URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [arm/] [mmintrin.h] - Rev 861
Go to most recent revision | Compare with Previous | Blame | View Log
/* Copyright (C) 2002, 2003, 2004, 2009 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ #ifndef _MMINTRIN_H_INCLUDED #define _MMINTRIN_H_INCLUDED /* The data type intended for user use. */ typedef unsigned long long __m64, __int64; /* Internal data types for implementing the intrinsics. */ typedef int __v2si __attribute__ ((vector_size (8))); typedef short __v4hi __attribute__ ((vector_size (8))); typedef char __v8qi __attribute__ ((vector_size (8))); /* "Convert" __m64 and __int64 into each other. */ static __inline __m64 _mm_cvtsi64_m64 (__int64 __i) { return __i; } static __inline __int64 _mm_cvtm64_si64 (__m64 __i) { return __i; } static __inline int _mm_cvtsi64_si32 (__int64 __i) { return __i; } static __inline __int64 _mm_cvtsi32_si64 (int __i) { return __i; } /* Pack the four 16-bit values from M1 into the lower four 8-bit values of the result, and the four 16-bit values from M2 into the upper four 8-bit values of the result, all with signed saturation. */ static __inline __m64 _mm_packs_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackhss ((__v4hi)__m1, (__v4hi)__m2); } /* Pack the two 32-bit values from M1 in to the lower two 16-bit values of the result, and the two 32-bit values from M2 into the upper two 16-bit values of the result, all with signed saturation. */ static __inline __m64 _mm_packs_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackwss ((__v2si)__m1, (__v2si)__m2); } /* Copy the 64-bit value from M1 into the lower 32-bits of the result, and the 64-bit value from M2 into the upper 32-bits of the result, all with signed saturation for values that do not fit exactly into 32-bits. */ static __inline __m64 _mm_packs_pi64 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackdss ((long long)__m1, (long long)__m2); } /* Pack the four 16-bit values from M1 into the lower four 8-bit values of the result, and the four 16-bit values from M2 into the upper four 8-bit values of the result, all with unsigned saturation. */ static __inline __m64 _mm_packs_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackhus ((__v4hi)__m1, (__v4hi)__m2); } /* Pack the two 32-bit values from M1 into the lower two 16-bit values of the result, and the two 32-bit values from M2 into the upper two 16-bit values of the result, all with unsigned saturation. */ static __inline __m64 _mm_packs_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackwus ((__v2si)__m1, (__v2si)__m2); } /* Copy the 64-bit value from M1 into the lower 32-bits of the result, and the 64-bit value from M2 into the upper 32-bits of the result, all with unsigned saturation for values that do not fit exactly into 32-bits. */ static __inline __m64 _mm_packs_pu64 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wpackdus ((long long)__m1, (long long)__m2); } /* Interleave the four 8-bit values from the high half of M1 with the four 8-bit values from the high half of M2. */ static __inline __m64 _mm_unpackhi_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckihb ((__v8qi)__m1, (__v8qi)__m2); } /* Interleave the two 16-bit values from the high half of M1 with the two 16-bit values from the high half of M2. */ static __inline __m64 _mm_unpackhi_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckihh ((__v4hi)__m1, (__v4hi)__m2); } /* Interleave the 32-bit value from the high half of M1 with the 32-bit value from the high half of M2. */ static __inline __m64 _mm_unpackhi_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckihw ((__v2si)__m1, (__v2si)__m2); } /* Interleave the four 8-bit values from the low half of M1 with the four 8-bit values from the low half of M2. */ static __inline __m64 _mm_unpacklo_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckilb ((__v8qi)__m1, (__v8qi)__m2); } /* Interleave the two 16-bit values from the low half of M1 with the two 16-bit values from the low half of M2. */ static __inline __m64 _mm_unpacklo_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckilh ((__v4hi)__m1, (__v4hi)__m2); } /* Interleave the 32-bit value from the low half of M1 with the 32-bit value from the low half of M2. */ static __inline __m64 _mm_unpacklo_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wunpckilw ((__v2si)__m1, (__v2si)__m2); } /* Take the four 8-bit values from the low half of M1, sign extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackel_pi8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelsb ((__v8qi)__m1); } /* Take the two 16-bit values from the low half of M1, sign extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackel_pi16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelsh ((__v4hi)__m1); } /* Take the 32-bit value from the low half of M1, and return it sign extended to 64 bits. */ static __inline __m64 _mm_unpackel_pi32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelsw ((__v2si)__m1); } /* Take the four 8-bit values from the high half of M1, sign extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackeh_pi8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehsb ((__v8qi)__m1); } /* Take the two 16-bit values from the high half of M1, sign extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackeh_pi16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehsh ((__v4hi)__m1); } /* Take the 32-bit value from the high half of M1, and return it sign extended to 64 bits. */ static __inline __m64 _mm_unpackeh_pi32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehsw ((__v2si)__m1); } /* Take the four 8-bit values from the low half of M1, zero extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackel_pu8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckelub ((__v8qi)__m1); } /* Take the two 16-bit values from the low half of M1, zero extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackel_pu16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckeluh ((__v4hi)__m1); } /* Take the 32-bit value from the low half of M1, and return it zero extended to 64 bits. */ static __inline __m64 _mm_unpackel_pu32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckeluw ((__v2si)__m1); } /* Take the four 8-bit values from the high half of M1, zero extend them, and return the result as a vector of four 16-bit quantities. */ static __inline __m64 _mm_unpackeh_pu8 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehub ((__v8qi)__m1); } /* Take the two 16-bit values from the high half of M1, zero extend them, and return the result as a vector of two 32-bit quantities. */ static __inline __m64 _mm_unpackeh_pu16 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehuh ((__v4hi)__m1); } /* Take the 32-bit value from the high half of M1, and return it zero extended to 64 bits. */ static __inline __m64 _mm_unpackeh_pu32 (__m64 __m1) { return (__m64) __builtin_arm_wunpckehuw ((__v2si)__m1); } /* Add the 8-bit values in M1 to the 8-bit values in M2. */ static __inline __m64 _mm_add_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddb ((__v8qi)__m1, (__v8qi)__m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2. */ static __inline __m64 _mm_add_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddh ((__v4hi)__m1, (__v4hi)__m2); } /* Add the 32-bit values in M1 to the 32-bit values in M2. */ static __inline __m64 _mm_add_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddw ((__v2si)__m1, (__v2si)__m2); } /* Add the 8-bit values in M1 to the 8-bit values in M2 using signed saturated arithmetic. */ static __inline __m64 _mm_adds_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddbss ((__v8qi)__m1, (__v8qi)__m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2 using signed saturated arithmetic. */ static __inline __m64 _mm_adds_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddhss ((__v4hi)__m1, (__v4hi)__m2); } /* Add the 32-bit values in M1 to the 32-bit values in M2 using signed saturated arithmetic. */ static __inline __m64 _mm_adds_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddwss ((__v2si)__m1, (__v2si)__m2); } /* Add the 8-bit values in M1 to the 8-bit values in M2 using unsigned saturated arithmetic. */ static __inline __m64 _mm_adds_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddbus ((__v8qi)__m1, (__v8qi)__m2); } /* Add the 16-bit values in M1 to the 16-bit values in M2 using unsigned saturated arithmetic. */ static __inline __m64 _mm_adds_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddhus ((__v4hi)__m1, (__v4hi)__m2); } /* Add the 32-bit values in M1 to the 32-bit values in M2 using unsigned saturated arithmetic. */ static __inline __m64 _mm_adds_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_waddwus ((__v2si)__m1, (__v2si)__m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1. */ static __inline __m64 _mm_sub_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubb ((__v8qi)__m1, (__v8qi)__m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1. */ static __inline __m64 _mm_sub_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubh ((__v4hi)__m1, (__v4hi)__m2); } /* Subtract the 32-bit values in M2 from the 32-bit values in M1. */ static __inline __m64 _mm_sub_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubw ((__v2si)__m1, (__v2si)__m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1 using signed saturating arithmetic. */ static __inline __m64 _mm_subs_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubbss ((__v8qi)__m1, (__v8qi)__m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1 using signed saturating arithmetic. */ static __inline __m64 _mm_subs_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubhss ((__v4hi)__m1, (__v4hi)__m2); } /* Subtract the 32-bit values in M2 from the 32-bit values in M1 using signed saturating arithmetic. */ static __inline __m64 _mm_subs_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubwss ((__v2si)__m1, (__v2si)__m2); } /* Subtract the 8-bit values in M2 from the 8-bit values in M1 using unsigned saturating arithmetic. */ static __inline __m64 _mm_subs_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubbus ((__v8qi)__m1, (__v8qi)__m2); } /* Subtract the 16-bit values in M2 from the 16-bit values in M1 using unsigned saturating arithmetic. */ static __inline __m64 _mm_subs_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubhus ((__v4hi)__m1, (__v4hi)__m2); } /* Subtract the 32-bit values in M2 from the 32-bit values in M1 using unsigned saturating arithmetic. */ static __inline __m64 _mm_subs_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wsubwus ((__v2si)__m1, (__v2si)__m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 producing four 32-bit intermediate results, which are then summed by pairs to produce two 32-bit results. */ static __inline __m64 _mm_madd_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmadds ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 producing four 32-bit intermediate results, which are then summed by pairs to produce two 32-bit results. */ static __inline __m64 _mm_madd_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmaddu ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four signed 16-bit values in M1 by four signed 16-bit values in M2 and produce the high 16 bits of the 32-bit results. */ static __inline __m64 _mm_mulhi_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmulsm ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four signed 16-bit values in M1 by four signed 16-bit values in M2 and produce the high 16 bits of the 32-bit results. */ static __inline __m64 _mm_mulhi_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmulum ((__v4hi)__m1, (__v4hi)__m2); } /* Multiply four 16-bit values in M1 by four 16-bit values in M2 and produce the low 16 bits of the results. */ static __inline __m64 _mm_mullo_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wmulul ((__v4hi)__m1, (__v4hi)__m2); } /* Shift four 16-bit values in M left by COUNT. */ static __inline __m64 _mm_sll_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsllh ((__v4hi)__m, __count); } static __inline __m64 _mm_slli_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsllhi ((__v4hi)__m, __count); } /* Shift two 32-bit values in M left by COUNT. */ static __inline __m64 _mm_sll_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsllw ((__v2si)__m, __count); } static __inline __m64 _mm_slli_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsllwi ((__v2si)__m, __count); } /* Shift the 64-bit value in M left by COUNT. */ static __inline __m64 _mm_sll_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wslld (__m, __count); } static __inline __m64 _mm_slli_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wslldi (__m, __count); } /* Shift four 16-bit values in M right by COUNT; shift in the sign bit. */ static __inline __m64 _mm_sra_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrah ((__v4hi)__m, __count); } static __inline __m64 _mm_srai_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrahi ((__v4hi)__m, __count); } /* Shift two 32-bit values in M right by COUNT; shift in the sign bit. */ static __inline __m64 _mm_sra_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsraw ((__v2si)__m, __count); } static __inline __m64 _mm_srai_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrawi ((__v2si)__m, __count); } /* Shift the 64-bit value in M right by COUNT; shift in the sign bit. */ static __inline __m64 _mm_sra_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrad (__m, __count); } static __inline __m64 _mm_srai_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsradi (__m, __count); } /* Shift four 16-bit values in M right by COUNT; shift in zeros. */ static __inline __m64 _mm_srl_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrlh ((__v4hi)__m, __count); } static __inline __m64 _mm_srli_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrlhi ((__v4hi)__m, __count); } /* Shift two 32-bit values in M right by COUNT; shift in zeros. */ static __inline __m64 _mm_srl_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrlw ((__v2si)__m, __count); } static __inline __m64 _mm_srli_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrlwi ((__v2si)__m, __count); } /* Shift the 64-bit value in M left by COUNT; shift in zeros. */ static __inline __m64 _mm_srl_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wsrld (__m, __count); } static __inline __m64 _mm_srli_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wsrldi (__m, __count); } /* Rotate four 16-bit values in M right by COUNT. */ static __inline __m64 _mm_ror_pi16 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wrorh ((__v4hi)__m, __count); } static __inline __m64 _mm_rori_pi16 (__m64 __m, int __count) { return (__m64) __builtin_arm_wrorhi ((__v4hi)__m, __count); } /* Rotate two 32-bit values in M right by COUNT. */ static __inline __m64 _mm_ror_pi32 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wrorw ((__v2si)__m, __count); } static __inline __m64 _mm_rori_pi32 (__m64 __m, int __count) { return (__m64) __builtin_arm_wrorwi ((__v2si)__m, __count); } /* Rotate two 64-bit values in M right by COUNT. */ static __inline __m64 _mm_ror_si64 (__m64 __m, __m64 __count) { return (__m64) __builtin_arm_wrord (__m, __count); } static __inline __m64 _mm_rori_si64 (__m64 __m, int __count) { return (__m64) __builtin_arm_wrordi (__m, __count); } /* Bit-wise AND the 64-bit values in M1 and M2. */ static __inline __m64 _mm_and_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wand (__m1, __m2); } /* Bit-wise complement the 64-bit value in M1 and bit-wise AND it with the 64-bit value in M2. */ static __inline __m64 _mm_andnot_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wandn (__m1, __m2); } /* Bit-wise inclusive OR the 64-bit values in M1 and M2. */ static __inline __m64 _mm_or_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wor (__m1, __m2); } /* Bit-wise exclusive OR the 64-bit values in M1 and M2. */ static __inline __m64 _mm_xor_si64 (__m64 __m1, __m64 __m2) { return __builtin_arm_wxor (__m1, __m2); } /* Compare eight 8-bit values. The result of the comparison is 0xFF if the test is true and zero if false. */ static __inline __m64 _mm_cmpeq_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpeqb ((__v8qi)__m1, (__v8qi)__m2); } static __inline __m64 _mm_cmpgt_pi8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtsb ((__v8qi)__m1, (__v8qi)__m2); } static __inline __m64 _mm_cmpgt_pu8 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtub ((__v8qi)__m1, (__v8qi)__m2); } /* Compare four 16-bit values. The result of the comparison is 0xFFFF if the test is true and zero if false. */ static __inline __m64 _mm_cmpeq_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpeqh ((__v4hi)__m1, (__v4hi)__m2); } static __inline __m64 _mm_cmpgt_pi16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtsh ((__v4hi)__m1, (__v4hi)__m2); } static __inline __m64 _mm_cmpgt_pu16 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtuh ((__v4hi)__m1, (__v4hi)__m2); } /* Compare two 32-bit values. The result of the comparison is 0xFFFFFFFF if the test is true and zero if false. */ static __inline __m64 _mm_cmpeq_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpeqw ((__v2si)__m1, (__v2si)__m2); } static __inline __m64 _mm_cmpgt_pi32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtsw ((__v2si)__m1, (__v2si)__m2); } static __inline __m64 _mm_cmpgt_pu32 (__m64 __m1, __m64 __m2) { return (__m64) __builtin_arm_wcmpgtuw ((__v2si)__m1, (__v2si)__m2); } /* Element-wise multiplication of unsigned 16-bit values __B and __C, followed by accumulate across all elements and __A. */ static __inline __m64 _mm_mac_pu16 (__m64 __A, __m64 __B, __m64 __C) { return __builtin_arm_wmacu (__A, (__v4hi)__B, (__v4hi)__C); } /* Element-wise multiplication of signed 16-bit values __B and __C, followed by accumulate across all elements and __A. */ static __inline __m64 _mm_mac_pi16 (__m64 __A, __m64 __B, __m64 __C) { return __builtin_arm_wmacs (__A, (__v4hi)__B, (__v4hi)__C); } /* Element-wise multiplication of unsigned 16-bit values __B and __C, followed by accumulate across all elements. */ static __inline __m64 _mm_macz_pu16 (__m64 __A, __m64 __B) { return __builtin_arm_wmacuz ((__v4hi)__A, (__v4hi)__B); } /* Element-wise multiplication of signed 16-bit values __B and __C, followed by accumulate across all elements. */ static __inline __m64 _mm_macz_pi16 (__m64 __A, __m64 __B) { return __builtin_arm_wmacsz ((__v4hi)__A, (__v4hi)__B); } /* Accumulate across all unsigned 8-bit values in __A. */ static __inline __m64 _mm_acc_pu8 (__m64 __A) { return __builtin_arm_waccb ((__v8qi)__A); } /* Accumulate across all unsigned 16-bit values in __A. */ static __inline __m64 _mm_acc_pu16 (__m64 __A) { return __builtin_arm_wacch ((__v4hi)__A); } /* Accumulate across all unsigned 32-bit values in __A. */ static __inline __m64 _mm_acc_pu32 (__m64 __A) { return __builtin_arm_waccw ((__v2si)__A); } static __inline __m64 _mm_mia_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmia (__A, __B, __C); } static __inline __m64 _mm_miaph_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiaph (__A, __B, __C); } static __inline __m64 _mm_miabb_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiabb (__A, __B, __C); } static __inline __m64 _mm_miabt_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiabt (__A, __B, __C); } static __inline __m64 _mm_miatb_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiatb (__A, __B, __C); } static __inline __m64 _mm_miatt_si64 (__m64 __A, int __B, int __C) { return __builtin_arm_tmiatt (__A, __B, __C); } /* Extract one of the elements of A and sign extend. The selector N must be immediate. */ #define _mm_extract_pi8(A, N) __builtin_arm_textrmsb ((__v8qi)(A), (N)) #define _mm_extract_pi16(A, N) __builtin_arm_textrmsh ((__v4hi)(A), (N)) #define _mm_extract_pi32(A, N) __builtin_arm_textrmsw ((__v2si)(A), (N)) /* Extract one of the elements of A and zero extend. The selector N must be immediate. */ #define _mm_extract_pu8(A, N) __builtin_arm_textrmub ((__v8qi)(A), (N)) #define _mm_extract_pu16(A, N) __builtin_arm_textrmuh ((__v4hi)(A), (N)) #define _mm_extract_pu32(A, N) __builtin_arm_textrmuw ((__v2si)(A), (N)) /* Inserts word D into one of the elements of A. The selector N must be immediate. */ #define _mm_insert_pi8(A, D, N) \ ((__m64) __builtin_arm_tinsrb ((__v8qi)(A), (D), (N))) #define _mm_insert_pi16(A, D, N) \ ((__m64) __builtin_arm_tinsrh ((__v4hi)(A), (D), (N))) #define _mm_insert_pi32(A, D, N) \ ((__m64) __builtin_arm_tinsrw ((__v2si)(A), (D), (N))) /* Compute the element-wise maximum of signed 8-bit values. */ static __inline __m64 _mm_max_pi8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxsb ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise maximum of signed 16-bit values. */ static __inline __m64 _mm_max_pi16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxsh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise maximum of signed 32-bit values. */ static __inline __m64 _mm_max_pi32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxsw ((__v2si)__A, (__v2si)__B); } /* Compute the element-wise maximum of unsigned 8-bit values. */ static __inline __m64 _mm_max_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxub ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise maximum of unsigned 16-bit values. */ static __inline __m64 _mm_max_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxuh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise maximum of unsigned 32-bit values. */ static __inline __m64 _mm_max_pu32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wmaxuw ((__v2si)__A, (__v2si)__B); } /* Compute the element-wise minimum of signed 16-bit values. */ static __inline __m64 _mm_min_pi8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminsb ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise minimum of signed 16-bit values. */ static __inline __m64 _mm_min_pi16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminsh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise minimum of signed 32-bit values. */ static __inline __m64 _mm_min_pi32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminsw ((__v2si)__A, (__v2si)__B); } /* Compute the element-wise minimum of unsigned 16-bit values. */ static __inline __m64 _mm_min_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminub ((__v8qi)__A, (__v8qi)__B); } /* Compute the element-wise minimum of unsigned 16-bit values. */ static __inline __m64 _mm_min_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminuh ((__v4hi)__A, (__v4hi)__B); } /* Compute the element-wise minimum of unsigned 32-bit values. */ static __inline __m64 _mm_min_pu32 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wminuw ((__v2si)__A, (__v2si)__B); } /* Create an 8-bit mask of the signs of 8-bit values. */ static __inline int _mm_movemask_pi8 (__m64 __A) { return __builtin_arm_tmovmskb ((__v8qi)__A); } /* Create an 8-bit mask of the signs of 16-bit values. */ static __inline int _mm_movemask_pi16 (__m64 __A) { return __builtin_arm_tmovmskh ((__v4hi)__A); } /* Create an 8-bit mask of the signs of 32-bit values. */ static __inline int _mm_movemask_pi32 (__m64 __A) { return __builtin_arm_tmovmskw ((__v2si)__A); } /* Return a combination of the four 16-bit values in A. The selector must be an immediate. */ #define _mm_shuffle_pi16(A, N) \ ((__m64) __builtin_arm_wshufh ((__v4hi)(A), (N))) /* Compute the rounded averages of the unsigned 8-bit values in A and B. */ static __inline __m64 _mm_avg_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2br ((__v8qi)__A, (__v8qi)__B); } /* Compute the rounded averages of the unsigned 16-bit values in A and B. */ static __inline __m64 _mm_avg_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2hr ((__v4hi)__A, (__v4hi)__B); } /* Compute the averages of the unsigned 8-bit values in A and B. */ static __inline __m64 _mm_avg2_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2b ((__v8qi)__A, (__v8qi)__B); } /* Compute the averages of the unsigned 16-bit values in A and B. */ static __inline __m64 _mm_avg2_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wavg2h ((__v4hi)__A, (__v4hi)__B); } /* Compute the sum of the absolute differences of the unsigned 8-bit values in A and B. Return the value in the lower 16-bit word; the upper words are cleared. */ static __inline __m64 _mm_sad_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadb ((__v8qi)__A, (__v8qi)__B); } /* Compute the sum of the absolute differences of the unsigned 16-bit values in A and B. Return the value in the lower 32-bit word; the upper words are cleared. */ static __inline __m64 _mm_sad_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadh ((__v4hi)__A, (__v4hi)__B); } /* Compute the sum of the absolute differences of the unsigned 8-bit values in A and B. Return the value in the lower 16-bit word; the upper words are cleared. */ static __inline __m64 _mm_sadz_pu8 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadbz ((__v8qi)__A, (__v8qi)__B); } /* Compute the sum of the absolute differences of the unsigned 16-bit values in A and B. Return the value in the lower 32-bit word; the upper words are cleared. */ static __inline __m64 _mm_sadz_pu16 (__m64 __A, __m64 __B) { return (__m64) __builtin_arm_wsadhz ((__v4hi)__A, (__v4hi)__B); } static __inline __m64 _mm_align_si64 (__m64 __A, __m64 __B, int __C) { return (__m64) __builtin_arm_walign ((__v8qi)__A, (__v8qi)__B, __C); } /* Creates a 64-bit zero. */ static __inline __m64 _mm_setzero_si64 (void) { return __builtin_arm_wzero (); } /* Set and Get arbitrary iWMMXt Control registers. Note only registers 0-3 and 8-11 are currently defined, the rest are reserved. */ static __inline void _mm_setwcx (const int __value, const int __regno) { switch (__regno) { case 0: __builtin_arm_setwcx (__value, 0); break; case 1: __builtin_arm_setwcx (__value, 1); break; case 2: __builtin_arm_setwcx (__value, 2); break; case 3: __builtin_arm_setwcx (__value, 3); break; case 8: __builtin_arm_setwcx (__value, 8); break; case 9: __builtin_arm_setwcx (__value, 9); break; case 10: __builtin_arm_setwcx (__value, 10); break; case 11: __builtin_arm_setwcx (__value, 11); break; default: break; } } static __inline int _mm_getwcx (const int __regno) { switch (__regno) { case 0: return __builtin_arm_getwcx (0); case 1: return __builtin_arm_getwcx (1); case 2: return __builtin_arm_getwcx (2); case 3: return __builtin_arm_getwcx (3); case 8: return __builtin_arm_getwcx (8); case 9: return __builtin_arm_getwcx (9); case 10: return __builtin_arm_getwcx (10); case 11: return __builtin_arm_getwcx (11); default: return 0; } } /* Creates a vector of two 32-bit values; I0 is least significant. */ static __inline __m64 _mm_set_pi32 (int __i1, int __i0) { union { __m64 __q; struct { unsigned int __i0; unsigned int __i1; } __s; } __u; __u.__s.__i0 = __i0; __u.__s.__i1 = __i1; return __u.__q; } /* Creates a vector of four 16-bit values; W0 is least significant. */ static __inline __m64 _mm_set_pi16 (short __w3, short __w2, short __w1, short __w0) { unsigned int __i1 = (unsigned short)__w3 << 16 | (unsigned short)__w2; unsigned int __i0 = (unsigned short)__w1 << 16 | (unsigned short)__w0; return _mm_set_pi32 (__i1, __i0); } /* Creates a vector of eight 8-bit values; B0 is least significant. */ static __inline __m64 _mm_set_pi8 (char __b7, char __b6, char __b5, char __b4, char __b3, char __b2, char __b1, char __b0) { unsigned int __i1, __i0; __i1 = (unsigned char)__b7; __i1 = __i1 << 8 | (unsigned char)__b6; __i1 = __i1 << 8 | (unsigned char)__b5; __i1 = __i1 << 8 | (unsigned char)__b4; __i0 = (unsigned char)__b3; __i0 = __i0 << 8 | (unsigned char)__b2; __i0 = __i0 << 8 | (unsigned char)__b1; __i0 = __i0 << 8 | (unsigned char)__b0; return _mm_set_pi32 (__i1, __i0); } /* Similar, but with the arguments in reverse order. */ static __inline __m64 _mm_setr_pi32 (int __i0, int __i1) { return _mm_set_pi32 (__i1, __i0); } static __inline __m64 _mm_setr_pi16 (short __w0, short __w1, short __w2, short __w3) { return _mm_set_pi16 (__w3, __w2, __w1, __w0); } static __inline __m64 _mm_setr_pi8 (char __b0, char __b1, char __b2, char __b3, char __b4, char __b5, char __b6, char __b7) { return _mm_set_pi8 (__b7, __b6, __b5, __b4, __b3, __b2, __b1, __b0); } /* Creates a vector of two 32-bit values, both elements containing I. */ static __inline __m64 _mm_set1_pi32 (int __i) { return _mm_set_pi32 (__i, __i); } /* Creates a vector of four 16-bit values, all elements containing W. */ static __inline __m64 _mm_set1_pi16 (short __w) { unsigned int __i = (unsigned short)__w << 16 | (unsigned short)__w; return _mm_set1_pi32 (__i); } /* Creates a vector of four 16-bit values, all elements containing B. */ static __inline __m64 _mm_set1_pi8 (char __b) { unsigned int __w = (unsigned char)__b << 8 | (unsigned char)__b; unsigned int __i = __w << 16 | __w; return _mm_set1_pi32 (__i); } /* Convert an integer to a __m64 object. */ static __inline __m64 _m_from_int (int __a) { return (__m64)__a; } #define _m_packsswb _mm_packs_pi16 #define _m_packssdw _mm_packs_pi32 #define _m_packuswb _mm_packs_pu16 #define _m_packusdw _mm_packs_pu32 #define _m_packssqd _mm_packs_pi64 #define _m_packusqd _mm_packs_pu64 #define _mm_packs_si64 _mm_packs_pi64 #define _mm_packs_su64 _mm_packs_pu64 #define _m_punpckhbw _mm_unpackhi_pi8 #define _m_punpckhwd _mm_unpackhi_pi16 #define _m_punpckhdq _mm_unpackhi_pi32 #define _m_punpcklbw _mm_unpacklo_pi8 #define _m_punpcklwd _mm_unpacklo_pi16 #define _m_punpckldq _mm_unpacklo_pi32 #define _m_punpckehsbw _mm_unpackeh_pi8 #define _m_punpckehswd _mm_unpackeh_pi16 #define _m_punpckehsdq _mm_unpackeh_pi32 #define _m_punpckehubw _mm_unpackeh_pu8 #define _m_punpckehuwd _mm_unpackeh_pu16 #define _m_punpckehudq _mm_unpackeh_pu32 #define _m_punpckelsbw _mm_unpackel_pi8 #define _m_punpckelswd _mm_unpackel_pi16 #define _m_punpckelsdq _mm_unpackel_pi32 #define _m_punpckelubw _mm_unpackel_pu8 #define _m_punpckeluwd _mm_unpackel_pu16 #define _m_punpckeludq _mm_unpackel_pu32 #define _m_paddb _mm_add_pi8 #define _m_paddw _mm_add_pi16 #define _m_paddd _mm_add_pi32 #define _m_paddsb _mm_adds_pi8 #define _m_paddsw _mm_adds_pi16 #define _m_paddsd _mm_adds_pi32 #define _m_paddusb _mm_adds_pu8 #define _m_paddusw _mm_adds_pu16 #define _m_paddusd _mm_adds_pu32 #define _m_psubb _mm_sub_pi8 #define _m_psubw _mm_sub_pi16 #define _m_psubd _mm_sub_pi32 #define _m_psubsb _mm_subs_pi8 #define _m_psubsw _mm_subs_pi16 #define _m_psubuw _mm_subs_pi32 #define _m_psubusb _mm_subs_pu8 #define _m_psubusw _mm_subs_pu16 #define _m_psubusd _mm_subs_pu32 #define _m_pmaddwd _mm_madd_pi16 #define _m_pmadduwd _mm_madd_pu16 #define _m_pmulhw _mm_mulhi_pi16 #define _m_pmulhuw _mm_mulhi_pu16 #define _m_pmullw _mm_mullo_pi16 #define _m_pmacsw _mm_mac_pi16 #define _m_pmacuw _mm_mac_pu16 #define _m_pmacszw _mm_macz_pi16 #define _m_pmacuzw _mm_macz_pu16 #define _m_paccb _mm_acc_pu8 #define _m_paccw _mm_acc_pu16 #define _m_paccd _mm_acc_pu32 #define _m_pmia _mm_mia_si64 #define _m_pmiaph _mm_miaph_si64 #define _m_pmiabb _mm_miabb_si64 #define _m_pmiabt _mm_miabt_si64 #define _m_pmiatb _mm_miatb_si64 #define _m_pmiatt _mm_miatt_si64 #define _m_psllw _mm_sll_pi16 #define _m_psllwi _mm_slli_pi16 #define _m_pslld _mm_sll_pi32 #define _m_pslldi _mm_slli_pi32 #define _m_psllq _mm_sll_si64 #define _m_psllqi _mm_slli_si64 #define _m_psraw _mm_sra_pi16 #define _m_psrawi _mm_srai_pi16 #define _m_psrad _mm_sra_pi32 #define _m_psradi _mm_srai_pi32 #define _m_psraq _mm_sra_si64 #define _m_psraqi _mm_srai_si64 #define _m_psrlw _mm_srl_pi16 #define _m_psrlwi _mm_srli_pi16 #define _m_psrld _mm_srl_pi32 #define _m_psrldi _mm_srli_pi32 #define _m_psrlq _mm_srl_si64 #define _m_psrlqi _mm_srli_si64 #define _m_prorw _mm_ror_pi16 #define _m_prorwi _mm_rori_pi16 #define _m_prord _mm_ror_pi32 #define _m_prordi _mm_rori_pi32 #define _m_prorq _mm_ror_si64 #define _m_prorqi _mm_rori_si64 #define _m_pand _mm_and_si64 #define _m_pandn _mm_andnot_si64 #define _m_por _mm_or_si64 #define _m_pxor _mm_xor_si64 #define _m_pcmpeqb _mm_cmpeq_pi8 #define _m_pcmpeqw _mm_cmpeq_pi16 #define _m_pcmpeqd _mm_cmpeq_pi32 #define _m_pcmpgtb _mm_cmpgt_pi8 #define _m_pcmpgtub _mm_cmpgt_pu8 #define _m_pcmpgtw _mm_cmpgt_pi16 #define _m_pcmpgtuw _mm_cmpgt_pu16 #define _m_pcmpgtd _mm_cmpgt_pi32 #define _m_pcmpgtud _mm_cmpgt_pu32 #define _m_pextrb _mm_extract_pi8 #define _m_pextrw _mm_extract_pi16 #define _m_pextrd _mm_extract_pi32 #define _m_pextrub _mm_extract_pu8 #define _m_pextruw _mm_extract_pu16 #define _m_pextrud _mm_extract_pu32 #define _m_pinsrb _mm_insert_pi8 #define _m_pinsrw _mm_insert_pi16 #define _m_pinsrd _mm_insert_pi32 #define _m_pmaxsb _mm_max_pi8 #define _m_pmaxsw _mm_max_pi16 #define _m_pmaxsd _mm_max_pi32 #define _m_pmaxub _mm_max_pu8 #define _m_pmaxuw _mm_max_pu16 #define _m_pmaxud _mm_max_pu32 #define _m_pminsb _mm_min_pi8 #define _m_pminsw _mm_min_pi16 #define _m_pminsd _mm_min_pi32 #define _m_pminub _mm_min_pu8 #define _m_pminuw _mm_min_pu16 #define _m_pminud _mm_min_pu32 #define _m_pmovmskb _mm_movemask_pi8 #define _m_pmovmskw _mm_movemask_pi16 #define _m_pmovmskd _mm_movemask_pi32 #define _m_pshufw _mm_shuffle_pi16 #define _m_pavgb _mm_avg_pu8 #define _m_pavgw _mm_avg_pu16 #define _m_pavg2b _mm_avg2_pu8 #define _m_pavg2w _mm_avg2_pu16 #define _m_psadbw _mm_sad_pu8 #define _m_psadwd _mm_sad_pu16 #define _m_psadzbw _mm_sadz_pu8 #define _m_psadzwd _mm_sadz_pu16 #define _m_paligniq _mm_align_si64 #define _m_cvt_si2pi _mm_cvtsi64_m64 #define _m_cvt_pi2si _mm_cvtm64_si64 #endif /* _MMINTRIN_H_INCLUDED */
Go to most recent revision | Compare with Previous | Blame | View Log