OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [ada/] [exp_intr.adb] - Rev 826

Compare with Previous | Blame | View Log

------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             E X P _ I N T R                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2009, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
 
with Atree;    use Atree;
with Checks;   use Checks;
with Einfo;    use Einfo;
with Elists;   use Elists;
with Errout;   use Errout;
with Exp_Atag; use Exp_Atag;
with Exp_Ch4;  use Exp_Ch4;
with Exp_Ch7;  use Exp_Ch7;
with Exp_Ch11; use Exp_Ch11;
with Exp_Code; use Exp_Code;
with Exp_Fixd; use Exp_Fixd;
with Exp_Util; use Exp_Util;
with Freeze;   use Freeze;
with Namet;    use Namet;
with Nmake;    use Nmake;
with Nlists;   use Nlists;
with Opt;      use Opt;
with Restrict; use Restrict;
with Rident;   use Rident;
with Rtsfind;  use Rtsfind;
with Sem;      use Sem;
with Sem_Eval; use Sem_Eval;
with Sem_Res;  use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sinfo;    use Sinfo;
with Sinput;   use Sinput;
with Snames;   use Snames;
with Stand;    use Stand;
with Stringt;  use Stringt;
with Tbuild;   use Tbuild;
with Uintp;    use Uintp;
with Urealp;   use Urealp;
 
package body Exp_Intr is
 
   -----------------------
   -- Local Subprograms --
   -----------------------
 
   procedure Expand_Is_Negative (N : Node_Id);
   --  Expand a call to the intrinsic Is_Negative function
 
   procedure Expand_Dispatching_Constructor_Call (N : Node_Id);
   --  Expand a call to an instantiation of Generic_Dispatching_Constructor
   --  into a dispatching call to the actual subprogram associated with the
   --  Constructor formal subprogram, passing it the Parameters actual of
   --  the call to the instantiation and dispatching based on call's Tag
   --  parameter.
 
   procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id);
   --  Expand a call to Exception_Information/Message/Name. The first
   --  parameter, N, is the node for the function call, and Ent is the
   --  entity for the corresponding routine in the Ada.Exceptions package.
 
   procedure Expand_Import_Call (N : Node_Id);
   --  Expand a call to Import_Address/Longest_Integer/Value. The parameter
   --  N is the node for the function call.
 
   procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind);
   --  Expand an intrinsic shift operation, N and E are from the call to
   --  Expand_Intrinsic_Call (call node and subprogram spec entity) and
   --  K is the kind for the shift node
 
   procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id);
   --  Expand a call to an instantiation of Unchecked_Conversion into a node
   --  N_Unchecked_Type_Conversion.
 
   procedure Expand_Unc_Deallocation (N : Node_Id);
   --  Expand a call to an instantiation of Unchecked_Deallocation into a node
   --  N_Free_Statement and appropriate context.
 
   procedure Expand_To_Address (N : Node_Id);
   procedure Expand_To_Pointer (N : Node_Id);
   --  Expand a call to corresponding function, declared in an instance of
   --  System.Address_To_Access_Conversions.
 
   procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id);
   --  Rewrite the node by the appropriate string or positive constant.
   --  Nam can be one of the following:
   --    Name_File             - expand string that is the name of source file
   --    Name_Line             - expand integer line number
   --    Name_Source_Location  - expand string of form file:line
   --    Name_Enclosing_Entity - expand string  with name of enclosing entity
 
   -----------------------------------------
   -- Expand_Dispatching_Constructor_Call --
   -----------------------------------------
 
   --  Transform a call to an instantiation of Generic_Dispatching_Constructor
   --  of the form:
 
   --     GDC_Instance (The_Tag, Parameters'Access)
 
   --  to a class-wide conversion of a dispatching call to the actual
   --  associated with the formal subprogram Construct, designating The_Tag
   --  as the controlling tag of the call:
 
   --     T'Class (Construct'Actual (Params)) -- Controlling tag is The_Tag
 
   --  which will eventually be expanded to the following:
 
   --     T'Class (The_Tag.all (Construct'Actual'Index).all (Params))
 
   --  A class-wide membership test is also generated, preceding the call, to
   --  ensure that the controlling tag denotes a type in T'Class.
 
   procedure Expand_Dispatching_Constructor_Call (N : Node_Id) is
      Loc        : constant Source_Ptr := Sloc (N);
      Tag_Arg    : constant Node_Id    := First_Actual (N);
      Param_Arg  : constant Node_Id    := Next_Actual (Tag_Arg);
      Subp_Decl  : constant Node_Id    := Parent (Parent (Entity (Name (N))));
      Inst_Pkg   : constant Node_Id    := Parent (Subp_Decl);
      Act_Rename : Node_Id;
      Act_Constr : Entity_Id;
      Iface_Tag  : Node_Id := Empty;
      Cnstr_Call : Node_Id;
      Result_Typ : Entity_Id;
 
   begin
      --  The subprogram is the third actual in the instantiation, and is
      --  retrieved from the corresponding renaming declaration. However,
      --  freeze nodes may appear before, so we retrieve the declaration
      --  with an explicit loop.
 
      Act_Rename := First (Visible_Declarations (Inst_Pkg));
      while Nkind (Act_Rename) /= N_Subprogram_Renaming_Declaration loop
         Next (Act_Rename);
      end loop;
 
      Act_Constr := Entity (Name (Act_Rename));
      Result_Typ := Class_Wide_Type (Etype (Act_Constr));
 
      --  Ada 2005 (AI-251): If the result is an interface type, the function
      --  returns a class-wide interface type (otherwise the resulting object
      --  would be abstract!)
 
      if Is_Interface (Etype (Act_Constr)) then
         Set_Etype (Act_Constr, Result_Typ);
 
         --  If the result type is not parent of Tag_Arg then we need to
         --  locate the tag of the secondary dispatch table.
 
         if not Is_Ancestor (Etype (Result_Typ), Etype (Tag_Arg)) then
            pragma Assert (not Is_Interface (Etype (Tag_Arg)));
 
            Iface_Tag :=
              Make_Object_Declaration (Loc,
                Defining_Identifier =>
                  Make_Defining_Identifier (Loc, New_Internal_Name ('V')),
                Object_Definition =>
                  New_Reference_To (RTE (RE_Tag), Loc),
                Expression =>
                  Make_Function_Call (Loc,
                    Name => New_Reference_To (RTE (RE_Secondary_Tag), Loc),
                    Parameter_Associations => New_List (
                      Relocate_Node (Tag_Arg),
                      New_Reference_To
                        (Node (First_Elmt (Access_Disp_Table
                                            (Etype (Etype (Act_Constr))))),
                         Loc))));
            Insert_Action (N, Iface_Tag);
         end if;
      end if;
 
      --  Create the call to the actual Constructor function
 
      Cnstr_Call :=
        Make_Function_Call (Loc,
          Name                   => New_Occurrence_Of (Act_Constr, Loc),
          Parameter_Associations => New_List (Relocate_Node (Param_Arg)));
 
      --  Establish its controlling tag from the tag passed to the instance
      --  The tag may be given by a function call, in which case a temporary
      --  should be generated now, to prevent out-of-order insertions during
      --  the expansion of that call when stack-checking is enabled.
 
      if Present (Iface_Tag) then
         Set_Controlling_Argument (Cnstr_Call,
           New_Occurrence_Of (Defining_Identifier (Iface_Tag), Loc));
      else
         Remove_Side_Effects (Tag_Arg);
         Set_Controlling_Argument (Cnstr_Call,
           Relocate_Node (Tag_Arg));
      end if;
 
      --  Rewrite and analyze the call to the instance as a class-wide
      --  conversion of the call to the actual constructor.
 
      Rewrite (N, Convert_To (Result_Typ, Cnstr_Call));
      Analyze_And_Resolve (N, Etype (Act_Constr));
 
      --  Do not generate a run-time check on the built object if tag
      --  checks are suppressed for the result type or VM_Target /= No_VM
 
      if Tag_Checks_Suppressed (Etype (Result_Typ))
        or else not Tagged_Type_Expansion
      then
         null;
 
      --  Generate a class-wide membership test to ensure that the call's tag
      --  argument denotes a type within the class. We must keep separate the
      --  case in which the Result_Type of the constructor function is a tagged
      --  type from the case in which it is an abstract interface because the
      --  run-time subprogram required to check these cases differ (and have
      --  one difference in their parameters profile).
 
      --  Call CW_Membership if the Result_Type is a tagged type to look for
      --  the tag in the table of ancestor tags.
 
      elsif not Is_Interface (Result_Typ) then
         declare
            Obj_Tag_Node : Node_Id := Duplicate_Subexpr (Tag_Arg);
            CW_Test_Node : Node_Id;
 
         begin
            Build_CW_Membership (Loc,
              Obj_Tag_Node => Obj_Tag_Node,
              Typ_Tag_Node =>
                New_Reference_To (
                   Node (First_Elmt (Access_Disp_Table (
                                       Root_Type (Result_Typ)))), Loc),
              Related_Nod => N,
              New_Node    => CW_Test_Node);
 
            Insert_Action (N,
              Make_Implicit_If_Statement (N,
                Condition =>
                  Make_Op_Not (Loc, CW_Test_Node),
                Then_Statements =>
                  New_List (Make_Raise_Statement (Loc,
                              New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
         end;
 
      --  Call IW_Membership test if the Result_Type is an abstract interface
      --  to look for the tag in the table of interface tags.
 
      else
         Insert_Action (N,
           Make_Implicit_If_Statement (N,
             Condition =>
               Make_Op_Not (Loc,
                 Make_Function_Call (Loc,
                    Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
                    Parameter_Associations => New_List (
                      Make_Attribute_Reference (Loc,
                        Prefix         => Duplicate_Subexpr (Tag_Arg),
                        Attribute_Name => Name_Address),
 
                      New_Reference_To (
                        Node (First_Elmt (Access_Disp_Table (
                                            Root_Type (Result_Typ)))), Loc)))),
             Then_Statements =>
               New_List (
                 Make_Raise_Statement (Loc,
                   Name => New_Occurrence_Of (RTE (RE_Tag_Error), Loc)))));
      end if;
   end Expand_Dispatching_Constructor_Call;
 
   ---------------------------
   -- Expand_Exception_Call --
   ---------------------------
 
   --  If the function call is not within an exception handler, then the call
   --  is replaced by a null string. Otherwise the appropriate routine in
   --  Ada.Exceptions is called passing the choice parameter specification
   --  from the enclosing handler. If the enclosing handler lacks a choice
   --  parameter, then one is supplied.
 
   procedure Expand_Exception_Call (N : Node_Id; Ent : RE_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      P   : Node_Id;
      E   : Entity_Id;
 
   begin
      --  Climb up parents to see if we are in exception handler
 
      P := Parent (N);
      loop
         --  Case of not in exception handler, replace by null string
 
         if No (P) then
            Rewrite (N,
              Make_String_Literal (Loc,
                Strval => ""));
            exit;
 
         --  Case of in exception handler
 
         elsif Nkind (P) = N_Exception_Handler then
 
            --  Handler cannot be used for a local raise, and furthermore, this
            --  is a violation of the No_Exception_Propagation restriction.
 
            Set_Local_Raise_Not_OK (P);
            Check_Restriction (No_Exception_Propagation, N);
 
            --  If no choice parameter present, then put one there. Note that
            --  we do not need to put it on the entity chain, since no one will
            --  be referencing it by normal visibility methods.
 
            if No (Choice_Parameter (P)) then
               E := Make_Defining_Identifier (Loc, New_Internal_Name ('E'));
               Set_Choice_Parameter (P, E);
               Set_Ekind (E, E_Variable);
               Set_Etype (E, RTE (RE_Exception_Occurrence));
               Set_Scope (E, Current_Scope);
            end if;
 
            Rewrite (N,
              Make_Function_Call (Loc,
                Name => New_Occurrence_Of (RTE (Ent), Loc),
                Parameter_Associations => New_List (
                  New_Occurrence_Of (Choice_Parameter (P), Loc))));
            exit;
 
         --  Keep climbing!
 
         else
            P := Parent (P);
         end if;
      end loop;
 
      Analyze_And_Resolve (N, Standard_String);
   end Expand_Exception_Call;
 
   ------------------------
   -- Expand_Import_Call --
   ------------------------
 
   --  The function call must have a static string as its argument. We create
   --  a dummy variable which uses this string as the external name in an
   --  Import pragma. The result is then obtained as the address of this
   --  dummy variable, converted to the appropriate target type.
 
   procedure Expand_Import_Call (N : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      Ent : constant Entity_Id  := Entity (Name (N));
      Str : constant Node_Id    := First_Actual (N);
      Dum : Entity_Id;
 
   begin
      Dum := Make_Defining_Identifier (Loc, New_Internal_Name ('D'));
 
      Insert_Actions (N, New_List (
        Make_Object_Declaration (Loc,
          Defining_Identifier => Dum,
          Object_Definition   =>
            New_Occurrence_Of (Standard_Character, Loc)),
 
        Make_Pragma (Loc,
          Chars => Name_Import,
          Pragma_Argument_Associations => New_List (
            Make_Pragma_Argument_Association (Loc,
              Expression => Make_Identifier (Loc, Name_Ada)),
 
            Make_Pragma_Argument_Association (Loc,
              Expression => Make_Identifier (Loc, Chars (Dum))),
 
            Make_Pragma_Argument_Association (Loc,
              Chars => Name_Link_Name,
              Expression => Relocate_Node (Str))))));
 
      Rewrite (N,
        Unchecked_Convert_To (Etype (Ent),
          Make_Attribute_Reference (Loc,
            Prefix         => Make_Identifier (Loc, Chars (Dum)),
            Attribute_Name => Name_Address)));
 
      Analyze_And_Resolve (N, Etype (Ent));
   end Expand_Import_Call;
 
   ---------------------------
   -- Expand_Intrinsic_Call --
   ---------------------------
 
   procedure Expand_Intrinsic_Call (N : Node_Id; E : Entity_Id) is
      Nam : Name_Id;
 
   begin
      --  If an external name is specified for the intrinsic, it is handled
      --  by the back-end: leave the call node unchanged for now.
 
      if Present (Interface_Name (E)) then
         return;
      end if;
 
      --  If the intrinsic subprogram is generic, gets its original name
 
      if Present (Parent (E))
        and then Present (Generic_Parent (Parent (E)))
      then
         Nam := Chars (Generic_Parent (Parent (E)));
      else
         Nam := Chars (E);
      end if;
 
      if Nam = Name_Asm then
         Expand_Asm_Call (N);
 
      elsif Nam = Name_Divide then
         Expand_Decimal_Divide_Call (N);
 
      elsif Nam = Name_Exception_Information then
         Expand_Exception_Call (N, RE_Exception_Information);
 
      elsif Nam = Name_Exception_Message then
         Expand_Exception_Call (N, RE_Exception_Message);
 
      elsif Nam = Name_Exception_Name then
         Expand_Exception_Call (N, RE_Exception_Name_Simple);
 
      elsif Nam = Name_Generic_Dispatching_Constructor then
         Expand_Dispatching_Constructor_Call (N);
 
      elsif Nam = Name_Import_Address
              or else
            Nam = Name_Import_Largest_Value
              or else
            Nam = Name_Import_Value
      then
         Expand_Import_Call (N);
 
      elsif Nam = Name_Is_Negative then
         Expand_Is_Negative (N);
 
      elsif Nam = Name_Rotate_Left then
         Expand_Shift (N, E, N_Op_Rotate_Left);
 
      elsif Nam = Name_Rotate_Right then
         Expand_Shift (N, E, N_Op_Rotate_Right);
 
      elsif Nam = Name_Shift_Left then
         Expand_Shift (N, E, N_Op_Shift_Left);
 
      elsif Nam = Name_Shift_Right then
         Expand_Shift (N, E, N_Op_Shift_Right);
 
      elsif Nam = Name_Shift_Right_Arithmetic then
         Expand_Shift (N, E, N_Op_Shift_Right_Arithmetic);
 
      elsif Nam = Name_Unchecked_Conversion then
         Expand_Unc_Conversion (N, E);
 
      elsif Nam = Name_Unchecked_Deallocation then
         Expand_Unc_Deallocation (N);
 
      elsif Nam = Name_To_Address then
         Expand_To_Address (N);
 
      elsif Nam = Name_To_Pointer then
         Expand_To_Pointer (N);
 
      elsif Nam = Name_File
        or else Nam = Name_Line
        or else Nam = Name_Source_Location
        or else Nam = Name_Enclosing_Entity
      then
         Expand_Source_Info (N, Nam);
 
         --  If we have a renaming, expand the call to the original operation,
         --  which must itself be intrinsic, since renaming requires matching
         --  conventions and this has already been checked.
 
      elsif Present (Alias (E)) then
         Expand_Intrinsic_Call (N,  Alias (E));
 
         --  The only other case is where an external name was specified,
         --  since this is the only way that an otherwise unrecognized
         --  name could escape the checking in Sem_Prag. Nothing needs
         --  to be done in such a case, since we pass such a call to the
         --  back end unchanged.
 
      else
         null;
      end if;
   end Expand_Intrinsic_Call;
 
   ------------------------
   -- Expand_Is_Negative --
   ------------------------
 
   procedure Expand_Is_Negative (N : Node_Id) is
      Loc   : constant Source_Ptr := Sloc (N);
      Opnd  : constant Node_Id    := Relocate_Node (First_Actual (N));
 
   begin
 
      --  We replace the function call by the following expression
 
      --    if Opnd < 0.0 then
      --       True
      --    else
      --       if Opnd > 0.0 then
      --          False;
      --       else
      --          Float_Unsigned!(Float (Opnd)) /= 0
      --       end if;
      --    end if;
 
      Rewrite (N,
        Make_Conditional_Expression (Loc,
          Expressions => New_List (
            Make_Op_Lt (Loc,
              Left_Opnd  => Duplicate_Subexpr (Opnd),
              Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
 
            New_Occurrence_Of (Standard_True, Loc),
 
            Make_Conditional_Expression (Loc,
             Expressions => New_List (
               Make_Op_Gt (Loc,
                 Left_Opnd  => Duplicate_Subexpr_No_Checks (Opnd),
                 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
 
               New_Occurrence_Of (Standard_False, Loc),
 
                Make_Op_Ne (Loc,
                  Left_Opnd =>
                    Unchecked_Convert_To
                      (RTE (RE_Float_Unsigned),
                       Convert_To
                         (Standard_Float,
                          Duplicate_Subexpr_No_Checks (Opnd))),
                  Right_Opnd =>
                    Make_Integer_Literal (Loc, 0)))))));
 
      Analyze_And_Resolve (N, Standard_Boolean);
   end Expand_Is_Negative;
 
   ------------------
   -- Expand_Shift --
   ------------------
 
   --  This procedure is used to convert a call to a shift function to the
   --  corresponding operator node. This conversion is not done by the usual
   --  circuit for converting calls to operator functions (e.g. "+"(1,2)) to
   --  operator nodes, because shifts are not predefined operators.
 
   --  As a result, whenever a shift is used in the source program, it will
   --  remain as a call until converted by this routine to the operator node
   --  form which Gigi is expecting to see.
 
   --  Note: it is possible for the expander to generate shift operator nodes
   --  directly, which will be analyzed in the normal manner by calling Analyze
   --  and Resolve. Such shift operator nodes will not be seen by Expand_Shift.
 
   procedure Expand_Shift (N : Node_Id; E : Entity_Id; K : Node_Kind) is
      Loc   : constant Source_Ptr := Sloc (N);
      Typ   : constant Entity_Id  := Etype (N);
      Left  : constant Node_Id    := First_Actual (N);
      Right : constant Node_Id    := Next_Actual (Left);
      Ltyp  : constant Node_Id    := Etype (Left);
      Rtyp  : constant Node_Id    := Etype (Right);
      Snode : Node_Id;
 
   begin
      Snode := New_Node (K, Loc);
      Set_Left_Opnd  (Snode, Relocate_Node (Left));
      Set_Right_Opnd (Snode, Relocate_Node (Right));
      Set_Chars      (Snode, Chars (E));
      Set_Etype      (Snode, Base_Type (Typ));
      Set_Entity     (Snode, E);
 
      if Compile_Time_Known_Value (Type_High_Bound (Rtyp))
        and then Expr_Value (Type_High_Bound (Rtyp)) < Esize (Ltyp)
      then
         Set_Shift_Count_OK (Snode, True);
      end if;
 
      --  Do the rewrite. Note that we don't call Analyze and Resolve on
      --  this node, because it already got analyzed and resolved when
      --  it was a function call!
 
      Rewrite (N, Snode);
      Set_Analyzed (N);
   end Expand_Shift;
 
   ------------------------
   -- Expand_Source_Info --
   ------------------------
 
   procedure Expand_Source_Info (N : Node_Id; Nam : Name_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      Ent : Entity_Id;
 
      procedure Write_Entity_Name (E : Entity_Id);
      --  Recursive procedure to construct string for qualified name of
      --  enclosing program unit. The qualification stops at an enclosing
      --  scope has no source name (block or loop). If entity is a subprogram
      --  instance, skip enclosing wrapper package.
 
      -----------------------
      -- Write_Entity_Name --
      -----------------------
 
      procedure Write_Entity_Name (E : Entity_Id) is
         SDef : Source_Ptr;
         TDef : constant Source_Buffer_Ptr :=
                  Source_Text (Get_Source_File_Index (Sloc (E)));
 
      begin
         --  Nothing to do if at outer level
 
         if Scope (E) = Standard_Standard then
            null;
 
         --  If scope comes from source, write its name
 
         elsif Comes_From_Source (Scope (E)) then
            Write_Entity_Name (Scope (E));
            Add_Char_To_Name_Buffer ('.');
 
         --  If in wrapper package skip past it
 
         elsif Is_Wrapper_Package (Scope (E)) then
            Write_Entity_Name (Scope (Scope (E)));
            Add_Char_To_Name_Buffer ('.');
 
         --  Otherwise nothing to output (happens in unnamed block statements)
 
         else
            null;
         end if;
 
         --  Loop to output the name
 
         --  is this right wrt wide char encodings ??? (no!)
 
         SDef := Sloc (E);
         while TDef (SDef) in '0' .. '9'
           or else TDef (SDef) >= 'A'
           or else TDef (SDef) = ASCII.ESC
         loop
            Add_Char_To_Name_Buffer (TDef (SDef));
            SDef := SDef + 1;
         end loop;
      end Write_Entity_Name;
 
   --  Start of processing for Expand_Source_Info
 
   begin
      --  Integer cases
 
      if Nam = Name_Line then
         Rewrite (N,
           Make_Integer_Literal (Loc,
             Intval => UI_From_Int (Int (Get_Logical_Line_Number (Loc)))));
         Analyze_And_Resolve (N, Standard_Positive);
 
      --  String cases
 
      else
         Name_Len := 0;
 
         case Nam is
            when Name_File =>
               Get_Decoded_Name_String
                 (Reference_Name (Get_Source_File_Index (Loc)));
 
            when Name_Source_Location =>
               Build_Location_String (Loc);
 
            when Name_Enclosing_Entity =>
 
               --  Skip enclosing blocks to reach enclosing unit
 
               Ent := Current_Scope;
               while Present (Ent) loop
                  exit when Ekind (Ent) /= E_Block
                    and then Ekind (Ent) /= E_Loop;
                  Ent := Scope (Ent);
               end loop;
 
               --  Ent now points to the relevant defining entity
 
               Write_Entity_Name (Ent);
 
            when others =>
               raise Program_Error;
         end case;
 
         Rewrite (N,
           Make_String_Literal (Loc,
             Strval => String_From_Name_Buffer));
         Analyze_And_Resolve (N, Standard_String);
      end if;
 
      Set_Is_Static_Expression (N);
   end Expand_Source_Info;
 
   ---------------------------
   -- Expand_Unc_Conversion --
   ---------------------------
 
   procedure Expand_Unc_Conversion (N : Node_Id; E : Entity_Id) is
      Func : constant Entity_Id  := Entity (Name (N));
      Conv : Node_Id;
      Ftyp : Entity_Id;
      Ttyp : Entity_Id;
 
   begin
      --  Rewrite as unchecked conversion node. Note that we must convert
      --  the operand to the formal type of the input parameter of the
      --  function, so that the resulting N_Unchecked_Type_Conversion
      --  call indicates the correct types for Gigi.
 
      --  Right now, we only do this if a scalar type is involved. It is
      --  not clear if it is needed in other cases. If we do attempt to
      --  do the conversion unconditionally, it crashes 3411-018. To be
      --  investigated further ???
 
      Conv := Relocate_Node (First_Actual (N));
      Ftyp := Etype (First_Formal (Func));
 
      if Is_Scalar_Type (Ftyp) then
         Conv := Convert_To (Ftyp, Conv);
         Set_Parent (Conv, N);
         Analyze_And_Resolve (Conv);
      end if;
 
      --  The instantiation of Unchecked_Conversion creates a wrapper package,
      --  and the target type is declared as a subtype of the actual. Recover
      --  the actual, which is the subtype indic. in the subtype declaration
      --  for the target type. This is semantically correct, and avoids
      --  anomalies with access subtypes. For entities, leave type as is.
 
      --  We do the analysis here, because we do not want the compiler
      --  to try to optimize or otherwise reorganize the unchecked
      --  conversion node.
 
      Ttyp := Etype (E);
 
      if Is_Entity_Name (Conv) then
         null;
 
      elsif Nkind (Parent (Ttyp)) = N_Subtype_Declaration then
         Ttyp := Entity (Subtype_Indication (Parent (Etype (E))));
 
      elsif Is_Itype (Ttyp) then
         Ttyp :=
           Entity (Subtype_Indication (Associated_Node_For_Itype (Ttyp)));
      else
         raise Program_Error;
      end if;
 
      Rewrite (N, Unchecked_Convert_To (Ttyp, Conv));
      Set_Etype (N, Ttyp);
      Set_Analyzed (N);
 
      if Nkind (N) = N_Unchecked_Type_Conversion then
         Expand_N_Unchecked_Type_Conversion (N);
      end if;
   end Expand_Unc_Conversion;
 
   -----------------------------
   -- Expand_Unc_Deallocation --
   -----------------------------
 
   --  Generate the following Code :
 
   --    if Arg /= null then
   --     <Finalize_Call> (.., T'Class(Arg.all), ..);  -- for controlled types
   --       Free (Arg);
   --       Arg := Null;
   --    end if;
 
   --  For a task, we also generate a call to Free_Task to ensure that the
   --  task itself is freed if it is terminated, ditto for a simple protected
   --  object, with a call to Finalize_Protection. For composite types that
   --  have tasks or simple protected objects as components, we traverse the
   --  structures to find and terminate those components.
 
   procedure Expand_Unc_Deallocation (N : Node_Id) is
      Loc   : constant Source_Ptr := Sloc (N);
      Arg   : constant Node_Id    := First_Actual (N);
      Typ   : constant Entity_Id  := Etype (Arg);
      Stmts : constant List_Id    := New_List;
      Rtyp  : constant Entity_Id  := Underlying_Type (Root_Type (Typ));
      Pool  : constant Entity_Id  := Associated_Storage_Pool (Rtyp);
 
      Desig_T   : constant Entity_Id  := Designated_Type (Typ);
      Gen_Code  : Node_Id;
      Free_Node : Node_Id;
      Deref     : Node_Id;
      Free_Arg  : Node_Id;
      Free_Cod  : List_Id;
      Blk       : Node_Id;
 
      Arg_Known_Non_Null : constant Boolean := Known_Non_Null (N);
      --  This captures whether we know the argument to be non-null so that
      --  we can avoid the test. The reason that we need to capture this is
      --  that we analyze some generated statements before properly attaching
      --  them to the tree, and that can disturb current value settings.
 
   begin
      if No_Pool_Assigned (Rtyp) then
         Error_Msg_N ("?deallocation from empty storage pool!", N);
      end if;
 
      --  Nothing to do if we know the argument is null
 
      if Known_Null (N) then
         return;
      end if;
 
      --  Processing for pointer to controlled type
 
      if Needs_Finalization (Desig_T) then
         Deref :=
           Make_Explicit_Dereference (Loc,
             Prefix => Duplicate_Subexpr_No_Checks (Arg));
 
         --  If the type is tagged, then we must force dispatching on the
         --  finalization call because the designated type may not be the
         --  actual type of the object.
 
         if Is_Tagged_Type (Desig_T)
           and then not Is_Class_Wide_Type (Desig_T)
         then
            Deref := Unchecked_Convert_To (Class_Wide_Type (Desig_T), Deref);
 
         elsif not Is_Tagged_Type (Desig_T) then
 
            --  Set type of result, to force a conversion when needed (see
            --  exp_ch7, Convert_View), given that Deep_Finalize may be
            --  inherited from the parent type, and we need the type of the
            --  expression to see whether the conversion is in fact needed.
 
            Set_Etype (Deref, Desig_T);
         end if;
 
         Free_Cod :=
           Make_Final_Call
            (Ref         => Deref,
             Typ         => Desig_T,
             With_Detach => New_Reference_To (Standard_True, Loc));
 
         if Abort_Allowed then
            Prepend_To (Free_Cod,
              Build_Runtime_Call (Loc, RE_Abort_Defer));
 
            Blk :=
              Make_Block_Statement (Loc, Handled_Statement_Sequence =>
                Make_Handled_Sequence_Of_Statements (Loc,
                  Statements  => Free_Cod,
                  At_End_Proc =>
                    New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc)));
 
            --  We now expand the exception (at end) handler. We set a
            --  temporary parent pointer since we have not attached Blk
            --  to the tree yet.
 
            Set_Parent (Blk, N);
            Analyze (Blk);
            Expand_At_End_Handler
              (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
            Append (Blk, Stmts);
 
            --  We kill saved current values, since analyzing statements not
            --  properly attached to the tree can set wrong current values.
 
            Kill_Current_Values;
 
         else
            Append_List_To (Stmts, Free_Cod);
         end if;
      end if;
 
      --  For a task type, call Free_Task before freeing the ATCB
 
      if Is_Task_Type (Desig_T) then
         declare
            Stat : Node_Id := Prev (N);
            Nam1 : Node_Id;
            Nam2 : Node_Id;
 
         begin
            --  An Abort followed by a Free will not do what the user
            --  expects, because the abort is not immediate. This is
            --  worth a friendly warning.
 
            while Present (Stat)
              and then not Comes_From_Source (Original_Node (Stat))
            loop
               Prev (Stat);
            end loop;
 
            if Present (Stat)
              and then Nkind (Original_Node (Stat)) = N_Abort_Statement
            then
               Stat := Original_Node (Stat);
               Nam1 := First (Names (Stat));
               Nam2 := Original_Node (First (Parameter_Associations (N)));
 
               if Nkind (Nam1) = N_Explicit_Dereference
                 and then Is_Entity_Name (Prefix (Nam1))
                 and then Is_Entity_Name (Nam2)
                 and then Entity (Prefix (Nam1)) = Entity (Nam2)
               then
                  Error_Msg_N ("abort may take time to complete?", N);
                  Error_Msg_N ("\deallocation might have no effect?", N);
                  Error_Msg_N ("\safer to wait for termination.?", N);
               end if;
            end if;
         end;
 
         Append_To
           (Stmts, Cleanup_Task (N, Duplicate_Subexpr_No_Checks (Arg)));
 
      --  For composite types that contain tasks, recurse over the structure
      --  to build the selectors for the task subcomponents.
 
      elsif Has_Task (Desig_T) then
         if Is_Record_Type (Desig_T) then
            Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_T));
 
         elsif Is_Array_Type (Desig_T) then
            Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_T));
         end if;
      end if;
 
      --  Same for simple protected types. Eventually call Finalize_Protection
      --  before freeing the PO for each protected component.
 
      if Is_Simple_Protected_Type (Desig_T) then
         Append_To (Stmts,
           Cleanup_Protected_Object (N, Duplicate_Subexpr_No_Checks (Arg)));
 
      elsif Has_Simple_Protected_Object (Desig_T) then
         if Is_Record_Type (Desig_T) then
            Append_List_To (Stmts, Cleanup_Record (N, Arg, Desig_T));
         elsif Is_Array_Type (Desig_T) then
            Append_List_To (Stmts, Cleanup_Array (N, Arg, Desig_T));
         end if;
      end if;
 
      --  Normal processing for non-controlled types
 
      Free_Arg := Duplicate_Subexpr_No_Checks (Arg);
      Free_Node := Make_Free_Statement (Loc, Empty);
      Append_To (Stmts, Free_Node);
      Set_Storage_Pool (Free_Node, Pool);
 
      --  Deal with storage pool
 
      if Present (Pool) then
 
         --  Freeing the secondary stack is meaningless
 
         if Is_RTE (Pool, RE_SS_Pool) then
            null;
 
         elsif Is_Class_Wide_Type (Etype (Pool)) then
 
            --  Case of a class-wide pool type: make a dispatching call
            --  to Deallocate through the class-wide Deallocate_Any.
 
            Set_Procedure_To_Call (Free_Node,
              RTE (RE_Deallocate_Any));
 
         else
            --  Case of a specific pool type: make a statically bound call
 
            Set_Procedure_To_Call (Free_Node,
              Find_Prim_Op (Etype (Pool), Name_Deallocate));
         end if;
      end if;
 
      if Present (Procedure_To_Call (Free_Node)) then
 
         --  For all cases of a Deallocate call, the back-end needs to be
         --  able to compute the size of the object being freed. This may
         --  require some adjustments for objects of dynamic size.
         --
         --  If the type is class wide, we generate an implicit type with the
         --  right dynamic size, so that the deallocate call gets the right
         --  size parameter computed by GIGI. Same for an access to
         --  unconstrained packed array.
 
         if Is_Class_Wide_Type (Desig_T)
           or else
            (Is_Array_Type (Desig_T)
               and then not Is_Constrained (Desig_T)
               and then Is_Packed (Desig_T))
         then
            declare
               Deref    : constant Node_Id :=
                            Make_Explicit_Dereference (Loc,
                              Duplicate_Subexpr_No_Checks (Arg));
               D_Subtyp : Node_Id;
               D_Type   : Entity_Id;
 
            begin
               Set_Etype  (Deref, Typ);
               Set_Parent (Deref, Free_Node);
               D_Subtyp := Make_Subtype_From_Expr (Deref, Desig_T);
 
               if Nkind (D_Subtyp) in N_Has_Entity then
                  D_Type := Entity (D_Subtyp);
 
               else
                  D_Type := Make_Defining_Identifier (Loc,
                              New_Internal_Name ('A'));
                  Insert_Action (Deref,
                    Make_Subtype_Declaration (Loc,
                      Defining_Identifier => D_Type,
                      Subtype_Indication  => D_Subtyp));
 
               end if;
 
               --  Force freezing at the point of the dereference. For the
               --  class wide case, this avoids having the subtype frozen
               --  before the equivalent type.
 
               Freeze_Itype (D_Type, Deref);
 
               Set_Actual_Designated_Subtype (Free_Node, D_Type);
            end;
 
         end if;
      end if;
 
      --  Ada 2005 (AI-251): In case of abstract interface type we must
      --  displace the pointer to reference the base of the object to
      --  deallocate its memory, unless we're targetting a VM, in which case
      --  no special processing is required.
 
      --  Generate:
      --    free (Base_Address (Obj_Ptr))
 
      if Is_Interface (Directly_Designated_Type (Typ))
        and then Tagged_Type_Expansion
      then
         Set_Expression (Free_Node,
           Unchecked_Convert_To (Typ,
             Make_Function_Call (Loc,
               Name => New_Reference_To (RTE (RE_Base_Address), Loc),
               Parameter_Associations => New_List (
                 Unchecked_Convert_To (RTE (RE_Address), Free_Arg)))));
 
      --  Generate:
      --    free (Obj_Ptr)
 
      else
         Set_Expression (Free_Node, Free_Arg);
      end if;
 
      --  Only remaining step is to set result to null, or generate a
      --  raise of constraint error if the target object is "not null".
 
      if Can_Never_Be_Null (Etype (Arg)) then
         Append_To (Stmts,
           Make_Raise_Constraint_Error (Loc,
             Reason => CE_Access_Check_Failed));
 
      else
         declare
            Lhs : constant Node_Id := Duplicate_Subexpr_No_Checks (Arg);
         begin
            Set_Assignment_OK (Lhs);
            Append_To (Stmts,
              Make_Assignment_Statement (Loc,
                Name       => Lhs,
                Expression => Make_Null (Loc)));
         end;
      end if;
 
      --  If we know the argument is non-null, then make a block statement
      --  that contains the required statements, no need for a test.
 
      if Arg_Known_Non_Null then
         Gen_Code :=
           Make_Block_Statement (Loc,
             Handled_Statement_Sequence =>
               Make_Handled_Sequence_Of_Statements (Loc,
             Statements => Stmts));
 
      --  If the argument may be null, wrap the statements inside an IF that
      --  does an explicit test to exclude the null case.
 
      else
         Gen_Code :=
           Make_Implicit_If_Statement (N,
             Condition =>
               Make_Op_Ne (Loc,
                 Left_Opnd  => Duplicate_Subexpr (Arg),
                 Right_Opnd => Make_Null (Loc)),
             Then_Statements => Stmts);
      end if;
 
      --  Rewrite the call
 
      Rewrite (N, Gen_Code);
      Analyze (N);
   end Expand_Unc_Deallocation;
 
   -----------------------
   -- Expand_To_Address --
   -----------------------
 
   procedure Expand_To_Address (N : Node_Id) is
      Loc : constant Source_Ptr := Sloc (N);
      Arg : constant Node_Id := First_Actual (N);
      Obj : Node_Id;
 
   begin
      Remove_Side_Effects (Arg);
 
      Obj := Make_Explicit_Dereference (Loc, Relocate_Node (Arg));
 
      Rewrite (N,
        Make_Conditional_Expression (Loc,
          Expressions => New_List (
            Make_Op_Eq (Loc,
              Left_Opnd => New_Copy_Tree (Arg),
              Right_Opnd => Make_Null (Loc)),
            New_Occurrence_Of (RTE (RE_Null_Address), Loc),
            Make_Attribute_Reference (Loc,
              Prefix         => Obj,
              Attribute_Name => Name_Address))));
 
      Analyze_And_Resolve (N, RTE (RE_Address));
   end Expand_To_Address;
 
   -----------------------
   -- Expand_To_Pointer --
   -----------------------
 
   procedure Expand_To_Pointer (N : Node_Id) is
      Arg : constant Node_Id := First_Actual (N);
 
   begin
      Rewrite (N, Unchecked_Convert_To (Etype (N), Arg));
      Analyze (N);
   end Expand_To_Pointer;
 
end Exp_Intr;
 

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.