_LGF4_7_START); /* X Offset for each partition */ vec_float4 xoffseta = (vec_float4) {SDM_LGF4_0_OFF, SDM_LGF4_1_OFF, SDM_LGF4_2_OFF, SDM_LGF4_3_OFF}; vec_float4 xoffsetb = (vec_float4) {SDM_LGF4_4_OFF, SDM_LGF4_5_OFF, SDM_LGF4_6_OFF, SDM_LGF4_7_OFF}; /* Truncation Correction for each partition */ vec_uint4 tcorra = (vec_uint4) {SDM_LGF4_0_TRUNC, SDM_LGF4_1_TRUNC, SDM_LGF4_2_TRUNC, SDM_LGF4_3_TRUNC}; vec_uint4 tcorrb = (vec_uint4) {SDM_LGF4_4_TRUNC, SDM_LGF4_5_TRUNC, SDM_LGF4_6_TRUNC, SDM_LGF4_7_TRUNC}; /* Is partition a Rational Approximation */ vec_uint4 israta = (vec_uint4) {SDM_LGF4_0_RATIONAL, SDM_LGF4_1_RATIONAL, SDM_LGF4_2_RATIONAL, SDM_LGF4_3_RATIONAL}; vec_uint4 isratb = (vec_uint4) {SDM_LGF4_4_RATIONAL, SDM_LGF4_5_RATIONAL, SDM_LGF4_6_RATIONAL, SDM_LGF4_7_RATIONAL}; /* The polynomial coefficients for all partitions */ vec_float4 c00a = (vec_float4) {SDM_LGF4_0_00, SDM_LGF4_1_00, SDM_LGF4_2_00, SDM_LGF4_3_00}; vec_float4 c01a = (vec_float4) {SDM_LGF4_0_01, SDM_LGF4_1_01, SDM_LGF4_2_01, SDM_LGF4_3_01}; vec_float4 c02a = (vec_float4) {SDM_LGF4_0_02, SDM_LGF4_1_02, SDM_LGF4_2_02, SDM_LGF4_3_02}; vec_float4 c03a = (vec_float4) {SDM_LGF4_0_03, SDM_LGF4_1_03, SDM_LGF4_2_03, SDM_LGF4_3_03}; vec_float4 c04a = (vec_float4) {SDM_LGF4_0_04, SDM_LGF4_1_04, SDM_LGF4_2_04, SDM_LGF4_3_04}; vec_float4 c05a = (vec_float4) {SDM_LGF4_0_05, SDM_LGF4_1_05, SDM_LGF4_2_05, SDM_LGF4_3_05}; vec_float4 c06a = (vec_float4) {SDM_LGF4_0_06, SDM_LGF4_1_06, SDM_LGF4_2_06, SDM_LGF4_3_06}; vec_float4 c07a = (vec_float4) {SDM_LGF4_0_07, SDM_LGF4_1_07, SDM_LGF4_2_07, SDM_LGF4_3_07}; vec_float4 c08a = (vec_float4) {SDM_LGF4_0_08, SDM_LGF4_1_08, SDM_LGF4_2_08, SDM_LGF4_3_08}; vec_float4 c09a = (vec_float4) {SDM_LGF4_0_09, SDM_LGF4_1_09, SDM_LGF4_2_09, SDM_LGF4_3_09}; vec_float4 c10a = (vec_float4) {SDM_LGF4_0_10, SDM_LGF4_1_10, SDM_LGF4_2_10, SDM_LGF4_3_10}; vec_float4 c11a = (vec_float4) {SDM_LGF4_0_11, SDM_LGF4_1_11, SDM_LGF4_2_11, SDM_LGF4_3_11}; vec_float4 c00b = (vec_float4) {SDM_LGF4_4_00, SDM_LGF4_5_00, SDM_LGF4_6_00, SDM_LGF4_7_00}; vec_float4 c01b = (vec_float4) {SDM_LGF4_4_01, SDM_LGF4_5_01, SDM_LGF4_6_01, SDM_LGF4_7_01}; vec_float4 c02b = (vec_float4) {SDM_LGF4_4_02, SDM_LGF4_5_02, SDM_LGF4_6_02, SDM_LGF4_7_02}; vec_float4 c03b = (vec_float4) {SDM_LGF4_4_03, SDM_LGF4_5_03, SDM_LGF4_6_03, SDM_LGF4_7_03}; vec_float4 c04b = (vec_float4) {SDM_LGF4_4_04, SDM_LGF4_5_04, SDM_LGF4_6_04, SDM_LGF4_7_04}; vec_float4 c05b = (vec_float4) {SDM_LGF4_4_05, SDM_LGF4_5_05, SDM_LGF4_6_05, SDM_LGF4_7_05}; vec_float4 c06b = (vec_float4) {SDM_LGF4_4_06, SDM_LGF4_5_06, SDM_LGF4_6_06, SDM_LGF4_7_06}; vec_float4 c07b = (vec_float4) {SDM_LGF4_4_07, SDM_LGF4_5_07, SDM_LGF4_6_07, SDM_LGF4_7_07}; vec_float4 c08b = (vec_float4) {SDM_LGF4_4_08, SDM_LGF4_5_08, SDM_LGF4_6_08, SDM_LGF4_7_08}; vec_float4 c09b = (vec_float4) {SDM_LGF4_4_09, SDM_LGF4_5_09, SDM_LGF4_6_09, SDM_LGF4_7_09}; vec_float4 c10b = (vec_float4) {SDM_LGF4_4_10, SDM_LGF4_5_10, SDM_LGF4_6_10, SDM_LGF4_7_10}; vec_float4 c11b = (vec_float4) {SDM_LGF4_4_11, SDM_LGF4_5_11, SDM_LGF4_6_11, SDM_LGF4_7_11}; vec_uchar16 shuffle0 = (vec_uchar16) spu_splats(0x00010203); vec_uchar16 shuffle1 = (vec_uchar16) spu_splats(0x04050607); vec_uchar16 shuffle2 = (vec_uchar16) spu_splats(0x08090A0B); vec_uchar16 shuffle3 = (vec_uchar16) spu_splats(0x0C0D0E0F); vec_uchar16 shuffle4 = (vec_uchar16) spu_splats(0x10111213); vec_uchar16 shuffle5 = (vec_uchar16) spu_splats(0x14151617); vec_uchar16 shuffle6 = (vec_uchar16) spu_splats(0x18191A1B); vec_uchar16 shuffle7 = (vec_uchar16) spu_splats(0x1C1D1E1F); /* * Determine the shuffle pattern based on which partition * each element of x is in. */ vec_uchar16 gt_r1start = (vec_uchar16)spu_cmpgt(xabs, r1start); vec_uchar16 gt_r2start = (vec_uchar16)spu_cmpgt(xabs, r2start); vec_uchar16 gt_r3start = (vec_uchar16)spu_cmpgt(xabs, r3start); vec_uchar16 gt_r4start = (vec_uchar16)spu_cmpgt(xabs, r4start); vec_uchar16 gt_r5start = (vec_uchar16)spu_cmpgt(xabs, r5start); vec_uchar16 gt_r6start = (vec_uchar16)spu_cmpgt(xabs, r6start); vec_uchar16 gt_r7start = (vec_uchar16)spu_cmpgt(xabs, r7start); vec_uchar16 shufflepattern; shufflepattern = spu_sel(shuffle0, shuffle1, gt_r1start); shufflepattern = spu_sel(shufflepattern, shuffle2, gt_r2start); shufflepattern = spu_sel(shufflepattern, shuffle3, gt_r3start); shufflepattern = spu_sel(shufflepattern, shuffle4, gt_r4start); shufflepattern = spu_sel(shufflepattern, shuffle5, gt_r5start); shufflepattern = spu_sel(shufflepattern, shuffle6, gt_r6start); shufflepattern = spu_sel(shufflepattern, shuffle7, gt_r7start); /* Use the shuffle pattern to select the coefficients */ vec_float4 coeff_00 = spu_shuffle(c00a, c00b, shufflepattern); vec_float4 coeff_01 = spu_shuffle(c01a, c01b, shufflepattern); vec_float4 coeff_02 = spu_shuffle(c02a, c02b, shufflepattern); vec_float4 coeff_03 = spu_shuffle(c03a, c03b, shufflepattern); vec_float4 coeff_04 = spu_shuffle(c04a, c04b, shufflepattern); vec_float4 coeff_06 = spu_shuffle(c06a, c06b, shufflepattern); vec_float4 coeff_07 = spu_shuffle(c07a, c07b, shufflepattern); vec_float4 coeff_05 = spu_shuffle(c05a, c05b, shufflepattern); vec_float4 coeff_08 = spu_shuffle(c08a, c08b, shufflepattern); vec_float4 coeff_09 = spu_shuffle(c09a, c09b, shufflepattern); vec_float4 coeff_10 = spu_shuffle(c10a, c10b, shufflepattern); vec_float4 coeff_11 = spu_shuffle(c11a, c11b, shufflepattern); vec_float4 xoffset = spu_shuffle(xoffseta, xoffsetb, shufflepattern); vec_uint4 tcorrection = spu_shuffle(tcorra, tcorrb, shufflepattern); vec_uint4 isrational = spu_shuffle(israta, isratb, shufflepattern); /* * We've completed the coeff. setup. Now we actually do the * approximation below. */ /* Adjust x value here (for approximations about a point) */ vec_float4 xappr = spu_sub(xabs, xoffset); /* If in Stirling partition, do some setup before the madds */ xappr = spu_sel(xappr, inv_xsqu, (vector unsigned int)gt_r7start); /* Now we do the multiplies - either a big polynomial or * a rational approximation. Use Horner's method. */ result = coeff_11; result = spu_madd(xappr, result, coeff_10); result = spu_madd(xappr, result, coeff_09); result = spu_madd(xappr, result, coeff_08); result = spu_madd(xappr, result, coeff_07); result = spu_madd(xappr, result, coeff_06); /* For rational approximations, we save numerator. */ vec_float4 resultn = result; /* For rational appr,, reset result for calculation of denominator. */ result = spu_sel(result, spu_splats(0.0f), isrational); result = spu_madd(xappr, result, coeff_05); result = spu_madd(xappr, result, coeff_04); result = spu_madd(xappr, result, coeff_03); result = spu_madd(xappr, result, coeff_02); result = spu_madd(xappr, result, coeff_01); result = spu_madd(xappr, result, coeff_00); /* Select either the polynomial or rational result */ result = spu_sel(result, _divf4(resultn, result), isrational); /* * Now we have to do a bit of additional calculations for * partitions that weren't simple polynomial or rational * approximations. */ /* Finish the Near 0 formula */ result = spu_sel(spu_sub(result, ln_x), result, (vector unsigned int)gt_r1start); /* Finish Stirling's Approximation */ vec_float4 resultstirling = spu_madd(spu_sub(xabs, spu_splats(0.5f)), ln_x, halflog2pi); resultstirling = spu_sub(resultstirling, xabs); resultstirling = spu_add(spu_mul(result,inv_x), resultstirling); result = spu_sel(result, resultstirling, (vector unsigned int)gt_r7start); /* Adjust due to systematic truncation */ result = (vec_float4)spu_add((vec_uint4)result, tcorrection); /* * Approximation for Negative X * * Use reflection relation: * * gamma(x) * gamma(-x) = -pi/(x sin(pi x)) * * lgamma(x) = log(pi/(-x sin(pi x))) - lgamma(-x) * */ vec_float4 nresult = spu_mul(x, _sinf4(spu_mul(x, pi))); nresult = spu_andc(nresult, sign_maskf); nresult = spu_sub(logpi, spu_add(result, _logf4(nresult))); nresult = (vec_float4)spu_add((vec_uint4)nresult, spu_splats(1u)); result = spu_sel(nresult, result, gt0); /* * Special Cases */ /* x = non-positive integer, return infinity */ vec_uint4 isnonposint = spu_andc(spu_cmpeq(x, xtrunc), gt0); result = spu_sel(result, inff, spu_or(isnonposint, spu_cmpgt(x, spu_splats(4.2e36f)))); result = spu_sel(result, inff, spu_andc(spu_cmpeq(x, xtrunc), gt0)); /* Zeros of function */ result = spu_sel(result, zerof, ret_zero); /* x = +/- infinity or nan, return |x| */ result = spu_sel(result, xabs, isnaninf); return result; } #endif /* _LGAMMAF4_H_ */ #endif /* __SPU__ */
Go to most recent revision | Compare with Previous | Blame | View Log