URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [ada/] [s-auxdec-vms_64.ads] - Rev 281
Go to most recent revision | Compare with Previous | Blame | View Log
------------------------------------------------------------------------------ -- -- -- GNAT COMPILER COMPONENTS -- -- -- -- S Y S T E M . A U X _ D E C -- -- -- -- S p e c -- -- -- -- Copyright (C) 1996-2009, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- -- ware Foundation; either version 3, or (at your option) any later ver- -- -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- -- or FITNESS FOR A PARTICULAR PURPOSE. -- -- -- -- As a special exception under Section 7 of GPL version 3, you are granted -- -- additional permissions described in the GCC Runtime Library Exception, -- -- version 3.1, as published by the Free Software Foundation. -- -- -- -- You should have received a copy of the GNU General Public License and -- -- a copy of the GCC Runtime Library Exception along with this program; -- -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see -- -- <http://www.gnu.org/licenses/>. -- -- -- -- GNAT was originally developed by the GNAT team at New York University. -- -- Extensive contributions were provided by Ada Core Technologies Inc. -- -- -- ------------------------------------------------------------------------------ -- This package contains definitions that are designed to be compatible -- with the extra definitions in package System for DEC Ada implementations. -- These definitions can be used directly by withing this package, or merged -- with System using pragma Extend_System (Aux_DEC) -- This is the VMS 64 bit version with Ada.Unchecked_Conversion; package System.Aux_DEC is pragma Preelaborate; type Short_Integer_Address is range -2 ** (32 - 1) .. +2 ** (32 - 1) - 1; -- Integer literals cannot appear naked in an address context, as a -- result the bounds of Short_Address cannot be given simply as 2^32 etc. subtype Short_Address is Address range Address (Short_Integer_Address'First) .. Address (Short_Integer_Address'Last); for Short_Address'Object_Size use 32; -- This subtype allows addresses to be converted from 64 bits to 32 bits -- with an appropriate range check. Note that since this is a subtype of -- type System.Address, the same limitations apply to this subtype. Namely -- there are no visible arithmetic operations, and integer literals are -- not available. Short_Memory_Size : constant := 2 ** 32; -- Defined for convenience of porting type Integer_8 is range -2 ** (8 - 1) .. +2 ** (8 - 1) - 1; for Integer_8'Size use 8; type Integer_16 is range -2 ** (16 - 1) .. +2 ** (16 - 1) - 1; for Integer_16'Size use 16; type Integer_32 is range -2 ** (32 - 1) .. +2 ** (32 - 1) - 1; for Integer_32'Size use 32; type Integer_64 is range -2 ** (64 - 1) .. +2 ** (64 - 1) - 1; for Integer_64'Size use 64; type Integer_8_Array is array (Integer range <>) of Integer_8; type Integer_16_Array is array (Integer range <>) of Integer_16; type Integer_32_Array is array (Integer range <>) of Integer_32; type Integer_64_Array is array (Integer range <>) of Integer_64; -- These array types are not in all versions of DEC System, and in fact it -- is not quite clear why they are in some and not others, but since they -- definitely appear in some versions, we include them unconditionally. type Largest_Integer is range Min_Int .. Max_Int; type AST_Handler is private; No_AST_Handler : constant AST_Handler; type Type_Class is (Type_Class_Enumeration, Type_Class_Integer, Type_Class_Fixed_Point, Type_Class_Floating_Point, Type_Class_Array, Type_Class_Record, Type_Class_Access, Type_Class_Task, -- also in Ada 95 protected Type_Class_Address); function "not" (Left : Largest_Integer) return Largest_Integer; function "and" (Left, Right : Largest_Integer) return Largest_Integer; function "or" (Left, Right : Largest_Integer) return Largest_Integer; function "xor" (Left, Right : Largest_Integer) return Largest_Integer; Address_Zero : constant Address; No_Addr : constant Address; Address_Size : constant := Standard'Address_Size; Short_Address_Size : constant := 32; function "+" (Left : Address; Right : Integer) return Address; function "+" (Left : Integer; Right : Address) return Address; function "-" (Left : Address; Right : Address) return Integer; function "-" (Left : Address; Right : Integer) return Address; generic type Target is private; function Fetch_From_Address (A : Address) return Target; generic type Target is private; procedure Assign_To_Address (A : Address; T : Target); -- Floating point type declarations for VAX floating point data types pragma Warnings (Off); -- ??? needs comment type F_Float is digits 6; pragma Float_Representation (VAX_Float, F_Float); type D_Float is digits 9; pragma Float_Representation (Vax_Float, D_Float); type G_Float is digits 15; pragma Float_Representation (Vax_Float, G_Float); -- Floating point type declarations for IEEE floating point data types type IEEE_Single_Float is digits 6; pragma Float_Representation (IEEE_Float, IEEE_Single_Float); type IEEE_Double_Float is digits 15; pragma Float_Representation (IEEE_Float, IEEE_Double_Float); pragma Warnings (On); Non_Ada_Error : exception; -- Hardware-oriented types and functions type Bit_Array is array (Integer range <>) of Boolean; pragma Pack (Bit_Array); subtype Bit_Array_8 is Bit_Array (0 .. 7); subtype Bit_Array_16 is Bit_Array (0 .. 15); subtype Bit_Array_32 is Bit_Array (0 .. 31); subtype Bit_Array_64 is Bit_Array (0 .. 63); type Unsigned_Byte is range 0 .. 255; for Unsigned_Byte'Size use 8; function "not" (Left : Unsigned_Byte) return Unsigned_Byte; function "and" (Left, Right : Unsigned_Byte) return Unsigned_Byte; function "or" (Left, Right : Unsigned_Byte) return Unsigned_Byte; function "xor" (Left, Right : Unsigned_Byte) return Unsigned_Byte; function To_Unsigned_Byte (X : Bit_Array_8) return Unsigned_Byte; function To_Bit_Array_8 (X : Unsigned_Byte) return Bit_Array_8; type Unsigned_Byte_Array is array (Integer range <>) of Unsigned_Byte; type Unsigned_Word is range 0 .. 65535; for Unsigned_Word'Size use 16; function "not" (Left : Unsigned_Word) return Unsigned_Word; function "and" (Left, Right : Unsigned_Word) return Unsigned_Word; function "or" (Left, Right : Unsigned_Word) return Unsigned_Word; function "xor" (Left, Right : Unsigned_Word) return Unsigned_Word; function To_Unsigned_Word (X : Bit_Array_16) return Unsigned_Word; function To_Bit_Array_16 (X : Unsigned_Word) return Bit_Array_16; type Unsigned_Word_Array is array (Integer range <>) of Unsigned_Word; type Unsigned_Longword is range -2_147_483_648 .. 2_147_483_647; for Unsigned_Longword'Size use 32; function "not" (Left : Unsigned_Longword) return Unsigned_Longword; function "and" (Left, Right : Unsigned_Longword) return Unsigned_Longword; function "or" (Left, Right : Unsigned_Longword) return Unsigned_Longword; function "xor" (Left, Right : Unsigned_Longword) return Unsigned_Longword; function To_Unsigned_Longword (X : Bit_Array_32) return Unsigned_Longword; function To_Bit_Array_32 (X : Unsigned_Longword) return Bit_Array_32; type Unsigned_Longword_Array is array (Integer range <>) of Unsigned_Longword; type Unsigned_32 is range 0 .. 4_294_967_295; for Unsigned_32'Size use 32; function "not" (Left : Unsigned_32) return Unsigned_32; function "and" (Left, Right : Unsigned_32) return Unsigned_32; function "or" (Left, Right : Unsigned_32) return Unsigned_32; function "xor" (Left, Right : Unsigned_32) return Unsigned_32; function To_Unsigned_32 (X : Bit_Array_32) return Unsigned_32; function To_Bit_Array_32 (X : Unsigned_32) return Bit_Array_32; type Unsigned_Quadword is record L0 : Unsigned_Longword; L1 : Unsigned_Longword; end record; for Unsigned_Quadword'Size use 64; for Unsigned_Quadword'Alignment use Integer'Min (8, Standard'Maximum_Alignment); function "not" (Left : Unsigned_Quadword) return Unsigned_Quadword; function "and" (Left, Right : Unsigned_Quadword) return Unsigned_Quadword; function "or" (Left, Right : Unsigned_Quadword) return Unsigned_Quadword; function "xor" (Left, Right : Unsigned_Quadword) return Unsigned_Quadword; function To_Unsigned_Quadword (X : Bit_Array_64) return Unsigned_Quadword; function To_Bit_Array_64 (X : Unsigned_Quadword) return Bit_Array_64; type Unsigned_Quadword_Array is array (Integer range <>) of Unsigned_Quadword; function To_Address (X : Integer) return Address; pragma Pure_Function (To_Address); function To_Address_Long (X : Unsigned_Longword) return Address; pragma Pure_Function (To_Address_Long); function To_Integer (X : Address) return Integer; function To_Unsigned_Longword (X : Address) return Unsigned_Longword; function To_Unsigned_Longword (X : AST_Handler) return Unsigned_Longword; -- Conventional names for static subtypes of type UNSIGNED_LONGWORD subtype Unsigned_1 is Unsigned_Longword range 0 .. 2** 1-1; subtype Unsigned_2 is Unsigned_Longword range 0 .. 2** 2-1; subtype Unsigned_3 is Unsigned_Longword range 0 .. 2** 3-1; subtype Unsigned_4 is Unsigned_Longword range 0 .. 2** 4-1; subtype Unsigned_5 is Unsigned_Longword range 0 .. 2** 5-1; subtype Unsigned_6 is Unsigned_Longword range 0 .. 2** 6-1; subtype Unsigned_7 is Unsigned_Longword range 0 .. 2** 7-1; subtype Unsigned_8 is Unsigned_Longword range 0 .. 2** 8-1; subtype Unsigned_9 is Unsigned_Longword range 0 .. 2** 9-1; subtype Unsigned_10 is Unsigned_Longword range 0 .. 2**10-1; subtype Unsigned_11 is Unsigned_Longword range 0 .. 2**11-1; subtype Unsigned_12 is Unsigned_Longword range 0 .. 2**12-1; subtype Unsigned_13 is Unsigned_Longword range 0 .. 2**13-1; subtype Unsigned_14 is Unsigned_Longword range 0 .. 2**14-1; subtype Unsigned_15 is Unsigned_Longword range 0 .. 2**15-1; subtype Unsigned_16 is Unsigned_Longword range 0 .. 2**16-1; subtype Unsigned_17 is Unsigned_Longword range 0 .. 2**17-1; subtype Unsigned_18 is Unsigned_Longword range 0 .. 2**18-1; subtype Unsigned_19 is Unsigned_Longword range 0 .. 2**19-1; subtype Unsigned_20 is Unsigned_Longword range 0 .. 2**20-1; subtype Unsigned_21 is Unsigned_Longword range 0 .. 2**21-1; subtype Unsigned_22 is Unsigned_Longword range 0 .. 2**22-1; subtype Unsigned_23 is Unsigned_Longword range 0 .. 2**23-1; subtype Unsigned_24 is Unsigned_Longword range 0 .. 2**24-1; subtype Unsigned_25 is Unsigned_Longword range 0 .. 2**25-1; subtype Unsigned_26 is Unsigned_Longword range 0 .. 2**26-1; subtype Unsigned_27 is Unsigned_Longword range 0 .. 2**27-1; subtype Unsigned_28 is Unsigned_Longword range 0 .. 2**28-1; subtype Unsigned_29 is Unsigned_Longword range 0 .. 2**29-1; subtype Unsigned_30 is Unsigned_Longword range 0 .. 2**30-1; subtype Unsigned_31 is Unsigned_Longword range 0 .. 2**31-1; -- Function for obtaining global symbol values function Import_Value (Symbol : String) return Unsigned_Longword; function Import_Address (Symbol : String) return Address; function Import_Largest_Value (Symbol : String) return Largest_Integer; pragma Import (Intrinsic, Import_Value); pragma Import (Intrinsic, Import_Address); pragma Import (Intrinsic, Import_Largest_Value); -- For the following declarations, note that the declaration without -- a Retry_Count parameter means to retry infinitely. A value of zero -- for the Retry_Count parameter means do not retry. -- Interlocked-instruction procedures procedure Clear_Interlocked (Bit : in out Boolean; Old_Value : out Boolean); procedure Set_Interlocked (Bit : in out Boolean; Old_Value : out Boolean); type Aligned_Word is record Value : Short_Integer; end record; for Aligned_Word'Alignment use Integer'Min (2, Standard'Maximum_Alignment); procedure Clear_Interlocked (Bit : in out Boolean; Old_Value : out Boolean; Retry_Count : Natural; Success_Flag : out Boolean); procedure Set_Interlocked (Bit : in out Boolean; Old_Value : out Boolean; Retry_Count : Natural; Success_Flag : out Boolean); procedure Add_Interlocked (Addend : Short_Integer; Augend : in out Aligned_Word; Sign : out Integer); type Aligned_Integer is record Value : Integer; end record; for Aligned_Integer'Alignment use Integer'Min (4, Standard'Maximum_Alignment); type Aligned_Long_Integer is record Value : Long_Integer; end record; for Aligned_Long_Integer'Alignment use Integer'Min (8, Standard'Maximum_Alignment); -- For the following declarations, note that the declaration without -- a Retry_Count parameter mean to retry infinitely. A value of zero -- for the Retry_Count means do not retry. procedure Add_Atomic (To : in out Aligned_Integer; Amount : Integer); procedure Add_Atomic (To : in out Aligned_Integer; Amount : Integer; Retry_Count : Natural; Old_Value : out Integer; Success_Flag : out Boolean); procedure Add_Atomic (To : in out Aligned_Long_Integer; Amount : Long_Integer); procedure Add_Atomic (To : in out Aligned_Long_Integer; Amount : Long_Integer; Retry_Count : Natural; Old_Value : out Long_Integer; Success_Flag : out Boolean); procedure And_Atomic (To : in out Aligned_Integer; From : Integer); procedure And_Atomic (To : in out Aligned_Integer; From : Integer; Retry_Count : Natural; Old_Value : out Integer; Success_Flag : out Boolean); procedure And_Atomic (To : in out Aligned_Long_Integer; From : Long_Integer); procedure And_Atomic (To : in out Aligned_Long_Integer; From : Long_Integer; Retry_Count : Natural; Old_Value : out Long_Integer; Success_Flag : out Boolean); procedure Or_Atomic (To : in out Aligned_Integer; From : Integer); procedure Or_Atomic (To : in out Aligned_Integer; From : Integer; Retry_Count : Natural; Old_Value : out Integer; Success_Flag : out Boolean); procedure Or_Atomic (To : in out Aligned_Long_Integer; From : Long_Integer); procedure Or_Atomic (To : in out Aligned_Long_Integer; From : Long_Integer; Retry_Count : Natural; Old_Value : out Long_Integer; Success_Flag : out Boolean); type Insq_Status is (Fail_No_Lock, OK_Not_First, OK_First); for Insq_Status use (Fail_No_Lock => -1, OK_Not_First => 0, OK_First => +1); type Remq_Status is ( Fail_No_Lock, Fail_Was_Empty, OK_Not_Empty, OK_Empty); for Remq_Status use (Fail_No_Lock => -1, Fail_Was_Empty => 0, OK_Not_Empty => +1, OK_Empty => +2); procedure Insqhi (Item : Address; Header : Address; Status : out Insq_Status); procedure Remqhi (Header : Address; Item : out Address; Status : out Remq_Status); procedure Insqti (Item : Address; Header : Address; Status : out Insq_Status); procedure Remqti (Header : Address; Item : out Address; Status : out Remq_Status); private Address_Zero : constant Address := Null_Address; No_Addr : constant Address := Null_Address; -- An AST_Handler value is from a typing point of view simply a pointer -- to a procedure taking a single 64bit parameter. However, this -- is a bit misleading, because the data that this pointer references is -- highly stylized. See body of System.AST_Handling for full details. type AST_Handler is access procedure (Param : Long_Integer); No_AST_Handler : constant AST_Handler := null; -- Other operators have incorrect profiles. It would be nice to make -- them intrinsic, since the backend can handle them, but the front -- end is not prepared to deal with them, so at least inline them. pragma Inline_Always ("+"); pragma Inline_Always ("-"); pragma Inline_Always ("not"); pragma Inline_Always ("and"); pragma Inline_Always ("or"); pragma Inline_Always ("xor"); -- Other inlined subprograms pragma Inline_Always (Fetch_From_Address); pragma Inline_Always (Assign_To_Address); -- Synchronization related subprograms. Mechanism is explicitly set -- so that the critical parameters are passed by reference. -- Without this, the parameters are passed by copy, creating load/store -- race conditions. We also inline them, since this seems more in the -- spirit of the original (hardware intrinsic) routines. pragma Export_Procedure (Clear_Interlocked, External => "system__aux_dec__clear_interlocked__1", Parameter_Types => (Boolean, Boolean), Mechanism => (Reference, Reference)); pragma Export_Procedure (Clear_Interlocked, External => "system__aux_dec__clear_interlocked__2", Parameter_Types => (Boolean, Boolean, Natural, Boolean), Mechanism => (Reference, Reference, Value, Reference)); pragma Inline_Always (Clear_Interlocked); pragma Export_Procedure (Set_Interlocked, External => "system__aux_dec__set_interlocked__1", Parameter_Types => (Boolean, Boolean), Mechanism => (Reference, Reference)); pragma Export_Procedure (Set_Interlocked, External => "system__aux_dec__set_interlocked__2", Parameter_Types => (Boolean, Boolean, Natural, Boolean), Mechanism => (Reference, Reference, Value, Reference)); pragma Inline_Always (Set_Interlocked); pragma Export_Procedure (Add_Interlocked, External => "system__aux_dec__add_interlocked__1", Mechanism => (Value, Reference, Reference)); pragma Inline_Always (Add_Interlocked); pragma Export_Procedure (Add_Atomic, External => "system__aux_dec__add_atomic__1", Parameter_Types => (Aligned_Integer, Integer), Mechanism => (Reference, Value)); pragma Export_Procedure (Add_Atomic, External => "system__aux_dec__add_atomic__2", Parameter_Types => (Aligned_Integer, Integer, Natural, Integer, Boolean), Mechanism => (Reference, Value, Value, Reference, Reference)); pragma Export_Procedure (Add_Atomic, External => "system__aux_dec__add_atomic__3", Parameter_Types => (Aligned_Long_Integer, Long_Integer), Mechanism => (Reference, Value)); pragma Export_Procedure (Add_Atomic, External => "system__aux_dec__add_atomic__4", Parameter_Types => (Aligned_Long_Integer, Long_Integer, Natural, Long_Integer, Boolean), Mechanism => (Reference, Value, Value, Reference, Reference)); pragma Inline_Always (Add_Atomic); pragma Export_Procedure (And_Atomic, External => "system__aux_dec__and_atomic__1", Parameter_Types => (Aligned_Integer, Integer), Mechanism => (Reference, Value)); pragma Export_Procedure (And_Atomic, External => "system__aux_dec__and_atomic__2", Parameter_Types => (Aligned_Integer, Integer, Natural, Integer, Boolean), Mechanism => (Reference, Value, Value, Reference, Reference)); pragma Export_Procedure (And_Atomic, External => "system__aux_dec__and_atomic__3", Parameter_Types => (Aligned_Long_Integer, Long_Integer), Mechanism => (Reference, Value)); pragma Export_Procedure (And_Atomic, External => "system__aux_dec__and_atomic__4", Parameter_Types => (Aligned_Long_Integer, Long_Integer, Natural, Long_Integer, Boolean), Mechanism => (Reference, Value, Value, Reference, Reference)); pragma Inline_Always (And_Atomic); pragma Export_Procedure (Or_Atomic, External => "system__aux_dec__or_atomic__1", Parameter_Types => (Aligned_Integer, Integer), Mechanism => (Reference, Value)); pragma Export_Procedure (Or_Atomic, External => "system__aux_dec__or_atomic__2", Parameter_Types => (Aligned_Integer, Integer, Natural, Integer, Boolean), Mechanism => (Reference, Value, Value, Reference, Reference)); pragma Export_Procedure (Or_Atomic, External => "system__aux_dec__or_atomic__3", Parameter_Types => (Aligned_Long_Integer, Long_Integer), Mechanism => (Reference, Value)); pragma Export_Procedure (Or_Atomic, External => "system__aux_dec__or_atomic__4", Parameter_Types => (Aligned_Long_Integer, Long_Integer, Natural, Long_Integer, Boolean), Mechanism => (Reference, Value, Value, Reference, Reference)); pragma Inline_Always (Or_Atomic); -- Provide proper unchecked conversion definitions for transfer -- functions. Note that we need this level of indirection because -- the formal parameter name is X and not Source (and this is indeed -- detectable by a program) function To_Unsigned_Byte_A is new Ada.Unchecked_Conversion (Bit_Array_8, Unsigned_Byte); function To_Unsigned_Byte (X : Bit_Array_8) return Unsigned_Byte renames To_Unsigned_Byte_A; function To_Bit_Array_8_A is new Ada.Unchecked_Conversion (Unsigned_Byte, Bit_Array_8); function To_Bit_Array_8 (X : Unsigned_Byte) return Bit_Array_8 renames To_Bit_Array_8_A; function To_Unsigned_Word_A is new Ada.Unchecked_Conversion (Bit_Array_16, Unsigned_Word); function To_Unsigned_Word (X : Bit_Array_16) return Unsigned_Word renames To_Unsigned_Word_A; function To_Bit_Array_16_A is new Ada.Unchecked_Conversion (Unsigned_Word, Bit_Array_16); function To_Bit_Array_16 (X : Unsigned_Word) return Bit_Array_16 renames To_Bit_Array_16_A; function To_Unsigned_Longword_A is new Ada.Unchecked_Conversion (Bit_Array_32, Unsigned_Longword); function To_Unsigned_Longword (X : Bit_Array_32) return Unsigned_Longword renames To_Unsigned_Longword_A; function To_Bit_Array_32_A is new Ada.Unchecked_Conversion (Unsigned_Longword, Bit_Array_32); function To_Bit_Array_32 (X : Unsigned_Longword) return Bit_Array_32 renames To_Bit_Array_32_A; function To_Unsigned_32_A is new Ada.Unchecked_Conversion (Bit_Array_32, Unsigned_32); function To_Unsigned_32 (X : Bit_Array_32) return Unsigned_32 renames To_Unsigned_32_A; function To_Bit_Array_32_A is new Ada.Unchecked_Conversion (Unsigned_32, Bit_Array_32); function To_Bit_Array_32 (X : Unsigned_32) return Bit_Array_32 renames To_Bit_Array_32_A; function To_Unsigned_Quadword_A is new Ada.Unchecked_Conversion (Bit_Array_64, Unsigned_Quadword); function To_Unsigned_Quadword (X : Bit_Array_64) return Unsigned_Quadword renames To_Unsigned_Quadword_A; function To_Bit_Array_64_A is new Ada.Unchecked_Conversion (Unsigned_Quadword, Bit_Array_64); function To_Bit_Array_64 (X : Unsigned_Quadword) return Bit_Array_64 renames To_Bit_Array_64_A; pragma Warnings (Off); -- Turn warnings off. This is needed for systems with 64-bit integers, -- where some of these operations are of dubious meaning, but we do not -- want warnings when we compile on such systems. function To_Address_A is new Ada.Unchecked_Conversion (Integer, Address); pragma Pure_Function (To_Address_A); function To_Address (X : Integer) return Address renames To_Address_A; pragma Pure_Function (To_Address); function To_Address_Long_A is new Ada.Unchecked_Conversion (Unsigned_Longword, Address); pragma Pure_Function (To_Address_Long_A); function To_Address_Long (X : Unsigned_Longword) return Address renames To_Address_Long_A; pragma Pure_Function (To_Address_Long); function To_Integer_A is new Ada.Unchecked_Conversion (Address, Integer); function To_Integer (X : Address) return Integer renames To_Integer_A; function To_Unsigned_Longword_A is new Ada.Unchecked_Conversion (Address, Unsigned_Longword); function To_Unsigned_Longword (X : Address) return Unsigned_Longword renames To_Unsigned_Longword_A; function To_Unsigned_Longword_A is new Ada.Unchecked_Conversion (AST_Handler, Unsigned_Longword); function To_Unsigned_Longword (X : AST_Handler) return Unsigned_Longword renames To_Unsigned_Longword_A; pragma Warnings (On); end System.Aux_DEC;
Go to most recent revision | Compare with Previous | Blame | View Log