OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [arm/] [lib1funcs.asm] - Rev 826

Compare with Previous | Blame | View Log

@ libgcc routines for ARM cpu.
@ Division routines, written by Richard Earnshaw, (rearnsha@armltd.co.uk)

/* Copyright 1995, 1996, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
   2009, 2010 Free Software Foundation, Inc.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/* An executable stack is *not* required for these functions.  */
#if defined(__ELF__) && defined(__linux__)
.section .note.GNU-stack,"",%progbits
.previous
#endif  /* __ELF__ and __linux__ */

#ifdef __ARM_EABI__
/* Some attributes that are common to all routines in this file.  */
        /* Tag_ABI_align8_needed: This code does not require 8-byte
           alignment from the caller.  */
        /* .eabi_attribute 24, 0  -- default setting.  */
        /* Tag_ABI_align8_preserved: This code preserves 8-byte 
           alignment in any callee.  */
        .eabi_attribute 25, 1
#endif /* __ARM_EABI__ */
/* ------------------------------------------------------------------------ */

/* We need to know what prefix to add to function names.  */

#ifndef __USER_LABEL_PREFIX__
#error  __USER_LABEL_PREFIX__ not defined
#endif

/* ANSI concatenation macros.  */

#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b

/* Use the right prefix for global labels.  */

#define SYM(x) CONCAT1 (__USER_LABEL_PREFIX__, x)

#ifdef __ELF__
#ifdef __thumb__
#define __PLT__  /* Not supported in Thumb assembler (for now).  */
#elif defined __vxworks && !defined __PIC__
#define __PLT__ /* Not supported by the kernel loader.  */
#else
#define __PLT__ (PLT)
#endif
#define TYPE(x) .type SYM(x),function
#define SIZE(x) .size SYM(x), . - SYM(x)
#define LSYM(x) .x
#else
#define __PLT__
#define TYPE(x)
#define SIZE(x)
#define LSYM(x) x
#endif

/* Function end macros.  Variants for interworking.  */

#if defined(__ARM_ARCH_2__)
# define __ARM_ARCH__ 2
#endif

#if defined(__ARM_ARCH_3__)
# define __ARM_ARCH__ 3
#endif

#if defined(__ARM_ARCH_3M__) || defined(__ARM_ARCH_4__) \
        || defined(__ARM_ARCH_4T__)
/* We use __ARM_ARCH__ set to 4 here, but in reality it's any processor with
   long multiply instructions.  That includes v3M.  */
# define __ARM_ARCH__ 4
#endif
        
#if defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) \
        || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
        || defined(__ARM_ARCH_5TEJ__)
# define __ARM_ARCH__ 5
#endif

#if defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) \
        || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) \
        || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) \
        || defined(__ARM_ARCH_6M__)
# define __ARM_ARCH__ 6
#endif

#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) \
        || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__)
# define __ARM_ARCH__ 7
#endif

#ifndef __ARM_ARCH__
#error Unable to determine architecture.
#endif

/* There are times when we might prefer Thumb1 code even if ARM code is
   permitted, for example, the code might be smaller, or there might be
   interworking problems with switching to ARM state if interworking is
   disabled.  */
#if (defined(__thumb__)                 \
     && !defined(__thumb2__)            \
     && (!defined(__THUMB_INTERWORK__)  \
         || defined (__OPTIMIZE_SIZE__) \
         || defined(__ARM_ARCH_6M__)))
# define __prefer_thumb__
#endif

/* How to return from a function call depends on the architecture variant.  */

#if (__ARM_ARCH__ > 4) || defined(__ARM_ARCH_4T__)

# define RET            bx      lr
# define RETc(x)        bx##x   lr

/* Special precautions for interworking on armv4t.  */
# if (__ARM_ARCH__ == 4)

/* Always use bx, not ldr pc.  */
#  if (defined(__thumb__) || defined(__THUMB_INTERWORK__))
#    define __INTERWORKING__
#   endif /* __THUMB__ || __THUMB_INTERWORK__ */

/* Include thumb stub before arm mode code.  */
#  if defined(__thumb__) && !defined(__THUMB_INTERWORK__)
#   define __INTERWORKING_STUBS__
#  endif /* __thumb__ && !__THUMB_INTERWORK__ */

#endif /* __ARM_ARCH == 4 */

#else

# define RET            mov     pc, lr
# define RETc(x)        mov##x  pc, lr

#endif

.macro  cfi_pop         advance, reg, cfa_offset
#ifdef __ELF__
        .pushsection    .debug_frame
        .byte   0x4             /* DW_CFA_advance_loc4 */
        .4byte  \advance
        .byte   (0xc0 | \reg)   /* DW_CFA_restore */
        .byte   0xe             /* DW_CFA_def_cfa_offset */
        .uleb128 \cfa_offset
        .popsection
#endif
.endm
.macro  cfi_push        advance, reg, offset, cfa_offset
#ifdef __ELF__
        .pushsection    .debug_frame
        .byte   0x4             /* DW_CFA_advance_loc4 */
        .4byte  \advance
        .byte   (0x80 | \reg)   /* DW_CFA_offset */
        .uleb128 (\offset / -4)
        .byte   0xe             /* DW_CFA_def_cfa_offset */
        .uleb128 \cfa_offset
        .popsection
#endif
.endm
.macro cfi_start        start_label, end_label
#ifdef __ELF__
        .pushsection    .debug_frame
LSYM(Lstart_frame):
        .4byte  LSYM(Lend_cie) - LSYM(Lstart_cie) @ Length of CIE
LSYM(Lstart_cie):
        .4byte  0xffffffff      @ CIE Identifier Tag
        .byte   0x1     @ CIE Version
        .ascii  "\0"    @ CIE Augmentation
        .uleb128 0x1    @ CIE Code Alignment Factor
        .sleb128 -4     @ CIE Data Alignment Factor
        .byte   0xe     @ CIE RA Column
        .byte   0xc     @ DW_CFA_def_cfa
        .uleb128 0xd
        .uleb128 0x0

        .align 2
LSYM(Lend_cie):
        .4byte  LSYM(Lend_fde)-LSYM(Lstart_fde) @ FDE Length
LSYM(Lstart_fde):
        .4byte  LSYM(Lstart_frame)      @ FDE CIE offset
        .4byte  \start_label    @ FDE initial location
        .4byte  \end_label-\start_label @ FDE address range
        .popsection
#endif
.endm
.macro cfi_end  end_label
#ifdef __ELF__
        .pushsection    .debug_frame
        .align  2
LSYM(Lend_fde):
        .popsection
\end_label:
#endif
.endm

/* Don't pass dirn, it's there just to get token pasting right.  */

.macro  RETLDM  regs=, cond=, unwind=, dirn=ia
#if defined (__INTERWORKING__)
        .ifc "\regs",""
        ldr\cond        lr, [sp], #8
        .else
# if defined(__thumb2__)
        pop\cond        {\regs, lr}
# else
        ldm\cond\dirn   sp!, {\regs, lr}
# endif
        .endif
        .ifnc "\unwind", ""
        /* Mark LR as restored.  */
97:     cfi_pop 97b - \unwind, 0xe, 0x0
        .endif
        bx\cond lr
#else
        /* Caller is responsible for providing IT instruction.  */
        .ifc "\regs",""
        ldr\cond        pc, [sp], #8
        .else
# if defined(__thumb2__)
        pop\cond        {\regs, pc}
# else
        ldm\cond\dirn   sp!, {\regs, pc}
# endif
        .endif
#endif
.endm

/* The Unified assembly syntax allows the same code to be assembled for both
   ARM and Thumb-2.  However this is only supported by recent gas, so define
   a set of macros to allow ARM code on older assemblers.  */
#if defined(__thumb2__)
.macro do_it cond, suffix=""
        it\suffix       \cond
.endm
.macro shift1 op, arg0, arg1, arg2
        \op     \arg0, \arg1, \arg2
.endm
#define do_push push
#define do_pop  pop
#define COND(op1, op2, cond) op1 ## op2 ## cond
/* Perform an arithmetic operation with a variable shift operand.  This
   requires two instructions and a scratch register on Thumb-2.  */
.macro shiftop name, dest, src1, src2, shiftop, shiftreg, tmp
        \shiftop \tmp, \src2, \shiftreg
        \name \dest, \src1, \tmp
.endm
#else
.macro do_it cond, suffix=""
.endm
.macro shift1 op, arg0, arg1, arg2
        mov     \arg0, \arg1, \op \arg2
.endm
#define do_push stmfd sp!,
#define do_pop  ldmfd sp!,
#define COND(op1, op2, cond) op1 ## cond ## op2
.macro shiftop name, dest, src1, src2, shiftop, shiftreg, tmp
        \name \dest, \src1, \src2, \shiftop \shiftreg
.endm
#endif

#ifdef __ARM_EABI__
.macro ARM_LDIV0 name signed
        cmp     r0, #0
        .ifc    \signed, unsigned
        movne   r0, #0xffffffff
        .else
        movgt   r0, #0x7fffffff
        movlt   r0, #0x80000000
        .endif
        b       SYM (__aeabi_idiv0) __PLT__
.endm
#else
.macro ARM_LDIV0 name signed
        str     lr, [sp, #-8]!
98:     cfi_push 98b - __\name, 0xe, -0x8, 0x8
        bl      SYM (__div0) __PLT__
        mov     r0, #0                  @ About as wrong as it could be.
        RETLDM  unwind=98b
.endm
#endif


#ifdef __ARM_EABI__
.macro THUMB_LDIV0 name signed
#if defined(__ARM_ARCH_6M__)
        .ifc \signed, unsigned
        cmp     r0, #0
        beq     1f
        mov     r0, #0
        mvn     r0, r0          @ 0xffffffff
1:
        .else
        cmp     r0, #0
        beq     2f
        blt     3f
        mov     r0, #0
        mvn     r0, r0
        lsr     r0, r0, #1      @ 0x7fffffff
        b       2f
3:      mov     r0, #0x80
        lsl     r0, r0, #24     @ 0x80000000
2:
        .endif
        push    {r0, r1, r2}
        ldr     r0, 4f
        adr     r1, 4f
        add     r0, r1
        str     r0, [sp, #8]
        @ We know we are not on armv4t, so pop pc is safe.
        pop     {r0, r1, pc}
        .align  2
4:
        .word   __aeabi_idiv0 - 4b
#elif defined(__thumb2__)
        .syntax unified
        .ifc \signed, unsigned
        cbz     r0, 1f
        mov     r0, #0xffffffff
1:
        .else
        cmp     r0, #0
        do_it   gt
        movgt   r0, #0x7fffffff
        do_it   lt
        movlt   r0, #0x80000000
        .endif
        b.w     SYM(__aeabi_idiv0) __PLT__
#else
        .align  2
        bx      pc
        nop
        .arm
        cmp     r0, #0
        .ifc    \signed, unsigned
        movne   r0, #0xffffffff
        .else
        movgt   r0, #0x7fffffff
        movlt   r0, #0x80000000
        .endif
        b       SYM(__aeabi_idiv0) __PLT__
        .thumb
#endif
.endm
#else
.macro THUMB_LDIV0 name signed
        push    { r1, lr }
98:     cfi_push 98b - __\name, 0xe, -0x4, 0x8
        bl      SYM (__div0)
        mov     r0, #0                  @ About as wrong as it could be.
#if defined (__INTERWORKING__)
        pop     { r1, r2 }
        bx      r2
#else
        pop     { r1, pc }
#endif
.endm
#endif

.macro FUNC_END name
        SIZE (__\name)
.endm

.macro DIV_FUNC_END name signed
        cfi_start       __\name, LSYM(Lend_div0)
LSYM(Ldiv0):
#ifdef __thumb__
        THUMB_LDIV0 \name \signed
#else
        ARM_LDIV0 \name \signed
#endif
        cfi_end LSYM(Lend_div0)
        FUNC_END \name
.endm

.macro THUMB_FUNC_START name
        .globl  SYM (\name)
        TYPE    (\name)
        .thumb_func
SYM (\name):
.endm

/* Function start macros.  Variants for ARM and Thumb.  */

#ifdef __thumb__
#define THUMB_FUNC .thumb_func
#define THUMB_CODE .force_thumb
# if defined(__thumb2__)
#define THUMB_SYNTAX .syntax divided
# else
#define THUMB_SYNTAX
# endif
#else
#define THUMB_FUNC
#define THUMB_CODE
#define THUMB_SYNTAX
#endif

.macro FUNC_START name
        .text
        .globl SYM (__\name)
        TYPE (__\name)
        .align 0
        THUMB_CODE
        THUMB_FUNC
        THUMB_SYNTAX
SYM (__\name):
.endm

/* Special function that will always be coded in ARM assembly, even if
   in Thumb-only compilation.  */

#if defined(__thumb2__)

/* For Thumb-2 we build everything in thumb mode.  */
.macro ARM_FUNC_START name
       FUNC_START \name
       .syntax unified
.endm
#define EQUIV .thumb_set
.macro  ARM_CALL name
        bl      __\name
.endm

#elif defined(__INTERWORKING_STUBS__)

.macro  ARM_FUNC_START name
        FUNC_START \name
        bx      pc
        nop
        .arm
/* A hook to tell gdb that we've switched to ARM mode.  Also used to call
   directly from other local arm routines.  */
_L__\name:              
.endm
#define EQUIV .thumb_set
/* Branch directly to a function declared with ARM_FUNC_START.
   Must be called in arm mode.  */
.macro  ARM_CALL name
        bl      _L__\name
.endm

#else /* !(__INTERWORKING_STUBS__ || __thumb2__) */

#ifdef __ARM_ARCH_6M__
#define EQUIV .thumb_set
#else
.macro  ARM_FUNC_START name
        .text
        .globl SYM (__\name)
        TYPE (__\name)
        .align 0
        .arm
SYM (__\name):
.endm
#define EQUIV .set
.macro  ARM_CALL name
        bl      __\name
.endm
#endif

#endif

.macro  FUNC_ALIAS new old
        .globl  SYM (__\new)
#if defined (__thumb__)
        .thumb_set      SYM (__\new), SYM (__\old)
#else
        .set    SYM (__\new), SYM (__\old)
#endif
.endm

#ifndef __ARM_ARCH_6M__
.macro  ARM_FUNC_ALIAS new old
        .globl  SYM (__\new)
        EQUIV   SYM (__\new), SYM (__\old)
#if defined(__INTERWORKING_STUBS__)
        .set    SYM (_L__\new), SYM (_L__\old)
#endif
.endm
#endif

#ifdef __ARMEB__
#define xxh r0
#define xxl r1
#define yyh r2
#define yyl r3
#else
#define xxh r1
#define xxl r0
#define yyh r3
#define yyl r2
#endif  

#ifdef __ARM_EABI__
.macro  WEAK name
        .weak SYM (__\name)
.endm
#endif

#ifdef __thumb__
/* Register aliases.  */

work            .req    r4      @ XXXX is this safe ?
dividend        .req    r0
divisor         .req    r1
overdone        .req    r2
result          .req    r2
curbit          .req    r3
#endif
#if 0
ip              .req    r12
sp              .req    r13
lr              .req    r14
pc              .req    r15
#endif

/* ------------------------------------------------------------------------ */
/*              Bodies of the division and modulo routines.                 */
/* ------------------------------------------------------------------------ */  
.macro ARM_DIV_BODY dividend, divisor, result, curbit

#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)

#if defined (__thumb2__)
        clz     \curbit, \dividend
        clz     \result, \divisor
        sub     \curbit, \result, \curbit
        rsb     \curbit, \curbit, #31
        adr     \result, 1f
        add     \curbit, \result, \curbit, lsl #4
        mov     \result, #0
        mov     pc, \curbit
.p2align 3
1:
        .set    shift, 32
        .rept   32
        .set    shift, shift - 1
        cmp.w   \dividend, \divisor, lsl #shift
        nop.n
        adc.w   \result, \result, \result
        it      cs
        subcs.w \dividend, \dividend, \divisor, lsl #shift
        .endr
#else
        clz     \curbit, \dividend
        clz     \result, \divisor
        sub     \curbit, \result, \curbit
        rsbs    \curbit, \curbit, #31
        addne   \curbit, \curbit, \curbit, lsl #1
        mov     \result, #0
        addne   pc, pc, \curbit, lsl #2
        nop
        .set    shift, 32
        .rept   32
        .set    shift, shift - 1
        cmp     \dividend, \divisor, lsl #shift
        adc     \result, \result, \result
        subcs   \dividend, \dividend, \divisor, lsl #shift
        .endr
#endif

#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
#if __ARM_ARCH__ >= 5

        clz     \curbit, \divisor
        clz     \result, \dividend
        sub     \result, \curbit, \result
        mov     \curbit, #1
        mov     \divisor, \divisor, lsl \result
        mov     \curbit, \curbit, lsl \result
        mov     \result, #0
        
#else /* __ARM_ARCH__ < 5 */

        @ Initially shift the divisor left 3 bits if possible,
        @ set curbit accordingly.  This allows for curbit to be located
        @ at the left end of each 4-bit nibbles in the division loop
        @ to save one loop in most cases.
        tst     \divisor, #0xe0000000
        moveq   \divisor, \divisor, lsl #3
        moveq   \curbit, #8
        movne   \curbit, #1

        @ Unless the divisor is very big, shift it up in multiples of
        @ four bits, since this is the amount of unwinding in the main
        @ division loop.  Continue shifting until the divisor is 
        @ larger than the dividend.
1:      cmp     \divisor, #0x10000000
        cmplo   \divisor, \dividend
        movlo   \divisor, \divisor, lsl #4
        movlo   \curbit, \curbit, lsl #4
        blo     1b

        @ For very big divisors, we must shift it a bit at a time, or
        @ we will be in danger of overflowing.
1:      cmp     \divisor, #0x80000000
        cmplo   \divisor, \dividend
        movlo   \divisor, \divisor, lsl #1
        movlo   \curbit, \curbit, lsl #1
        blo     1b

        mov     \result, #0

#endif /* __ARM_ARCH__ < 5 */

        @ Division loop
1:      cmp     \dividend, \divisor
        do_it   hs, t
        subhs   \dividend, \dividend, \divisor
        orrhs   \result,   \result,   \curbit
        cmp     \dividend, \divisor,  lsr #1
        do_it   hs, t
        subhs   \dividend, \dividend, \divisor, lsr #1
        orrhs   \result,   \result,   \curbit,  lsr #1
        cmp     \dividend, \divisor,  lsr #2
        do_it   hs, t
        subhs   \dividend, \dividend, \divisor, lsr #2
        orrhs   \result,   \result,   \curbit,  lsr #2
        cmp     \dividend, \divisor,  lsr #3
        do_it   hs, t
        subhs   \dividend, \dividend, \divisor, lsr #3
        orrhs   \result,   \result,   \curbit,  lsr #3
        cmp     \dividend, #0                   @ Early termination?
        do_it   hs, t
        movnes  \curbit,   \curbit,  lsr #4     @ No, any more bits to do?
        movne   \divisor,  \divisor, lsr #4
        bne     1b

#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */

.endm
/* ------------------------------------------------------------------------ */  
.macro ARM_DIV2_ORDER divisor, order

#if __ARM_ARCH__ >= 5

        clz     \order, \divisor
        rsb     \order, \order, #31

#else

        cmp     \divisor, #(1 << 16)
        movhs   \divisor, \divisor, lsr #16
        movhs   \order, #16
        movlo   \order, #0

        cmp     \divisor, #(1 << 8)
        movhs   \divisor, \divisor, lsr #8
        addhs   \order, \order, #8

        cmp     \divisor, #(1 << 4)
        movhs   \divisor, \divisor, lsr #4
        addhs   \order, \order, #4

        cmp     \divisor, #(1 << 2)
        addhi   \order, \order, #3
        addls   \order, \order, \divisor, lsr #1

#endif

.endm
/* ------------------------------------------------------------------------ */
.macro ARM_MOD_BODY dividend, divisor, order, spare

#if __ARM_ARCH__ >= 5 && ! defined (__OPTIMIZE_SIZE__)

        clz     \order, \divisor
        clz     \spare, \dividend
        sub     \order, \order, \spare
        rsbs    \order, \order, #31
        addne   pc, pc, \order, lsl #3
        nop
        .set    shift, 32
        .rept   32
        .set    shift, shift - 1
        cmp     \dividend, \divisor, lsl #shift
        subcs   \dividend, \dividend, \divisor, lsl #shift
        .endr

#else /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */
#if __ARM_ARCH__ >= 5

        clz     \order, \divisor
        clz     \spare, \dividend
        sub     \order, \order, \spare
        mov     \divisor, \divisor, lsl \order
        
#else /* __ARM_ARCH__ < 5 */

        mov     \order, #0

        @ Unless the divisor is very big, shift it up in multiples of
        @ four bits, since this is the amount of unwinding in the main
        @ division loop.  Continue shifting until the divisor is 
        @ larger than the dividend.
1:      cmp     \divisor, #0x10000000
        cmplo   \divisor, \dividend
        movlo   \divisor, \divisor, lsl #4
        addlo   \order, \order, #4
        blo     1b

        @ For very big divisors, we must shift it a bit at a time, or
        @ we will be in danger of overflowing.
1:      cmp     \divisor, #0x80000000
        cmplo   \divisor, \dividend
        movlo   \divisor, \divisor, lsl #1
        addlo   \order, \order, #1
        blo     1b

#endif /* __ARM_ARCH__ < 5 */

        @ Perform all needed substractions to keep only the reminder.
        @ Do comparisons in batch of 4 first.
        subs    \order, \order, #3              @ yes, 3 is intended here
        blt     2f

1:      cmp     \dividend, \divisor
        subhs   \dividend, \dividend, \divisor
        cmp     \dividend, \divisor,  lsr #1
        subhs   \dividend, \dividend, \divisor, lsr #1
        cmp     \dividend, \divisor,  lsr #2
        subhs   \dividend, \dividend, \divisor, lsr #2
        cmp     \dividend, \divisor,  lsr #3
        subhs   \dividend, \dividend, \divisor, lsr #3
        cmp     \dividend, #1
        mov     \divisor, \divisor, lsr #4
        subges  \order, \order, #4
        bge     1b

        tst     \order, #3
        teqne   \dividend, #0
        beq     5f

        @ Either 1, 2 or 3 comparison/substractions are left.
2:      cmn     \order, #2
        blt     4f
        beq     3f
        cmp     \dividend, \divisor
        subhs   \dividend, \dividend, \divisor
        mov     \divisor,  \divisor,  lsr #1
3:      cmp     \dividend, \divisor
        subhs   \dividend, \dividend, \divisor
        mov     \divisor,  \divisor,  lsr #1
4:      cmp     \dividend, \divisor
        subhs   \dividend, \dividend, \divisor
5:

#endif /* __ARM_ARCH__ < 5 || defined (__OPTIMIZE_SIZE__) */

.endm
/* ------------------------------------------------------------------------ */
.macro THUMB_DIV_MOD_BODY modulo
        @ Load the constant 0x10000000 into our work register.
        mov     work, #1
        lsl     work, #28
LSYM(Loop1):
        @ Unless the divisor is very big, shift it up in multiples of
        @ four bits, since this is the amount of unwinding in the main
        @ division loop.  Continue shifting until the divisor is 
        @ larger than the dividend.
        cmp     divisor, work
        bhs     LSYM(Lbignum)
        cmp     divisor, dividend
        bhs     LSYM(Lbignum)
        lsl     divisor, #4
        lsl     curbit,  #4
        b       LSYM(Loop1)
LSYM(Lbignum):
        @ Set work to 0x80000000
        lsl     work, #3
LSYM(Loop2):
        @ For very big divisors, we must shift it a bit at a time, or
        @ we will be in danger of overflowing.
        cmp     divisor, work
        bhs     LSYM(Loop3)
        cmp     divisor, dividend
        bhs     LSYM(Loop3)
        lsl     divisor, #1
        lsl     curbit,  #1
        b       LSYM(Loop2)
LSYM(Loop3):
        @ Test for possible subtractions ...
  .if \modulo
        @ ... On the final pass, this may subtract too much from the dividend, 
        @ so keep track of which subtractions are done, we can fix them up 
        @ afterwards.
        mov     overdone, #0
        cmp     dividend, divisor
        blo     LSYM(Lover1)
        sub     dividend, dividend, divisor
LSYM(Lover1):
        lsr     work, divisor, #1
        cmp     dividend, work
        blo     LSYM(Lover2)
        sub     dividend, dividend, work
        mov     ip, curbit
        mov     work, #1
        ror     curbit, work
        orr     overdone, curbit
        mov     curbit, ip
LSYM(Lover2):
        lsr     work, divisor, #2
        cmp     dividend, work
        blo     LSYM(Lover3)
        sub     dividend, dividend, work
        mov     ip, curbit
        mov     work, #2
        ror     curbit, work
        orr     overdone, curbit
        mov     curbit, ip
LSYM(Lover3):
        lsr     work, divisor, #3
        cmp     dividend, work
        blo     LSYM(Lover4)
        sub     dividend, dividend, work
        mov     ip, curbit
        mov     work, #3
        ror     curbit, work
        orr     overdone, curbit
        mov     curbit, ip
LSYM(Lover4):
        mov     ip, curbit
  .else
        @ ... and note which bits are done in the result.  On the final pass,
        @ this may subtract too much from the dividend, but the result will be ok,
        @ since the "bit" will have been shifted out at the bottom.
        cmp     dividend, divisor
        blo     LSYM(Lover1)
        sub     dividend, dividend, divisor
        orr     result, result, curbit
LSYM(Lover1):
        lsr     work, divisor, #1
        cmp     dividend, work
        blo     LSYM(Lover2)
        sub     dividend, dividend, work
        lsr     work, curbit, #1
        orr     result, work
LSYM(Lover2):
        lsr     work, divisor, #2
        cmp     dividend, work
        blo     LSYM(Lover3)
        sub     dividend, dividend, work
        lsr     work, curbit, #2
        orr     result, work
LSYM(Lover3):
        lsr     work, divisor, #3
        cmp     dividend, work
        blo     LSYM(Lover4)
        sub     dividend, dividend, work
        lsr     work, curbit, #3
        orr     result, work
LSYM(Lover4):
  .endif
        
        cmp     dividend, #0                    @ Early termination?
        beq     LSYM(Lover5)
        lsr     curbit,  #4                     @ No, any more bits to do?
        beq     LSYM(Lover5)
        lsr     divisor, #4
        b       LSYM(Loop3)
LSYM(Lover5):
  .if \modulo
        @ Any subtractions that we should not have done will be recorded in
        @ the top three bits of "overdone".  Exactly which were not needed
        @ are governed by the position of the bit, stored in ip.
        mov     work, #0xe
        lsl     work, #28
        and     overdone, work
        beq     LSYM(Lgot_result)
        
        @ If we terminated early, because dividend became zero, then the 
        @ bit in ip will not be in the bottom nibble, and we should not
        @ perform the additions below.  We must test for this though
        @ (rather relying upon the TSTs to prevent the additions) since
        @ the bit in ip could be in the top two bits which might then match
        @ with one of the smaller RORs.
        mov     curbit, ip
        mov     work, #0x7
        tst     curbit, work
        beq     LSYM(Lgot_result)
        
        mov     curbit, ip
        mov     work, #3
        ror     curbit, work
        tst     overdone, curbit
        beq     LSYM(Lover6)
        lsr     work, divisor, #3
        add     dividend, work
LSYM(Lover6):
        mov     curbit, ip
        mov     work, #2
        ror     curbit, work
        tst     overdone, curbit
        beq     LSYM(Lover7)
        lsr     work, divisor, #2
        add     dividend, work
LSYM(Lover7):
        mov     curbit, ip
        mov     work, #1
        ror     curbit, work
        tst     overdone, curbit
        beq     LSYM(Lgot_result)
        lsr     work, divisor, #1
        add     dividend, work
  .endif
LSYM(Lgot_result):
.endm   
/* ------------------------------------------------------------------------ */
/*              Start of the Real Functions                                 */
/* ------------------------------------------------------------------------ */
#ifdef L_udivsi3

#if defined(__prefer_thumb__)

        FUNC_START udivsi3
        FUNC_ALIAS aeabi_uidiv udivsi3

        cmp     divisor, #0
        beq     LSYM(Ldiv0)
LSYM(udivsi3_skip_div0_test):
        mov     curbit, #1
        mov     result, #0
        
        push    { work }
        cmp     dividend, divisor
        blo     LSYM(Lgot_result)

        THUMB_DIV_MOD_BODY 0
        
        mov     r0, result
        pop     { work }
        RET

#else /* ARM version/Thumb-2.  */

        ARM_FUNC_START udivsi3
        ARM_FUNC_ALIAS aeabi_uidiv udivsi3

        /* Note: if called via udivsi3_skip_div0_test, this will unnecessarily
           check for division-by-zero a second time.  */
LSYM(udivsi3_skip_div0_test):
        subs    r2, r1, #1
        do_it   eq
        RETc(eq)
        bcc     LSYM(Ldiv0)
        cmp     r0, r1
        bls     11f
        tst     r1, r2
        beq     12f
        
        ARM_DIV_BODY r0, r1, r2, r3
        
        mov     r0, r2
        RET     

11:     do_it   eq, e
        moveq   r0, #1
        movne   r0, #0
        RET

12:     ARM_DIV2_ORDER r1, r2

        mov     r0, r0, lsr r2
        RET

#endif /* ARM version */

        DIV_FUNC_END udivsi3 unsigned

#if defined(__prefer_thumb__)
FUNC_START aeabi_uidivmod
        cmp     r1, #0
        beq     LSYM(Ldiv0)
        push    {r0, r1, lr}
        bl      LSYM(udivsi3_skip_div0_test)
        POP     {r1, r2, r3}
        mul     r2, r0
        sub     r1, r1, r2
        bx      r3
#else
ARM_FUNC_START aeabi_uidivmod
        cmp     r1, #0
        beq     LSYM(Ldiv0)
        stmfd   sp!, { r0, r1, lr }
        bl      LSYM(udivsi3_skip_div0_test)
        ldmfd   sp!, { r1, r2, lr }
        mul     r3, r2, r0
        sub     r1, r1, r3
        RET
#endif
        FUNC_END aeabi_uidivmod
        
#endif /* L_udivsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_umodsi3

        FUNC_START umodsi3

#ifdef __thumb__

        cmp     divisor, #0
        beq     LSYM(Ldiv0)
        mov     curbit, #1
        cmp     dividend, divisor
        bhs     LSYM(Lover10)
        RET     

LSYM(Lover10):
        push    { work }

        THUMB_DIV_MOD_BODY 1
        
        pop     { work }
        RET
        
#else  /* ARM version.  */
        
        subs    r2, r1, #1                      @ compare divisor with 1
        bcc     LSYM(Ldiv0)
        cmpne   r0, r1                          @ compare dividend with divisor
        moveq   r0, #0
        tsthi   r1, r2                          @ see if divisor is power of 2
        andeq   r0, r0, r2
        RETc(ls)

        ARM_MOD_BODY r0, r1, r2, r3
        
        RET     

#endif /* ARM version.  */
        
        DIV_FUNC_END umodsi3 unsigned

#endif /* L_umodsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_divsi3

#if defined(__prefer_thumb__)

        FUNC_START divsi3       
        FUNC_ALIAS aeabi_idiv divsi3

        cmp     divisor, #0
        beq     LSYM(Ldiv0)
LSYM(divsi3_skip_div0_test):
        push    { work }
        mov     work, dividend
        eor     work, divisor           @ Save the sign of the result.
        mov     ip, work
        mov     curbit, #1
        mov     result, #0
        cmp     divisor, #0
        bpl     LSYM(Lover10)
        neg     divisor, divisor        @ Loops below use unsigned.
LSYM(Lover10):
        cmp     dividend, #0
        bpl     LSYM(Lover11)
        neg     dividend, dividend
LSYM(Lover11):
        cmp     dividend, divisor
        blo     LSYM(Lgot_result)

        THUMB_DIV_MOD_BODY 0
        
        mov     r0, result
        mov     work, ip
        cmp     work, #0
        bpl     LSYM(Lover12)
        neg     r0, r0
LSYM(Lover12):
        pop     { work }
        RET

#else /* ARM/Thumb-2 version.  */
        
        ARM_FUNC_START divsi3   
        ARM_FUNC_ALIAS aeabi_idiv divsi3

        cmp     r1, #0
        beq     LSYM(Ldiv0)
LSYM(divsi3_skip_div0_test):
        eor     ip, r0, r1                      @ save the sign of the result.
        do_it   mi
        rsbmi   r1, r1, #0                      @ loops below use unsigned.
        subs    r2, r1, #1                      @ division by 1 or -1 ?
        beq     10f
        movs    r3, r0
        do_it   mi
        rsbmi   r3, r0, #0                      @ positive dividend value
        cmp     r3, r1
        bls     11f
        tst     r1, r2                          @ divisor is power of 2 ?
        beq     12f

        ARM_DIV_BODY r3, r1, r0, r2
        
        cmp     ip, #0
        do_it   mi
        rsbmi   r0, r0, #0
        RET     

10:     teq     ip, r0                          @ same sign ?
        do_it   mi
        rsbmi   r0, r0, #0
        RET     

11:     do_it   lo
        movlo   r0, #0
        do_it   eq,t
        moveq   r0, ip, asr #31
        orreq   r0, r0, #1
        RET

12:     ARM_DIV2_ORDER r1, r2

        cmp     ip, #0
        mov     r0, r3, lsr r2
        do_it   mi
        rsbmi   r0, r0, #0
        RET

#endif /* ARM version */
        
        DIV_FUNC_END divsi3 signed

#if defined(__prefer_thumb__)
FUNC_START aeabi_idivmod
        cmp     r1, #0
        beq     LSYM(Ldiv0)
        push    {r0, r1, lr}
        bl      LSYM(divsi3_skip_div0_test)
        POP     {r1, r2, r3}
        mul     r2, r0
        sub     r1, r1, r2
        bx      r3
#else
ARM_FUNC_START aeabi_idivmod
        cmp     r1, #0
        beq     LSYM(Ldiv0)
        stmfd   sp!, { r0, r1, lr }
        bl      LSYM(divsi3_skip_div0_test)
        ldmfd   sp!, { r1, r2, lr }
        mul     r3, r2, r0
        sub     r1, r1, r3
        RET
#endif
        FUNC_END aeabi_idivmod
        
#endif /* L_divsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_modsi3

        FUNC_START modsi3

#ifdef __thumb__

        mov     curbit, #1
        cmp     divisor, #0
        beq     LSYM(Ldiv0)
        bpl     LSYM(Lover10)
        neg     divisor, divisor                @ Loops below use unsigned.
LSYM(Lover10):
        push    { work }
        @ Need to save the sign of the dividend, unfortunately, we need
        @ work later on.  Must do this after saving the original value of
        @ the work register, because we will pop this value off first.
        push    { dividend }
        cmp     dividend, #0
        bpl     LSYM(Lover11)
        neg     dividend, dividend
LSYM(Lover11):
        cmp     dividend, divisor
        blo     LSYM(Lgot_result)

        THUMB_DIV_MOD_BODY 1
                
        pop     { work }
        cmp     work, #0
        bpl     LSYM(Lover12)
        neg     dividend, dividend
LSYM(Lover12):
        pop     { work }
        RET     

#else /* ARM version.  */
        
        cmp     r1, #0
        beq     LSYM(Ldiv0)
        rsbmi   r1, r1, #0                      @ loops below use unsigned.
        movs    ip, r0                          @ preserve sign of dividend
        rsbmi   r0, r0, #0                      @ if negative make positive
        subs    r2, r1, #1                      @ compare divisor with 1
        cmpne   r0, r1                          @ compare dividend with divisor
        moveq   r0, #0
        tsthi   r1, r2                          @ see if divisor is power of 2
        andeq   r0, r0, r2
        bls     10f

        ARM_MOD_BODY r0, r1, r2, r3

10:     cmp     ip, #0
        rsbmi   r0, r0, #0
        RET     

#endif /* ARM version */
        
        DIV_FUNC_END modsi3 signed

#endif /* L_modsi3 */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_tls

#ifdef __ARM_EABI__
        WEAK aeabi_idiv0
        WEAK aeabi_ldiv0
        FUNC_START aeabi_idiv0
        FUNC_START aeabi_ldiv0
        RET
        FUNC_END aeabi_ldiv0
        FUNC_END aeabi_idiv0
#else
        FUNC_START div0
        RET
        FUNC_END div0
#endif
        
#endif /* L_divmodsi_tools */
/* ------------------------------------------------------------------------ */
#ifdef L_dvmd_lnx
@ GNU/Linux division-by zero handler.  Used in place of L_dvmd_tls

/* Constant taken from <asm/signal.h>.  */
#define SIGFPE  8

#ifdef __ARM_EABI__
        WEAK aeabi_idiv0
        WEAK aeabi_ldiv0
        ARM_FUNC_START aeabi_idiv0
        ARM_FUNC_START aeabi_ldiv0
#else
        ARM_FUNC_START div0
#endif

        do_push {r1, lr}
        mov     r0, #SIGFPE
        bl      SYM(raise) __PLT__
        RETLDM  r1

#ifdef __ARM_EABI__
        FUNC_END aeabi_ldiv0
        FUNC_END aeabi_idiv0
#else
        FUNC_END div0
#endif
        
#endif /* L_dvmd_lnx */
#ifdef L_clear_cache
#if defined __ARM_EABI__ && defined __linux__
@ EABI GNU/Linux call to cacheflush syscall.
        ARM_FUNC_START clear_cache
        do_push {r7}
#if __ARM_ARCH__ >= 7 || defined(__ARM_ARCH_6T2__)
        movw    r7, #2
        movt    r7, #0xf
#else
        mov     r7, #0xf0000
        add     r7, r7, #2
#endif
        mov     r2, #0
        swi     0
        do_pop  {r7}
        RET
        FUNC_END clear_cache
#else
#error "This is only for ARM EABI GNU/Linux"
#endif
#endif /* L_clear_cache */
/* ------------------------------------------------------------------------ */
/* Dword shift operations.  */
/* All the following Dword shift variants rely on the fact that
        shft xxx, Reg
   is in fact done as
        shft xxx, (Reg & 255)
   so for Reg value in (32...63) and (-1...-31) we will get zero (in the
   case of logical shifts) or the sign (for asr).  */

#ifdef __ARMEB__
#define al      r1
#define ah      r0
#else
#define al      r0
#define ah      r1
#endif

/* Prevent __aeabi double-word shifts from being produced on SymbianOS.  */
#ifndef __symbian__

#ifdef L_lshrdi3

        FUNC_START lshrdi3
        FUNC_ALIAS aeabi_llsr lshrdi3
        
#ifdef __thumb__
        lsr     al, r2
        mov     r3, ah
        lsr     ah, r2
        mov     ip, r3
        sub     r2, #32
        lsr     r3, r2
        orr     al, r3
        neg     r2, r2
        mov     r3, ip
        lsl     r3, r2
        orr     al, r3
        RET
#else
        subs    r3, r2, #32
        rsb     ip, r2, #32
        movmi   al, al, lsr r2
        movpl   al, ah, lsr r3
        orrmi   al, al, ah, lsl ip
        mov     ah, ah, lsr r2
        RET
#endif
        FUNC_END aeabi_llsr
        FUNC_END lshrdi3

#endif
        
#ifdef L_ashrdi3
        
        FUNC_START ashrdi3
        FUNC_ALIAS aeabi_lasr ashrdi3
        
#ifdef __thumb__
        lsr     al, r2
        mov     r3, ah
        asr     ah, r2
        sub     r2, #32
        @ If r2 is negative at this point the following step would OR
        @ the sign bit into all of AL.  That's not what we want...
        bmi     1f
        mov     ip, r3
        asr     r3, r2
        orr     al, r3
        mov     r3, ip
1:
        neg     r2, r2
        lsl     r3, r2
        orr     al, r3
        RET
#else
        subs    r3, r2, #32
        rsb     ip, r2, #32
        movmi   al, al, lsr r2
        movpl   al, ah, asr r3
        orrmi   al, al, ah, lsl ip
        mov     ah, ah, asr r2
        RET
#endif

        FUNC_END aeabi_lasr
        FUNC_END ashrdi3

#endif

#ifdef L_ashldi3

        FUNC_START ashldi3
        FUNC_ALIAS aeabi_llsl ashldi3
        
#ifdef __thumb__
        lsl     ah, r2
        mov     r3, al
        lsl     al, r2
        mov     ip, r3
        sub     r2, #32
        lsl     r3, r2
        orr     ah, r3
        neg     r2, r2
        mov     r3, ip
        lsr     r3, r2
        orr     ah, r3
        RET
#else
        subs    r3, r2, #32
        rsb     ip, r2, #32
        movmi   ah, ah, lsl r2
        movpl   ah, al, lsl r3
        orrmi   ah, ah, al, lsr ip
        mov     al, al, lsl r2
        RET
#endif
        FUNC_END aeabi_llsl
        FUNC_END ashldi3

#endif

#endif /* __symbian__ */

#if ((__ARM_ARCH__ > 5) && !defined(__ARM_ARCH_6M__)) \
    || defined(__ARM_ARCH_5E__) || defined(__ARM_ARCH_5TE__) \
    || defined(__ARM_ARCH_5TEJ__)
#define HAVE_ARM_CLZ 1
#endif

#ifdef L_clzsi2
#if defined(__ARM_ARCH_6M__)
FUNC_START clzsi2
        mov     r1, #28
        mov     r3, #1
        lsl     r3, r3, #16
        cmp     r0, r3 /* 0x10000 */
        bcc     2f
        lsr     r0, r0, #16
        sub     r1, r1, #16
2:      lsr     r3, r3, #8
        cmp     r0, r3 /* #0x100 */
        bcc     2f
        lsr     r0, r0, #8
        sub     r1, r1, #8
2:      lsr     r3, r3, #4
        cmp     r0, r3 /* #0x10 */
        bcc     2f
        lsr     r0, r0, #4
        sub     r1, r1, #4
2:      adr     r2, 1f
        ldrb    r0, [r2, r0]
        add     r0, r0, r1
        bx lr
.align 2
1:
.byte 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
        FUNC_END clzsi2
#else
ARM_FUNC_START clzsi2
# if defined(HAVE_ARM_CLZ)
        clz     r0, r0
        RET
# else
        mov     r1, #28
        cmp     r0, #0x10000
        do_it   cs, t
        movcs   r0, r0, lsr #16
        subcs   r1, r1, #16
        cmp     r0, #0x100
        do_it   cs, t
        movcs   r0, r0, lsr #8
        subcs   r1, r1, #8
        cmp     r0, #0x10
        do_it   cs, t
        movcs   r0, r0, lsr #4
        subcs   r1, r1, #4
        adr     r2, 1f
        ldrb    r0, [r2, r0]
        add     r0, r0, r1
        RET
.align 2
1:
.byte 4, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
# endif /* !HAVE_ARM_CLZ */
        FUNC_END clzsi2
#endif
#endif /* L_clzsi2 */

#ifdef L_clzdi2
#if !defined(HAVE_ARM_CLZ)

# if defined(__ARM_ARCH_6M__)
FUNC_START clzdi2
        push    {r4, lr}
# else
ARM_FUNC_START clzdi2
        do_push {r4, lr}
# endif
        cmp     xxh, #0
        bne     1f
# ifdef __ARMEB__
        mov     r0, xxl
        bl      __clzsi2
        add     r0, r0, #32
        b 2f
1:
        bl      __clzsi2
# else
        bl      __clzsi2
        add     r0, r0, #32
        b 2f
1:
        mov     r0, xxh
        bl      __clzsi2
# endif
2:
# if defined(__ARM_ARCH_6M__)
        pop     {r4, pc}
# else
        RETLDM  r4
# endif
        FUNC_END clzdi2

#else /* HAVE_ARM_CLZ */

ARM_FUNC_START clzdi2
        cmp     xxh, #0
        do_it   eq, et
        clzeq   r0, xxl
        clzne   r0, xxh
        addeq   r0, r0, #32
        RET
        FUNC_END clzdi2

#endif
#endif /* L_clzdi2 */

/* ------------------------------------------------------------------------ */
/* These next two sections are here despite the fact that they contain Thumb 
   assembler because their presence allows interworked code to be linked even
   when the GCC library is this one.  */
                
/* Do not build the interworking functions when the target architecture does 
   not support Thumb instructions.  (This can be a multilib option).  */
#if defined __ARM_ARCH_4T__ || defined __ARM_ARCH_5T__\
      || defined __ARM_ARCH_5TE__ || defined __ARM_ARCH_5TEJ__ \
      || __ARM_ARCH__ >= 6

#if defined L_call_via_rX

/* These labels & instructions are used by the Arm/Thumb interworking code. 
   The address of function to be called is loaded into a register and then 
   one of these labels is called via a BL instruction.  This puts the 
   return address into the link register with the bottom bit set, and the 
   code here switches to the correct mode before executing the function.  */
        
        .text
        .align 0
        .force_thumb

.macro call_via register
        THUMB_FUNC_START _call_via_\register

        bx      \register
        nop

        SIZE    (_call_via_\register)
.endm

        call_via r0
        call_via r1
        call_via r2
        call_via r3
        call_via r4
        call_via r5
        call_via r6
        call_via r7
        call_via r8
        call_via r9
        call_via sl
        call_via fp
        call_via ip
        call_via sp
        call_via lr

#endif /* L_call_via_rX */

/* Don't bother with the old interworking routines for Thumb-2.  */
/* ??? Maybe only omit these on "m" variants.  */
#if !defined(__thumb2__) && !defined(__ARM_ARCH_6M__)

#if defined L_interwork_call_via_rX

/* These labels & instructions are used by the Arm/Thumb interworking code,
   when the target address is in an unknown instruction set.  The address 
   of function to be called is loaded into a register and then one of these
   labels is called via a BL instruction.  This puts the return address 
   into the link register with the bottom bit set, and the code here 
   switches to the correct mode before executing the function.  Unfortunately
   the target code cannot be relied upon to return via a BX instruction, so
   instead we have to store the resturn address on the stack and allow the
   called function to return here instead.  Upon return we recover the real
   return address and use a BX to get back to Thumb mode.

   There are three variations of this code.  The first,
   _interwork_call_via_rN(), will push the return address onto the
   stack and pop it in _arm_return().  It should only be used if all
   arguments are passed in registers.

   The second, _interwork_r7_call_via_rN(), instead stores the return
   address at [r7, #-4].  It is the caller's responsibility to ensure
   that this address is valid and contains no useful data.

   The third, _interwork_r11_call_via_rN(), works in the same way but
   uses r11 instead of r7.  It is useful if the caller does not really
   need a frame pointer.  */
        
        .text
        .align 0

        .code   32
        .globl _arm_return
LSYM(Lstart_arm_return):
        cfi_start       LSYM(Lstart_arm_return) LSYM(Lend_arm_return)
        cfi_push        0, 0xe, -0x8, 0x8
        nop     @ This nop is for the benefit of debuggers, so that
                @ backtraces will use the correct unwind information.
_arm_return:
        RETLDM  unwind=LSYM(Lstart_arm_return)
        cfi_end LSYM(Lend_arm_return)

        .globl _arm_return_r7
_arm_return_r7:
        ldr     lr, [r7, #-4]
        bx      lr

        .globl _arm_return_r11
_arm_return_r11:
        ldr     lr, [r11, #-4]
        bx      lr

.macro interwork_with_frame frame, register, name, return
        .code   16

        THUMB_FUNC_START \name

        bx      pc
        nop

        .code   32
        tst     \register, #1
        streq   lr, [\frame, #-4]
        adreq   lr, _arm_return_\frame
        bx      \register

        SIZE    (\name)
.endm

.macro interwork register
        .code   16

        THUMB_FUNC_START _interwork_call_via_\register

        bx      pc
        nop

        .code   32
        .globl LSYM(Lchange_\register)
LSYM(Lchange_\register):
        tst     \register, #1
        streq   lr, [sp, #-8]!
        adreq   lr, _arm_return
        bx      \register

        SIZE    (_interwork_call_via_\register)

        interwork_with_frame r7,\register,_interwork_r7_call_via_\register
        interwork_with_frame r11,\register,_interwork_r11_call_via_\register
.endm
        
        interwork r0
        interwork r1
        interwork r2
        interwork r3
        interwork r4
        interwork r5
        interwork r6
        interwork r7
        interwork r8
        interwork r9
        interwork sl
        interwork fp
        interwork ip
        interwork sp
        
        /* The LR case has to be handled a little differently...  */
        .code 16

        THUMB_FUNC_START _interwork_call_via_lr

        bx      pc
        nop
        
        .code 32
        .globl .Lchange_lr
.Lchange_lr:
        tst     lr, #1
        stmeqdb r13!, {lr, pc}
        mov     ip, lr
        adreq   lr, _arm_return
        bx      ip
        
        SIZE    (_interwork_call_via_lr)
        
#endif /* L_interwork_call_via_rX */
#endif /* !__thumb2__ */

/* Functions to support compact pic switch tables in thumb1 state.
   All these routines take an index into the table in r0.  The
   table is at LR & ~1 (but this must be rounded up in the case
   of 32-bit entires).  They are only permitted to clobber r12
   and r14 and r0 must be preserved on exit.  */
#ifdef L_thumb1_case_sqi
        
        .text
        .align 0
        .force_thumb
        .syntax unified
        THUMB_FUNC_START __gnu_thumb1_case_sqi
        push    {r1}
        mov     r1, lr
        lsrs    r1, r1, #1
        lsls    r1, r1, #1
        ldrsb   r1, [r1, r0]
        lsls    r1, r1, #1
        add     lr, lr, r1
        pop     {r1}
        bx      lr
        SIZE (__gnu_thumb1_case_sqi)
#endif

#ifdef L_thumb1_case_uqi
        
        .text
        .align 0
        .force_thumb
        .syntax unified
        THUMB_FUNC_START __gnu_thumb1_case_uqi
        push    {r1}
        mov     r1, lr
        lsrs    r1, r1, #1
        lsls    r1, r1, #1
        ldrb    r1, [r1, r0]
        lsls    r1, r1, #1
        add     lr, lr, r1
        pop     {r1}
        bx      lr
        SIZE (__gnu_thumb1_case_uqi)
#endif

#ifdef L_thumb1_case_shi
        
        .text
        .align 0
        .force_thumb
        .syntax unified
        THUMB_FUNC_START __gnu_thumb1_case_shi
        push    {r0, r1}
        mov     r1, lr
        lsrs    r1, r1, #1
        lsls    r0, r0, #1
        lsls    r1, r1, #1
        ldrsh   r1, [r1, r0]
        lsls    r1, r1, #1
        add     lr, lr, r1
        pop     {r0, r1}
        bx      lr
        SIZE (__gnu_thumb1_case_shi)
#endif

#ifdef L_thumb1_case_uhi
        
        .text
        .align 0
        .force_thumb
        .syntax unified
        THUMB_FUNC_START __gnu_thumb1_case_uhi
        push    {r0, r1}
        mov     r1, lr
        lsrs    r1, r1, #1
        lsls    r0, r0, #1
        lsls    r1, r1, #1
        ldrh    r1, [r1, r0]
        lsls    r1, r1, #1
        add     lr, lr, r1
        pop     {r0, r1}
        bx      lr
        SIZE (__gnu_thumb1_case_uhi)
#endif

#ifdef L_thumb1_case_si
        
        .text
        .align 0
        .force_thumb
        .syntax unified
        THUMB_FUNC_START __gnu_thumb1_case_si
        push    {r0, r1}
        mov     r1, lr
        adds.n  r1, r1, #2      /* Align to word.  */
        lsrs    r1, r1, #2
        lsls    r0, r0, #2
        lsls    r1, r1, #2
        ldr     r0, [r1, r0]
        adds    r0, r0, r1
        mov     lr, r0
        pop     {r0, r1}
        mov     pc, lr          /* We know we were called from thumb code.  */
        SIZE (__gnu_thumb1_case_si)
#endif

#endif /* Arch supports thumb.  */

#ifndef __symbian__
#ifndef __ARM_ARCH_6M__
#include "ieee754-df.S"
#include "ieee754-sf.S"
#include "bpabi.S"
#else /* __ARM_ARCH_6M__ */
#include "bpabi-v6m.S"
#endif /* __ARM_ARCH_6M__ */
#endif /* !__symbian__ */

Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.