URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [ada/] [raise-gcc.c] - Rev 281
Go to most recent revision | Compare with Previous | Blame | View Log
/**************************************************************************** * * * GNAT COMPILER COMPONENTS * * * * R A I S E - G C C * * * * C Implementation File * * * * Copyright (C) 1992-2009, Free Software Foundation, Inc. * * * * GNAT is free software; you can redistribute it and/or modify it under * * terms of the GNU General Public License as published by the Free Soft- * * ware Foundation; either version 3, or (at your option) any later ver- * * sion. GNAT is distributed in the hope that it will be useful, but WITH- * * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * * or FITNESS FOR A PARTICULAR PURPOSE. * * * * As a special exception under Section 7 of GPL version 3, you are granted * * additional permissions described in the GCC Runtime Library Exception, * * version 3.1, as published by the Free Software Foundation. * * * * You should have received a copy of the GNU General Public License and * * a copy of the GCC Runtime Library Exception along with this program; * * see the files COPYING3 and COPYING.RUNTIME respectively. If not, see * * <http://www.gnu.org/licenses/>. * * * * GNAT was originally developed by the GNAT team at New York University. * * Extensive contributions were provided by Ada Core Technologies Inc. * * * ****************************************************************************/ /* Code related to the integration of the GCC mechanism for exception handling. */ #ifdef IN_RTS #include "tconfig.h" #include "tsystem.h" /* In the top-of-tree GCC, tconfig does not include tm.h, but in GCC 3.2 it does. To avoid branching raise.c just for that purpose, we kludge by looking for a symbol always defined by tm.h and if it's not defined, we include it. */ #ifndef FIRST_PSEUDO_REGISTER #include "coretypes.h" #include "tm.h" #endif #include <sys/stat.h> #include <stdarg.h> typedef char bool; # define true 1 # define false 0 #else #include "config.h" #include "system.h" #endif #include "adaint.h" #include "raise.h" #ifdef __APPLE__ /* On MacOS X, versions older than 10.5 don't export _Unwind_GetIPInfo. */ #undef HAVE_GETIPINFO #if __ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ >= 1050 #define HAVE_GETIPINFO 1 #endif #endif /* The names of a couple of "standard" routines for unwinding/propagation actually vary depending on the underlying GCC scheme for exception handling (SJLJ or DWARF). We need a consistently named interface to import from a-except, so wrappers are defined here. Besides, even though the compiler is never setup to use the GCC propagation circuitry, it still relies on exceptions internally and part of the sources to handle to exceptions are shared with the run-time library. We need dummy definitions for the wrappers to satisfy the linker in this case. The types to be used by those wrappers in the run-time library are target types exported by unwind.h. We used to piggyback on them for the compiler stubs, but there is no guarantee that unwind.h is always in sight so we define our own set below. These are dummy types as the wrappers are never called in the compiler case. */ #ifdef IN_RTS #include "unwind.h" typedef struct _Unwind_Context _Unwind_Context; typedef struct _Unwind_Exception _Unwind_Exception; #else typedef void _Unwind_Context; typedef void _Unwind_Exception; typedef int _Unwind_Reason_Code; #endif _Unwind_Reason_Code __gnat_Unwind_RaiseException (_Unwind_Exception *); _Unwind_Reason_Code __gnat_Unwind_ForcedUnwind (_Unwind_Exception *, void *, void *); #ifdef IN_RTS /* For eh personality routine */ #include "dwarf2.h" #include "unwind-dw2-fde.h" #include "unwind-pe.h" /* -------------------------------------------------------------- -- The DB stuff below is there for debugging purposes only. -- -------------------------------------------------------------- */ #define DB_PHASES 0x1 #define DB_CSITE 0x2 #define DB_ACTIONS 0x4 #define DB_REGIONS 0x8 #define DB_ERR 0x1000 /* The "action" stuff below is also there for debugging purposes only. */ typedef struct { _Unwind_Action phase; char * description; } phase_descriptor; static phase_descriptor phase_descriptors[] = {{ _UA_SEARCH_PHASE, "SEARCH_PHASE" }, { _UA_CLEANUP_PHASE, "CLEANUP_PHASE" }, { _UA_HANDLER_FRAME, "HANDLER_FRAME" }, { _UA_FORCE_UNWIND, "FORCE_UNWIND" }, { -1, 0}}; static int db_accepted_codes (void) { static int accepted_codes = -1; if (accepted_codes == -1) { char * db_env = (char *) getenv ("EH_DEBUG"); accepted_codes = db_env ? (atoi (db_env) | DB_ERR) : 0; /* Arranged for ERR stuff to always be visible when the variable is defined. One may just set the variable to 0 to see the ERR stuff only. */ } return accepted_codes; } #define DB_INDENT_INCREASE 0x01 #define DB_INDENT_DECREASE 0x02 #define DB_INDENT_OUTPUT 0x04 #define DB_INDENT_NEWLINE 0x08 #define DB_INDENT_RESET 0x10 #define DB_INDENT_UNIT 8 static void db_indent (int requests) { static int current_indentation_level = 0; if (requests & DB_INDENT_RESET) { current_indentation_level = 0; } if (requests & DB_INDENT_INCREASE) { current_indentation_level ++; } if (requests & DB_INDENT_DECREASE) { current_indentation_level --; } if (requests & DB_INDENT_NEWLINE) { fprintf (stderr, "\n"); } if (requests & DB_INDENT_OUTPUT) { fprintf (stderr, "%*s", current_indentation_level * DB_INDENT_UNIT, " "); } } static void ATTRIBUTE_PRINTF_2 db (int db_code, char * msg_format, ...) { if (db_accepted_codes () & db_code) { va_list msg_args; db_indent (DB_INDENT_OUTPUT); va_start (msg_args, msg_format); vfprintf (stderr, msg_format, msg_args); va_end (msg_args); } } static void db_phases (int phases) { phase_descriptor *a = phase_descriptors; if (! (db_accepted_codes() & DB_PHASES)) return; db (DB_PHASES, "\n"); for (; a->description != 0; a++) if (phases & a->phase) db (DB_PHASES, "%s ", a->description); db (DB_PHASES, " :\n"); } /* --------------------------------------------------------------- -- Now come a set of useful structures and helper routines. -- --------------------------------------------------------------- */ /* There are three major runtime tables involved, generated by the GCC back-end. Contents slightly vary depending on the underlying implementation scheme (dwarf zero cost / sjlj). ======================================= * Tables for the dwarf zero cost case * ======================================= call_site [] ------------------------------------------------------------------- * region-start | region-length | landing-pad | first-action-index * ------------------------------------------------------------------- Identify possible actions to be taken and where to resume control for that when an exception propagates through a pc inside the region delimited by start and length. A null landing-pad indicates that nothing is to be done. Otherwise, first-action-index provides an entry into the action[] table which heads a list of possible actions to be taken (see below). If it is determined that indeed an action should be taken, that is, if one action filter matches the exception being propagated, then control should be transfered to landing-pad. A null first-action-index indicates that there are only cleanups to run there. action [] ------------------------------- * action-filter | next-action * ------------------------------- This table contains lists (called action chains) of possible actions associated with call-site entries described in the call-site [] table. There is at most one action list per call-site entry. A null action-filter indicates a cleanup. Non null action-filters provide an index into the ttypes [] table (see below), from which information may be retrieved to check if it matches the exception being propagated. action-filter > 0 means there is a regular handler to be run, action-filter < 0 means there is a some "exception_specification" data to retrieve, which is only relevant for C++ and should never show up for Ada. next-action indexes the next entry in the list. 0 indicates there is no other entry. ttypes [] --------------- * ttype-value * --------------- A null value indicates a catch-all handler in C++, and an "others" handler in Ada. Non null values are used to match the exception being propagated: In C++ this is a pointer to some rtti data, while in Ada this is an exception id. The special id value 1 indicates an "all_others" handler. For C++, this table is actually also used to store "exception specification" data. The differentiation between the two kinds of entries is made by the sign of the associated action filter, which translates into positive or negative offsets from the so called base of the table: Exception Specification data is stored at positive offsets from the ttypes table base, which Exception Type data is stored at negative offsets: --------------------------------------------------------------------------- Here is a quick summary of the tables organization: +-- Unwind_Context (pc, ...) | |(pc) | | CALL-SITE[] | | +=============================================================+ | | region-start + length | landing-pad | first-action-index | | +=============================================================+ +-> | pc range 0 => no-action 0 => cleanups only | | !0 => jump @ N --+ | +====================================================== | ====+ | | ACTION [] | | +==========================================================+ | | action-filter | next-action | | +==========================================================+ | | 0 => cleanup | | | >0 => ttype index for handler ------+ 0 => end of chain | <-+ | <0 => ttype index for spec data | | +==================================== | ===================+ | | TTYPES [] | | Offset negated from +=====================+ | the actual base. | ttype-value | | +============+=====================+ | | | 0 => "others" | | | ... | 1 => "all others" | <---+ | | X => exception id | | handlers +---------------------+ | | ... | | ... | ... | | | ... | +============+=====================+ <<------ Table base | ... | ... | | specs | ... | (should not see negative filter | ... | ... | values for Ada). +============+=====================+ ============================ * Tables for the sjlj case * ============================ So called "function contexts" are pushed on a context stack by calls to _Unwind_SjLj_Register on function entry, and popped off at exit points by calls to _Unwind_SjLj_Unregister. The current call_site for a function is updated in the function context as the function's code runs along. The generic unwinding engine in _Unwind_RaiseException walks the function context stack and not the actual call chain. The ACTION and TTYPES tables remain unchanged, which allows to search them during the propagation phase to determine whether or not the propagated exception is handled somewhere. When it is, we only "jump" up once directly to the context where the handler will be found. Besides, this allows "break exception unhandled" to work also The CALL-SITE table is setup differently, though: the pc attached to the unwind context is a direct index into the table, so the entries in this table do not hold region bounds any more. A special index (-1) is used to indicate that no action is possibly connected with the context at hand, so null landing pads cannot appear in the table. Additionally, landing pad values in the table do not represent code address to jump at, but so called "dispatch" indices used by a common landing pad for the function to switch to the appropriate post-landing-pad. +-- Unwind_Context (pc, ...) | | pc = call-site index | 0 => terminate (should not see this for Ada) | -1 => no-action | | CALL-SITE[] | | +=====================================+ | | landing-pad | first-action-index | | +=====================================+ +-> | 0 => cleanups only | | dispatch index N | +=====================================+ =================================== * Basic organization of this unit * =================================== The major point of this unit is to provide an exception propagation personality routine for Ada. This is __gnat_eh_personality. It is provided with a pointer to the propagated exception, an unwind context describing a location the propagation is going through, and a couple of other arguments including a description of the current propagation phase. It shall return to the generic propagation engine what is to be performed next, after possible context adjustments, depending on what it finds in the traversed context (a handler for the exception, a cleanup, nothing, ...), and on the propagation phase. A number of structures and subroutines are used for this purpose, as sketched below: o region_descriptor: General data associated with the context (base pc, call-site table, action table, ttypes table, ...) o action_descriptor: Data describing the action to be taken for the propagated exception in the provided context (kind of action: nothing, handler, cleanup; pointer to the action table entry, ...). raise | ... (a-except.adb) | Propagate_Exception (a-exexpr.adb) | | _Unwind_RaiseException (libgcc) | | (Ada frame) | +--> __gnat_eh_personality (context, exception) | +--> get_region_descriptor_for (context) | +--> get_action_descriptor_for (context, exception, region) | | | +--> get_call_site_action_for (context, region) | (one version for each underlying scheme) | +--> setup_to_install (context) This unit is inspired from the C++ version found in eh_personality.cc, part of libstdc++-v3. */ /* This is an incomplete "proxy" of the structure of exception objects as built by the GNAT runtime library. Accesses to other fields than the common header are performed through subprogram calls to alleviate the need of an exact counterpart here and potential alignment/size issues for the common header. See a-exexpr.adb. */ typedef struct { _Unwind_Exception common; /* ABI header, maximally aligned. */ } _GNAT_Exception; /* The two constants below are specific ttype identifiers for special exception ids. Their type should match what a-exexpr exports. */ extern const int __gnat_others_value; #define GNAT_OTHERS ((_Unwind_Ptr) &__gnat_others_value) extern const int __gnat_all_others_value; #define GNAT_ALL_OTHERS ((_Unwind_Ptr) &__gnat_all_others_value) /* Describe the useful region data associated with an unwind context. */ typedef struct { /* The base pc of the region. */ _Unwind_Ptr base; /* Pointer to the Language Specific Data for the region. */ _Unwind_Ptr lsda; /* Call-Site data associated with this region. */ unsigned char call_site_encoding; const unsigned char *call_site_table; /* The base to which are relative landing pad offsets inside the call-site entries . */ _Unwind_Ptr lp_base; /* Action-Table associated with this region. */ const unsigned char *action_table; /* Ttype data associated with this region. */ unsigned char ttype_encoding; const unsigned char *ttype_table; _Unwind_Ptr ttype_base; } region_descriptor; static void db_region_for (region_descriptor *region, _Unwind_Context *uw_context) { int ip_before_insn = 0; #ifdef HAVE_GETIPINFO _Unwind_Ptr ip = _Unwind_GetIPInfo (uw_context, &ip_before_insn); #else _Unwind_Ptr ip = _Unwind_GetIP (uw_context); #endif if (!ip_before_insn) ip--; if (! (db_accepted_codes () & DB_REGIONS)) return; db (DB_REGIONS, "For ip @ 0x%08x => ", ip); if (region->lsda) db (DB_REGIONS, "lsda @ 0x%x", region->lsda); else db (DB_REGIONS, "no lsda"); db (DB_REGIONS, "\n"); } /* Retrieve the ttype entry associated with FILTER in the REGION's ttype table. */ static const _Unwind_Ptr get_ttype_entry_for (region_descriptor *region, long filter) { _Unwind_Ptr ttype_entry; filter *= size_of_encoded_value (region->ttype_encoding); read_encoded_value_with_base (region->ttype_encoding, region->ttype_base, region->ttype_table - filter, &ttype_entry); return ttype_entry; } /* Fill out the REGION descriptor for the provided UW_CONTEXT. */ static void get_region_description_for (_Unwind_Context *uw_context, region_descriptor *region) { const unsigned char * p; _uleb128_t tmp; unsigned char lpbase_encoding; /* Get the base address of the lsda information. If the provided context is null or if there is no associated language specific data, there's nothing we can/should do. */ region->lsda = (_Unwind_Ptr) (uw_context ? _Unwind_GetLanguageSpecificData (uw_context) : 0); if (! region->lsda) return; /* Parse the lsda and fill the region descriptor. */ p = (char *)region->lsda; region->base = _Unwind_GetRegionStart (uw_context); /* Find @LPStart, the base to which landing pad offsets are relative. */ lpbase_encoding = *p++; if (lpbase_encoding != DW_EH_PE_omit) p = read_encoded_value (uw_context, lpbase_encoding, p, ®ion->lp_base); else region->lp_base = region->base; /* Find @TType, the base of the handler and exception spec type data. */ region->ttype_encoding = *p++; if (region->ttype_encoding != DW_EH_PE_omit) { p = read_uleb128 (p, &tmp); region->ttype_table = p + tmp; } else region->ttype_table = 0; region->ttype_base = base_of_encoded_value (region->ttype_encoding, uw_context); /* Get the encoding and length of the call-site table; the action table immediately follows. */ region->call_site_encoding = *p++; region->call_site_table = read_uleb128 (p, &tmp); region->action_table = region->call_site_table + tmp; } /* Describe an action to be taken when propagating an exception up to some context. */ typedef enum { /* Found some call site base data, but need to analyze further before being able to decide. */ unknown, /* There is nothing relevant in the context at hand. */ nothing, /* There are only cleanups to run in this context. */ cleanup, /* There is a handler for the exception in this context. */ handler } action_kind; /* filter value for cleanup actions. */ const int cleanup_filter = 0; typedef struct { /* The kind of action to be taken. */ action_kind kind; /* A pointer to the action record entry. */ const unsigned char *table_entry; /* Where we should jump to actually take an action (trigger a cleanup or an exception handler). */ _Unwind_Ptr landing_pad; /* If we have a handler matching our exception, these are the filter to trigger it and the corresponding id. */ _Unwind_Sword ttype_filter; _Unwind_Ptr ttype_entry; } action_descriptor; static void db_action_for (action_descriptor *action, _Unwind_Context *uw_context) { int ip_before_insn = 0; #ifdef HAVE_GETIPINFO _Unwind_Ptr ip = _Unwind_GetIPInfo (uw_context, &ip_before_insn); #else _Unwind_Ptr ip = _Unwind_GetIP (uw_context); #endif if (!ip_before_insn) ip--; db (DB_ACTIONS, "For ip @ 0x%08x => ", ip); switch (action->kind) { case unknown: db (DB_ACTIONS, "lpad @ 0x%x, record @ 0x%x\n", action->landing_pad, action->table_entry); break; case nothing: db (DB_ACTIONS, "Nothing\n"); break; case cleanup: db (DB_ACTIONS, "Cleanup\n"); break; case handler: db (DB_ACTIONS, "Handler, filter = %d\n", action->ttype_filter); break; default: db (DB_ACTIONS, "Err? Unexpected action kind !\n"); break; } return; } /* Search the call_site_table of REGION for an entry appropriate for the UW_CONTEXT's IP. If one is found, store the associated landing_pad and action_table entry, and set the ACTION kind to unknown for further analysis. Otherwise, set the ACTION kind to nothing. There are two variants of this routine, depending on the underlying mechanism (DWARF/SJLJ), which account for differences in the tables. */ #ifdef __USING_SJLJ_EXCEPTIONS__ #define __builtin_eh_return_data_regno(x) x static void get_call_site_action_for (_Unwind_Context *uw_context, region_descriptor *region, action_descriptor *action) { int ip_before_insn = 0; #ifdef HAVE_GETIPINFO _Unwind_Ptr call_site = _Unwind_GetIPInfo (uw_context, &ip_before_insn); #else _Unwind_Ptr call_site = _Unwind_GetIP (uw_context); #endif /* Subtract 1 if necessary because GetIPInfo returns the actual call site value + 1 in this case. */ if (!ip_before_insn) call_site--; /* call_site is a direct index into the call-site table, with two special values : -1 for no-action and 0 for "terminate". The latter should never show up for Ada. To test for the former, beware that _Unwind_Ptr might be unsigned. */ if ((int)call_site < 0) { action->kind = nothing; return; } else if (call_site == 0) { db (DB_ERR, "========> Err, null call_site for Ada/sjlj\n"); action->kind = nothing; return; } else { _uleb128_t cs_lp, cs_action; /* Let the caller know there may be an action to take, but let it determine the kind. */ action->kind = unknown; /* We have a direct index into the call-site table, but this table is made of leb128 values, the encoding length of which is variable. We can't merely compute an offset from the index, then, but have to read all the entries before the one of interest. */ const unsigned char *p = region->call_site_table; do { p = read_uleb128 (p, &cs_lp); p = read_uleb128 (p, &cs_action); } while (--call_site); action->landing_pad = cs_lp + 1; if (cs_action) action->table_entry = region->action_table + cs_action - 1; else action->table_entry = 0; return; } } #else /* !__USING_SJLJ_EXCEPTIONS__ */ static void get_call_site_action_for (_Unwind_Context *uw_context, region_descriptor *region, action_descriptor *action) { const unsigned char *p = region->call_site_table; int ip_before_insn = 0; #ifdef HAVE_GETIPINFO _Unwind_Ptr ip = _Unwind_GetIPInfo (uw_context, &ip_before_insn); #else _Unwind_Ptr ip = _Unwind_GetIP (uw_context); #endif /* Subtract 1 if necessary because GetIPInfo yields a call return address in this case, while we are interested in information for the call point. This does not always yield the exact call instruction address but always brings the IP back within the corresponding region. */ if (!ip_before_insn) ip--; /* Unless we are able to determine otherwise... */ action->kind = nothing; db (DB_CSITE, "\n"); while (p < region->action_table) { _Unwind_Ptr cs_start, cs_len, cs_lp; _uleb128_t cs_action; /* Note that all call-site encodings are "absolute" displacements. */ p = read_encoded_value (0, region->call_site_encoding, p, &cs_start); p = read_encoded_value (0, region->call_site_encoding, p, &cs_len); p = read_encoded_value (0, region->call_site_encoding, p, &cs_lp); p = read_uleb128 (p, &cs_action); db (DB_CSITE, "c_site @ 0x%08x (+0x%03x), len = %3d, lpad @ 0x%08x (+0x%03x)\n", region->base+cs_start, cs_start, cs_len, region->lp_base+cs_lp, cs_lp); /* The table is sorted, so if we've passed the IP, stop. */ if (ip < region->base + cs_start) break; /* If we have a match, fill the ACTION fields accordingly. */ else if (ip < region->base + cs_start + cs_len) { /* Let the caller know there may be an action to take, but let it determine the kind. */ action->kind = unknown; if (cs_lp) action->landing_pad = region->lp_base + cs_lp; else action->landing_pad = 0; if (cs_action) action->table_entry = region->action_table + cs_action - 1; else action->table_entry = 0; db (DB_CSITE, "+++\n"); return; } } db (DB_CSITE, "---\n"); } #endif /* __USING_SJLJ_EXCEPTIONS__ */ /* With CHOICE an exception choice representing an "exception - when" argument, and PROPAGATED_EXCEPTION a pointer to the currently propagated occurrence, return true if the latter matches the former, that is, if PROPAGATED_EXCEPTION is caught by the handling code controlled by CHOICE. This takes care of the special Non_Ada_Error case on VMS. */ #define Is_Handled_By_Others __gnat_is_handled_by_others #define Language_For __gnat_language_for #define Import_Code_For __gnat_import_code_for #define EID_For __gnat_eid_for #define Adjust_N_Cleanups_For __gnat_adjust_n_cleanups_for extern bool Is_Handled_By_Others (_Unwind_Ptr eid); extern char Language_For (_Unwind_Ptr eid); extern Exception_Code Import_Code_For (_Unwind_Ptr eid); extern Exception_Id EID_For (_GNAT_Exception * e); extern void Adjust_N_Cleanups_For (_GNAT_Exception * e, int n); static int is_handled_by (_Unwind_Ptr choice, _GNAT_Exception * propagated_exception) { /* Pointer to the GNAT exception data corresponding to the propagated occurrence. */ _Unwind_Ptr E = (_Unwind_Ptr) EID_For (propagated_exception); /* Base matching rules: An exception data (id) matches itself, "when all_others" matches anything and "when others" matches anything unless explicitly stated otherwise in the propagated occurrence. */ bool is_handled = choice == E || choice == GNAT_ALL_OTHERS || (choice == GNAT_OTHERS && Is_Handled_By_Others (E)); /* In addition, on OpenVMS, Non_Ada_Error matches VMS exceptions, and we may have different exception data pointers that should match for the same condition code, if both an export and an import have been registered. The import code for both the choice and the propagated occurrence are expected to have been masked off regarding severity bits already (at registration time for the former and from within the low level exception vector for the latter). */ #ifdef VMS #define Non_Ada_Error system__aux_dec__non_ada_error extern struct Exception_Data Non_Ada_Error; is_handled |= (Language_For (E) == 'V' && choice != GNAT_OTHERS && choice != GNAT_ALL_OTHERS && ((Language_For (choice) == 'V' && Import_Code_For (choice) != 0 && Import_Code_For (choice) == Import_Code_For (E)) || choice == (_Unwind_Ptr)&Non_Ada_Error)); #endif return is_handled; } /* Fill out the ACTION to be taken from propagating UW_EXCEPTION up to UW_CONTEXT in REGION. */ static void get_action_description_for (_Unwind_Context *uw_context, _Unwind_Exception *uw_exception, region_descriptor *region, action_descriptor *action) { _GNAT_Exception * gnat_exception = (_GNAT_Exception *) uw_exception; /* Search the call site table first, which may get us a landing pad as well as the head of an action record list. */ get_call_site_action_for (uw_context, region, action); db_action_for (action, uw_context); /* If there is not even a call_site entry, we are done. */ if (action->kind == nothing) return; /* Otherwise, check what we have at the place of the call site. */ /* No landing pad => no cleanups or handlers. */ if (action->landing_pad == 0) { action->kind = nothing; return; } /* Landing pad + null table entry => only cleanups. */ else if (action->table_entry == 0) { action->kind = cleanup; action->ttype_filter = cleanup_filter; /* The filter initialization is not strictly necessary, as cleanup-only landing pads don't look at the filter value. It is there to ensure we don't pass random values and so trigger potential confusion when installing the context later on. */ return; } /* Landing pad + Table entry => handlers + possible cleanups. */ else { const unsigned char * p = action->table_entry; _sleb128_t ar_filter, ar_disp; action->kind = nothing; while (1) { p = read_sleb128 (p, &ar_filter); read_sleb128 (p, &ar_disp); /* Don't assign p here, as it will be incremented by ar_disp below. */ /* Null filters are for cleanups. */ if (ar_filter == cleanup_filter) { action->kind = cleanup; action->ttype_filter = cleanup_filter; /* The filter initialization is required here, to ensure the target landing pad branches to the cleanup code if we happen not to find a matching handler. */ } /* Positive filters are for regular handlers. */ else if (ar_filter > 0) { /* See if the filter we have is for an exception which matches the one we are propagating. */ _Unwind_Ptr choice = get_ttype_entry_for (region, ar_filter); if (is_handled_by (choice, gnat_exception)) { action->kind = handler; action->ttype_filter = ar_filter; action->ttype_entry = choice; return; } } /* Negative filter values are for C++ exception specifications. Should not be there for Ada :/ */ else db (DB_ERR, "========> Err, filter < 0 for Ada/dwarf\n"); if (ar_disp == 0) return; p += ar_disp; } } } /* Setup in UW_CONTEXT the eh return target IP and data registers, which will be restored with the others and retrieved by the landing pad once the jump occurred. */ static void setup_to_install (_Unwind_Context *uw_context, _Unwind_Exception *uw_exception, _Unwind_Ptr uw_landing_pad, int uw_filter) { #ifndef EH_RETURN_DATA_REGNO /* We should not be called if the appropriate underlying support is not there. */ abort (); #else /* 1/ exception object pointer, which might be provided back to _Unwind_Resume (and thus to this personality routine) if we are jumping to a cleanup. */ _Unwind_SetGR (uw_context, __builtin_eh_return_data_regno (0), (_Unwind_Word)uw_exception); /* 2/ handler switch value register, which will also be used by the target landing pad to decide what action it shall take. */ _Unwind_SetGR (uw_context, __builtin_eh_return_data_regno (1), (_Unwind_Word)uw_filter); /* Setup the address we should jump at to reach the code where there is the "something" we found. */ _Unwind_SetIP (uw_context, uw_landing_pad); #endif } /* The following is defined from a-except.adb. Its purpose is to enable automatic backtraces upon exception raise, as provided through the GNAT.Traceback facilities. */ extern void __gnat_notify_handled_exception (void); extern void __gnat_notify_unhandled_exception (void); /* Below is the eh personality routine per se. We currently assume that only GNU-Ada exceptions are met. */ #ifdef __USING_SJLJ_EXCEPTIONS__ #define PERSONALITY_FUNCTION __gnat_eh_personality_sj #else #define PERSONALITY_FUNCTION __gnat_eh_personality #endif /* Major tweak for ia64-vms : the CHF propagation phase calls this personality routine with sigargs/mechargs arguments and has very specific expectations on possible return values. We handle this with a number of specific tricks: 1. We tweak the personality routine prototype to have the "version" and "phases" two first arguments be void * instead of int and _Unwind_Action as nominally expected in the GCC context. This allows us to access the full range of bits passed in every case and has no impact on the callers side since each argument remains assigned the same single 64bit slot. 2. We retrieve the corresponding int and _Unwind_Action values within the routine for regular use with truncating conversions. This is a noop when called from the libgcc unwinder. 3. We assume we're called by the VMS CHF when unexpected bits are set in both those values. The incoming arguments are then real sigargs and mechargs pointers, which we then redirect to __gnat_handle_vms_condition for proper processing. */ #if defined (VMS) && defined (__IA64) typedef void * version_arg_t; typedef void * phases_arg_t; #else typedef int version_arg_t; typedef _Unwind_Action phases_arg_t; #endif _Unwind_Reason_Code PERSONALITY_FUNCTION (version_arg_t version_arg, phases_arg_t phases_arg, _Unwind_Exception_Class uw_exception_class, _Unwind_Exception *uw_exception, _Unwind_Context *uw_context) { /* Fetch the version and phases args with their nominal ABI types for later use. This is a noop everywhere except on ia64-vms when called from the Condition Handling Facility. */ int uw_version = (int) version_arg; _Unwind_Action uw_phases = (_Unwind_Action) phases_arg; _GNAT_Exception * gnat_exception = (_GNAT_Exception *) uw_exception; region_descriptor region; action_descriptor action; /* Check that we're called from the ABI context we expect, with a major possible variation on VMS for IA64. */ if (uw_version != 1) { #if defined (VMS) && defined (__IA64) /* Assume we're called with sigargs/mechargs arguments if really unexpected bits are set in our first two formals. Redirect to the GNAT condition handling code in this case. */ extern long __gnat_handle_vms_condition (void *, void *); unsigned int version_unexpected_bits_mask = 0xffffff00U; unsigned int phases_unexpected_bits_mask = 0xffffff00U; if ((unsigned int)uw_version & version_unexpected_bits_mask && (unsigned int)uw_phases & phases_unexpected_bits_mask) return __gnat_handle_vms_condition (version_arg, phases_arg); #endif return _URC_FATAL_PHASE1_ERROR; } db_indent (DB_INDENT_RESET); db_phases (uw_phases); db_indent (DB_INDENT_INCREASE); /* Get the region description for the context we were provided with. This will tell us if there is some lsda, call_site, action and/or ttype data for the associated ip. */ get_region_description_for (uw_context, ®ion); db_region_for (®ion, uw_context); /* No LSDA => no handlers or cleanups => we shall unwind further up. */ if (! region.lsda) return _URC_CONTINUE_UNWIND; /* Search the call-site and action-record tables for the action associated with this IP. */ get_action_description_for (uw_context, uw_exception, ®ion, &action); db_action_for (&action, uw_context); /* Whatever the phase, if there is nothing relevant in this frame, unwinding should just go on. */ if (action.kind == nothing) return _URC_CONTINUE_UNWIND; /* If we found something in search phase, we should return a code indicating what to do next depending on what we found. If we only have cleanups around, we shall try to unwind further up to find a handler, otherwise, tell we have a handler, which will trigger the second phase. */ if (uw_phases & _UA_SEARCH_PHASE) { if (action.kind == cleanup) { Adjust_N_Cleanups_For (gnat_exception, 1); return _URC_CONTINUE_UNWIND; } else { /* Trigger the appropriate notification routines before the second phase starts, which ensures the stack is still intact. */ __gnat_notify_handled_exception (); return _URC_HANDLER_FOUND; } } /* We found something in cleanup/handler phase, which might be the handler or a cleanup for a handled occurrence, or a cleanup for an unhandled occurrence (we are in a FORCED_UNWIND phase in this case). Install the context to get there. */ /* If we are going to install a cleanup context, decrement the cleanup count. This is required in a FORCED_UNWINDing phase (for an unhandled exception), as this is used from the forced unwinding handler in Ada.Exceptions.Exception_Propagation to decide whether unwinding should proceed further or Unhandled_Exception_Terminate should be called. */ if (action.kind == cleanup) Adjust_N_Cleanups_For (gnat_exception, -1); setup_to_install (uw_context, uw_exception, action.landing_pad, action.ttype_filter); return _URC_INSTALL_CONTEXT; } /* Define the consistently named wrappers imported by Propagate_Exception. */ #ifdef __USING_SJLJ_EXCEPTIONS__ #undef _Unwind_RaiseException _Unwind_Reason_Code __gnat_Unwind_RaiseException (_Unwind_Exception *e) { return _Unwind_SjLj_RaiseException (e); } #undef _Unwind_ForcedUnwind _Unwind_Reason_Code __gnat_Unwind_ForcedUnwind (_Unwind_Exception *e, void * handler, void * argument) { return _Unwind_SjLj_ForcedUnwind (e, handler, argument); } #else /* __USING_SJLJ_EXCEPTIONS__ */ _Unwind_Reason_Code __gnat_Unwind_RaiseException (_Unwind_Exception *e) { return _Unwind_RaiseException (e); } _Unwind_Reason_Code __gnat_Unwind_ForcedUnwind (_Unwind_Exception *e, void * handler, void * argument) { return _Unwind_ForcedUnwind (e, handler, argument); } #endif /* __USING_SJLJ_EXCEPTIONS__ */ #else /* ! IN_RTS */ /* Define the corresponding stubs for the compiler. */ /* We don't want fancy_abort here. */ #undef abort _Unwind_Reason_Code __gnat_Unwind_RaiseException (_Unwind_Exception *e ATTRIBUTE_UNUSED) { abort (); } _Unwind_Reason_Code __gnat_Unwind_ForcedUnwind (_Unwind_Exception *e ATTRIBUTE_UNUSED, void * handler ATTRIBUTE_UNUSED, void * argument ATTRIBUTE_UNUSED) { abort (); } #endif /* IN_RTS */
Go to most recent revision | Compare with Previous | Blame | View Log