URL
https://opencores.org/ocsvn/openrisc_me/openrisc_me/trunk
Subversion Repositories openrisc_me
[/] [openrisc/] [trunk/] [gnu-src/] [newlib-1.18.0/] [newlib/] [libm/] [machine/] [spu/] [headers/] [tanhd2.h] - Rev 207
Compare with Previous | Blame | View Log
/* -------------------------------------------------------------- */ /* (C)Copyright 2007,2008, */ /* International Business Machines Corporation */ /* All Rights Reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the */ /* following conditions are met: */ /* */ /* - Redistributions of source code must retain the above copyright*/ /* notice, this list of conditions and the following disclaimer. */ /* */ /* - Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* - Neither the name of IBM Corporation nor the names of its */ /* contributors may be used to endorse or promote products */ /* derived from this software without specific prior written */ /* permission. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND */ /* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR */ /* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, */ /* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT */ /* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */ /* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) */ /* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN */ /* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR */ /* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, */ /* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* -------------------------------------------------------------- */ /* PROLOG END TAG zYx */ #ifdef __SPU__ #ifndef _TANHD2_H_ #define _TANHD2_H_ 1 #include <spu_intrinsics.h> #include "expd2.h" #include "divd2.h" /* * Taylor coefficients for tanh */ #define TANH_TAY01 1.000000000000000000000000000000E0 #define TANH_TAY02 -3.333333333333333333333333333333E-1 #define TANH_TAY03 1.333333333333333333333333333333E-1 #define TANH_TAY04 -5.396825396825396825396825396825E-2 #define TANH_TAY05 2.186948853615520282186948853616E-2 #define TANH_TAY06 -8.863235529902196568863235529902E-3 #define TANH_TAY07 3.592128036572481016925461369906E-3 #define TANH_TAY08 -1.455834387051318268249485180702E-3 #define TANH_TAY09 5.900274409455859813780759937000E-4 #define TANH_TAY10 -2.391291142435524814857314588851E-4 #define TANH_TAY11 9.691537956929450325595875000389E-5 #define TANH_TAY12 -3.927832388331683405337080809312E-5 #define TANH_TAY13 1.591890506932896474074427981657E-5 #define TANH_TAY14 -6.451689215655430763190842315303E-6 #define TANH_TAY15 2.614771151290754554263594256410E-6 #define TANH_TAY16 -1.059726832010465435091355394125E-6 #define TANH_TAY17 4.294911078273805854820351280397E-7 /* * FUNCTION * vector double _tanhd2(vector double x) * * DESCRIPTION * The _tanhd2 function computes the hyperbolic tangent for each * element of the input vector. * * We use the following to approximate tanh: * * |x| <= .25: Taylor Series * |x| > .25: tanh(x) = (exp(2x) - 1)/(exp(2x) + 1) * * * SPECIAL CASES: * - tanh(+/- 0) = +/-0 * - tanh(+/- infinity) = +/- 1 * - tanh(NaN) = NaN * */ static __inline vector double _tanhd2(vector double x) { vector double signbit = spu_splats(-0.0); vector double oned = spu_splats(1.0); vector double twod = spu_splats(2.0); vector double infd = (vector double)spu_splats(0x7FF0000000000000ull); vector double xabs; vector double x2; vector unsigned long long gttaylor; vector double e; vector double tresult; vector double eresult; vector double result; xabs = spu_andc(x, signbit); /* * This is where we switch from Taylor Series * to exponential formula. */ gttaylor = spu_cmpgt(xabs, spu_splats(0.25)); /* * Taylor Series Approximation */ x2 = spu_mul(x,x); tresult = spu_madd(x2, spu_splats(TANH_TAY11), spu_splats(TANH_TAY10)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY09)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY08)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY07)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY06)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY05)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY04)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY03)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY02)); tresult = spu_madd(x2, tresult, spu_splats(TANH_TAY01)); tresult = spu_mul(xabs, tresult); /* * Exponential Formula * Our expd2 function gives a more accurate result in general * with xabs instead of x for x<0. We correct for sign later. */ e = _expd2(spu_mul(xabs, twod)); eresult = _divd2(spu_sub(e, oned), spu_add(e, oned)); /* * Select Taylor or exp result. */ result = spu_sel(tresult, eresult, gttaylor); /* * Inf and NaN special cases. NaN is already in result * for x = NaN. */ result = spu_sel(result, oned, spu_cmpeq(xabs, infd)); /* * Antisymmetric function - preserve sign bit of x * in the result. */ result = spu_sel(result, x, (vec_ullong2)signbit); return result; } #endif /* _TANHD2_H_ */ #endif /* __SPU__ */