URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [i386/] [i386.c] - Rev 816
Go to most recent revision | Compare with Previous | Blame | View Log
/* Subroutines used for code generation on IA-32. Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "rtl.h" #include "tree.h" #include "tm_p.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "output.h" #include "insn-codes.h" #include "insn-attr.h" #include "flags.h" #include "except.h" #include "function.h" #include "recog.h" #include "expr.h" #include "optabs.h" #include "toplev.h" #include "basic-block.h" #include "ggc.h" #include "target.h" #include "target-def.h" #include "langhooks.h" #include "cgraph.h" #include "gimple.h" #include "dwarf2.h" #include "df.h" #include "tm-constrs.h" #include "params.h" #include "cselib.h" #include "debug.h" #include "dwarf2out.h" static rtx legitimize_dllimport_symbol (rtx, bool); #ifndef CHECK_STACK_LIMIT #define CHECK_STACK_LIMIT (-1) #endif /* Return index of given mode in mult and division cost tables. */ #define MODE_INDEX(mode) \ ((mode) == QImode ? 0 \ : (mode) == HImode ? 1 \ : (mode) == SImode ? 2 \ : (mode) == DImode ? 3 \ : 4) /* Processor costs (relative to an add) */ /* We assume COSTS_N_INSNS is defined as (N)*4 and an addition is 2 bytes. */ #define COSTS_N_BYTES(N) ((N) * 2) #define DUMMY_STRINGOP_ALGS {libcall, {{-1, libcall}}} const struct processor_costs ix86_size_cost = {/* costs for tuning for size */ COSTS_N_BYTES (2), /* cost of an add instruction */ COSTS_N_BYTES (3), /* cost of a lea instruction */ COSTS_N_BYTES (2), /* variable shift costs */ COSTS_N_BYTES (3), /* constant shift costs */ {COSTS_N_BYTES (3), /* cost of starting multiply for QI */ COSTS_N_BYTES (3), /* HI */ COSTS_N_BYTES (3), /* SI */ COSTS_N_BYTES (3), /* DI */ COSTS_N_BYTES (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_BYTES (3), /* cost of a divide/mod for QI */ COSTS_N_BYTES (3), /* HI */ COSTS_N_BYTES (3), /* SI */ COSTS_N_BYTES (3), /* DI */ COSTS_N_BYTES (5)}, /* other */ COSTS_N_BYTES (3), /* cost of movsx */ COSTS_N_BYTES (3), /* cost of movzx */ 0, /* "large" insn */ 2, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {2, 2, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 2, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 2}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {2, 2, 2}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 3, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {3, 3}, /* cost of storing MMX registers in SImode and DImode */ 3, /* cost of moving SSE register */ {3, 3, 3}, /* cost of loading SSE registers in SImode, DImode and TImode */ {3, 3, 3}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of l1 cache */ 0, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_BYTES (2), /* cost of FADD and FSUB insns. */ COSTS_N_BYTES (2), /* cost of FMUL instruction. */ COSTS_N_BYTES (2), /* cost of FDIV instruction. */ COSTS_N_BYTES (2), /* cost of FABS instruction. */ COSTS_N_BYTES (2), /* cost of FCHS instruction. */ COSTS_N_BYTES (2), /* cost of FSQRT instruction. */ {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, {rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}}, {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, {rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 1, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 1, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* Processor costs (relative to an add) */ static const struct processor_costs i386_cost = { /* 386 specific costs */ COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (3), /* variable shift costs */ COSTS_N_INSNS (2), /* constant shift costs */ {COSTS_N_INSNS (6), /* cost of starting multiply for QI */ COSTS_N_INSNS (6), /* HI */ COSTS_N_INSNS (6), /* SI */ COSTS_N_INSNS (6), /* DI */ COSTS_N_INSNS (6)}, /* other */ COSTS_N_INSNS (1), /* cost of multiply per each bit set */ {COSTS_N_INSNS (23), /* cost of a divide/mod for QI */ COSTS_N_INSNS (23), /* HI */ COSTS_N_INSNS (23), /* SI */ COSTS_N_INSNS (23), /* DI */ COSTS_N_INSNS (23)}, /* other */ COSTS_N_INSNS (3), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 8}, /* cost of loading MMX registers in SImode and DImode */ {4, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 0, /* size of l1 cache */ 0, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (23), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (27), /* cost of FMUL instruction. */ COSTS_N_INSNS (88), /* cost of FDIV instruction. */ COSTS_N_INSNS (22), /* cost of FABS instruction. */ COSTS_N_INSNS (24), /* cost of FCHS instruction. */ COSTS_N_INSNS (122), /* cost of FSQRT instruction. */ {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, DUMMY_STRINGOP_ALGS}, {{rep_prefix_1_byte, {{-1, rep_prefix_1_byte}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs i486_cost = { /* 486 specific costs */ COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (3), /* variable shift costs */ COSTS_N_INSNS (2), /* constant shift costs */ {COSTS_N_INSNS (12), /* cost of starting multiply for QI */ COSTS_N_INSNS (12), /* HI */ COSTS_N_INSNS (12), /* SI */ COSTS_N_INSNS (12), /* DI */ COSTS_N_INSNS (12)}, /* other */ 1, /* cost of multiply per each bit set */ {COSTS_N_INSNS (40), /* cost of a divide/mod for QI */ COSTS_N_INSNS (40), /* HI */ COSTS_N_INSNS (40), /* SI */ COSTS_N_INSNS (40), /* DI */ COSTS_N_INSNS (40)}, /* other */ COSTS_N_INSNS (3), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 15, /* "large" insn */ 3, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {8, 8, 8}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {8, 8, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 8}, /* cost of loading MMX registers in SImode and DImode */ {4, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 4, /* size of l1 cache. 486 has 8kB cache shared for code and data, so 4kB is not really precise. */ 4, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (16), /* cost of FMUL instruction. */ COSTS_N_INSNS (73), /* cost of FDIV instruction. */ COSTS_N_INSNS (3), /* cost of FABS instruction. */ COSTS_N_INSNS (3), /* cost of FCHS instruction. */ COSTS_N_INSNS (83), /* cost of FSQRT instruction. */ {{rep_prefix_4_byte, {{-1, rep_prefix_4_byte}}}, DUMMY_STRINGOP_ALGS}, {{rep_prefix_4_byte, {{-1, rep_prefix_4_byte}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs pentium_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (4), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (11), /* cost of starting multiply for QI */ COSTS_N_INSNS (11), /* HI */ COSTS_N_INSNS (11), /* SI */ COSTS_N_INSNS (11), /* DI */ COSTS_N_INSNS (11)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (25), /* cost of a divide/mod for QI */ COSTS_N_INSNS (25), /* HI */ COSTS_N_INSNS (25), /* SI */ COSTS_N_INSNS (25), /* DI */ COSTS_N_INSNS (25)}, /* other */ COSTS_N_INSNS (3), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 6, /* cost for loading QImode using movzbl */ {2, 4, 2}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 4, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 8, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 8, 16}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 8, 16}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 8, /* size of l2 cache */ 0, /* size of prefetch block */ 0, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (3), /* cost of FMUL instruction. */ COSTS_N_INSNS (39), /* cost of FDIV instruction. */ COSTS_N_INSNS (1), /* cost of FABS instruction. */ COSTS_N_INSNS (1), /* cost of FCHS instruction. */ COSTS_N_INSNS (70), /* cost of FSQRT instruction. */ {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, {{libcall, {{-1, rep_prefix_4_byte}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs pentiumpro_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (4), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (4), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (4)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (17), /* cost of a divide/mod for QI */ COSTS_N_INSNS (17), /* HI */ COSTS_N_INSNS (17), /* SI */ COSTS_N_INSNS (17), /* DI */ COSTS_N_INSNS (17)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 6, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 2, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {2, 2, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 256, /* size of l2 cache */ 32, /* size of prefetch block */ 6, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (5), /* cost of FMUL instruction. */ COSTS_N_INSNS (56), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (56), /* cost of FSQRT instruction. */ /* PentiumPro has optimized rep instructions for blocks aligned by 8 bytes (we ensure the alignment). For small blocks inline loop is still a noticeable win, for bigger blocks either rep movsl or rep movsb is way to go. Rep movsb has apparently more expensive startup time in CPU, but after 4K the difference is down in the noise. */ {{rep_prefix_4_byte, {{128, loop}, {1024, unrolled_loop}, {8192, rep_prefix_4_byte}, {-1, rep_prefix_1_byte}}}, DUMMY_STRINGOP_ALGS}, {{rep_prefix_4_byte, {{1024, unrolled_loop}, {8192, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs geode_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (2), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (7), /* SI */ COSTS_N_INSNS (7), /* DI */ COSTS_N_INSNS (7)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (15), /* cost of a divide/mod for QI */ COSTS_N_INSNS (23), /* HI */ COSTS_N_INSNS (39), /* SI */ COSTS_N_INSNS (39), /* DI */ COSTS_N_INSNS (39)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 4, /* MOVE_RATIO */ 1, /* cost for loading QImode using movzbl */ {1, 1, 1}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {1, 1, 1}, /* cost of storing integer registers */ 1, /* cost of reg,reg fld/fst */ {1, 1, 1}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 6, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 1, /* cost of moving MMX register */ {1, 1}, /* cost of loading MMX registers in SImode and DImode */ {1, 1}, /* cost of storing MMX registers in SImode and DImode */ 1, /* cost of moving SSE register */ {1, 1, 1}, /* cost of loading SSE registers in SImode, DImode and TImode */ {1, 1, 1}, /* cost of storing SSE registers in SImode, DImode and TImode */ 1, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 128, /* size of l2 cache. */ 32, /* size of prefetch block */ 1, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (11), /* cost of FMUL instruction. */ COSTS_N_INSNS (47), /* cost of FDIV instruction. */ COSTS_N_INSNS (1), /* cost of FABS instruction. */ COSTS_N_INSNS (1), /* cost of FCHS instruction. */ COSTS_N_INSNS (54), /* cost of FSQRT instruction. */ {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs k6_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (3), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (3), /* DI */ COSTS_N_INSNS (3)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (18), /* HI */ COSTS_N_INSNS (18), /* SI */ COSTS_N_INSNS (18), /* DI */ COSTS_N_INSNS (18)}, /* other */ COSTS_N_INSNS (2), /* cost of movsx */ COSTS_N_INSNS (2), /* cost of movzx */ 8, /* "large" insn */ 4, /* MOVE_RATIO */ 3, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {6, 6, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {2, 2, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 6, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 32, /* size of l2 cache. Some models have integrated l2 cache, but optimizing for k6 is not important enough to worry about that. */ 32, /* size of prefetch block */ 1, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (2), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (2), /* cost of FMUL instruction. */ COSTS_N_INSNS (56), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (56), /* cost of FSQRT instruction. */ {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, {{libcall, {{256, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs athlon_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (5), /* cost of starting multiply for QI */ COSTS_N_INSNS (5), /* HI */ COSTS_N_INSNS (5), /* SI */ COSTS_N_INSNS (5), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {4, 4}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 6}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 5, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (24), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ /* For some reason, Athlon deals better with REP prefix (relative to loops) compared to K8. Alignment becomes important after 8 bytes for memcpy and 128 bytes for memset. */ {{libcall, {{2048, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, {{libcall, {{2048, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs k8_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 3, 6}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 3, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (19), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ /* K8 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ {{libcall, {{6, loop}, {14, unrolled_loop}, {-1, rep_prefix_4_byte}}}, {libcall, {{16, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, {{libcall, {{8, loop}, {24, unrolled_loop}, {2048, rep_prefix_4_byte}, {-1, libcall}}}, {libcall, {{48, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, 4, /* scalar_stmt_cost. */ 2, /* scalar load_cost. */ 2, /* scalar_store_cost. */ 5, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 2, /* vec_align_load_cost. */ 3, /* vec_unalign_load_cost. */ 3, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 2, /* cond_not_taken_branch_cost. */ }; struct processor_costs amdfam10_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (2), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (5)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (19), /* cost of a divide/mod for QI */ COSTS_N_INSNS (35), /* HI */ COSTS_N_INSNS (51), /* SI */ COSTS_N_INSNS (83), /* DI */ COSTS_N_INSNS (83)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 9, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {3, 4, 3}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {3, 4, 3}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {4, 4, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {3, 3}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {4, 4, 3}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 5}, /* cost of storing SSE registers in SImode, DImode and TImode */ 3, /* MMX or SSE register to integer */ /* On K8 MOVD reg64, xmmreg Double FSTORE 4 MOVD reg32, xmmreg Double FSTORE 4 On AMDFAM10 MOVD reg64, xmmreg Double FADD 3 1/1 1/1 MOVD reg32, xmmreg Double FADD 3 1/1 1/1 */ 64, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ /* New AMD processors never drop prefetches; if they cannot be performed immediately, they are queued. We set number of simultaneous prefetches to a large constant to reflect this (it probably is not a good idea not to limit number of prefetches at all, as their execution also takes some time). */ 100, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (4), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (4), /* cost of FMUL instruction. */ COSTS_N_INSNS (19), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (35), /* cost of FSQRT instruction. */ /* AMDFAM10 has optimized REP instruction for medium sized blocks, but for very small blocks it is better to use loop. For large blocks, libcall can do nontemporary accesses and beat inline considerably. */ {{libcall, {{6, loop}, {14, unrolled_loop}, {-1, rep_prefix_4_byte}}}, {libcall, {{16, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, {{libcall, {{8, loop}, {24, unrolled_loop}, {2048, rep_prefix_4_byte}, {-1, libcall}}}, {libcall, {{48, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, 4, /* scalar_stmt_cost. */ 2, /* scalar load_cost. */ 2, /* scalar_store_cost. */ 6, /* vec_stmt_cost. */ 0, /* vec_to_scalar_cost. */ 2, /* scalar_to_vec_cost. */ 2, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 2, /* vec_store_cost. */ 2, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs pentium4_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (3), /* cost of a lea instruction */ COSTS_N_INSNS (4), /* variable shift costs */ COSTS_N_INSNS (4), /* constant shift costs */ {COSTS_N_INSNS (15), /* cost of starting multiply for QI */ COSTS_N_INSNS (15), /* HI */ COSTS_N_INSNS (15), /* SI */ COSTS_N_INSNS (15), /* DI */ COSTS_N_INSNS (15)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (56), /* cost of a divide/mod for QI */ COSTS_N_INSNS (56), /* HI */ COSTS_N_INSNS (56), /* SI */ COSTS_N_INSNS (56), /* DI */ COSTS_N_INSNS (56)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 16, /* "large" insn */ 6, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 5, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {2, 3, 2}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {2, 2, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {2, 2}, /* cost of loading MMX registers in SImode and DImode */ {2, 2}, /* cost of storing MMX registers in SImode and DImode */ 12, /* cost of moving SSE register */ {12, 12, 12}, /* cost of loading SSE registers in SImode, DImode and TImode */ {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 10, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 2, /* Branch cost */ COSTS_N_INSNS (5), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (7), /* cost of FMUL instruction. */ COSTS_N_INSNS (43), /* cost of FDIV instruction. */ COSTS_N_INSNS (2), /* cost of FABS instruction. */ COSTS_N_INSNS (2), /* cost of FCHS instruction. */ COSTS_N_INSNS (43), /* cost of FSQRT instruction. */ {{libcall, {{12, loop_1_byte}, {-1, rep_prefix_4_byte}}}, DUMMY_STRINGOP_ALGS}, {{libcall, {{6, loop_1_byte}, {48, loop}, {20480, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs nocona_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1), /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (10), /* cost of starting multiply for QI */ COSTS_N_INSNS (10), /* HI */ COSTS_N_INSNS (10), /* SI */ COSTS_N_INSNS (10), /* DI */ COSTS_N_INSNS (10)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (66), /* cost of a divide/mod for QI */ COSTS_N_INSNS (66), /* HI */ COSTS_N_INSNS (66), /* SI */ COSTS_N_INSNS (66), /* DI */ COSTS_N_INSNS (66)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 16, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 3, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 6, /* cost of moving MMX register */ {12, 12}, /* cost of loading MMX registers in SImode and DImode */ {12, 12}, /* cost of storing MMX registers in SImode and DImode */ 6, /* cost of moving SSE register */ {12, 12, 12}, /* cost of loading SSE registers in SImode, DImode and TImode */ {12, 12, 12}, /* cost of storing SSE registers in SImode, DImode and TImode */ 8, /* MMX or SSE register to integer */ 8, /* size of l1 cache. */ 1024, /* size of l2 cache. */ 128, /* size of prefetch block */ 8, /* number of parallel prefetches */ 1, /* Branch cost */ COSTS_N_INSNS (6), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (40), /* cost of FDIV instruction. */ COSTS_N_INSNS (3), /* cost of FABS instruction. */ COSTS_N_INSNS (3), /* cost of FCHS instruction. */ COSTS_N_INSNS (44), /* cost of FSQRT instruction. */ {{libcall, {{12, loop_1_byte}, {-1, rep_prefix_4_byte}}}, {libcall, {{32, loop}, {20000, rep_prefix_8_byte}, {100000, unrolled_loop}, {-1, libcall}}}}, {{libcall, {{6, loop_1_byte}, {48, loop}, {20480, rep_prefix_4_byte}, {-1, libcall}}}, {libcall, {{24, loop}, {64, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs core2_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (3), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (3), /* DI */ COSTS_N_INSNS (3)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (22), /* cost of a divide/mod for QI */ COSTS_N_INSNS (22), /* HI */ COSTS_N_INSNS (22), /* SI */ COSTS_N_INSNS (22), /* DI */ COSTS_N_INSNS (22)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 16, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {6, 6, 6}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 2, /* cost of reg,reg fld/fst */ {6, 6, 6}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {4, 4, 4}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {6, 6}, /* cost of loading MMX registers in SImode and DImode */ {4, 4}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {6, 6, 6}, /* cost of loading SSE registers in SImode, DImode and TImode */ {4, 4, 4}, /* cost of storing SSE registers in SImode, DImode and TImode */ 2, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 2048, /* size of l2 cache. */ 128, /* size of prefetch block */ 8, /* number of parallel prefetches */ 3, /* Branch cost */ COSTS_N_INSNS (3), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (5), /* cost of FMUL instruction. */ COSTS_N_INSNS (32), /* cost of FDIV instruction. */ COSTS_N_INSNS (1), /* cost of FABS instruction. */ COSTS_N_INSNS (1), /* cost of FCHS instruction. */ COSTS_N_INSNS (58), /* cost of FSQRT instruction. */ {{libcall, {{11, loop}, {-1, rep_prefix_4_byte}}}, {libcall, {{32, loop}, {64, rep_prefix_4_byte}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, {{libcall, {{8, loop}, {15, unrolled_loop}, {2048, rep_prefix_4_byte}, {-1, libcall}}}, {libcall, {{24, loop}, {32, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; static const struct processor_costs atom_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (2)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 17, /* MOVE_RATIO */ 2, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {8, 8, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {8, 8, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 3, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (20), /* cost of FDIV instruction. */ COSTS_N_INSNS (8), /* cost of FABS instruction. */ COSTS_N_INSNS (8), /* cost of FCHS instruction. */ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ {{libcall, {{11, loop}, {-1, rep_prefix_4_byte}}}, {libcall, {{32, loop}, {64, rep_prefix_4_byte}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, {{libcall, {{8, loop}, {15, unrolled_loop}, {2048, rep_prefix_4_byte}, {-1, libcall}}}, {libcall, {{24, loop}, {32, unrolled_loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* Generic64 should produce code tuned for Nocona and K8. */ static const struct processor_costs generic64_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ /* On all chips taken into consideration lea is 2 cycles and more. With this cost however our current implementation of synth_mult results in use of unnecessary temporary registers causing regression on several SPECfp benchmarks. */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (2)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {8, 8, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {8, 8, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 512, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ /* Benchmarks shows large regressions on K8 sixtrack benchmark when this value is increased to perhaps more appropriate value of 5. */ 3, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (20), /* cost of FDIV instruction. */ COSTS_N_INSNS (8), /* cost of FABS instruction. */ COSTS_N_INSNS (8), /* cost of FCHS instruction. */ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ {DUMMY_STRINGOP_ALGS, {libcall, {{32, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, {DUMMY_STRINGOP_ALGS, {libcall, {{32, loop}, {8192, rep_prefix_8_byte}, {-1, libcall}}}}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; /* Generic32 should produce code tuned for Athlon, PPro, Pentium4, Nocona and K8. */ static const struct processor_costs generic32_cost = { COSTS_N_INSNS (1), /* cost of an add instruction */ COSTS_N_INSNS (1) + 1, /* cost of a lea instruction */ COSTS_N_INSNS (1), /* variable shift costs */ COSTS_N_INSNS (1), /* constant shift costs */ {COSTS_N_INSNS (3), /* cost of starting multiply for QI */ COSTS_N_INSNS (4), /* HI */ COSTS_N_INSNS (3), /* SI */ COSTS_N_INSNS (4), /* DI */ COSTS_N_INSNS (2)}, /* other */ 0, /* cost of multiply per each bit set */ {COSTS_N_INSNS (18), /* cost of a divide/mod for QI */ COSTS_N_INSNS (26), /* HI */ COSTS_N_INSNS (42), /* SI */ COSTS_N_INSNS (74), /* DI */ COSTS_N_INSNS (74)}, /* other */ COSTS_N_INSNS (1), /* cost of movsx */ COSTS_N_INSNS (1), /* cost of movzx */ 8, /* "large" insn */ 17, /* MOVE_RATIO */ 4, /* cost for loading QImode using movzbl */ {4, 4, 4}, /* cost of loading integer registers in QImode, HImode and SImode. Relative to reg-reg move (2). */ {4, 4, 4}, /* cost of storing integer registers */ 4, /* cost of reg,reg fld/fst */ {12, 12, 12}, /* cost of loading fp registers in SFmode, DFmode and XFmode */ {6, 6, 8}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ 2, /* cost of moving MMX register */ {8, 8}, /* cost of loading MMX registers in SImode and DImode */ {8, 8}, /* cost of storing MMX registers in SImode and DImode */ 2, /* cost of moving SSE register */ {8, 8, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ {8, 8, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ 5, /* MMX or SSE register to integer */ 32, /* size of l1 cache. */ 256, /* size of l2 cache. */ 64, /* size of prefetch block */ 6, /* number of parallel prefetches */ 3, /* Branch cost */ COSTS_N_INSNS (8), /* cost of FADD and FSUB insns. */ COSTS_N_INSNS (8), /* cost of FMUL instruction. */ COSTS_N_INSNS (20), /* cost of FDIV instruction. */ COSTS_N_INSNS (8), /* cost of FABS instruction. */ COSTS_N_INSNS (8), /* cost of FCHS instruction. */ COSTS_N_INSNS (40), /* cost of FSQRT instruction. */ {{libcall, {{32, loop}, {8192, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, {{libcall, {{32, loop}, {8192, rep_prefix_4_byte}, {-1, libcall}}}, DUMMY_STRINGOP_ALGS}, 1, /* scalar_stmt_cost. */ 1, /* scalar load_cost. */ 1, /* scalar_store_cost. */ 1, /* vec_stmt_cost. */ 1, /* vec_to_scalar_cost. */ 1, /* scalar_to_vec_cost. */ 1, /* vec_align_load_cost. */ 2, /* vec_unalign_load_cost. */ 1, /* vec_store_cost. */ 3, /* cond_taken_branch_cost. */ 1, /* cond_not_taken_branch_cost. */ }; const struct processor_costs *ix86_cost = &pentium_cost; /* Processor feature/optimization bitmasks. */ #define m_386 (1<<PROCESSOR_I386) #define m_486 (1<<PROCESSOR_I486) #define m_PENT (1<<PROCESSOR_PENTIUM) #define m_PPRO (1<<PROCESSOR_PENTIUMPRO) #define m_PENT4 (1<<PROCESSOR_PENTIUM4) #define m_NOCONA (1<<PROCESSOR_NOCONA) #define m_CORE2 (1<<PROCESSOR_CORE2) #define m_ATOM (1<<PROCESSOR_ATOM) #define m_GEODE (1<<PROCESSOR_GEODE) #define m_K6 (1<<PROCESSOR_K6) #define m_K6_GEODE (m_K6 | m_GEODE) #define m_K8 (1<<PROCESSOR_K8) #define m_ATHLON (1<<PROCESSOR_ATHLON) #define m_ATHLON_K8 (m_K8 | m_ATHLON) #define m_AMDFAM10 (1<<PROCESSOR_AMDFAM10) #define m_AMD_MULTIPLE (m_K8 | m_ATHLON | m_AMDFAM10) #define m_GENERIC32 (1<<PROCESSOR_GENERIC32) #define m_GENERIC64 (1<<PROCESSOR_GENERIC64) /* Generic instruction choice should be common subset of supported CPUs (PPro/PENT4/NOCONA/CORE2/Athlon/K8). */ #define m_GENERIC (m_GENERIC32 | m_GENERIC64) /* Feature tests against the various tunings. */ unsigned char ix86_tune_features[X86_TUNE_LAST]; /* Feature tests against the various tunings used to create ix86_tune_features based on the processor mask. */ static unsigned int initial_ix86_tune_features[X86_TUNE_LAST] = { /* X86_TUNE_USE_LEAVE: Leave does not affect Nocona SPEC2000 results negatively, so enabling for Generic64 seems like good code size tradeoff. We can't enable it for 32bit generic because it does not work well with PPro base chips. */ m_386 | m_K6_GEODE | m_AMD_MULTIPLE | m_CORE2 | m_GENERIC64, /* X86_TUNE_PUSH_MEMORY */ m_386 | m_K6_GEODE | m_AMD_MULTIPLE | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_ZERO_EXTEND_WITH_AND */ m_486 | m_PENT, /* X86_TUNE_UNROLL_STRLEN */ m_486 | m_PENT | m_ATOM | m_PPRO | m_AMD_MULTIPLE | m_K6 | m_CORE2 | m_GENERIC, /* X86_TUNE_DEEP_BRANCH_PREDICTION */ m_ATOM | m_PPRO | m_K6_GEODE | m_AMD_MULTIPLE | m_PENT4 | m_GENERIC, /* X86_TUNE_BRANCH_PREDICTION_HINTS: Branch hints were put in P4 based on simulation result. But after P4 was made, no performance benefit was observed with branch hints. It also increases the code size. As a result, icc never generates branch hints. */ 0, /* X86_TUNE_DOUBLE_WITH_ADD */ ~m_386, /* X86_TUNE_USE_SAHF */ m_ATOM | m_PPRO | m_K6_GEODE | m_K8 | m_AMDFAM10 | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_MOVX: Enable to zero extend integer registers to avoid partial dependencies. */ m_AMD_MULTIPLE | m_ATOM | m_PPRO | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC | m_GEODE /* m_386 | m_K6 */, /* X86_TUNE_PARTIAL_REG_STALL: We probably ought to watch for partial register stalls on Generic32 compilation setting as well. However in current implementation the partial register stalls are not eliminated very well - they can be introduced via subregs synthesized by combine and can happen in caller/callee saving sequences. Because this option pays back little on PPro based chips and is in conflict with partial reg dependencies used by Athlon/P4 based chips, it is better to leave it off for generic32 for now. */ m_PPRO, /* X86_TUNE_PARTIAL_FLAG_REG_STALL */ m_CORE2 | m_GENERIC, /* X86_TUNE_USE_HIMODE_FIOP */ m_386 | m_486 | m_K6_GEODE, /* X86_TUNE_USE_SIMODE_FIOP */ ~(m_PPRO | m_AMD_MULTIPLE | m_PENT | m_ATOM | m_CORE2 | m_GENERIC), /* X86_TUNE_USE_MOV0 */ m_K6, /* X86_TUNE_USE_CLTD */ ~(m_PENT | m_ATOM | m_K6 | m_CORE2 | m_GENERIC), /* X86_TUNE_USE_XCHGB: Use xchgb %rh,%rl instead of rolw/rorw $8,rx. */ m_PENT4, /* X86_TUNE_SPLIT_LONG_MOVES */ m_PPRO, /* X86_TUNE_READ_MODIFY_WRITE */ ~m_PENT, /* X86_TUNE_READ_MODIFY */ ~(m_PENT | m_PPRO), /* X86_TUNE_PROMOTE_QIMODE */ m_K6_GEODE | m_PENT | m_ATOM | m_386 | m_486 | m_AMD_MULTIPLE | m_CORE2 | m_GENERIC /* | m_PENT4 ? */, /* X86_TUNE_FAST_PREFIX */ ~(m_PENT | m_486 | m_386), /* X86_TUNE_SINGLE_STRINGOP */ m_386 | m_PENT4 | m_NOCONA, /* X86_TUNE_QIMODE_MATH */ ~0, /* X86_TUNE_HIMODE_MATH: On PPro this flag is meant to avoid partial register stalls. Just like X86_TUNE_PARTIAL_REG_STALL this option might be considered for Generic32 if our scheme for avoiding partial stalls was more effective. */ ~m_PPRO, /* X86_TUNE_PROMOTE_QI_REGS */ 0, /* X86_TUNE_PROMOTE_HI_REGS */ m_PPRO, /* X86_TUNE_ADD_ESP_4: Enable if add/sub is preferred over 1/2 push/pop. */ m_ATOM | m_AMD_MULTIPLE | m_K6_GEODE | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_ADD_ESP_8 */ m_AMD_MULTIPLE | m_ATOM | m_PPRO | m_K6_GEODE | m_386 | m_486 | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_SUB_ESP_4 */ m_AMD_MULTIPLE | m_ATOM | m_PPRO | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_SUB_ESP_8 */ m_AMD_MULTIPLE | m_ATOM | m_PPRO | m_386 | m_486 | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_INTEGER_DFMODE_MOVES: Enable if integer moves are preferred for DFmode copies */ ~(m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2 | m_GENERIC | m_GEODE), /* X86_TUNE_PARTIAL_REG_DEPENDENCY */ m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_SSE_PARTIAL_REG_DEPENDENCY: In the Generic model we have a conflict here in between PPro/Pentium4 based chips that thread 128bit SSE registers as single units versus K8 based chips that divide SSE registers to two 64bit halves. This knob promotes all store destinations to be 128bit to allow register renaming on 128bit SSE units, but usually results in one extra microop on 64bit SSE units. Experimental results shows that disabling this option on P4 brings over 20% SPECfp regression, while enabling it on K8 brings roughly 2.4% regression that can be partly masked by careful scheduling of moves. */ m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2 | m_GENERIC | m_AMDFAM10, /* X86_TUNE_SSE_UNALIGNED_MOVE_OPTIMAL */ m_AMDFAM10, /* X86_TUNE_SSE_SPLIT_REGS: Set for machines where the type and dependencies are resolved on SSE register parts instead of whole registers, so we may maintain just lower part of scalar values in proper format leaving the upper part undefined. */ m_ATHLON_K8, /* X86_TUNE_SSE_TYPELESS_STORES */ m_AMD_MULTIPLE, /* X86_TUNE_SSE_LOAD0_BY_PXOR */ m_PPRO | m_PENT4 | m_NOCONA, /* X86_TUNE_MEMORY_MISMATCH_STALL */ m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_PROLOGUE_USING_MOVE */ m_ATHLON_K8 | m_ATOM | m_PPRO | m_CORE2 | m_GENERIC, /* X86_TUNE_EPILOGUE_USING_MOVE */ m_ATHLON_K8 | m_ATOM | m_PPRO | m_CORE2 | m_GENERIC, /* X86_TUNE_SHIFT1 */ ~m_486, /* X86_TUNE_USE_FFREEP */ m_AMD_MULTIPLE, /* X86_TUNE_INTER_UNIT_MOVES */ ~(m_AMD_MULTIPLE | m_GENERIC), /* X86_TUNE_INTER_UNIT_CONVERSIONS */ ~(m_AMDFAM10), /* X86_TUNE_FOUR_JUMP_LIMIT: Some CPU cores are not able to predict more than 4 branch instructions in the 16 byte window. */ m_ATOM | m_PPRO | m_AMD_MULTIPLE | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC, /* X86_TUNE_SCHEDULE */ m_PPRO | m_AMD_MULTIPLE | m_K6_GEODE | m_PENT | m_ATOM | m_CORE2 | m_GENERIC, /* X86_TUNE_USE_BT */ m_AMD_MULTIPLE | m_ATOM | m_CORE2 | m_GENERIC, /* X86_TUNE_USE_INCDEC */ ~(m_PENT4 | m_NOCONA | m_GENERIC | m_ATOM), /* X86_TUNE_PAD_RETURNS */ m_AMD_MULTIPLE | m_CORE2 | m_GENERIC, /* X86_TUNE_EXT_80387_CONSTANTS */ m_K6_GEODE | m_ATHLON_K8 | m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2 | m_GENERIC, /* X86_TUNE_SHORTEN_X87_SSE */ ~m_K8, /* X86_TUNE_AVOID_VECTOR_DECODE */ m_K8 | m_GENERIC64, /* X86_TUNE_PROMOTE_HIMODE_IMUL: Modern CPUs have same latency for HImode and SImode multiply, but 386 and 486 do HImode multiply faster. */ ~(m_386 | m_486), /* X86_TUNE_SLOW_IMUL_IMM32_MEM: Imul of 32-bit constant and memory is vector path on AMD machines. */ m_K8 | m_GENERIC64 | m_AMDFAM10, /* X86_TUNE_SLOW_IMUL_IMM8: Imul of 8-bit constant is vector path on AMD machines. */ m_K8 | m_GENERIC64 | m_AMDFAM10, /* X86_TUNE_MOVE_M1_VIA_OR: On pentiums, it is faster to load -1 via OR than a MOV. */ m_PENT, /* X86_TUNE_NOT_UNPAIRABLE: NOT is not pairable on Pentium, while XOR is, but one byte longer. */ m_PENT, /* X86_TUNE_NOT_VECTORMODE: On AMD K6, NOT is vector decoded with memory operand that cannot be represented using a modRM byte. The XOR replacement is long decoded, so this split helps here as well. */ m_K6, /* X86_TUNE_USE_VECTOR_FP_CONVERTS: Prefer vector packed SSE conversion from FP to FP. */ m_AMDFAM10 | m_GENERIC, /* X86_TUNE_USE_VECTOR_CONVERTS: Prefer vector packed SSE conversion from integer to FP. */ m_AMDFAM10, /* X86_TUNE_FUSE_CMP_AND_BRANCH: Fuse a compare or test instruction with a subsequent conditional jump instruction into a single compare-and-branch uop. */ m_CORE2, /* X86_TUNE_OPT_AGU: Optimize for Address Generation Unit. This flag will impact LEA instruction selection. */ m_ATOM, }; /* Feature tests against the various architecture variations. */ unsigned char ix86_arch_features[X86_ARCH_LAST]; /* Feature tests against the various architecture variations, used to create ix86_arch_features based on the processor mask. */ static unsigned int initial_ix86_arch_features[X86_ARCH_LAST] = { /* X86_ARCH_CMOVE: Conditional move was added for pentiumpro. */ ~(m_386 | m_486 | m_PENT | m_K6), /* X86_ARCH_CMPXCHG: Compare and exchange was added for 80486. */ ~m_386, /* X86_ARCH_CMPXCHG8B: Compare and exchange 8 bytes was added for pentium. */ ~(m_386 | m_486), /* X86_ARCH_XADD: Exchange and add was added for 80486. */ ~m_386, /* X86_ARCH_BSWAP: Byteswap was added for 80486. */ ~m_386, }; static const unsigned int x86_accumulate_outgoing_args = m_AMD_MULTIPLE | m_ATOM | m_PENT4 | m_NOCONA | m_PPRO | m_CORE2 | m_GENERIC; static const unsigned int x86_arch_always_fancy_math_387 = m_PENT | m_ATOM | m_PPRO | m_AMD_MULTIPLE | m_PENT4 | m_NOCONA | m_CORE2 | m_GENERIC; static enum stringop_alg stringop_alg = no_stringop; /* In case the average insn count for single function invocation is lower than this constant, emit fast (but longer) prologue and epilogue code. */ #define FAST_PROLOGUE_INSN_COUNT 20 /* Names for 8 (low), 8 (high), and 16-bit registers, respectively. */ static const char *const qi_reg_name[] = QI_REGISTER_NAMES; static const char *const qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES; static const char *const hi_reg_name[] = HI_REGISTER_NAMES; /* Array of the smallest class containing reg number REGNO, indexed by REGNO. Used by REGNO_REG_CLASS in i386.h. */ enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER] = { /* ax, dx, cx, bx */ AREG, DREG, CREG, BREG, /* si, di, bp, sp */ SIREG, DIREG, NON_Q_REGS, NON_Q_REGS, /* FP registers */ FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, /* arg pointer */ NON_Q_REGS, /* flags, fpsr, fpcr, frame */ NO_REGS, NO_REGS, NO_REGS, NON_Q_REGS, /* SSE registers */ SSE_FIRST_REG, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, /* MMX registers */ MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, /* REX registers */ NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, /* SSE REX registers */ SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, }; /* The "default" register map used in 32bit mode. */ int const dbx_register_map[FIRST_PSEUDO_REGISTER] = { 0, 2, 1, 3, 6, 7, 4, 5, /* general regs */ 12, 13, 14, 15, 16, 17, 18, 19, /* fp regs */ -1, -1, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */ 21, 22, 23, 24, 25, 26, 27, 28, /* SSE */ 29, 30, 31, 32, 33, 34, 35, 36, /* MMX */ -1, -1, -1, -1, -1, -1, -1, -1, /* extended integer registers */ -1, -1, -1, -1, -1, -1, -1, -1, /* extended SSE registers */ }; /* The "default" register map used in 64bit mode. */ int const dbx64_register_map[FIRST_PSEUDO_REGISTER] = { 0, 1, 2, 3, 4, 5, 6, 7, /* general regs */ 33, 34, 35, 36, 37, 38, 39, 40, /* fp regs */ -1, -1, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */ 17, 18, 19, 20, 21, 22, 23, 24, /* SSE */ 41, 42, 43, 44, 45, 46, 47, 48, /* MMX */ 8,9,10,11,12,13,14,15, /* extended integer registers */ 25, 26, 27, 28, 29, 30, 31, 32, /* extended SSE registers */ }; /* Define the register numbers to be used in Dwarf debugging information. The SVR4 reference port C compiler uses the following register numbers in its Dwarf output code: 0 for %eax (gcc regno = 0) 1 for %ecx (gcc regno = 2) 2 for %edx (gcc regno = 1) 3 for %ebx (gcc regno = 3) 4 for %esp (gcc regno = 7) 5 for %ebp (gcc regno = 6) 6 for %esi (gcc regno = 4) 7 for %edi (gcc regno = 5) The following three DWARF register numbers are never generated by the SVR4 C compiler or by the GNU compilers, but SDB on x86/svr4 believes these numbers have these meanings. 8 for %eip (no gcc equivalent) 9 for %eflags (gcc regno = 17) 10 for %trapno (no gcc equivalent) It is not at all clear how we should number the FP stack registers for the x86 architecture. If the version of SDB on x86/svr4 were a bit less brain dead with respect to floating-point then we would have a precedent to follow with respect to DWARF register numbers for x86 FP registers, but the SDB on x86/svr4 is so completely broken with respect to FP registers that it is hardly worth thinking of it as something to strive for compatibility with. The version of x86/svr4 SDB I have at the moment does (partially) seem to believe that DWARF register number 11 is associated with the x86 register %st(0), but that's about all. Higher DWARF register numbers don't seem to be associated with anything in particular, and even for DWARF regno 11, SDB only seems to under- stand that it should say that a variable lives in %st(0) (when asked via an `=' command) if we said it was in DWARF regno 11, but SDB still prints garbage when asked for the value of the variable in question (via a `/' command). (Also note that the labels SDB prints for various FP stack regs when doing an `x' command are all wrong.) Note that these problems generally don't affect the native SVR4 C compiler because it doesn't allow the use of -O with -g and because when it is *not* optimizing, it allocates a memory location for each floating-point variable, and the memory location is what gets described in the DWARF AT_location attribute for the variable in question. Regardless of the severe mental illness of the x86/svr4 SDB, we do something sensible here and we use the following DWARF register numbers. Note that these are all stack-top-relative numbers. 11 for %st(0) (gcc regno = 8) 12 for %st(1) (gcc regno = 9) 13 for %st(2) (gcc regno = 10) 14 for %st(3) (gcc regno = 11) 15 for %st(4) (gcc regno = 12) 16 for %st(5) (gcc regno = 13) 17 for %st(6) (gcc regno = 14) 18 for %st(7) (gcc regno = 15) */ int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER] = { 0, 2, 1, 3, 6, 7, 5, 4, /* general regs */ 11, 12, 13, 14, 15, 16, 17, 18, /* fp regs */ -1, 9, -1, -1, -1, /* arg, flags, fpsr, fpcr, frame */ 21, 22, 23, 24, 25, 26, 27, 28, /* SSE registers */ 29, 30, 31, 32, 33, 34, 35, 36, /* MMX registers */ -1, -1, -1, -1, -1, -1, -1, -1, /* extended integer registers */ -1, -1, -1, -1, -1, -1, -1, -1, /* extended SSE registers */ }; /* Test and compare insns in i386.md store the information needed to generate branch and scc insns here. */ rtx ix86_compare_op0 = NULL_RTX; rtx ix86_compare_op1 = NULL_RTX; /* Define parameter passing and return registers. */ static int const x86_64_int_parameter_registers[6] = { DI_REG, SI_REG, DX_REG, CX_REG, R8_REG, R9_REG }; static int const x86_64_ms_abi_int_parameter_registers[4] = { CX_REG, DX_REG, R8_REG, R9_REG }; static int const x86_64_int_return_registers[4] = { AX_REG, DX_REG, DI_REG, SI_REG }; /* Define the structure for the machine field in struct function. */ struct GTY(()) stack_local_entry { unsigned short mode; unsigned short n; rtx rtl; struct stack_local_entry *next; }; /* Structure describing stack frame layout. Stack grows downward: [arguments] <- ARG_POINTER saved pc saved frame pointer if frame_pointer_needed <- HARD_FRAME_POINTER [saved regs] [padding0] [saved SSE regs] [padding1] \ ) [va_arg registers] ( > to_allocate <- FRAME_POINTER [frame] ( ) [padding2] / */ struct ix86_frame { int padding0; int nsseregs; int nregs; int padding1; int va_arg_size; HOST_WIDE_INT frame; int padding2; int outgoing_arguments_size; int red_zone_size; HOST_WIDE_INT to_allocate; /* The offsets relative to ARG_POINTER. */ HOST_WIDE_INT frame_pointer_offset; HOST_WIDE_INT hard_frame_pointer_offset; HOST_WIDE_INT stack_pointer_offset; /* When save_regs_using_mov is set, emit prologue using move instead of push instructions. */ bool save_regs_using_mov; }; /* Code model option. */ enum cmodel ix86_cmodel; /* Asm dialect. */ enum asm_dialect ix86_asm_dialect = ASM_ATT; /* TLS dialects. */ enum tls_dialect ix86_tls_dialect = TLS_DIALECT_GNU; /* Which unit we are generating floating point math for. */ enum fpmath_unit ix86_fpmath; /* Which cpu are we scheduling for. */ enum attr_cpu ix86_schedule; /* Which cpu are we optimizing for. */ enum processor_type ix86_tune; /* Which instruction set architecture to use. */ enum processor_type ix86_arch; /* true if sse prefetch instruction is not NOOP. */ int x86_prefetch_sse; /* ix86_regparm_string as a number */ static int ix86_regparm; /* -mstackrealign option */ extern int ix86_force_align_arg_pointer; static const char ix86_force_align_arg_pointer_string[] = "force_align_arg_pointer"; static rtx (*ix86_gen_leave) (void); static rtx (*ix86_gen_pop1) (rtx); static rtx (*ix86_gen_add3) (rtx, rtx, rtx); static rtx (*ix86_gen_sub3) (rtx, rtx, rtx); static rtx (*ix86_gen_sub3_carry) (rtx, rtx, rtx, rtx, rtx); static rtx (*ix86_gen_one_cmpl2) (rtx, rtx); static rtx (*ix86_gen_monitor) (rtx, rtx, rtx); static rtx (*ix86_gen_andsp) (rtx, rtx, rtx); /* Preferred alignment for stack boundary in bits. */ unsigned int ix86_preferred_stack_boundary; /* Alignment for incoming stack boundary in bits specified at command line. */ static unsigned int ix86_user_incoming_stack_boundary; /* Default alignment for incoming stack boundary in bits. */ static unsigned int ix86_default_incoming_stack_boundary; /* Alignment for incoming stack boundary in bits. */ unsigned int ix86_incoming_stack_boundary; /* The abi used by target. */ enum calling_abi ix86_abi; /* Values 1-5: see jump.c */ int ix86_branch_cost; /* Calling abi specific va_list type nodes. */ static GTY(()) tree sysv_va_list_type_node; static GTY(()) tree ms_va_list_type_node; /* Variables which are this size or smaller are put in the data/bss or ldata/lbss sections. */ int ix86_section_threshold = 65536; /* Prefix built by ASM_GENERATE_INTERNAL_LABEL. */ char internal_label_prefix[16]; int internal_label_prefix_len; /* Fence to use after loop using movnt. */ tree x86_mfence; /* Register class used for passing given 64bit part of the argument. These represent classes as documented by the PS ABI, with the exception of SSESF, SSEDF classes, that are basically SSE class, just gcc will use SF or DFmode move instead of DImode to avoid reformatting penalties. Similarly we play games with INTEGERSI_CLASS to use cheaper SImode moves whenever possible (upper half does contain padding). */ enum x86_64_reg_class { X86_64_NO_CLASS, X86_64_INTEGER_CLASS, X86_64_INTEGERSI_CLASS, X86_64_SSE_CLASS, X86_64_SSESF_CLASS, X86_64_SSEDF_CLASS, X86_64_SSEUP_CLASS, X86_64_X87_CLASS, X86_64_X87UP_CLASS, X86_64_COMPLEX_X87_CLASS, X86_64_MEMORY_CLASS }; #define MAX_CLASSES 4 /* Table of constants used by fldpi, fldln2, etc.... */ static REAL_VALUE_TYPE ext_80387_constants_table [5]; static bool ext_80387_constants_init = 0; static struct machine_function * ix86_init_machine_status (void); static rtx ix86_function_value (const_tree, const_tree, bool); static rtx ix86_static_chain (const_tree, bool); static int ix86_function_regparm (const_tree, const_tree); static void ix86_compute_frame_layout (struct ix86_frame *); static bool ix86_expand_vector_init_one_nonzero (bool, enum machine_mode, rtx, rtx, int); static void ix86_add_new_builtins (int); static rtx ix86_expand_vec_perm_builtin (tree); enum ix86_function_specific_strings { IX86_FUNCTION_SPECIFIC_ARCH, IX86_FUNCTION_SPECIFIC_TUNE, IX86_FUNCTION_SPECIFIC_FPMATH, IX86_FUNCTION_SPECIFIC_MAX }; static char *ix86_target_string (int, int, const char *, const char *, const char *, bool); static void ix86_debug_options (void) ATTRIBUTE_UNUSED; static void ix86_function_specific_save (struct cl_target_option *); static void ix86_function_specific_restore (struct cl_target_option *); static void ix86_function_specific_print (FILE *, int, struct cl_target_option *); static bool ix86_valid_target_attribute_p (tree, tree, tree, int); static bool ix86_valid_target_attribute_inner_p (tree, char *[]); static bool ix86_can_inline_p (tree, tree); static void ix86_set_current_function (tree); static unsigned int ix86_minimum_incoming_stack_boundary (bool); static enum calling_abi ix86_function_abi (const_tree); #ifndef SUBTARGET32_DEFAULT_CPU #define SUBTARGET32_DEFAULT_CPU "i386" #endif /* The svr4 ABI for the i386 says that records and unions are returned in memory. */ #ifndef DEFAULT_PCC_STRUCT_RETURN #define DEFAULT_PCC_STRUCT_RETURN 1 #endif /* Whether -mtune= or -march= were specified */ static int ix86_tune_defaulted; static int ix86_arch_specified; /* Bit flags that specify the ISA we are compiling for. */ int ix86_isa_flags = TARGET_64BIT_DEFAULT | TARGET_SUBTARGET_ISA_DEFAULT; /* A mask of ix86_isa_flags that includes bit X if X was set or cleared on the command line. */ static int ix86_isa_flags_explicit; /* Define a set of ISAs which are available when a given ISA is enabled. MMX and SSE ISAs are handled separately. */ #define OPTION_MASK_ISA_MMX_SET OPTION_MASK_ISA_MMX #define OPTION_MASK_ISA_3DNOW_SET \ (OPTION_MASK_ISA_3DNOW | OPTION_MASK_ISA_MMX_SET) #define OPTION_MASK_ISA_SSE_SET OPTION_MASK_ISA_SSE #define OPTION_MASK_ISA_SSE2_SET \ (OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE_SET) #define OPTION_MASK_ISA_SSE3_SET \ (OPTION_MASK_ISA_SSE3 | OPTION_MASK_ISA_SSE2_SET) #define OPTION_MASK_ISA_SSSE3_SET \ (OPTION_MASK_ISA_SSSE3 | OPTION_MASK_ISA_SSE3_SET) #define OPTION_MASK_ISA_SSE4_1_SET \ (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSSE3_SET) #define OPTION_MASK_ISA_SSE4_2_SET \ (OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_SSE4_1_SET) #define OPTION_MASK_ISA_AVX_SET \ (OPTION_MASK_ISA_AVX | OPTION_MASK_ISA_SSE4_2_SET) #define OPTION_MASK_ISA_FMA_SET \ (OPTION_MASK_ISA_FMA | OPTION_MASK_ISA_AVX_SET) /* SSE4 includes both SSE4.1 and SSE4.2. -msse4 should be the same as -msse4.2. */ #define OPTION_MASK_ISA_SSE4_SET OPTION_MASK_ISA_SSE4_2_SET #define OPTION_MASK_ISA_SSE4A_SET \ (OPTION_MASK_ISA_SSE4A | OPTION_MASK_ISA_SSE3_SET) #define OPTION_MASK_ISA_FMA4_SET \ (OPTION_MASK_ISA_FMA4 | OPTION_MASK_ISA_SSE4A_SET \ | OPTION_MASK_ISA_AVX_SET) #define OPTION_MASK_ISA_XOP_SET \ (OPTION_MASK_ISA_XOP | OPTION_MASK_ISA_FMA4_SET) #define OPTION_MASK_ISA_LWP_SET \ OPTION_MASK_ISA_LWP /* AES and PCLMUL need SSE2 because they use xmm registers */ #define OPTION_MASK_ISA_AES_SET \ (OPTION_MASK_ISA_AES | OPTION_MASK_ISA_SSE2_SET) #define OPTION_MASK_ISA_PCLMUL_SET \ (OPTION_MASK_ISA_PCLMUL | OPTION_MASK_ISA_SSE2_SET) #define OPTION_MASK_ISA_ABM_SET \ (OPTION_MASK_ISA_ABM | OPTION_MASK_ISA_POPCNT) #define OPTION_MASK_ISA_POPCNT_SET OPTION_MASK_ISA_POPCNT #define OPTION_MASK_ISA_CX16_SET OPTION_MASK_ISA_CX16 #define OPTION_MASK_ISA_SAHF_SET OPTION_MASK_ISA_SAHF #define OPTION_MASK_ISA_MOVBE_SET OPTION_MASK_ISA_MOVBE #define OPTION_MASK_ISA_CRC32_SET OPTION_MASK_ISA_CRC32 /* Define a set of ISAs which aren't available when a given ISA is disabled. MMX and SSE ISAs are handled separately. */ #define OPTION_MASK_ISA_MMX_UNSET \ (OPTION_MASK_ISA_MMX | OPTION_MASK_ISA_3DNOW_UNSET) #define OPTION_MASK_ISA_3DNOW_UNSET \ (OPTION_MASK_ISA_3DNOW | OPTION_MASK_ISA_3DNOW_A_UNSET) #define OPTION_MASK_ISA_3DNOW_A_UNSET OPTION_MASK_ISA_3DNOW_A #define OPTION_MASK_ISA_SSE_UNSET \ (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_SSE2_UNSET) #define OPTION_MASK_ISA_SSE2_UNSET \ (OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE3_UNSET) #define OPTION_MASK_ISA_SSE3_UNSET \ (OPTION_MASK_ISA_SSE3 \ | OPTION_MASK_ISA_SSSE3_UNSET \ | OPTION_MASK_ISA_SSE4A_UNSET ) #define OPTION_MASK_ISA_SSSE3_UNSET \ (OPTION_MASK_ISA_SSSE3 | OPTION_MASK_ISA_SSE4_1_UNSET) #define OPTION_MASK_ISA_SSE4_1_UNSET \ (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_SSE4_2_UNSET) #define OPTION_MASK_ISA_SSE4_2_UNSET \ (OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_AVX_UNSET ) #define OPTION_MASK_ISA_AVX_UNSET \ (OPTION_MASK_ISA_AVX | OPTION_MASK_ISA_FMA_UNSET \ | OPTION_MASK_ISA_FMA4_UNSET) #define OPTION_MASK_ISA_FMA_UNSET OPTION_MASK_ISA_FMA /* SSE4 includes both SSE4.1 and SSE4.2. -mno-sse4 should the same as -mno-sse4.1. */ #define OPTION_MASK_ISA_SSE4_UNSET OPTION_MASK_ISA_SSE4_1_UNSET #define OPTION_MASK_ISA_SSE4A_UNSET \ (OPTION_MASK_ISA_SSE4A | OPTION_MASK_ISA_FMA4_UNSET) #define OPTION_MASK_ISA_FMA4_UNSET \ (OPTION_MASK_ISA_FMA4 | OPTION_MASK_ISA_XOP_UNSET) #define OPTION_MASK_ISA_XOP_UNSET OPTION_MASK_ISA_XOP #define OPTION_MASK_ISA_LWP_UNSET OPTION_MASK_ISA_LWP #define OPTION_MASK_ISA_AES_UNSET OPTION_MASK_ISA_AES #define OPTION_MASK_ISA_PCLMUL_UNSET OPTION_MASK_ISA_PCLMUL #define OPTION_MASK_ISA_ABM_UNSET OPTION_MASK_ISA_ABM #define OPTION_MASK_ISA_POPCNT_UNSET OPTION_MASK_ISA_POPCNT #define OPTION_MASK_ISA_CX16_UNSET OPTION_MASK_ISA_CX16 #define OPTION_MASK_ISA_SAHF_UNSET OPTION_MASK_ISA_SAHF #define OPTION_MASK_ISA_MOVBE_UNSET OPTION_MASK_ISA_MOVBE #define OPTION_MASK_ISA_CRC32_UNSET OPTION_MASK_ISA_CRC32 /* Vectorization library interface and handlers. */ tree (*ix86_veclib_handler)(enum built_in_function, tree, tree) = NULL; static tree ix86_veclibabi_svml (enum built_in_function, tree, tree); static tree ix86_veclibabi_acml (enum built_in_function, tree, tree); /* Processor target table, indexed by processor number */ struct ptt { const struct processor_costs *cost; /* Processor costs */ const int align_loop; /* Default alignments. */ const int align_loop_max_skip; const int align_jump; const int align_jump_max_skip; const int align_func; }; static const struct ptt processor_target_table[PROCESSOR_max] = { {&i386_cost, 4, 3, 4, 3, 4}, {&i486_cost, 16, 15, 16, 15, 16}, {&pentium_cost, 16, 7, 16, 7, 16}, {&pentiumpro_cost, 16, 15, 16, 10, 16}, {&geode_cost, 0, 0, 0, 0, 0}, {&k6_cost, 32, 7, 32, 7, 32}, {&athlon_cost, 16, 7, 16, 7, 16}, {&pentium4_cost, 0, 0, 0, 0, 0}, {&k8_cost, 16, 7, 16, 7, 16}, {&nocona_cost, 0, 0, 0, 0, 0}, {&core2_cost, 16, 10, 16, 10, 16}, {&generic32_cost, 16, 7, 16, 7, 16}, {&generic64_cost, 16, 10, 16, 10, 16}, {&amdfam10_cost, 32, 24, 32, 7, 32}, {&atom_cost, 16, 7, 16, 7, 16} }; static const char *const cpu_names[TARGET_CPU_DEFAULT_max] = { "generic", "i386", "i486", "pentium", "pentium-mmx", "pentiumpro", "pentium2", "pentium3", "pentium4", "pentium-m", "prescott", "nocona", "core2", "atom", "geode", "k6", "k6-2", "k6-3", "athlon", "athlon-4", "k8", "amdfam10" }; /* Implement TARGET_HANDLE_OPTION. */ static bool ix86_handle_option (size_t code, const char *arg ATTRIBUTE_UNUSED, int value) { switch (code) { case OPT_mmmx: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_MMX_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_MMX_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_MMX_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_MMX_UNSET; } return true; case OPT_m3dnow: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_3DNOW_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_3DNOW_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_3DNOW_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_3DNOW_UNSET; } return true; case OPT_m3dnowa: return false; case OPT_msse: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SSE_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SSE_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE_UNSET; } return true; case OPT_msse2: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SSE2_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE2_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SSE2_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE2_UNSET; } return true; case OPT_msse3: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SSE3_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE3_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SSE3_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE3_UNSET; } return true; case OPT_mssse3: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SSSE3_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSSE3_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SSSE3_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSSE3_UNSET; } return true; case OPT_msse4_1: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SSE4_1_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_1_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4_1_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_1_UNSET; } return true; case OPT_msse4_2: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SSE4_2_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_2_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4_2_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_2_UNSET; } return true; case OPT_mavx: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_AVX_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_AVX_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_AVX_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_AVX_UNSET; } return true; case OPT_mfma: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_FMA_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_FMA_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA_UNSET; } return true; case OPT_msse4: ix86_isa_flags |= OPTION_MASK_ISA_SSE4_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_SET; return true; case OPT_mno_sse4: ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4_UNSET; return true; case OPT_msse4a: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SSE4A_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4A_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SSE4A_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SSE4A_UNSET; } return true; case OPT_mfma4: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_FMA4_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA4_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_FMA4_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_FMA4_UNSET; } return true; case OPT_mxop: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_XOP_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_XOP_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_XOP_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_XOP_UNSET; } return true; case OPT_mlwp: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_LWP_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_LWP_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_LWP_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_LWP_UNSET; } return true; case OPT_mabm: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_ABM_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_ABM_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_ABM_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_ABM_UNSET; } return true; case OPT_mpopcnt: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_POPCNT_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_POPCNT_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_POPCNT_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_POPCNT_UNSET; } return true; case OPT_msahf: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_SAHF_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SAHF_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_SAHF_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_SAHF_UNSET; } return true; case OPT_mcx16: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_CX16_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_CX16_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_CX16_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_CX16_UNSET; } return true; case OPT_mmovbe: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_MOVBE_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_MOVBE_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_MOVBE_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_MOVBE_UNSET; } return true; case OPT_mcrc32: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_CRC32_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_CRC32_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_CRC32_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_CRC32_UNSET; } return true; case OPT_maes: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_AES_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_AES_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_AES_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_AES_UNSET; } return true; case OPT_mpclmul: if (value) { ix86_isa_flags |= OPTION_MASK_ISA_PCLMUL_SET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_PCLMUL_SET; } else { ix86_isa_flags &= ~OPTION_MASK_ISA_PCLMUL_UNSET; ix86_isa_flags_explicit |= OPTION_MASK_ISA_PCLMUL_UNSET; } return true; default: return true; } } /* Return a string that documents the current -m options. The caller is responsible for freeing the string. */ static char * ix86_target_string (int isa, int flags, const char *arch, const char *tune, const char *fpmath, bool add_nl_p) { struct ix86_target_opts { const char *option; /* option string */ int mask; /* isa mask options */ }; /* This table is ordered so that options like -msse4.2 that imply preceding options while match those first. */ static struct ix86_target_opts isa_opts[] = { { "-m64", OPTION_MASK_ISA_64BIT }, { "-mfma4", OPTION_MASK_ISA_FMA4 }, { "-mfma", OPTION_MASK_ISA_FMA }, { "-mxop", OPTION_MASK_ISA_XOP }, { "-mlwp", OPTION_MASK_ISA_LWP }, { "-msse4a", OPTION_MASK_ISA_SSE4A }, { "-msse4.2", OPTION_MASK_ISA_SSE4_2 }, { "-msse4.1", OPTION_MASK_ISA_SSE4_1 }, { "-mssse3", OPTION_MASK_ISA_SSSE3 }, { "-msse3", OPTION_MASK_ISA_SSE3 }, { "-msse2", OPTION_MASK_ISA_SSE2 }, { "-msse", OPTION_MASK_ISA_SSE }, { "-m3dnow", OPTION_MASK_ISA_3DNOW }, { "-m3dnowa", OPTION_MASK_ISA_3DNOW_A }, { "-mmmx", OPTION_MASK_ISA_MMX }, { "-mabm", OPTION_MASK_ISA_ABM }, { "-mpopcnt", OPTION_MASK_ISA_POPCNT }, { "-mmovbe", OPTION_MASK_ISA_MOVBE }, { "-mcrc32", OPTION_MASK_ISA_CRC32 }, { "-maes", OPTION_MASK_ISA_AES }, { "-mpclmul", OPTION_MASK_ISA_PCLMUL }, }; /* Flag options. */ static struct ix86_target_opts flag_opts[] = { { "-m128bit-long-double", MASK_128BIT_LONG_DOUBLE }, { "-m80387", MASK_80387 }, { "-maccumulate-outgoing-args", MASK_ACCUMULATE_OUTGOING_ARGS }, { "-malign-double", MASK_ALIGN_DOUBLE }, { "-mcld", MASK_CLD }, { "-mfp-ret-in-387", MASK_FLOAT_RETURNS }, { "-mieee-fp", MASK_IEEE_FP }, { "-minline-all-stringops", MASK_INLINE_ALL_STRINGOPS }, { "-minline-stringops-dynamically", MASK_INLINE_STRINGOPS_DYNAMICALLY }, { "-mms-bitfields", MASK_MS_BITFIELD_LAYOUT }, { "-mno-align-stringops", MASK_NO_ALIGN_STRINGOPS }, { "-mno-fancy-math-387", MASK_NO_FANCY_MATH_387 }, { "-mno-push-args", MASK_NO_PUSH_ARGS }, { "-mno-red-zone", MASK_NO_RED_ZONE }, { "-momit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER }, { "-mrecip", MASK_RECIP }, { "-mrtd", MASK_RTD }, { "-msseregparm", MASK_SSEREGPARM }, { "-mstack-arg-probe", MASK_STACK_PROBE }, { "-mtls-direct-seg-refs", MASK_TLS_DIRECT_SEG_REFS }, }; const char *opts[ARRAY_SIZE (isa_opts) + ARRAY_SIZE (flag_opts) + 6][2]; char isa_other[40]; char target_other[40]; unsigned num = 0; unsigned i, j; char *ret; char *ptr; size_t len; size_t line_len; size_t sep_len; memset (opts, '\0', sizeof (opts)); /* Add -march= option. */ if (arch) { opts[num][0] = "-march="; opts[num++][1] = arch; } /* Add -mtune= option. */ if (tune) { opts[num][0] = "-mtune="; opts[num++][1] = tune; } /* Pick out the options in isa options. */ for (i = 0; i < ARRAY_SIZE (isa_opts); i++) { if ((isa & isa_opts[i].mask) != 0) { opts[num++][0] = isa_opts[i].option; isa &= ~ isa_opts[i].mask; } } if (isa && add_nl_p) { opts[num++][0] = isa_other; sprintf (isa_other, "(other isa: 0x%x)", isa); } /* Add flag options. */ for (i = 0; i < ARRAY_SIZE (flag_opts); i++) { if ((flags & flag_opts[i].mask) != 0) { opts[num++][0] = flag_opts[i].option; flags &= ~ flag_opts[i].mask; } } if (flags && add_nl_p) { opts[num++][0] = target_other; sprintf (target_other, "(other flags: 0x%x)", flags); } /* Add -fpmath= option. */ if (fpmath) { opts[num][0] = "-mfpmath="; opts[num++][1] = fpmath; } /* Any options? */ if (num == 0) return NULL; gcc_assert (num < ARRAY_SIZE (opts)); /* Size the string. */ len = 0; sep_len = (add_nl_p) ? 3 : 1; for (i = 0; i < num; i++) { len += sep_len; for (j = 0; j < 2; j++) if (opts[i][j]) len += strlen (opts[i][j]); } /* Build the string. */ ret = ptr = (char *) xmalloc (len); line_len = 0; for (i = 0; i < num; i++) { size_t len2[2]; for (j = 0; j < 2; j++) len2[j] = (opts[i][j]) ? strlen (opts[i][j]) : 0; if (i != 0) { *ptr++ = ' '; line_len++; if (add_nl_p && line_len + len2[0] + len2[1] > 70) { *ptr++ = '\\'; *ptr++ = '\n'; line_len = 0; } } for (j = 0; j < 2; j++) if (opts[i][j]) { memcpy (ptr, opts[i][j], len2[j]); ptr += len2[j]; line_len += len2[j]; } } *ptr = '\0'; gcc_assert (ret + len >= ptr); return ret; } /* Function that is callable from the debugger to print the current options. */ void ix86_debug_options (void) { char *opts = ix86_target_string (ix86_isa_flags, target_flags, ix86_arch_string, ix86_tune_string, ix86_fpmath_string, true); if (opts) { fprintf (stderr, "%s\n\n", opts); free (opts); } else fputs ("<no options>\n\n", stderr); return; } /* Sometimes certain combinations of command options do not make sense on a particular target machine. You can define a macro `OVERRIDE_OPTIONS' to take account of this. This macro, if defined, is executed once just after all the command options have been parsed. Don't use this macro to turn on various extra optimizations for `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */ void override_options (bool main_args_p) { int i; unsigned int ix86_arch_mask, ix86_tune_mask; const bool ix86_tune_specified = (ix86_tune_string != NULL); const char *prefix; const char *suffix; const char *sw; /* Comes from final.c -- no real reason to change it. */ #define MAX_CODE_ALIGN 16 enum pta_flags { PTA_SSE = 1 << 0, PTA_SSE2 = 1 << 1, PTA_SSE3 = 1 << 2, PTA_MMX = 1 << 3, PTA_PREFETCH_SSE = 1 << 4, PTA_3DNOW = 1 << 5, PTA_3DNOW_A = 1 << 6, PTA_64BIT = 1 << 7, PTA_SSSE3 = 1 << 8, PTA_CX16 = 1 << 9, PTA_POPCNT = 1 << 10, PTA_ABM = 1 << 11, PTA_SSE4A = 1 << 12, PTA_NO_SAHF = 1 << 13, PTA_SSE4_1 = 1 << 14, PTA_SSE4_2 = 1 << 15, PTA_AES = 1 << 16, PTA_PCLMUL = 1 << 17, PTA_AVX = 1 << 18, PTA_FMA = 1 << 19, PTA_MOVBE = 1 << 20, PTA_FMA4 = 1 << 21, PTA_XOP = 1 << 22, PTA_LWP = 1 << 23 }; static struct pta { const char *const name; /* processor name or nickname. */ const enum processor_type processor; const enum attr_cpu schedule; const unsigned /*enum pta_flags*/ flags; } const processor_alias_table[] = { {"i386", PROCESSOR_I386, CPU_NONE, 0}, {"i486", PROCESSOR_I486, CPU_NONE, 0}, {"i586", PROCESSOR_PENTIUM, CPU_PENTIUM, 0}, {"pentium", PROCESSOR_PENTIUM, CPU_PENTIUM, 0}, {"pentium-mmx", PROCESSOR_PENTIUM, CPU_PENTIUM, PTA_MMX}, {"winchip-c6", PROCESSOR_I486, CPU_NONE, PTA_MMX}, {"winchip2", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW}, {"c3", PROCESSOR_I486, CPU_NONE, PTA_MMX | PTA_3DNOW}, {"c3-2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE}, {"i686", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0}, {"pentiumpro", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, 0}, {"pentium2", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX}, {"pentium3", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE}, {"pentium3m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE}, {"pentium-m", PROCESSOR_PENTIUMPRO, CPU_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_SSE2}, {"pentium4", PROCESSOR_PENTIUM4, CPU_NONE, PTA_MMX |PTA_SSE | PTA_SSE2}, {"pentium4m", PROCESSOR_PENTIUM4, CPU_NONE, PTA_MMX | PTA_SSE | PTA_SSE2}, {"prescott", PROCESSOR_NOCONA, CPU_NONE, PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3}, {"nocona", PROCESSOR_NOCONA, CPU_NONE, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_CX16 | PTA_NO_SAHF}, {"core2", PROCESSOR_CORE2, CPU_CORE2, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16}, {"atom", PROCESSOR_ATOM, CPU_ATOM, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSSE3 | PTA_CX16 | PTA_MOVBE}, {"geode", PROCESSOR_GEODE, CPU_GEODE, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A |PTA_PREFETCH_SSE}, {"k6", PROCESSOR_K6, CPU_K6, PTA_MMX}, {"k6-2", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW}, {"k6-3", PROCESSOR_K6, CPU_K6, PTA_MMX | PTA_3DNOW}, {"athlon", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE}, {"athlon-tbird", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_PREFETCH_SSE}, {"athlon-4", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, {"athlon-xp", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, {"athlon-mp", PROCESSOR_ATHLON, CPU_ATHLON, PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE}, {"x86-64", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF}, {"k8", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF}, {"k8-sse3", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF}, {"opteron", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF}, {"opteron-sse3", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF}, {"athlon64", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF}, {"athlon64-sse3", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_NO_SAHF}, {"athlon-fx", PROCESSOR_K8, CPU_K8, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_NO_SAHF}, {"amdfam10", PROCESSOR_AMDFAM10, CPU_AMDFAM10, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM}, {"barcelona", PROCESSOR_AMDFAM10, CPU_AMDFAM10, PTA_64BIT | PTA_MMX | PTA_3DNOW | PTA_3DNOW_A | PTA_SSE | PTA_SSE2 | PTA_SSE3 | PTA_SSE4A | PTA_CX16 | PTA_ABM}, {"generic32", PROCESSOR_GENERIC32, CPU_PENTIUMPRO, 0 /* flags are only used for -march switch. */ }, {"generic64", PROCESSOR_GENERIC64, CPU_GENERIC64, PTA_64BIT /* flags are only used for -march switch. */ }, }; int const pta_size = ARRAY_SIZE (processor_alias_table); /* Set up prefix/suffix so the error messages refer to either the command line argument, or the attribute(target). */ if (main_args_p) { prefix = "-m"; suffix = ""; sw = "switch"; } else { prefix = "option(\""; suffix = "\")"; sw = "attribute"; } #ifdef SUBTARGET_OVERRIDE_OPTIONS SUBTARGET_OVERRIDE_OPTIONS; #endif #ifdef SUBSUBTARGET_OVERRIDE_OPTIONS SUBSUBTARGET_OVERRIDE_OPTIONS; #endif /* -fPIC is the default for x86_64. */ if (TARGET_MACHO && TARGET_64BIT) flag_pic = 2; /* Set the default values for switches whose default depends on TARGET_64BIT in case they weren't overwritten by command line options. */ if (TARGET_64BIT) { /* Mach-O doesn't support omitting the frame pointer for now. */ if (flag_omit_frame_pointer == 2) flag_omit_frame_pointer = (TARGET_MACHO ? 0 : 1); if (flag_asynchronous_unwind_tables == 2) flag_asynchronous_unwind_tables = 1; if (flag_pcc_struct_return == 2) flag_pcc_struct_return = 0; } else { if (flag_omit_frame_pointer == 2) flag_omit_frame_pointer = 0; if (flag_asynchronous_unwind_tables == 2) flag_asynchronous_unwind_tables = 0; if (flag_pcc_struct_return == 2) flag_pcc_struct_return = DEFAULT_PCC_STRUCT_RETURN; } /* Need to check -mtune=generic first. */ if (ix86_tune_string) { if (!strcmp (ix86_tune_string, "generic") || !strcmp (ix86_tune_string, "i686") /* As special support for cross compilers we read -mtune=native as -mtune=generic. With native compilers we won't see the -mtune=native, as it was changed by the driver. */ || !strcmp (ix86_tune_string, "native")) { if (TARGET_64BIT) ix86_tune_string = "generic64"; else ix86_tune_string = "generic32"; } /* If this call is for setting the option attribute, allow the generic32/generic64 that was previously set. */ else if (!main_args_p && (!strcmp (ix86_tune_string, "generic32") || !strcmp (ix86_tune_string, "generic64"))) ; else if (!strncmp (ix86_tune_string, "generic", 7)) error ("bad value (%s) for %stune=%s %s", ix86_tune_string, prefix, suffix, sw); else if (!strcmp (ix86_tune_string, "x86-64")) warning (OPT_Wdeprecated, "%stune=x86-64%s is deprecated. Use " "%stune=k8%s or %stune=generic%s instead as appropriate.", prefix, suffix, prefix, suffix, prefix, suffix); } else { if (ix86_arch_string) ix86_tune_string = ix86_arch_string; if (!ix86_tune_string) { ix86_tune_string = cpu_names[TARGET_CPU_DEFAULT]; ix86_tune_defaulted = 1; } /* ix86_tune_string is set to ix86_arch_string or defaulted. We need to use a sensible tune option. */ if (!strcmp (ix86_tune_string, "generic") || !strcmp (ix86_tune_string, "x86-64") || !strcmp (ix86_tune_string, "i686")) { if (TARGET_64BIT) ix86_tune_string = "generic64"; else ix86_tune_string = "generic32"; } } if (ix86_stringop_string) { if (!strcmp (ix86_stringop_string, "rep_byte")) stringop_alg = rep_prefix_1_byte; else if (!strcmp (ix86_stringop_string, "libcall")) stringop_alg = libcall; else if (!strcmp (ix86_stringop_string, "rep_4byte")) stringop_alg = rep_prefix_4_byte; else if (!strcmp (ix86_stringop_string, "rep_8byte") && TARGET_64BIT) /* rep; movq isn't available in 32-bit code. */ stringop_alg = rep_prefix_8_byte; else if (!strcmp (ix86_stringop_string, "byte_loop")) stringop_alg = loop_1_byte; else if (!strcmp (ix86_stringop_string, "loop")) stringop_alg = loop; else if (!strcmp (ix86_stringop_string, "unrolled_loop")) stringop_alg = unrolled_loop; else error ("bad value (%s) for %sstringop-strategy=%s %s", ix86_stringop_string, prefix, suffix, sw); } if (!ix86_arch_string) ix86_arch_string = TARGET_64BIT ? "x86-64" : SUBTARGET32_DEFAULT_CPU; else ix86_arch_specified = 1; /* Validate -mabi= value. */ if (ix86_abi_string) { if (strcmp (ix86_abi_string, "sysv") == 0) ix86_abi = SYSV_ABI; else if (strcmp (ix86_abi_string, "ms") == 0) ix86_abi = MS_ABI; else error ("unknown ABI (%s) for %sabi=%s %s", ix86_abi_string, prefix, suffix, sw); } else ix86_abi = DEFAULT_ABI; if (ix86_cmodel_string != 0) { if (!strcmp (ix86_cmodel_string, "small")) ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL; else if (!strcmp (ix86_cmodel_string, "medium")) ix86_cmodel = flag_pic ? CM_MEDIUM_PIC : CM_MEDIUM; else if (!strcmp (ix86_cmodel_string, "large")) ix86_cmodel = flag_pic ? CM_LARGE_PIC : CM_LARGE; else if (flag_pic) error ("code model %s does not support PIC mode", ix86_cmodel_string); else if (!strcmp (ix86_cmodel_string, "32")) ix86_cmodel = CM_32; else if (!strcmp (ix86_cmodel_string, "kernel") && !flag_pic) ix86_cmodel = CM_KERNEL; else error ("bad value (%s) for %scmodel=%s %s", ix86_cmodel_string, prefix, suffix, sw); } else { /* For TARGET_64BIT and MS_ABI, force pic on, in order to enable the use of rip-relative addressing. This eliminates fixups that would otherwise be needed if this object is to be placed in a DLL, and is essentially just as efficient as direct addressing. */ if (TARGET_64BIT && DEFAULT_ABI == MS_ABI) ix86_cmodel = CM_SMALL_PIC, flag_pic = 1; else if (TARGET_64BIT) ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL; else ix86_cmodel = CM_32; } if (ix86_asm_string != 0) { if (! TARGET_MACHO && !strcmp (ix86_asm_string, "intel")) ix86_asm_dialect = ASM_INTEL; else if (!strcmp (ix86_asm_string, "att")) ix86_asm_dialect = ASM_ATT; else error ("bad value (%s) for %sasm=%s %s", ix86_asm_string, prefix, suffix, sw); } if ((TARGET_64BIT == 0) != (ix86_cmodel == CM_32)) error ("code model %qs not supported in the %s bit mode", ix86_cmodel_string, TARGET_64BIT ? "64" : "32"); if ((TARGET_64BIT != 0) != ((ix86_isa_flags & OPTION_MASK_ISA_64BIT) != 0)) sorry ("%i-bit mode not compiled in", (ix86_isa_flags & OPTION_MASK_ISA_64BIT) ? 64 : 32); for (i = 0; i < pta_size; i++) if (! strcmp (ix86_arch_string, processor_alias_table[i].name)) { ix86_schedule = processor_alias_table[i].schedule; ix86_arch = processor_alias_table[i].processor; /* Default cpu tuning to the architecture. */ ix86_tune = ix86_arch; if (TARGET_64BIT && !(processor_alias_table[i].flags & PTA_64BIT)) error ("CPU you selected does not support x86-64 " "instruction set"); if (processor_alias_table[i].flags & PTA_MMX && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_MMX)) ix86_isa_flags |= OPTION_MASK_ISA_MMX; if (processor_alias_table[i].flags & PTA_3DNOW && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW)) ix86_isa_flags |= OPTION_MASK_ISA_3DNOW; if (processor_alias_table[i].flags & PTA_3DNOW_A && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_3DNOW_A)) ix86_isa_flags |= OPTION_MASK_ISA_3DNOW_A; if (processor_alias_table[i].flags & PTA_SSE && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE)) ix86_isa_flags |= OPTION_MASK_ISA_SSE; if (processor_alias_table[i].flags & PTA_SSE2 && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE2)) ix86_isa_flags |= OPTION_MASK_ISA_SSE2; if (processor_alias_table[i].flags & PTA_SSE3 && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE3)) ix86_isa_flags |= OPTION_MASK_ISA_SSE3; if (processor_alias_table[i].flags & PTA_SSSE3 && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSSE3)) ix86_isa_flags |= OPTION_MASK_ISA_SSSE3; if (processor_alias_table[i].flags & PTA_SSE4_1 && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_1)) ix86_isa_flags |= OPTION_MASK_ISA_SSE4_1; if (processor_alias_table[i].flags & PTA_SSE4_2 && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4_2)) ix86_isa_flags |= OPTION_MASK_ISA_SSE4_2; if (processor_alias_table[i].flags & PTA_AVX && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_AVX)) ix86_isa_flags |= OPTION_MASK_ISA_AVX; if (processor_alias_table[i].flags & PTA_FMA && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA)) ix86_isa_flags |= OPTION_MASK_ISA_FMA; if (processor_alias_table[i].flags & PTA_SSE4A && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SSE4A)) ix86_isa_flags |= OPTION_MASK_ISA_SSE4A; if (processor_alias_table[i].flags & PTA_FMA4 && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_FMA4)) ix86_isa_flags |= OPTION_MASK_ISA_FMA4; if (processor_alias_table[i].flags & PTA_XOP && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_XOP)) ix86_isa_flags |= OPTION_MASK_ISA_XOP; if (processor_alias_table[i].flags & PTA_LWP && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_LWP)) ix86_isa_flags |= OPTION_MASK_ISA_LWP; if (processor_alias_table[i].flags & PTA_ABM && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_ABM)) ix86_isa_flags |= OPTION_MASK_ISA_ABM; if (processor_alias_table[i].flags & PTA_CX16 && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_CX16)) ix86_isa_flags |= OPTION_MASK_ISA_CX16; if (processor_alias_table[i].flags & (PTA_POPCNT | PTA_ABM) && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_POPCNT)) ix86_isa_flags |= OPTION_MASK_ISA_POPCNT; if (!(TARGET_64BIT && (processor_alias_table[i].flags & PTA_NO_SAHF)) && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_SAHF)) ix86_isa_flags |= OPTION_MASK_ISA_SAHF; if (processor_alias_table[i].flags & PTA_MOVBE && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_MOVBE)) ix86_isa_flags |= OPTION_MASK_ISA_MOVBE; if (processor_alias_table[i].flags & PTA_AES && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_AES)) ix86_isa_flags |= OPTION_MASK_ISA_AES; if (processor_alias_table[i].flags & PTA_PCLMUL && !(ix86_isa_flags_explicit & OPTION_MASK_ISA_PCLMUL)) ix86_isa_flags |= OPTION_MASK_ISA_PCLMUL; if (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE)) x86_prefetch_sse = true; break; } if (!strcmp (ix86_arch_string, "generic")) error ("generic CPU can be used only for %stune=%s %s", prefix, suffix, sw); else if (!strncmp (ix86_arch_string, "generic", 7) || i == pta_size) error ("bad value (%s) for %sarch=%s %s", ix86_arch_string, prefix, suffix, sw); ix86_arch_mask = 1u << ix86_arch; for (i = 0; i < X86_ARCH_LAST; ++i) ix86_arch_features[i] = !!(initial_ix86_arch_features[i] & ix86_arch_mask); for (i = 0; i < pta_size; i++) if (! strcmp (ix86_tune_string, processor_alias_table[i].name)) { ix86_schedule = processor_alias_table[i].schedule; ix86_tune = processor_alias_table[i].processor; if (TARGET_64BIT && !(processor_alias_table[i].flags & PTA_64BIT)) { if (ix86_tune_defaulted) { ix86_tune_string = "x86-64"; for (i = 0; i < pta_size; i++) if (! strcmp (ix86_tune_string, processor_alias_table[i].name)) break; ix86_schedule = processor_alias_table[i].schedule; ix86_tune = processor_alias_table[i].processor; } else error ("CPU you selected does not support x86-64 " "instruction set"); } /* Intel CPUs have always interpreted SSE prefetch instructions as NOPs; so, we can enable SSE prefetch instructions even when -mtune (rather than -march) points us to a processor that has them. However, the VIA C3 gives a SIGILL, so we only do that for i686 and higher processors. */ if (TARGET_CMOVE && (processor_alias_table[i].flags & (PTA_PREFETCH_SSE | PTA_SSE))) x86_prefetch_sse = true; break; } if (ix86_tune_specified && i == pta_size) error ("bad value (%s) for %stune=%s %s", ix86_tune_string, prefix, suffix, sw); ix86_tune_mask = 1u << ix86_tune; for (i = 0; i < X86_TUNE_LAST; ++i) ix86_tune_features[i] = !!(initial_ix86_tune_features[i] & ix86_tune_mask); if (optimize_size) ix86_cost = &ix86_size_cost; else ix86_cost = processor_target_table[ix86_tune].cost; /* Arrange to set up i386_stack_locals for all functions. */ init_machine_status = ix86_init_machine_status; /* Validate -mregparm= value. */ if (ix86_regparm_string) { if (TARGET_64BIT) warning (0, "%sregparm%s is ignored in 64-bit mode", prefix, suffix); i = atoi (ix86_regparm_string); if (i < 0 || i > REGPARM_MAX) error ("%sregparm=%d%s is not between 0 and %d", prefix, i, suffix, REGPARM_MAX); else ix86_regparm = i; } if (TARGET_64BIT) ix86_regparm = REGPARM_MAX; /* If the user has provided any of the -malign-* options, warn and use that value only if -falign-* is not set. Remove this code in GCC 3.2 or later. */ if (ix86_align_loops_string) { warning (0, "%salign-loops%s is obsolete, use -falign-loops%s", prefix, suffix, suffix); if (align_loops == 0) { i = atoi (ix86_align_loops_string); if (i < 0 || i > MAX_CODE_ALIGN) error ("%salign-loops=%d%s is not between 0 and %d", prefix, i, suffix, MAX_CODE_ALIGN); else align_loops = 1 << i; } } if (ix86_align_jumps_string) { warning (0, "%salign-jumps%s is obsolete, use -falign-jumps%s", prefix, suffix, suffix); if (align_jumps == 0) { i = atoi (ix86_align_jumps_string); if (i < 0 || i > MAX_CODE_ALIGN) error ("%salign-loops=%d%s is not between 0 and %d", prefix, i, suffix, MAX_CODE_ALIGN); else align_jumps = 1 << i; } } if (ix86_align_funcs_string) { warning (0, "%salign-functions%s is obsolete, use -falign-functions%s", prefix, suffix, suffix); if (align_functions == 0) { i = atoi (ix86_align_funcs_string); if (i < 0 || i > MAX_CODE_ALIGN) error ("%salign-loops=%d%s is not between 0 and %d", prefix, i, suffix, MAX_CODE_ALIGN); else align_functions = 1 << i; } } /* Default align_* from the processor table. */ if (align_loops == 0) { align_loops = processor_target_table[ix86_tune].align_loop; align_loops_max_skip = processor_target_table[ix86_tune].align_loop_max_skip; } if (align_jumps == 0) { align_jumps = processor_target_table[ix86_tune].align_jump; align_jumps_max_skip = processor_target_table[ix86_tune].align_jump_max_skip; } if (align_functions == 0) { align_functions = processor_target_table[ix86_tune].align_func; } /* Validate -mbranch-cost= value, or provide default. */ ix86_branch_cost = ix86_cost->branch_cost; if (ix86_branch_cost_string) { i = atoi (ix86_branch_cost_string); if (i < 0 || i > 5) error ("%sbranch-cost=%d%s is not between 0 and 5", prefix, i, suffix); else ix86_branch_cost = i; } if (ix86_section_threshold_string) { i = atoi (ix86_section_threshold_string); if (i < 0) error ("%slarge-data-threshold=%d%s is negative", prefix, i, suffix); else ix86_section_threshold = i; } if (ix86_tls_dialect_string) { if (strcmp (ix86_tls_dialect_string, "gnu") == 0) ix86_tls_dialect = TLS_DIALECT_GNU; else if (strcmp (ix86_tls_dialect_string, "gnu2") == 0) ix86_tls_dialect = TLS_DIALECT_GNU2; else error ("bad value (%s) for %stls-dialect=%s %s", ix86_tls_dialect_string, prefix, suffix, sw); } if (ix87_precision_string) { i = atoi (ix87_precision_string); if (i != 32 && i != 64 && i != 80) error ("pc%d is not valid precision setting (32, 64 or 80)", i); } if (TARGET_64BIT) { target_flags |= TARGET_SUBTARGET64_DEFAULT & ~target_flags_explicit; /* Enable by default the SSE and MMX builtins. Do allow the user to explicitly disable any of these. In particular, disabling SSE and MMX for kernel code is extremely useful. */ if (!ix86_arch_specified) ix86_isa_flags |= ((OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_MMX | TARGET_SUBTARGET64_ISA_DEFAULT) & ~ix86_isa_flags_explicit); if (TARGET_RTD) warning (0, "%srtd%s is ignored in 64bit mode", prefix, suffix); } else { target_flags |= TARGET_SUBTARGET32_DEFAULT & ~target_flags_explicit; if (!ix86_arch_specified) ix86_isa_flags |= TARGET_SUBTARGET32_ISA_DEFAULT & ~ix86_isa_flags_explicit; /* i386 ABI does not specify red zone. It still makes sense to use it when programmer takes care to stack from being destroyed. */ if (!(target_flags_explicit & MASK_NO_RED_ZONE)) target_flags |= MASK_NO_RED_ZONE; } /* Keep nonleaf frame pointers. */ if (flag_omit_frame_pointer) target_flags &= ~MASK_OMIT_LEAF_FRAME_POINTER; else if (TARGET_OMIT_LEAF_FRAME_POINTER) flag_omit_frame_pointer = 1; /* If we're doing fast math, we don't care about comparison order wrt NaNs. This lets us use a shorter comparison sequence. */ if (flag_finite_math_only) target_flags &= ~MASK_IEEE_FP; /* If the architecture always has an FPU, turn off NO_FANCY_MATH_387, since the insns won't need emulation. */ if (x86_arch_always_fancy_math_387 & ix86_arch_mask) target_flags &= ~MASK_NO_FANCY_MATH_387; /* Likewise, if the target doesn't have a 387, or we've specified software floating point, don't use 387 inline intrinsics. */ if (!TARGET_80387) target_flags |= MASK_NO_FANCY_MATH_387; /* Turn on MMX builtins for -msse. */ if (TARGET_SSE) { ix86_isa_flags |= OPTION_MASK_ISA_MMX & ~ix86_isa_flags_explicit; x86_prefetch_sse = true; } /* Turn on popcnt instruction for -msse4.2 or -mabm. */ if (TARGET_SSE4_2 || TARGET_ABM) ix86_isa_flags |= OPTION_MASK_ISA_POPCNT & ~ix86_isa_flags_explicit; /* Validate -mpreferred-stack-boundary= value or default it to PREFERRED_STACK_BOUNDARY_DEFAULT. */ ix86_preferred_stack_boundary = PREFERRED_STACK_BOUNDARY_DEFAULT; if (ix86_preferred_stack_boundary_string) { i = atoi (ix86_preferred_stack_boundary_string); if (i < (TARGET_64BIT ? 4 : 2) || i > 12) error ("%spreferred-stack-boundary=%d%s is not between %d and 12", prefix, i, suffix, TARGET_64BIT ? 4 : 2); else ix86_preferred_stack_boundary = (1 << i) * BITS_PER_UNIT; } /* Set the default value for -mstackrealign. */ if (ix86_force_align_arg_pointer == -1) ix86_force_align_arg_pointer = STACK_REALIGN_DEFAULT; ix86_default_incoming_stack_boundary = PREFERRED_STACK_BOUNDARY; /* Validate -mincoming-stack-boundary= value or default it to MIN_STACK_BOUNDARY/PREFERRED_STACK_BOUNDARY. */ ix86_incoming_stack_boundary = ix86_default_incoming_stack_boundary; if (ix86_incoming_stack_boundary_string) { i = atoi (ix86_incoming_stack_boundary_string); if (i < (TARGET_64BIT ? 4 : 2) || i > 12) error ("-mincoming-stack-boundary=%d is not between %d and 12", i, TARGET_64BIT ? 4 : 2); else { ix86_user_incoming_stack_boundary = (1 << i) * BITS_PER_UNIT; ix86_incoming_stack_boundary = ix86_user_incoming_stack_boundary; } } /* Accept -msseregparm only if at least SSE support is enabled. */ if (TARGET_SSEREGPARM && ! TARGET_SSE) error ("%ssseregparm%s used without SSE enabled", prefix, suffix); ix86_fpmath = TARGET_FPMATH_DEFAULT; if (ix86_fpmath_string != 0) { if (! strcmp (ix86_fpmath_string, "387")) ix86_fpmath = FPMATH_387; else if (! strcmp (ix86_fpmath_string, "sse")) { if (!TARGET_SSE) { warning (0, "SSE instruction set disabled, using 387 arithmetics"); ix86_fpmath = FPMATH_387; } else ix86_fpmath = FPMATH_SSE; } else if (! strcmp (ix86_fpmath_string, "387,sse") || ! strcmp (ix86_fpmath_string, "387+sse") || ! strcmp (ix86_fpmath_string, "sse,387") || ! strcmp (ix86_fpmath_string, "sse+387") || ! strcmp (ix86_fpmath_string, "both")) { if (!TARGET_SSE) { warning (0, "SSE instruction set disabled, using 387 arithmetics"); ix86_fpmath = FPMATH_387; } else if (!TARGET_80387) { warning (0, "387 instruction set disabled, using SSE arithmetics"); ix86_fpmath = FPMATH_SSE; } else ix86_fpmath = (enum fpmath_unit) (FPMATH_SSE | FPMATH_387); } else error ("bad value (%s) for %sfpmath=%s %s", ix86_fpmath_string, prefix, suffix, sw); } /* If the i387 is disabled, then do not return values in it. */ if (!TARGET_80387) target_flags &= ~MASK_FLOAT_RETURNS; /* Use external vectorized library in vectorizing intrinsics. */ if (ix86_veclibabi_string) { if (strcmp (ix86_veclibabi_string, "svml") == 0) ix86_veclib_handler = ix86_veclibabi_svml; else if (strcmp (ix86_veclibabi_string, "acml") == 0) ix86_veclib_handler = ix86_veclibabi_acml; else error ("unknown vectorization library ABI type (%s) for " "%sveclibabi=%s %s", ix86_veclibabi_string, prefix, suffix, sw); } if ((x86_accumulate_outgoing_args & ix86_tune_mask) && !(target_flags_explicit & MASK_ACCUMULATE_OUTGOING_ARGS) && !optimize_size) target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; /* ??? Unwind info is not correct around the CFG unless either a frame pointer is present or M_A_O_A is set. Fixing this requires rewriting unwind info generation to be aware of the CFG and propagating states around edges. */ if ((flag_unwind_tables || flag_asynchronous_unwind_tables || flag_exceptions || flag_non_call_exceptions) && flag_omit_frame_pointer && !(target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)) { if (target_flags_explicit & MASK_ACCUMULATE_OUTGOING_ARGS) warning (0, "unwind tables currently require either a frame pointer " "or %saccumulate-outgoing-args%s for correctness", prefix, suffix); target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; } /* If stack probes are required, the space used for large function arguments on the stack must also be probed, so enable -maccumulate-outgoing-args so this happens in the prologue. */ if (TARGET_STACK_PROBE && !(target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)) { if (target_flags_explicit & MASK_ACCUMULATE_OUTGOING_ARGS) warning (0, "stack probing requires %saccumulate-outgoing-args%s " "for correctness", prefix, suffix); target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; } /* For sane SSE instruction set generation we need fcomi instruction. It is safe to enable all CMOVE instructions. */ if (TARGET_SSE) TARGET_CMOVE = 1; /* Figure out what ASM_GENERATE_INTERNAL_LABEL builds as a prefix. */ { char *p; ASM_GENERATE_INTERNAL_LABEL (internal_label_prefix, "LX", 0); p = strchr (internal_label_prefix, 'X'); internal_label_prefix_len = p - internal_label_prefix; *p = '\0'; } /* When scheduling description is not available, disable scheduler pass so it won't slow down the compilation and make x87 code slower. */ if (!TARGET_SCHEDULE) flag_schedule_insns_after_reload = flag_schedule_insns = 0; if (!PARAM_SET_P (PARAM_SIMULTANEOUS_PREFETCHES)) set_param_value ("simultaneous-prefetches", ix86_cost->simultaneous_prefetches); if (!PARAM_SET_P (PARAM_L1_CACHE_LINE_SIZE)) set_param_value ("l1-cache-line-size", ix86_cost->prefetch_block); if (!PARAM_SET_P (PARAM_L1_CACHE_SIZE)) set_param_value ("l1-cache-size", ix86_cost->l1_cache_size); if (!PARAM_SET_P (PARAM_L2_CACHE_SIZE)) set_param_value ("l2-cache-size", ix86_cost->l2_cache_size); /* If using typedef char *va_list, signal that __builtin_va_start (&ap, 0) can be optimized to ap = __builtin_next_arg (0). */ if (!TARGET_64BIT) targetm.expand_builtin_va_start = NULL; if (TARGET_64BIT) { ix86_gen_leave = gen_leave_rex64; ix86_gen_pop1 = gen_popdi1; ix86_gen_add3 = gen_adddi3; ix86_gen_sub3 = gen_subdi3; ix86_gen_sub3_carry = gen_subdi3_carry; ix86_gen_one_cmpl2 = gen_one_cmpldi2; ix86_gen_monitor = gen_sse3_monitor64; ix86_gen_andsp = gen_anddi3; } else { ix86_gen_leave = gen_leave; ix86_gen_pop1 = gen_popsi1; ix86_gen_add3 = gen_addsi3; ix86_gen_sub3 = gen_subsi3; ix86_gen_sub3_carry = gen_subsi3_carry; ix86_gen_one_cmpl2 = gen_one_cmplsi2; ix86_gen_monitor = gen_sse3_monitor; ix86_gen_andsp = gen_andsi3; } #ifdef USE_IX86_CLD /* Use -mcld by default for 32-bit code if configured with --enable-cld. */ if (!TARGET_64BIT) target_flags |= MASK_CLD & ~target_flags_explicit; #endif /* Save the initial options in case the user does function specific options */ if (main_args_p) target_option_default_node = target_option_current_node = build_target_option_node (); } /* Update register usage after having seen the compiler flags. */ void ix86_conditional_register_usage (void) { int i; unsigned int j; for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (fixed_regs[i] > 1) fixed_regs[i] = (fixed_regs[i] == (TARGET_64BIT ? 3 : 2)); if (call_used_regs[i] > 1) call_used_regs[i] = (call_used_regs[i] == (TARGET_64BIT ? 3 : 2)); } /* The PIC register, if it exists, is fixed. */ j = PIC_OFFSET_TABLE_REGNUM; if (j != INVALID_REGNUM) fixed_regs[j] = call_used_regs[j] = 1; /* The MS_ABI changes the set of call-used registers. */ if (TARGET_64BIT && ix86_cfun_abi () == MS_ABI) { call_used_regs[SI_REG] = 0; call_used_regs[DI_REG] = 0; call_used_regs[XMM6_REG] = 0; call_used_regs[XMM7_REG] = 0; for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) call_used_regs[i] = 0; } /* The default setting of CLOBBERED_REGS is for 32-bit; add in the other call-clobbered regs for 64-bit. */ if (TARGET_64BIT) { CLEAR_HARD_REG_SET (reg_class_contents[(int)CLOBBERED_REGS]); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int)GENERAL_REGS], i) && call_used_regs[i]) SET_HARD_REG_BIT (reg_class_contents[(int)CLOBBERED_REGS], i); } /* If MMX is disabled, squash the registers. */ if (! TARGET_MMX) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; /* If SSE is disabled, squash the registers. */ if (! TARGET_SSE) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; /* If the FPU is disabled, squash the registers. */ if (! (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387)) for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (TEST_HARD_REG_BIT (reg_class_contents[(int)FLOAT_REGS], i)) fixed_regs[i] = call_used_regs[i] = 1, reg_names[i] = ""; /* If 32-bit, squash the 64-bit registers. */ if (! TARGET_64BIT) { for (i = FIRST_REX_INT_REG; i <= LAST_REX_INT_REG; i++) reg_names[i] = ""; for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) reg_names[i] = ""; } } /* Save the current options */ static void ix86_function_specific_save (struct cl_target_option *ptr) { ptr->arch = ix86_arch; ptr->schedule = ix86_schedule; ptr->tune = ix86_tune; ptr->fpmath = ix86_fpmath; ptr->branch_cost = ix86_branch_cost; ptr->tune_defaulted = ix86_tune_defaulted; ptr->arch_specified = ix86_arch_specified; ptr->ix86_isa_flags_explicit = ix86_isa_flags_explicit; ptr->target_flags_explicit = target_flags_explicit; /* The fields are char but the variables are not; make sure the values fit in the fields. */ gcc_assert (ptr->arch == ix86_arch); gcc_assert (ptr->schedule == ix86_schedule); gcc_assert (ptr->tune == ix86_tune); gcc_assert (ptr->fpmath == ix86_fpmath); gcc_assert (ptr->branch_cost == ix86_branch_cost); } /* Restore the current options */ static void ix86_function_specific_restore (struct cl_target_option *ptr) { enum processor_type old_tune = ix86_tune; enum processor_type old_arch = ix86_arch; unsigned int ix86_arch_mask, ix86_tune_mask; int i; ix86_arch = (enum processor_type) ptr->arch; ix86_schedule = (enum attr_cpu) ptr->schedule; ix86_tune = (enum processor_type) ptr->tune; ix86_fpmath = (enum fpmath_unit) ptr->fpmath; ix86_branch_cost = ptr->branch_cost; ix86_tune_defaulted = ptr->tune_defaulted; ix86_arch_specified = ptr->arch_specified; ix86_isa_flags_explicit = ptr->ix86_isa_flags_explicit; target_flags_explicit = ptr->target_flags_explicit; /* Recreate the arch feature tests if the arch changed */ if (old_arch != ix86_arch) { ix86_arch_mask = 1u << ix86_arch; for (i = 0; i < X86_ARCH_LAST; ++i) ix86_arch_features[i] = !!(initial_ix86_arch_features[i] & ix86_arch_mask); } /* Recreate the tune optimization tests */ if (old_tune != ix86_tune) { ix86_tune_mask = 1u << ix86_tune; for (i = 0; i < X86_TUNE_LAST; ++i) ix86_tune_features[i] = !!(initial_ix86_tune_features[i] & ix86_tune_mask); } } /* Print the current options */ static void ix86_function_specific_print (FILE *file, int indent, struct cl_target_option *ptr) { char *target_string = ix86_target_string (ptr->ix86_isa_flags, ptr->target_flags, NULL, NULL, NULL, false); fprintf (file, "%*sarch = %d (%s)\n", indent, "", ptr->arch, ((ptr->arch < TARGET_CPU_DEFAULT_max) ? cpu_names[ptr->arch] : "<unknown>")); fprintf (file, "%*stune = %d (%s)\n", indent, "", ptr->tune, ((ptr->tune < TARGET_CPU_DEFAULT_max) ? cpu_names[ptr->tune] : "<unknown>")); fprintf (file, "%*sfpmath = %d%s%s\n", indent, "", ptr->fpmath, (ptr->fpmath & FPMATH_387) ? ", 387" : "", (ptr->fpmath & FPMATH_SSE) ? ", sse" : ""); fprintf (file, "%*sbranch_cost = %d\n", indent, "", ptr->branch_cost); if (target_string) { fprintf (file, "%*s%s\n", indent, "", target_string); free (target_string); } } /* Inner function to process the attribute((target(...))), take an argument and set the current options from the argument. If we have a list, recursively go over the list. */ static bool ix86_valid_target_attribute_inner_p (tree args, char *p_strings[]) { char *next_optstr; bool ret = true; #define IX86_ATTR_ISA(S,O) { S, sizeof (S)-1, ix86_opt_isa, O, 0 } #define IX86_ATTR_STR(S,O) { S, sizeof (S)-1, ix86_opt_str, O, 0 } #define IX86_ATTR_YES(S,O,M) { S, sizeof (S)-1, ix86_opt_yes, O, M } #define IX86_ATTR_NO(S,O,M) { S, sizeof (S)-1, ix86_opt_no, O, M } enum ix86_opt_type { ix86_opt_unknown, ix86_opt_yes, ix86_opt_no, ix86_opt_str, ix86_opt_isa }; static const struct { const char *string; size_t len; enum ix86_opt_type type; int opt; int mask; } attrs[] = { /* isa options */ IX86_ATTR_ISA ("3dnow", OPT_m3dnow), IX86_ATTR_ISA ("abm", OPT_mabm), IX86_ATTR_ISA ("aes", OPT_maes), IX86_ATTR_ISA ("avx", OPT_mavx), IX86_ATTR_ISA ("mmx", OPT_mmmx), IX86_ATTR_ISA ("pclmul", OPT_mpclmul), IX86_ATTR_ISA ("popcnt", OPT_mpopcnt), IX86_ATTR_ISA ("sse", OPT_msse), IX86_ATTR_ISA ("sse2", OPT_msse2), IX86_ATTR_ISA ("sse3", OPT_msse3), IX86_ATTR_ISA ("sse4", OPT_msse4), IX86_ATTR_ISA ("sse4.1", OPT_msse4_1), IX86_ATTR_ISA ("sse4.2", OPT_msse4_2), IX86_ATTR_ISA ("sse4a", OPT_msse4a), IX86_ATTR_ISA ("ssse3", OPT_mssse3), IX86_ATTR_ISA ("fma4", OPT_mfma4), IX86_ATTR_ISA ("xop", OPT_mxop), IX86_ATTR_ISA ("lwp", OPT_mlwp), /* string options */ IX86_ATTR_STR ("arch=", IX86_FUNCTION_SPECIFIC_ARCH), IX86_ATTR_STR ("fpmath=", IX86_FUNCTION_SPECIFIC_FPMATH), IX86_ATTR_STR ("tune=", IX86_FUNCTION_SPECIFIC_TUNE), /* flag options */ IX86_ATTR_YES ("cld", OPT_mcld, MASK_CLD), IX86_ATTR_NO ("fancy-math-387", OPT_mfancy_math_387, MASK_NO_FANCY_MATH_387), IX86_ATTR_YES ("ieee-fp", OPT_mieee_fp, MASK_IEEE_FP), IX86_ATTR_YES ("inline-all-stringops", OPT_minline_all_stringops, MASK_INLINE_ALL_STRINGOPS), IX86_ATTR_YES ("inline-stringops-dynamically", OPT_minline_stringops_dynamically, MASK_INLINE_STRINGOPS_DYNAMICALLY), IX86_ATTR_NO ("align-stringops", OPT_mno_align_stringops, MASK_NO_ALIGN_STRINGOPS), IX86_ATTR_YES ("recip", OPT_mrecip, MASK_RECIP), }; /* If this is a list, recurse to get the options. */ if (TREE_CODE (args) == TREE_LIST) { bool ret = true; for (; args; args = TREE_CHAIN (args)) if (TREE_VALUE (args) && !ix86_valid_target_attribute_inner_p (TREE_VALUE (args), p_strings)) ret = false; return ret; } else if (TREE_CODE (args) != STRING_CST) gcc_unreachable (); /* Handle multiple arguments separated by commas. */ next_optstr = ASTRDUP (TREE_STRING_POINTER (args)); while (next_optstr && *next_optstr != '\0') { char *p = next_optstr; char *orig_p = p; char *comma = strchr (next_optstr, ','); const char *opt_string; size_t len, opt_len; int opt; bool opt_set_p; char ch; unsigned i; enum ix86_opt_type type = ix86_opt_unknown; int mask = 0; if (comma) { *comma = '\0'; len = comma - next_optstr; next_optstr = comma + 1; } else { len = strlen (p); next_optstr = NULL; } /* Recognize no-xxx. */ if (len > 3 && p[0] == 'n' && p[1] == 'o' && p[2] == '-') { opt_set_p = false; p += 3; len -= 3; } else opt_set_p = true; /* Find the option. */ ch = *p; opt = N_OPTS; for (i = 0; i < ARRAY_SIZE (attrs); i++) { type = attrs[i].type; opt_len = attrs[i].len; if (ch == attrs[i].string[0] && ((type != ix86_opt_str) ? len == opt_len : len > opt_len) && memcmp (p, attrs[i].string, opt_len) == 0) { opt = attrs[i].opt; mask = attrs[i].mask; opt_string = attrs[i].string; break; } } /* Process the option. */ if (opt == N_OPTS) { error ("attribute(target(\"%s\")) is unknown", orig_p); ret = false; } else if (type == ix86_opt_isa) ix86_handle_option (opt, p, opt_set_p); else if (type == ix86_opt_yes || type == ix86_opt_no) { if (type == ix86_opt_no) opt_set_p = !opt_set_p; if (opt_set_p) target_flags |= mask; else target_flags &= ~mask; } else if (type == ix86_opt_str) { if (p_strings[opt]) { error ("option(\"%s\") was already specified", opt_string); ret = false; } else p_strings[opt] = xstrdup (p + opt_len); } else gcc_unreachable (); } return ret; } /* Return a TARGET_OPTION_NODE tree of the target options listed or NULL. */ tree ix86_valid_target_attribute_tree (tree args) { const char *orig_arch_string = ix86_arch_string; const char *orig_tune_string = ix86_tune_string; const char *orig_fpmath_string = ix86_fpmath_string; int orig_tune_defaulted = ix86_tune_defaulted; int orig_arch_specified = ix86_arch_specified; char *option_strings[IX86_FUNCTION_SPECIFIC_MAX] = { NULL, NULL, NULL }; tree t = NULL_TREE; int i; struct cl_target_option *def = TREE_TARGET_OPTION (target_option_default_node); /* Process each of the options on the chain. */ if (! ix86_valid_target_attribute_inner_p (args, option_strings)) return NULL_TREE; /* If the changed options are different from the default, rerun override_options, and then save the options away. The string options are are attribute options, and will be undone when we copy the save structure. */ if (ix86_isa_flags != def->ix86_isa_flags || target_flags != def->target_flags || option_strings[IX86_FUNCTION_SPECIFIC_ARCH] || option_strings[IX86_FUNCTION_SPECIFIC_TUNE] || option_strings[IX86_FUNCTION_SPECIFIC_FPMATH]) { /* If we are using the default tune= or arch=, undo the string assigned, and use the default. */ if (option_strings[IX86_FUNCTION_SPECIFIC_ARCH]) ix86_arch_string = option_strings[IX86_FUNCTION_SPECIFIC_ARCH]; else if (!orig_arch_specified) ix86_arch_string = NULL; if (option_strings[IX86_FUNCTION_SPECIFIC_TUNE]) ix86_tune_string = option_strings[IX86_FUNCTION_SPECIFIC_TUNE]; else if (orig_tune_defaulted) ix86_tune_string = NULL; /* If fpmath= is not set, and we now have sse2 on 32-bit, use it. */ if (option_strings[IX86_FUNCTION_SPECIFIC_FPMATH]) ix86_fpmath_string = option_strings[IX86_FUNCTION_SPECIFIC_FPMATH]; else if (!TARGET_64BIT && TARGET_SSE) ix86_fpmath_string = "sse,387"; /* Do any overrides, such as arch=xxx, or tune=xxx support. */ override_options (false); /* Add any builtin functions with the new isa if any. */ ix86_add_new_builtins (ix86_isa_flags); /* Save the current options unless we are validating options for #pragma. */ t = build_target_option_node (); ix86_arch_string = orig_arch_string; ix86_tune_string = orig_tune_string; ix86_fpmath_string = orig_fpmath_string; /* Free up memory allocated to hold the strings */ for (i = 0; i < IX86_FUNCTION_SPECIFIC_MAX; i++) if (option_strings[i]) free (option_strings[i]); } return t; } /* Hook to validate attribute((target("string"))). */ static bool ix86_valid_target_attribute_p (tree fndecl, tree ARG_UNUSED (name), tree args, int ARG_UNUSED (flags)) { struct cl_target_option cur_target; bool ret = true; tree old_optimize = build_optimization_node (); tree new_target, new_optimize; tree func_optimize = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl); /* If the function changed the optimization levels as well as setting target options, start with the optimizations specified. */ if (func_optimize && func_optimize != old_optimize) cl_optimization_restore (TREE_OPTIMIZATION (func_optimize)); /* The target attributes may also change some optimization flags, so update the optimization options if necessary. */ cl_target_option_save (&cur_target); new_target = ix86_valid_target_attribute_tree (args); new_optimize = build_optimization_node (); if (!new_target) ret = false; else if (fndecl) { DECL_FUNCTION_SPECIFIC_TARGET (fndecl) = new_target; if (old_optimize != new_optimize) DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) = new_optimize; } cl_target_option_restore (&cur_target); if (old_optimize != new_optimize) cl_optimization_restore (TREE_OPTIMIZATION (old_optimize)); return ret; } /* Hook to determine if one function can safely inline another. */ static bool ix86_can_inline_p (tree caller, tree callee) { bool ret = false; tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller); tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee); /* If callee has no option attributes, then it is ok to inline. */ if (!callee_tree) ret = true; /* If caller has no option attributes, but callee does then it is not ok to inline. */ else if (!caller_tree) ret = false; else { struct cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree); struct cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree); /* Callee's isa options should a subset of the caller's, i.e. a SSE4 function can inline a SSE2 function but a SSE2 function can't inline a SSE4 function. */ if ((caller_opts->ix86_isa_flags & callee_opts->ix86_isa_flags) != callee_opts->ix86_isa_flags) ret = false; /* See if we have the same non-isa options. */ else if (caller_opts->target_flags != callee_opts->target_flags) ret = false; /* See if arch, tune, etc. are the same. */ else if (caller_opts->arch != callee_opts->arch) ret = false; else if (caller_opts->tune != callee_opts->tune) ret = false; else if (caller_opts->fpmath != callee_opts->fpmath) ret = false; else if (caller_opts->branch_cost != callee_opts->branch_cost) ret = false; else ret = true; } return ret; } /* Remember the last target of ix86_set_current_function. */ static GTY(()) tree ix86_previous_fndecl; /* Establish appropriate back-end context for processing the function FNDECL. The argument might be NULL to indicate processing at top level, outside of any function scope. */ static void ix86_set_current_function (tree fndecl) { /* Only change the context if the function changes. This hook is called several times in the course of compiling a function, and we don't want to slow things down too much or call target_reinit when it isn't safe. */ if (fndecl && fndecl != ix86_previous_fndecl) { tree old_tree = (ix86_previous_fndecl ? DECL_FUNCTION_SPECIFIC_TARGET (ix86_previous_fndecl) : NULL_TREE); tree new_tree = (fndecl ? DECL_FUNCTION_SPECIFIC_TARGET (fndecl) : NULL_TREE); ix86_previous_fndecl = fndecl; if (old_tree == new_tree) ; else if (new_tree) { cl_target_option_restore (TREE_TARGET_OPTION (new_tree)); target_reinit (); } else if (old_tree) { struct cl_target_option *def = TREE_TARGET_OPTION (target_option_current_node); cl_target_option_restore (def); target_reinit (); } } } /* Return true if this goes in large data/bss. */ static bool ix86_in_large_data_p (tree exp) { if (ix86_cmodel != CM_MEDIUM && ix86_cmodel != CM_MEDIUM_PIC) return false; /* Functions are never large data. */ if (TREE_CODE (exp) == FUNCTION_DECL) return false; if (TREE_CODE (exp) == VAR_DECL && DECL_SECTION_NAME (exp)) { const char *section = TREE_STRING_POINTER (DECL_SECTION_NAME (exp)); if (strcmp (section, ".ldata") == 0 || strcmp (section, ".lbss") == 0) return true; return false; } else { HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp)); /* If this is an incomplete type with size 0, then we can't put it in data because it might be too big when completed. */ if (!size || size > ix86_section_threshold) return true; } return false; } /* Switch to the appropriate section for output of DECL. DECL is either a `VAR_DECL' node or a constant of some sort. RELOC indicates whether forming the initial value of DECL requires link-time relocations. */ static section * x86_64_elf_select_section (tree, int, unsigned HOST_WIDE_INT) ATTRIBUTE_UNUSED; static section * x86_64_elf_select_section (tree decl, int reloc, unsigned HOST_WIDE_INT align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && ix86_in_large_data_p (decl)) { const char *sname = NULL; unsigned int flags = SECTION_WRITE; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_DATA: sname = ".ldata"; break; case SECCAT_DATA_REL: sname = ".ldata.rel"; break; case SECCAT_DATA_REL_LOCAL: sname = ".ldata.rel.local"; break; case SECCAT_DATA_REL_RO: sname = ".ldata.rel.ro"; break; case SECCAT_DATA_REL_RO_LOCAL: sname = ".ldata.rel.ro.local"; break; case SECCAT_BSS: sname = ".lbss"; flags |= SECTION_BSS; break; case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: sname = ".lrodata"; flags = 0; break; case SECCAT_SRODATA: case SECCAT_SDATA: case SECCAT_SBSS: gcc_unreachable (); case SECCAT_TEXT: case SECCAT_TDATA: case SECCAT_TBSS: /* We don't split these for medium model. Place them into default sections and hope for best. */ break; case SECCAT_EMUTLS_VAR: case SECCAT_EMUTLS_TMPL: gcc_unreachable (); } if (sname) { /* We might get called with string constants, but get_named_section doesn't like them as they are not DECLs. Also, we need to set flags in that case. */ if (!DECL_P (decl)) return get_section (sname, flags, NULL); return get_named_section (decl, sname, reloc); } } return default_elf_select_section (decl, reloc, align); } /* Build up a unique section name, expressed as a STRING_CST node, and assign it to DECL_SECTION_NAME (decl). RELOC indicates whether the initial value of EXP requires link-time relocations. */ static void ATTRIBUTE_UNUSED x86_64_elf_unique_section (tree decl, int reloc) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && ix86_in_large_data_p (decl)) { const char *prefix = NULL; /* We only need to use .gnu.linkonce if we don't have COMDAT groups. */ bool one_only = DECL_ONE_ONLY (decl) && !HAVE_COMDAT_GROUP; switch (categorize_decl_for_section (decl, reloc)) { case SECCAT_DATA: case SECCAT_DATA_REL: case SECCAT_DATA_REL_LOCAL: case SECCAT_DATA_REL_RO: case SECCAT_DATA_REL_RO_LOCAL: prefix = one_only ? ".ld" : ".ldata"; break; case SECCAT_BSS: prefix = one_only ? ".lb" : ".lbss"; break; case SECCAT_RODATA: case SECCAT_RODATA_MERGE_STR: case SECCAT_RODATA_MERGE_STR_INIT: case SECCAT_RODATA_MERGE_CONST: prefix = one_only ? ".lr" : ".lrodata"; break; case SECCAT_SRODATA: case SECCAT_SDATA: case SECCAT_SBSS: gcc_unreachable (); case SECCAT_TEXT: case SECCAT_TDATA: case SECCAT_TBSS: /* We don't split these for medium model. Place them into default sections and hope for best. */ break; case SECCAT_EMUTLS_VAR: prefix = targetm.emutls.var_section; break; case SECCAT_EMUTLS_TMPL: prefix = targetm.emutls.tmpl_section; break; } if (prefix) { const char *name, *linkonce; char *string; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); /* If we're using one_only, then there needs to be a .gnu.linkonce prefix to the section name. */ linkonce = one_only ? ".gnu.linkonce" : ""; string = ACONCAT ((linkonce, prefix, ".", name, NULL)); DECL_SECTION_NAME (decl) = build_string (strlen (string), string); return; } } default_unique_section (decl, reloc); } #ifdef COMMON_ASM_OP /* This says how to output assembler code to declare an uninitialized external linkage data object. For medium model x86-64 we need to use .largecomm opcode for large objects. */ void x86_elf_aligned_common (FILE *file, const char *name, unsigned HOST_WIDE_INT size, int align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && size > (unsigned int)ix86_section_threshold) fputs (".largecomm\t", file); else fputs (COMMON_ASM_OP, file); assemble_name (file, name); fprintf (file, "," HOST_WIDE_INT_PRINT_UNSIGNED ",%u\n", size, align / BITS_PER_UNIT); } #endif /* Utility function for targets to use in implementing ASM_OUTPUT_ALIGNED_BSS. */ void x86_output_aligned_bss (FILE *file, tree decl ATTRIBUTE_UNUSED, const char *name, unsigned HOST_WIDE_INT size, int align) { if ((ix86_cmodel == CM_MEDIUM || ix86_cmodel == CM_MEDIUM_PIC) && size > (unsigned int)ix86_section_threshold) switch_to_section (get_named_section (decl, ".lbss", 0)); else switch_to_section (bss_section); ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); #ifdef ASM_DECLARE_OBJECT_NAME last_assemble_variable_decl = decl; ASM_DECLARE_OBJECT_NAME (file, name, decl); #else /* Standard thing is just output label for the object. */ ASM_OUTPUT_LABEL (file, name); #endif /* ASM_DECLARE_OBJECT_NAME */ ASM_OUTPUT_SKIP (file, size ? size : 1); } void optimization_options (int level, int size ATTRIBUTE_UNUSED) { /* For -O2 and beyond, turn off -fschedule-insns by default. It tends to make the problem with not enough registers even worse. */ #ifdef INSN_SCHEDULING if (level > 1) flag_schedule_insns = 0; #endif if (TARGET_MACHO) /* The Darwin libraries never set errno, so we might as well avoid calling them when that's the only reason we would. */ flag_errno_math = 0; /* The default values of these switches depend on the TARGET_64BIT that is not known at this moment. Mark these values with 2 and let user the to override these. In case there is no command line option specifying them, we will set the defaults in override_options. */ if (optimize >= 1) flag_omit_frame_pointer = 2; flag_pcc_struct_return = 2; flag_asynchronous_unwind_tables = 2; flag_vect_cost_model = 1; #ifdef SUBTARGET_OPTIMIZATION_OPTIONS SUBTARGET_OPTIMIZATION_OPTIONS; #endif } /* Decide whether we can make a sibling call to a function. DECL is the declaration of the function being targeted by the call and EXP is the CALL_EXPR representing the call. */ static bool ix86_function_ok_for_sibcall (tree decl, tree exp) { tree type, decl_or_type; rtx a, b; /* If we are generating position-independent code, we cannot sibcall optimize any indirect call, or a direct call to a global function, as the PLT requires %ebx be live. */ if (!TARGET_64BIT && flag_pic && (!decl || !targetm.binds_local_p (decl))) return false; /* If we need to align the outgoing stack, then sibcalling would unalign the stack, which may break the called function. */ if (ix86_minimum_incoming_stack_boundary (true) < PREFERRED_STACK_BOUNDARY) return false; if (decl) { decl_or_type = decl; type = TREE_TYPE (decl); } else { /* We're looking at the CALL_EXPR, we need the type of the function. */ type = CALL_EXPR_FN (exp); /* pointer expression */ type = TREE_TYPE (type); /* pointer type */ type = TREE_TYPE (type); /* function type */ decl_or_type = type; } /* Check that the return value locations are the same. Like if we are returning floats on the 80387 register stack, we cannot make a sibcall from a function that doesn't return a float to a function that does or, conversely, from a function that does return a float to a function that doesn't; the necessary stack adjustment would not be executed. This is also the place we notice differences in the return value ABI. Note that it is ok for one of the functions to have void return type as long as the return value of the other is passed in a register. */ a = ix86_function_value (TREE_TYPE (exp), decl_or_type, false); b = ix86_function_value (TREE_TYPE (DECL_RESULT (cfun->decl)), cfun->decl, false); if (STACK_REG_P (a) || STACK_REG_P (b)) { if (!rtx_equal_p (a, b)) return false; } else if (VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl)))) ; else if (!rtx_equal_p (a, b)) return false; if (TARGET_64BIT) { /* The SYSV ABI has more call-clobbered registers; disallow sibcalls from MS to SYSV. */ if (cfun->machine->call_abi == MS_ABI && ix86_function_type_abi (type) == SYSV_ABI) return false; } else { /* If this call is indirect, we'll need to be able to use a call-clobbered register for the address of the target function. Make sure that all such registers are not used for passing parameters. Note that DLLIMPORT functions are indirect. */ if (!decl || (TARGET_DLLIMPORT_DECL_ATTRIBUTES && DECL_DLLIMPORT_P (decl))) { if (ix86_function_regparm (type, NULL) >= 3) { /* ??? Need to count the actual number of registers to be used, not the possible number of registers. Fix later. */ return false; } } } /* Otherwise okay. That also includes certain types of indirect calls. */ return true; } /* Handle "cdecl", "stdcall", "fastcall", "regparm" and "sseregparm" calling convention attributes; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_cconv_attribute (tree *node, tree name, tree args, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; return NULL_TREE; } /* Can combine regparm with all attributes but fastcall. */ if (is_attribute_p ("regparm", name)) { tree cst; if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and regparm attributes are not compatible"); } cst = TREE_VALUE (args); if (TREE_CODE (cst) != INTEGER_CST) { warning (OPT_Wattributes, "%qE attribute requires an integer constant argument", name); *no_add_attrs = true; } else if (compare_tree_int (cst, REGPARM_MAX) > 0) { warning (OPT_Wattributes, "argument to %qE attribute larger than %d", name, REGPARM_MAX); *no_add_attrs = true; } return NULL_TREE; } if (TARGET_64BIT) { /* Do not warn when emulating the MS ABI. */ if (TREE_CODE (*node) != FUNCTION_TYPE || ix86_function_type_abi (*node) != MS_ABI) warning (OPT_Wattributes, "%qE attribute ignored", name); *no_add_attrs = true; return NULL_TREE; } /* Can combine fastcall with stdcall (redundant) and sseregparm. */ if (is_attribute_p ("fastcall", name)) { if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) { error ("fastcall and cdecl attributes are not compatible"); } if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and stdcall attributes are not compatible"); } if (lookup_attribute ("regparm", TYPE_ATTRIBUTES (*node))) { error ("fastcall and regparm attributes are not compatible"); } } /* Can combine stdcall with fastcall (redundant), regparm and sseregparm. */ else if (is_attribute_p ("stdcall", name)) { if (lookup_attribute ("cdecl", TYPE_ATTRIBUTES (*node))) { error ("stdcall and cdecl attributes are not compatible"); } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("stdcall and fastcall attributes are not compatible"); } } /* Can combine cdecl with regparm and sseregparm. */ else if (is_attribute_p ("cdecl", name)) { if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (*node))) { error ("stdcall and cdecl attributes are not compatible"); } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (*node))) { error ("fastcall and cdecl attributes are not compatible"); } } /* Can combine sseregparm with all attributes. */ return NULL_TREE; } /* Return 0 if the attributes for two types are incompatible, 1 if they are compatible, and 2 if they are nearly compatible (which causes a warning to be generated). */ static int ix86_comp_type_attributes (const_tree type1, const_tree type2) { /* Check for mismatch of non-default calling convention. */ const char *const rtdstr = TARGET_RTD ? "cdecl" : "stdcall"; if (TREE_CODE (type1) != FUNCTION_TYPE && TREE_CODE (type1) != METHOD_TYPE) return 1; /* Check for mismatched fastcall/regparm types. */ if ((!lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type1)) != !lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type2))) || (ix86_function_regparm (type1, NULL) != ix86_function_regparm (type2, NULL))) return 0; /* Check for mismatched sseregparm types. */ if (!lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type1)) != !lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type2))) return 0; /* Check for mismatched return types (cdecl vs stdcall). */ if (!lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type1)) != !lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type2))) return 0; return 1; } /* Return the regparm value for a function with the indicated TYPE and DECL. DECL may be NULL when calling function indirectly or considering a libcall. */ static int ix86_function_regparm (const_tree type, const_tree decl) { tree attr; int regparm; if (TARGET_64BIT) return (ix86_function_type_abi (type) == SYSV_ABI ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX); regparm = ix86_regparm; attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (type)); if (attr) { regparm = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr))); return regparm; } if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type))) return 2; /* Use register calling convention for local functions when possible. */ if (decl && TREE_CODE (decl) == FUNCTION_DECL && optimize && !profile_flag) { /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */ struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE (decl)); if (i && i->local) { int local_regparm, globals = 0, regno; /* Make sure no regparm register is taken by a fixed register variable. */ for (local_regparm = 0; local_regparm < REGPARM_MAX; local_regparm++) if (fixed_regs[local_regparm]) break; /* We don't want to use regparm(3) for nested functions as these use a static chain pointer in the third argument. */ if (local_regparm == 3 && DECL_STATIC_CHAIN (decl)) local_regparm = 2; /* Each fixed register usage increases register pressure, so less registers should be used for argument passing. This functionality can be overriden by an explicit regparm value. */ for (regno = 0; regno <= DI_REG; regno++) if (fixed_regs[regno]) globals++; local_regparm = globals < local_regparm ? local_regparm - globals : 0; if (local_regparm > regparm) regparm = local_regparm; } } return regparm; } /* Return 1 or 2, if we can pass up to SSE_REGPARM_MAX SFmode (1) and DFmode (2) arguments in SSE registers for a function with the indicated TYPE and DECL. DECL may be NULL when calling function indirectly or considering a libcall. Otherwise return 0. */ static int ix86_function_sseregparm (const_tree type, const_tree decl, bool warn) { gcc_assert (!TARGET_64BIT); /* Use SSE registers to pass SFmode and DFmode arguments if requested by the sseregparm attribute. */ if (TARGET_SSEREGPARM || (type && lookup_attribute ("sseregparm", TYPE_ATTRIBUTES (type)))) { if (!TARGET_SSE) { if (warn) { if (decl) error ("Calling %qD with attribute sseregparm without " "SSE/SSE2 enabled", decl); else error ("Calling %qT with attribute sseregparm without " "SSE/SSE2 enabled", type); } return 0; } return 2; } /* For local functions, pass up to SSE_REGPARM_MAX SFmode (and DFmode for SSE2) arguments in SSE registers. */ if (decl && TARGET_SSE_MATH && optimize && !profile_flag) { /* FIXME: remove this CONST_CAST when cgraph.[ch] is constified. */ struct cgraph_local_info *i = cgraph_local_info (CONST_CAST_TREE(decl)); if (i && i->local) return TARGET_SSE2 ? 2 : 1; } return 0; } /* Return true if EAX is live at the start of the function. Used by ix86_expand_prologue to determine if we need special help before calling allocate_stack_worker. */ static bool ix86_eax_live_at_start_p (void) { /* Cheat. Don't bother working forward from ix86_function_regparm to the function type to whether an actual argument is located in eax. Instead just look at cfg info, which is still close enough to correct at this point. This gives false positives for broken functions that might use uninitialized data that happens to be allocated in eax, but who cares? */ return REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), 0); } /* Value is the number of bytes of arguments automatically popped when returning from a subroutine call. FUNDECL is the declaration node of the function (as a tree), FUNTYPE is the data type of the function (as a tree), or for a library call it is an identifier node for the subroutine name. SIZE is the number of bytes of arguments passed on the stack. On the 80386, the RTD insn may be used to pop them if the number of args is fixed, but if the number is variable then the caller must pop them all. RTD can't be used for library calls now because the library is compiled with the Unix compiler. Use of RTD is a selectable option, since it is incompatible with standard Unix calling sequences. If the option is not selected, the caller must always pop the args. The attribute stdcall is equivalent to RTD on a per module basis. */ int ix86_return_pops_args (tree fundecl, tree funtype, int size) { int rtd; /* None of the 64-bit ABIs pop arguments. */ if (TARGET_64BIT) return 0; rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE); /* Cdecl functions override -mrtd, and never pop the stack. */ if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) { /* Stdcall and fastcall functions will pop the stack if not variable args. */ if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)) || lookup_attribute ("fastcall", TYPE_ATTRIBUTES (funtype))) rtd = 1; if (rtd && ! stdarg_p (funtype)) return size; } /* Lose any fake structure return argument if it is passed on the stack. */ if (aggregate_value_p (TREE_TYPE (funtype), fundecl) && !KEEP_AGGREGATE_RETURN_POINTER) { int nregs = ix86_function_regparm (funtype, fundecl); if (nregs == 0) return GET_MODE_SIZE (Pmode); } return 0; } /* Argument support functions. */ /* Return true when register may be used to pass function parameters. */ bool ix86_function_arg_regno_p (int regno) { int i; const int *parm_regs; if (!TARGET_64BIT) { if (TARGET_MACHO) return (regno < REGPARM_MAX || (TARGET_SSE && SSE_REGNO_P (regno) && !fixed_regs[regno])); else return (regno < REGPARM_MAX || (TARGET_MMX && MMX_REGNO_P (regno) && (regno < FIRST_MMX_REG + MMX_REGPARM_MAX)) || (TARGET_SSE && SSE_REGNO_P (regno) && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX))); } if (TARGET_MACHO) { if (SSE_REGNO_P (regno) && TARGET_SSE) return true; } else { if (TARGET_SSE && SSE_REGNO_P (regno) && (regno < FIRST_SSE_REG + SSE_REGPARM_MAX)) return true; } /* TODO: The function should depend on current function ABI but builtins.c would need updating then. Therefore we use the default ABI. */ /* RAX is used as hidden argument to va_arg functions. */ if (ix86_abi == SYSV_ABI && regno == AX_REG) return true; if (ix86_abi == MS_ABI) parm_regs = x86_64_ms_abi_int_parameter_registers; else parm_regs = x86_64_int_parameter_registers; for (i = 0; i < (ix86_abi == MS_ABI ? X86_64_MS_REGPARM_MAX : X86_64_REGPARM_MAX); i++) if (regno == parm_regs[i]) return true; return false; } /* Return if we do not know how to pass TYPE solely in registers. */ static bool ix86_must_pass_in_stack (enum machine_mode mode, const_tree type) { if (must_pass_in_stack_var_size_or_pad (mode, type)) return true; /* For 32-bit, we want TImode aggregates to go on the stack. But watch out! The layout_type routine is crafty and tries to trick us into passing currently unsupported vector types on the stack by using TImode. */ return (!TARGET_64BIT && mode == TImode && type && TREE_CODE (type) != VECTOR_TYPE); } /* It returns the size, in bytes, of the area reserved for arguments passed in registers for the function represented by fndecl dependent to the used abi format. */ int ix86_reg_parm_stack_space (const_tree fndecl) { enum calling_abi call_abi = SYSV_ABI; if (fndecl != NULL_TREE && TREE_CODE (fndecl) == FUNCTION_DECL) call_abi = ix86_function_abi (fndecl); else call_abi = ix86_function_type_abi (fndecl); if (call_abi == MS_ABI) return 32; return 0; } /* Returns value SYSV_ABI, MS_ABI dependent on fntype, specifying the call abi used. */ enum calling_abi ix86_function_type_abi (const_tree fntype) { if (TARGET_64BIT && fntype != NULL) { enum calling_abi abi = ix86_abi; if (abi == SYSV_ABI) { if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (fntype))) abi = MS_ABI; } else if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (fntype))) abi = SYSV_ABI; return abi; } return ix86_abi; } static bool ix86_function_ms_hook_prologue (const_tree fntype) { if (!TARGET_64BIT) { if (lookup_attribute ("ms_hook_prologue", DECL_ATTRIBUTES (fntype))) { if (decl_function_context (fntype) != NULL_TREE) { error_at (DECL_SOURCE_LOCATION (fntype), "ms_hook_prologue is not compatible with nested function"); } return true; } } return false; } static enum calling_abi ix86_function_abi (const_tree fndecl) { if (! fndecl) return ix86_abi; return ix86_function_type_abi (TREE_TYPE (fndecl)); } /* Returns value SYSV_ABI, MS_ABI dependent on cfun, specifying the call abi used. */ enum calling_abi ix86_cfun_abi (void) { if (! cfun || ! TARGET_64BIT) return ix86_abi; return cfun->machine->call_abi; } /* regclass.c */ extern void init_regs (void); /* Implementation of call abi switching target hook. Specific to FNDECL the specific call register sets are set. See also CONDITIONAL_REGISTER_USAGE for more details. */ void ix86_call_abi_override (const_tree fndecl) { if (fndecl == NULL_TREE) cfun->machine->call_abi = ix86_abi; else cfun->machine->call_abi = ix86_function_type_abi (TREE_TYPE (fndecl)); } /* MS and SYSV ABI have different set of call used registers. Avoid expensive re-initialization of init_regs each time we switch function context since this is needed only during RTL expansion. */ static void ix86_maybe_switch_abi (void) { if (TARGET_64BIT && call_used_regs[SI_REG] == (cfun->machine->call_abi == MS_ABI)) reinit_regs (); } /* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (CUMULATIVE_ARGS *cum, /* Argument info to initialize */ tree fntype, /* tree ptr for function decl */ rtx libname, /* SYMBOL_REF of library name or 0 */ tree fndecl) { struct cgraph_local_info *i = fndecl ? cgraph_local_info (fndecl) : NULL; memset (cum, 0, sizeof (*cum)); if (fndecl) cum->call_abi = ix86_function_abi (fndecl); else cum->call_abi = ix86_function_type_abi (fntype); /* Set up the number of registers to use for passing arguments. */ if (cum->call_abi == MS_ABI && !ACCUMULATE_OUTGOING_ARGS) sorry ("ms_abi attribute requires -maccumulate-outgoing-args " "or subtarget optimization implying it"); cum->nregs = ix86_regparm; if (TARGET_64BIT) { cum->nregs = (cum->call_abi == SYSV_ABI ? X86_64_REGPARM_MAX : X86_64_MS_REGPARM_MAX); } if (TARGET_SSE) { cum->sse_nregs = SSE_REGPARM_MAX; if (TARGET_64BIT) { cum->sse_nregs = (cum->call_abi == SYSV_ABI ? X86_64_SSE_REGPARM_MAX : X86_64_MS_SSE_REGPARM_MAX); } } if (TARGET_MMX) cum->mmx_nregs = MMX_REGPARM_MAX; cum->warn_avx = true; cum->warn_sse = true; cum->warn_mmx = true; /* Because type might mismatch in between caller and callee, we need to use actual type of function for local calls. FIXME: cgraph_analyze can be told to actually record if function uses va_start so for local functions maybe_vaarg can be made aggressive helping K&R code. FIXME: once typesytem is fixed, we won't need this code anymore. */ if (i && i->local) fntype = TREE_TYPE (fndecl); cum->maybe_vaarg = (fntype ? (!prototype_p (fntype) || stdarg_p (fntype)) : !libname); if (!TARGET_64BIT) { /* If there are variable arguments, then we won't pass anything in registers in 32-bit mode. */ if (stdarg_p (fntype)) { cum->nregs = 0; cum->sse_nregs = 0; cum->mmx_nregs = 0; cum->warn_avx = 0; cum->warn_sse = 0; cum->warn_mmx = 0; return; } /* Use ecx and edx registers if function has fastcall attribute, else look for regparm information. */ if (fntype) { if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype))) { cum->nregs = 2; cum->fastcall = 1; } else cum->nregs = ix86_function_regparm (fntype, fndecl); } /* Set up the number of SSE registers used for passing SFmode and DFmode arguments. Warn for mismatching ABI. */ cum->float_in_sse = ix86_function_sseregparm (fntype, fndecl, true); } } /* Return the "natural" mode for TYPE. In most cases, this is just TYPE_MODE. But in the case of vector types, it is some vector mode. When we have only some of our vector isa extensions enabled, then there are some modes for which vector_mode_supported_p is false. For these modes, the generic vector support in gcc will choose some non-vector mode in order to implement the type. By computing the natural mode, we'll select the proper ABI location for the operand and not depend on whatever the middle-end decides to do with these vector types. The midde-end can't deal with the vector types > 16 bytes. In this case, we return the original mode and warn ABI change if CUM isn't NULL. */ static enum machine_mode type_natural_mode (const_tree type, CUMULATIVE_ARGS *cum) { enum machine_mode mode = TYPE_MODE (type); if (TREE_CODE (type) == VECTOR_TYPE && !VECTOR_MODE_P (mode)) { HOST_WIDE_INT size = int_size_in_bytes (type); if ((size == 8 || size == 16 || size == 32) /* ??? Generic code allows us to create width 1 vectors. Ignore. */ && TYPE_VECTOR_SUBPARTS (type) > 1) { enum machine_mode innermode = TYPE_MODE (TREE_TYPE (type)); if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE) mode = MIN_MODE_VECTOR_FLOAT; else mode = MIN_MODE_VECTOR_INT; /* Get the mode which has this inner mode and number of units. */ for (; mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) if (GET_MODE_NUNITS (mode) == TYPE_VECTOR_SUBPARTS (type) && GET_MODE_INNER (mode) == innermode) { if (size == 32 && !TARGET_AVX) { static bool warnedavx; if (cum && !warnedavx && cum->warn_avx) { warnedavx = true; warning (0, "AVX vector argument without AVX " "enabled changes the ABI"); } return TYPE_MODE (type); } else return mode; } gcc_unreachable (); } } return mode; } /* We want to pass a value in REGNO whose "natural" mode is MODE. However, this may not agree with the mode that the type system has chosen for the register, which is ORIG_MODE. If ORIG_MODE is not BLKmode, then we can go ahead and use it. Otherwise we have to build a PARALLEL instead. */ static rtx gen_reg_or_parallel (enum machine_mode mode, enum machine_mode orig_mode, unsigned int regno) { rtx tmp; if (orig_mode != BLKmode) tmp = gen_rtx_REG (orig_mode, regno); else { tmp = gen_rtx_REG (mode, regno); tmp = gen_rtx_EXPR_LIST (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_PARALLEL (orig_mode, gen_rtvec (1, tmp)); } return tmp; } /* x86-64 register passing implementation. See x86-64 ABI for details. Goal of this code is to classify each 8bytes of incoming argument by the register class and assign registers accordingly. */ /* Return the union class of CLASS1 and CLASS2. See the x86-64 PS ABI for details. */ static enum x86_64_reg_class merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) { /* Rule #1: If both classes are equal, this is the resulting class. */ if (class1 == class2) return class1; /* Rule #2: If one of the classes is NO_CLASS, the resulting class is the other class. */ if (class1 == X86_64_NO_CLASS) return class2; if (class2 == X86_64_NO_CLASS) return class1; /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) return X86_64_MEMORY_CLASS; /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) return X86_64_INTEGERSI_CLASS; if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) return X86_64_INTEGER_CLASS; /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class, MEMORY is used. */ if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS || class1 == X86_64_COMPLEX_X87_CLASS || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS || class2 == X86_64_COMPLEX_X87_CLASS) return X86_64_MEMORY_CLASS; /* Rule #6: Otherwise class SSE is used. */ return X86_64_SSE_CLASS; } /* Classify the argument of type TYPE and mode MODE. CLASSES will be filled by the register class used to pass each word of the operand. The number of words is returned. In case the parameter should be passed in memory, 0 is returned. As a special case for zero sized containers, classes[0] will be NO_CLASS and 1 is returned. BIT_OFFSET is used internally for handling records and specifies offset of the offset in bits modulo 256 to avoid overflow cases. See the x86-64 PS ABI for details. */ static int classify_argument (enum machine_mode mode, const_tree type, enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset) { HOST_WIDE_INT bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); int words = (bytes + (bit_offset % 64) / 8 + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* Variable sized entities are always passed/returned in memory. */ if (bytes < 0) return 0; if (mode != VOIDmode && targetm.calls.must_pass_in_stack (mode, type)) return 0; if (type && AGGREGATE_TYPE_P (type)) { int i; tree field; enum x86_64_reg_class subclasses[MAX_CLASSES]; /* On x86-64 we pass structures larger than 32 bytes on the stack. */ if (bytes > 32) return 0; for (i = 0; i < words; i++) classes[i] = X86_64_NO_CLASS; /* Zero sized arrays or structures are NO_CLASS. We return 0 to signalize memory class, so handle it as special case. */ if (!words) { classes[0] = X86_64_NO_CLASS; return 1; } /* Classify each field of record and merge classes. */ switch (TREE_CODE (type)) { case RECORD_TYPE: /* And now merge the fields of structure. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; if (TREE_TYPE (field) == error_mark_node) continue; /* Bitfields are always classified as integer. Handle them early, since later code would consider them to be misaligned integers. */ if (DECL_BIT_FIELD (field)) { for (i = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; i < ((int_bit_position (field) + (bit_offset % 64)) + tree_low_cst (DECL_SIZE (field), 0) + 63) / 8 / 8; i++) classes[i] = merge_classes (X86_64_INTEGER_CLASS, classes[i]); } else { int pos; type = TREE_TYPE (field); /* Flexible array member is ignored. */ if (TYPE_MODE (type) == BLKmode && TREE_CODE (type) == ARRAY_TYPE && TYPE_SIZE (type) == NULL_TREE && TYPE_DOMAIN (type) != NULL_TREE && (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)) { static bool warned; if (!warned && warn_psabi) { warned = true; inform (input_location, "The ABI of passing struct with" " a flexible array member has" " changed in GCC 4.4"); } continue; } num = classify_argument (TYPE_MODE (type), type, subclasses, (int_bit_position (field) + bit_offset) % 256); if (!num) return 0; pos = (int_bit_position (field) + (bit_offset % 64)) / 8 / 8; for (i = 0; i < num && (i + pos) < words; i++) classes[i + pos] = merge_classes (subclasses[i], classes[i + pos]); } } } break; case ARRAY_TYPE: /* Arrays are handled as small records. */ { int num; num = classify_argument (TYPE_MODE (TREE_TYPE (type)), TREE_TYPE (type), subclasses, bit_offset); if (!num) return 0; /* The partial classes are now full classes. */ if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4) subclasses[0] = X86_64_SSE_CLASS; if (subclasses[0] == X86_64_INTEGERSI_CLASS && !((bit_offset % 64) == 0 && bytes == 4)) subclasses[0] = X86_64_INTEGER_CLASS; for (i = 0; i < words; i++) classes[i] = subclasses[i % num]; break; } case UNION_TYPE: case QUAL_UNION_TYPE: /* Unions are similar to RECORD_TYPE but offset is always 0. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { int num; if (TREE_TYPE (field) == error_mark_node) continue; num = classify_argument (TYPE_MODE (TREE_TYPE (field)), TREE_TYPE (field), subclasses, bit_offset); if (!num) return 0; for (i = 0; i < num; i++) classes[i] = merge_classes (subclasses[i], classes[i]); } } break; default: gcc_unreachable (); } if (words > 2) { /* When size > 16 bytes, if the first one isn't X86_64_SSE_CLASS or any other ones aren't X86_64_SSEUP_CLASS, everything should be passed in memory. */ if (classes[0] != X86_64_SSE_CLASS) return 0; for (i = 1; i < words; i++) if (classes[i] != X86_64_SSEUP_CLASS) return 0; } /* Final merger cleanup. */ for (i = 0; i < words; i++) { /* If one class is MEMORY, everything should be passed in memory. */ if (classes[i] == X86_64_MEMORY_CLASS) return 0; /* The X86_64_SSEUP_CLASS should be always preceded by X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */ if (classes[i] == X86_64_SSEUP_CLASS && classes[i - 1] != X86_64_SSE_CLASS && classes[i - 1] != X86_64_SSEUP_CLASS) { /* The first one should never be X86_64_SSEUP_CLASS. */ gcc_assert (i != 0); classes[i] = X86_64_SSE_CLASS; } /* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS, everything should be passed in memory. */ if (classes[i] == X86_64_X87UP_CLASS && (classes[i - 1] != X86_64_X87_CLASS)) { static bool warned; /* The first one should never be X86_64_X87UP_CLASS. */ gcc_assert (i != 0); if (!warned && warn_psabi) { warned = true; inform (input_location, "The ABI of passing union with long double" " has changed in GCC 4.4"); } return 0; } } return words; } /* Compute alignment needed. We align all types to natural boundaries with exception of XFmode that is aligned to 64bits. */ if (mode != VOIDmode && mode != BLKmode) { int mode_alignment = GET_MODE_BITSIZE (mode); if (mode == XFmode) mode_alignment = 128; else if (mode == XCmode) mode_alignment = 256; if (COMPLEX_MODE_P (mode)) mode_alignment /= 2; /* Misaligned fields are always returned in memory. */ if (bit_offset % mode_alignment) return 0; } /* for V1xx modes, just use the base mode */ if (VECTOR_MODE_P (mode) && mode != V1DImode && mode != V1TImode && GET_MODE_SIZE (GET_MODE_INNER (mode)) == bytes) mode = GET_MODE_INNER (mode); /* Classification of atomic types. */ switch (mode) { case SDmode: case DDmode: classes[0] = X86_64_SSE_CLASS; return 1; case TDmode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case DImode: case SImode: case HImode: case QImode: case CSImode: case CHImode: case CQImode: { int size = (bit_offset % 64)+ (int) GET_MODE_BITSIZE (mode); if (size <= 32) { classes[0] = X86_64_INTEGERSI_CLASS; return 1; } else if (size <= 64) { classes[0] = X86_64_INTEGER_CLASS; return 1; } else if (size <= 64+32) { classes[0] = X86_64_INTEGER_CLASS; classes[1] = X86_64_INTEGERSI_CLASS; return 2; } else if (size <= 64+64) { classes[0] = classes[1] = X86_64_INTEGER_CLASS; return 2; } else gcc_unreachable (); } case CDImode: case TImode: classes[0] = classes[1] = X86_64_INTEGER_CLASS; return 2; case COImode: case OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case CTImode: return 0; case SFmode: if (!(bit_offset % 64)) classes[0] = X86_64_SSESF_CLASS; else classes[0] = X86_64_SSE_CLASS; return 1; case DFmode: classes[0] = X86_64_SSEDF_CLASS; return 1; case XFmode: classes[0] = X86_64_X87_CLASS; classes[1] = X86_64_X87UP_CLASS; return 2; case TFmode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case SCmode: classes[0] = X86_64_SSE_CLASS; if (!(bit_offset % 64)) return 1; else { static bool warned; if (!warned && warn_psabi) { warned = true; inform (input_location, "The ABI of passing structure with complex float" " member has changed in GCC 4.4"); } classes[1] = X86_64_SSESF_CLASS; return 2; } case DCmode: classes[0] = X86_64_SSEDF_CLASS; classes[1] = X86_64_SSEDF_CLASS; return 2; case XCmode: classes[0] = X86_64_COMPLEX_X87_CLASS; return 1; case TCmode: /* This modes is larger than 16 bytes. */ return 0; case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; classes[2] = X86_64_SSEUP_CLASS; classes[3] = X86_64_SSEUP_CLASS; return 4; case V4SFmode: case V4SImode: case V16QImode: case V8HImode: case V2DFmode: case V2DImode: classes[0] = X86_64_SSE_CLASS; classes[1] = X86_64_SSEUP_CLASS; return 2; case V1TImode: case V1DImode: case V2SFmode: case V2SImode: case V4HImode: case V8QImode: classes[0] = X86_64_SSE_CLASS; return 1; case BLKmode: case VOIDmode: return 0; default: gcc_assert (VECTOR_MODE_P (mode)); if (bytes > 16) return 0; gcc_assert (GET_MODE_CLASS (GET_MODE_INNER (mode)) == MODE_INT); if (bit_offset + GET_MODE_BITSIZE (mode) <= 32) classes[0] = X86_64_INTEGERSI_CLASS; else classes[0] = X86_64_INTEGER_CLASS; classes[1] = X86_64_INTEGER_CLASS; return 1 + (bytes > 8); } } /* Examine the argument and return set number of register required in each class. Return 0 iff parameter should be passed in memory. */ static int examine_argument (enum machine_mode mode, const_tree type, int in_return, int *int_nregs, int *sse_nregs) { enum x86_64_reg_class regclass[MAX_CLASSES]; int n = classify_argument (mode, type, regclass, 0); *int_nregs = 0; *sse_nregs = 0; if (!n) return 0; for (n--; n >= 0; n--) switch (regclass[n]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: (*int_nregs)++; break; case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: (*sse_nregs)++; break; case X86_64_NO_CLASS: case X86_64_SSEUP_CLASS: break; case X86_64_X87_CLASS: case X86_64_X87UP_CLASS: if (!in_return) return 0; break; case X86_64_COMPLEX_X87_CLASS: return in_return ? 2 : 0; case X86_64_MEMORY_CLASS: gcc_unreachable (); } return 1; } /* Construct container for the argument used by GCC interface. See FUNCTION_ARG for the detailed description. */ static rtx construct_container (enum machine_mode mode, enum machine_mode orig_mode, const_tree type, int in_return, int nintregs, int nsseregs, const int *intreg, int sse_regno) { /* The following variables hold the static issued_error state. */ static bool issued_sse_arg_error; static bool issued_sse_ret_error; static bool issued_x87_ret_error; enum machine_mode tmpmode; int bytes = (mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode); enum x86_64_reg_class regclass[MAX_CLASSES]; int n; int i; int nexps = 0; int needed_sseregs, needed_intregs; rtx exp[MAX_CLASSES]; rtx ret; n = classify_argument (mode, type, regclass, 0); if (!n) return NULL; if (!examine_argument (mode, type, in_return, &needed_intregs, &needed_sseregs)) return NULL; if (needed_intregs > nintregs || needed_sseregs > nsseregs) return NULL; /* We allowed the user to turn off SSE for kernel mode. Don't crash if some less clueful developer tries to use floating-point anyway. */ if (needed_sseregs && !TARGET_SSE) { if (in_return) { if (!issued_sse_ret_error) { error ("SSE register return with SSE disabled"); issued_sse_ret_error = true; } } else if (!issued_sse_arg_error) { error ("SSE register argument with SSE disabled"); issued_sse_arg_error = true; } return NULL; } /* Likewise, error if the ABI requires us to return values in the x87 registers and the user specified -mno-80387. */ if (!TARGET_80387 && in_return) for (i = 0; i < n; i++) if (regclass[i] == X86_64_X87_CLASS || regclass[i] == X86_64_X87UP_CLASS || regclass[i] == X86_64_COMPLEX_X87_CLASS) { if (!issued_x87_ret_error) { error ("x87 register return with x87 disabled"); issued_x87_ret_error = true; } return NULL; } /* First construct simple cases. Avoid SCmode, since we want to use single register to pass this type. */ if (n == 1 && mode != SCmode) switch (regclass[0]) { case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: return gen_rtx_REG (mode, intreg[0]); case X86_64_SSE_CLASS: case X86_64_SSESF_CLASS: case X86_64_SSEDF_CLASS: if (mode != BLKmode) return gen_reg_or_parallel (mode, orig_mode, SSE_REGNO (sse_regno)); break; case X86_64_X87_CLASS: case X86_64_COMPLEX_X87_CLASS: return gen_rtx_REG (mode, FIRST_STACK_REG); case X86_64_NO_CLASS: /* Zero sized array, struct or class. */ return NULL; default: gcc_unreachable (); } if (n == 2 && regclass[0] == X86_64_SSE_CLASS && regclass[1] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_rtx_REG (mode, SSE_REGNO (sse_regno)); if (n == 4 && regclass[0] == X86_64_SSE_CLASS && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS && mode != BLKmode) return gen_rtx_REG (mode, SSE_REGNO (sse_regno)); if (n == 2 && regclass[0] == X86_64_X87_CLASS && regclass[1] == X86_64_X87UP_CLASS) return gen_rtx_REG (XFmode, FIRST_STACK_REG); if (n == 2 && regclass[0] == X86_64_INTEGER_CLASS && regclass[1] == X86_64_INTEGER_CLASS && (mode == CDImode || mode == TImode || mode == TFmode) && intreg[0] + 1 == intreg[1]) return gen_rtx_REG (mode, intreg[0]); /* Otherwise figure out the entries of the PARALLEL. */ for (i = 0; i < n; i++) { int pos; switch (regclass[i]) { case X86_64_NO_CLASS: break; case X86_64_INTEGER_CLASS: case X86_64_INTEGERSI_CLASS: /* Merge TImodes on aligned occasions here too. */ if (i * 8 + 8 > bytes) tmpmode = mode_for_size ((bytes - i * 8) * BITS_PER_UNIT, MODE_INT, 0); else if (regclass[i] == X86_64_INTEGERSI_CLASS) tmpmode = SImode; else tmpmode = DImode; /* We've requested 24 bytes we don't have mode for. Use DImode. */ if (tmpmode == BLKmode) tmpmode = DImode; exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, *intreg), GEN_INT (i*8)); intreg++; break; case X86_64_SSESF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (SFmode, SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSEDF_CLASS: exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (DFmode, SSE_REGNO (sse_regno)), GEN_INT (i*8)); sse_regno++; break; case X86_64_SSE_CLASS: pos = i; switch (n) { case 1: tmpmode = DImode; break; case 2: if (i == 0 && regclass[1] == X86_64_SSEUP_CLASS) { tmpmode = TImode; i++; } else tmpmode = DImode; break; case 4: gcc_assert (i == 0 && regclass[1] == X86_64_SSEUP_CLASS && regclass[2] == X86_64_SSEUP_CLASS && regclass[3] == X86_64_SSEUP_CLASS); tmpmode = OImode; i += 3; break; default: gcc_unreachable (); } exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (tmpmode, SSE_REGNO (sse_regno)), GEN_INT (pos*8)); sse_regno++; break; default: gcc_unreachable (); } } /* Empty aligned struct, union or class. */ if (nexps == 0) return NULL; ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps)); for (i = 0; i < nexps; i++) XVECEXP (ret, 0, i) = exp [i]; return ret; } /* Update the data in CUM to advance over an argument of mode MODE and data type TYPE. (TYPE is null for libcalls where that information may not be available.) */ static void function_arg_advance_32 (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { switch (mode) { default: break; case BLKmode: if (bytes < 0) break; /* FALLTHRU */ case DImode: case SImode: case HImode: case QImode: cum->words += words; cum->nregs -= words; cum->regno += words; if (cum->nregs <= 0) { cum->nregs = 0; cum->regno = 0; } break; case OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case DFmode: if (cum->float_in_sse < 2) break; case SFmode: if (cum->float_in_sse < 1) break; /* FALLTHRU */ case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: case TImode: case V16QImode: case V8HImode: case V4SImode: case V2DImode: case V4SFmode: case V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->sse_words += words; cum->sse_nregs -= 1; cum->sse_regno += 1; if (cum->sse_nregs <= 0) { cum->sse_nregs = 0; cum->sse_regno = 0; } } break; case V8QImode: case V4HImode: case V2SImode: case V2SFmode: case V1TImode: case V1DImode: if (!type || !AGGREGATE_TYPE_P (type)) { cum->mmx_words += words; cum->mmx_nregs -= 1; cum->mmx_regno += 1; if (cum->mmx_nregs <= 0) { cum->mmx_nregs = 0; cum->mmx_regno = 0; } } break; } } static void function_arg_advance_64 (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, HOST_WIDE_INT words, int named) { int int_nregs, sse_nregs; /* Unnamed 256bit vector mode parameters are passed on stack. */ if (!named && VALID_AVX256_REG_MODE (mode)) return; if (examine_argument (mode, type, 0, &int_nregs, &sse_nregs) && sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs) { cum->nregs -= int_nregs; cum->sse_nregs -= sse_nregs; cum->regno += int_nregs; cum->sse_regno += sse_nregs; } else { int align = ix86_function_arg_boundary (mode, type) / BITS_PER_WORD; cum->words = (cum->words + align - 1) & ~(align - 1); cum->words += words; } } static void function_arg_advance_ms_64 (CUMULATIVE_ARGS *cum, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { /* Otherwise, this should be passed indirect. */ gcc_assert (bytes == 1 || bytes == 2 || bytes == 4 || bytes == 8); cum->words += words; if (cum->nregs > 0) { cum->nregs -= 1; cum->regno += 1; } } void function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int named) { HOST_WIDE_INT bytes, words; if (mode == BLKmode) bytes = int_size_in_bytes (type); else bytes = GET_MODE_SIZE (mode); words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; if (type) mode = type_natural_mode (type, NULL); if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) function_arg_advance_ms_64 (cum, bytes, words); else if (TARGET_64BIT) function_arg_advance_64 (cum, mode, type, words, named); else function_arg_advance_32 (cum, mode, type, bytes, words); } /* Define where to put the arguments to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). */ static rtx function_arg_32 (CUMULATIVE_ARGS *cum, enum machine_mode mode, enum machine_mode orig_mode, tree type, HOST_WIDE_INT bytes, HOST_WIDE_INT words) { static bool warnedsse, warnedmmx; /* Avoid the AL settings for the Unix64 ABI. */ if (mode == VOIDmode) return constm1_rtx; switch (mode) { default: break; case BLKmode: if (bytes < 0) break; /* FALLTHRU */ case DImode: case SImode: case HImode: case QImode: if (words <= cum->nregs) { int regno = cum->regno; /* Fastcall allocates the first two DWORD (SImode) or smaller arguments to ECX and EDX if it isn't an aggregate type . */ if (cum->fastcall) { if (mode == BLKmode || mode == DImode || (type && AGGREGATE_TYPE_P (type))) break; /* ECX not EAX is the first allocated register. */ if (regno == AX_REG) regno = CX_REG; } return gen_rtx_REG (mode, regno); } break; case DFmode: if (cum->float_in_sse < 2) break; case SFmode: if (cum->float_in_sse < 1) break; /* FALLTHRU */ case TImode: /* In 32bit, we pass TImode in xmm registers. */ case V16QImode: case V8HImode: case V4SImode: case V2DImode: case V4SFmode: case V2DFmode: if (!type || !AGGREGATE_TYPE_P (type)) { if (!TARGET_SSE && !warnedsse && cum->warn_sse) { warnedsse = true; warning (0, "SSE vector argument without SSE enabled " "changes the ABI"); } if (cum->sse_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->sse_regno + FIRST_SSE_REG); } break; case OImode: /* OImode shouldn't be used directly. */ gcc_unreachable (); case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: if (!type || !AGGREGATE_TYPE_P (type)) { if (cum->sse_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->sse_regno + FIRST_SSE_REG); } break; case V8QImode: case V4HImode: case V2SImode: case V2SFmode: case V1TImode: case V1DImode: if (!type || !AGGREGATE_TYPE_P (type)) { if (!TARGET_MMX && !warnedmmx && cum->warn_mmx) { warnedmmx = true; warning (0, "MMX vector argument without MMX enabled " "changes the ABI"); } if (cum->mmx_nregs) return gen_reg_or_parallel (mode, orig_mode, cum->mmx_regno + FIRST_MMX_REG); } break; } return NULL_RTX; } static rtx function_arg_64 (CUMULATIVE_ARGS *cum, enum machine_mode mode, enum machine_mode orig_mode, tree type, int named) { /* Handle a hidden AL argument containing number of registers for varargs x86-64 functions. */ if (mode == VOIDmode) return GEN_INT (cum->maybe_vaarg ? (cum->sse_nregs < 0 ? X86_64_SSE_REGPARM_MAX : cum->sse_regno) : -1); switch (mode) { default: break; case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: /* Unnamed 256bit vector mode parameters are passed on stack. */ if (!named) return NULL; break; } return construct_container (mode, orig_mode, type, 0, cum->nregs, cum->sse_nregs, &x86_64_int_parameter_registers [cum->regno], cum->sse_regno); } static rtx function_arg_ms_64 (CUMULATIVE_ARGS *cum, enum machine_mode mode, enum machine_mode orig_mode, int named, HOST_WIDE_INT bytes) { unsigned int regno; /* We need to add clobber for MS_ABI->SYSV ABI calls in expand_call. We use value of -2 to specify that current function call is MSABI. */ if (mode == VOIDmode) return GEN_INT (-2); /* If we've run out of registers, it goes on the stack. */ if (cum->nregs == 0) return NULL_RTX; regno = x86_64_ms_abi_int_parameter_registers[cum->regno]; /* Only floating point modes are passed in anything but integer regs. */ if (TARGET_SSE && (mode == SFmode || mode == DFmode)) { if (named) regno = cum->regno + FIRST_SSE_REG; else { rtx t1, t2; /* Unnamed floating parameters are passed in both the SSE and integer registers. */ t1 = gen_rtx_REG (mode, cum->regno + FIRST_SSE_REG); t2 = gen_rtx_REG (mode, regno); t1 = gen_rtx_EXPR_LIST (VOIDmode, t1, const0_rtx); t2 = gen_rtx_EXPR_LIST (VOIDmode, t2, const0_rtx); return gen_rtx_PARALLEL (mode, gen_rtvec (2, t1, t2)); } } /* Handle aggregated types passed in register. */ if (orig_mode == BLKmode) { if (bytes > 0 && bytes <= 8) mode = (bytes > 4 ? DImode : SImode); if (mode == BLKmode) mode = DImode; } return gen_reg_or_parallel (mode, orig_mode, regno); } rtx function_arg (CUMULATIVE_ARGS *cum, enum machine_mode omode, tree type, int named) { enum machine_mode mode = omode; HOST_WIDE_INT bytes, words; if (mode == BLKmode) bytes = int_size_in_bytes (type); else bytes = GET_MODE_SIZE (mode); words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD; /* To simplify the code below, represent vector types with a vector mode even if MMX/SSE are not active. */ if (type && TREE_CODE (type) == VECTOR_TYPE) mode = type_natural_mode (type, cum); if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) return function_arg_ms_64 (cum, mode, omode, named, bytes); else if (TARGET_64BIT) return function_arg_64 (cum, mode, omode, type, named); else return function_arg_32 (cum, mode, omode, type, bytes, words); } /* A C expression that indicates when an argument must be passed by reference. If nonzero for an argument, a copy of that argument is made in memory and a pointer to the argument is passed instead of the argument itself. The pointer is passed in whatever way is appropriate for passing a pointer to that type. */ static bool ix86_pass_by_reference (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, const_tree type, bool named ATTRIBUTE_UNUSED) { /* See Windows x64 Software Convention. */ if (TARGET_64BIT && (cum ? cum->call_abi : ix86_abi) == MS_ABI) { int msize = (int) GET_MODE_SIZE (mode); if (type) { /* Arrays are passed by reference. */ if (TREE_CODE (type) == ARRAY_TYPE) return true; if (AGGREGATE_TYPE_P (type)) { /* Structs/unions of sizes other than 8, 16, 32, or 64 bits are passed by reference. */ msize = int_size_in_bytes (type); } } /* __m128 is passed by reference. */ switch (msize) { case 1: case 2: case 4: case 8: break; default: return true; } } else if (TARGET_64BIT && type && int_size_in_bytes (type) == -1) return 1; return 0; } /* Return true when TYPE should be 128bit aligned for 32bit argument passing ABI. */ static bool contains_aligned_value_p (const_tree type) { enum machine_mode mode = TYPE_MODE (type); if (((TARGET_SSE && SSE_REG_MODE_P (mode)) || mode == TDmode || mode == TFmode || mode == TCmode) && (!TYPE_USER_ALIGN (type) || TYPE_ALIGN (type) > 128)) return true; if (TYPE_ALIGN (type) < 128) return false; if (AGGREGATE_TYPE_P (type)) { /* Walk the aggregates recursively. */ switch (TREE_CODE (type)) { case RECORD_TYPE: case UNION_TYPE: case QUAL_UNION_TYPE: { tree field; /* Walk all the structure fields. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && contains_aligned_value_p (TREE_TYPE (field))) return true; } break; } case ARRAY_TYPE: /* Just for use if some languages passes arrays by value. */ if (contains_aligned_value_p (TREE_TYPE (type))) return true; break; default: gcc_unreachable (); } } return false; } /* Gives the alignment boundary, in bits, of an argument with the specified mode and type. */ int ix86_function_arg_boundary (enum machine_mode mode, const_tree type) { int align; if (type) { /* Since canonical type is used for call, we convert it to canonical type if needed. */ if (!TYPE_STRUCTURAL_EQUALITY_P (type)) type = TYPE_CANONICAL (type); align = TYPE_ALIGN (type); } else align = GET_MODE_ALIGNMENT (mode); if (align < PARM_BOUNDARY) align = PARM_BOUNDARY; /* In 32bit, only _Decimal128 and __float128 are aligned to their natural boundaries. */ if (!TARGET_64BIT && mode != TDmode && mode != TFmode) { /* i386 ABI defines all arguments to be 4 byte aligned. We have to make an exception for SSE modes since these require 128bit alignment. The handling here differs from field_alignment. ICC aligns MMX arguments to 4 byte boundaries, while structure fields are aligned to 8 byte boundaries. */ if (!type) { if (!(TARGET_SSE && SSE_REG_MODE_P (mode))) align = PARM_BOUNDARY; } else { if (!contains_aligned_value_p (type)) align = PARM_BOUNDARY; } } if (align > BIGGEST_ALIGNMENT) align = BIGGEST_ALIGNMENT; return align; } /* Return true if N is a possible register number of function value. */ bool ix86_function_value_regno_p (int regno) { switch (regno) { case 0: return true; case FIRST_FLOAT_REG: /* TODO: The function should depend on current function ABI but builtins.c would need updating then. Therefore we use the default ABI. */ if (TARGET_64BIT && ix86_abi == MS_ABI) return false; return TARGET_FLOAT_RETURNS_IN_80387; case FIRST_SSE_REG: return TARGET_SSE; case FIRST_MMX_REG: if (TARGET_MACHO || TARGET_64BIT) return false; return TARGET_MMX; } return false; } /* Define how to find the value returned by a function. VALTYPE is the data type of the value (as a tree). If the precise function being called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0. */ static rtx function_value_32 (enum machine_mode orig_mode, enum machine_mode mode, const_tree fntype, const_tree fn) { unsigned int regno; /* 8-byte vector modes in %mm0. See ix86_return_in_memory for where we normally prevent this case when mmx is not available. However some ABIs may require the result to be returned like DImode. */ if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8) regno = TARGET_MMX ? FIRST_MMX_REG : 0; /* 16-byte vector modes in %xmm0. See ix86_return_in_memory for where we prevent this case when sse is not available. However some ABIs may require the result to be returned like integer TImode. */ else if (mode == TImode || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) regno = TARGET_SSE ? FIRST_SSE_REG : 0; /* 32-byte vector modes in %ymm0. */ else if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 32) regno = TARGET_AVX ? FIRST_SSE_REG : 0; /* Floating point return values in %st(0) (unless -mno-fp-ret-in-387). */ else if (X87_FLOAT_MODE_P (mode) && TARGET_FLOAT_RETURNS_IN_80387) regno = FIRST_FLOAT_REG; else /* Most things go in %eax. */ regno = AX_REG; /* Override FP return register with %xmm0 for local functions when SSE math is enabled or for functions with sseregparm attribute. */ if ((fn || fntype) && (mode == SFmode || mode == DFmode)) { int sse_level = ix86_function_sseregparm (fntype, fn, false); if ((sse_level >= 1 && mode == SFmode) || (sse_level == 2 && mode == DFmode)) regno = FIRST_SSE_REG; } /* OImode shouldn't be used directly. */ gcc_assert (mode != OImode); return gen_rtx_REG (orig_mode, regno); } static rtx function_value_64 (enum machine_mode orig_mode, enum machine_mode mode, const_tree valtype) { rtx ret; /* Handle libcalls, which don't provide a type node. */ if (valtype == NULL) { switch (mode) { case SFmode: case SCmode: case DFmode: case DCmode: case TFmode: case SDmode: case DDmode: case TDmode: return gen_rtx_REG (mode, FIRST_SSE_REG); case XFmode: case XCmode: return gen_rtx_REG (mode, FIRST_FLOAT_REG); case TCmode: return NULL; default: return gen_rtx_REG (mode, AX_REG); } } ret = construct_container (mode, orig_mode, valtype, 1, X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX, x86_64_int_return_registers, 0); /* For zero sized structures, construct_container returns NULL, but we need to keep rest of compiler happy by returning meaningful value. */ if (!ret) ret = gen_rtx_REG (orig_mode, AX_REG); return ret; } static rtx function_value_ms_64 (enum machine_mode orig_mode, enum machine_mode mode) { unsigned int regno = AX_REG; if (TARGET_SSE) { switch (GET_MODE_SIZE (mode)) { case 16: if((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) && !COMPLEX_MODE_P (mode)) regno = FIRST_SSE_REG; break; case 8: case 4: if (mode == SFmode || mode == DFmode) regno = FIRST_SSE_REG; break; default: break; } } return gen_rtx_REG (orig_mode, regno); } static rtx ix86_function_value_1 (const_tree valtype, const_tree fntype_or_decl, enum machine_mode orig_mode, enum machine_mode mode) { const_tree fn, fntype; fn = NULL_TREE; if (fntype_or_decl && DECL_P (fntype_or_decl)) fn = fntype_or_decl; fntype = fn ? TREE_TYPE (fn) : fntype_or_decl; if (TARGET_64BIT && ix86_function_type_abi (fntype) == MS_ABI) return function_value_ms_64 (orig_mode, mode); else if (TARGET_64BIT) return function_value_64 (orig_mode, mode, valtype); else return function_value_32 (orig_mode, mode, fntype, fn); } static rtx ix86_function_value (const_tree valtype, const_tree fntype_or_decl, bool outgoing ATTRIBUTE_UNUSED) { enum machine_mode mode, orig_mode; orig_mode = TYPE_MODE (valtype); mode = type_natural_mode (valtype, NULL); return ix86_function_value_1 (valtype, fntype_or_decl, orig_mode, mode); } rtx ix86_libcall_value (enum machine_mode mode) { return ix86_function_value_1 (NULL, NULL, mode, mode); } /* Return true iff type is returned in memory. */ static int ATTRIBUTE_UNUSED return_in_memory_32 (const_tree type, enum machine_mode mode) { HOST_WIDE_INT size; if (mode == BLKmode) return 1; size = int_size_in_bytes (type); if (MS_AGGREGATE_RETURN && AGGREGATE_TYPE_P (type) && size <= 8) return 0; if (VECTOR_MODE_P (mode) || mode == TImode) { /* User-created vectors small enough to fit in EAX. */ if (size < 8) return 0; /* MMX/3dNow values are returned in MM0, except when it doesn't exits. */ if (size == 8) return (TARGET_MMX ? 0 : 1); /* SSE values are returned in XMM0, except when it doesn't exist. */ if (size == 16) return (TARGET_SSE ? 0 : 1); /* AVX values are returned in YMM0, except when it doesn't exist. */ if (size == 32) return TARGET_AVX ? 0 : 1; } if (mode == XFmode) return 0; if (size > 12) return 1; /* OImode shouldn't be used directly. */ gcc_assert (mode != OImode); return 0; } static int ATTRIBUTE_UNUSED return_in_memory_64 (const_tree type, enum machine_mode mode) { int needed_intregs, needed_sseregs; return !examine_argument (mode, type, 1, &needed_intregs, &needed_sseregs); } static int ATTRIBUTE_UNUSED return_in_memory_ms_64 (const_tree type, enum machine_mode mode) { HOST_WIDE_INT size = int_size_in_bytes (type); /* __m128 is returned in xmm0. */ if ((SCALAR_INT_MODE_P (mode) || VECTOR_MODE_P (mode)) && !COMPLEX_MODE_P (mode) && (GET_MODE_SIZE (mode) == 16 || size == 16)) return 0; /* Otherwise, the size must be exactly in [1248]. */ return (size != 1 && size != 2 && size != 4 && size != 8); } static bool ix86_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) { #ifdef SUBTARGET_RETURN_IN_MEMORY return SUBTARGET_RETURN_IN_MEMORY (type, fntype); #else const enum machine_mode mode = type_natural_mode (type, NULL); if (TARGET_64BIT) { if (ix86_function_type_abi (fntype) == MS_ABI) return return_in_memory_ms_64 (type, mode); else return return_in_memory_64 (type, mode); } else return return_in_memory_32 (type, mode); #endif } /* Return false iff TYPE is returned in memory. This version is used on Solaris 2. It is similar to the generic ix86_return_in_memory, but differs notably in that when MMX is available, 8-byte vectors are returned in memory, rather than in MMX registers. */ bool ix86_solaris_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED) { int size; enum machine_mode mode = type_natural_mode (type, NULL); if (TARGET_64BIT) return return_in_memory_64 (type, mode); if (mode == BLKmode) return 1; size = int_size_in_bytes (type); if (VECTOR_MODE_P (mode)) { /* Return in memory only if MMX registers *are* available. This seems backwards, but it is consistent with the existing Solaris x86 ABI. */ if (size == 8) return TARGET_MMX; if (size == 16) return !TARGET_SSE; } else if (mode == TImode) return !TARGET_SSE; else if (mode == XFmode) return 0; return size > 12; } /* When returning SSE vector types, we have a choice of either (1) being abi incompatible with a -march switch, or (2) generating an error. Given no good solution, I think the safest thing is one warning. The user won't be able to use -Werror, but.... Choose the STRUCT_VALUE_RTX hook because that's (at present) only called in response to actually generating a caller or callee that uses such a type. As opposed to TARGET_RETURN_IN_MEMORY, which is called via aggregate_value_p for general type probing from tree-ssa. */ static rtx ix86_struct_value_rtx (tree type, int incoming ATTRIBUTE_UNUSED) { static bool warnedsse, warnedmmx; if (!TARGET_64BIT && type) { /* Look at the return type of the function, not the function type. */ enum machine_mode mode = TYPE_MODE (TREE_TYPE (type)); if (!TARGET_SSE && !warnedsse) { if (mode == TImode || (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 16)) { warnedsse = true; warning (0, "SSE vector return without SSE enabled " "changes the ABI"); } } if (!TARGET_MMX && !warnedmmx) { if (VECTOR_MODE_P (mode) && GET_MODE_SIZE (mode) == 8) { warnedmmx = true; warning (0, "MMX vector return without MMX enabled " "changes the ABI"); } } } return NULL; } /* Create the va_list data type. */ /* Returns the calling convention specific va_list date type. The argument ABI can be DEFAULT_ABI, MS_ABI, or SYSV_ABI. */ static tree ix86_build_builtin_va_list_abi (enum calling_abi abi) { tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl; /* For i386 we use plain pointer to argument area. */ if (!TARGET_64BIT || abi == MS_ABI) return build_pointer_type (char_type_node); record = (*lang_hooks.types.make_type) (RECORD_TYPE); type_decl = build_decl (BUILTINS_LOCATION, TYPE_DECL, get_identifier ("__va_list_tag"), record); f_gpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("gp_offset"), unsigned_type_node); f_fpr = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("fp_offset"), unsigned_type_node); f_ovf = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("overflow_arg_area"), ptr_type_node); f_sav = build_decl (BUILTINS_LOCATION, FIELD_DECL, get_identifier ("reg_save_area"), ptr_type_node); va_list_gpr_counter_field = f_gpr; va_list_fpr_counter_field = f_fpr; DECL_FIELD_CONTEXT (f_gpr) = record; DECL_FIELD_CONTEXT (f_fpr) = record; DECL_FIELD_CONTEXT (f_ovf) = record; DECL_FIELD_CONTEXT (f_sav) = record; TREE_CHAIN (record) = type_decl; TYPE_NAME (record) = type_decl; TYPE_FIELDS (record) = f_gpr; TREE_CHAIN (f_gpr) = f_fpr; TREE_CHAIN (f_fpr) = f_ovf; TREE_CHAIN (f_ovf) = f_sav; layout_type (record); /* The correct type is an array type of one element. */ return build_array_type (record, build_index_type (size_zero_node)); } /* Setup the builtin va_list data type and for 64-bit the additional calling convention specific va_list data types. */ static tree ix86_build_builtin_va_list (void) { tree ret = ix86_build_builtin_va_list_abi (ix86_abi); /* Initialize abi specific va_list builtin types. */ if (TARGET_64BIT) { tree t; if (ix86_abi == MS_ABI) { t = ix86_build_builtin_va_list_abi (SYSV_ABI); if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); sysv_va_list_type_node = t; } else { t = ret; if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); sysv_va_list_type_node = t; } if (ix86_abi != MS_ABI) { t = ix86_build_builtin_va_list_abi (MS_ABI); if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); ms_va_list_type_node = t; } else { t = ret; if (TREE_CODE (t) != RECORD_TYPE) t = build_variant_type_copy (t); ms_va_list_type_node = t; } } return ret; } /* Worker function for TARGET_SETUP_INCOMING_VARARGS. */ static void setup_incoming_varargs_64 (CUMULATIVE_ARGS *cum) { rtx save_area, mem; rtx label; rtx label_ref; rtx tmp_reg; rtx nsse_reg; alias_set_type set; int i; /* GPR size of varargs save area. */ if (cfun->va_list_gpr_size) ix86_varargs_gpr_size = X86_64_REGPARM_MAX * UNITS_PER_WORD; else ix86_varargs_gpr_size = 0; /* FPR size of varargs save area. We don't need it if we don't pass anything in SSE registers. */ if (cum->sse_nregs && cfun->va_list_fpr_size) ix86_varargs_fpr_size = X86_64_SSE_REGPARM_MAX * 16; else ix86_varargs_fpr_size = 0; if (! ix86_varargs_gpr_size && ! ix86_varargs_fpr_size) return; save_area = frame_pointer_rtx; set = get_varargs_alias_set (); for (i = cum->regno; i < X86_64_REGPARM_MAX && i < cum->regno + cfun->va_list_gpr_size / UNITS_PER_WORD; i++) { mem = gen_rtx_MEM (Pmode, plus_constant (save_area, i * UNITS_PER_WORD)); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); emit_move_insn (mem, gen_rtx_REG (Pmode, x86_64_int_parameter_registers[i])); } if (ix86_varargs_fpr_size) { /* Stack must be aligned to 16byte for FP register save area. */ if (crtl->stack_alignment_needed < 128) crtl->stack_alignment_needed = 128; /* Now emit code to save SSE registers. The AX parameter contains number of SSE parameter registers used to call this function. We use sse_prologue_save insn template that produces computed jump across SSE saves. We need some preparation work to get this working. */ label = gen_label_rtx (); label_ref = gen_rtx_LABEL_REF (Pmode, label); /* Compute address to jump to : label - eax*4 + nnamed_sse_arguments*4 Or label - eax*5 + nnamed_sse_arguments*5 for AVX. */ tmp_reg = gen_reg_rtx (Pmode); nsse_reg = gen_reg_rtx (Pmode); emit_insn (gen_zero_extendqidi2 (nsse_reg, gen_rtx_REG (QImode, AX_REG))); emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, gen_rtx_MULT (Pmode, nsse_reg, GEN_INT (4)))); /* vmovaps is one byte longer than movaps. */ if (TARGET_AVX) emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, gen_rtx_PLUS (Pmode, tmp_reg, nsse_reg))); if (cum->sse_regno) emit_move_insn (nsse_reg, gen_rtx_CONST (DImode, gen_rtx_PLUS (DImode, label_ref, GEN_INT (cum->sse_regno * (TARGET_AVX ? 5 : 4))))); else emit_move_insn (nsse_reg, label_ref); emit_insn (gen_subdi3 (nsse_reg, nsse_reg, tmp_reg)); /* Compute address of memory block we save into. We always use pointer pointing 127 bytes after first byte to store - this is needed to keep instruction size limited by 4 bytes (5 bytes for AVX) with one byte displacement. */ tmp_reg = gen_reg_rtx (Pmode); emit_insn (gen_rtx_SET (VOIDmode, tmp_reg, plus_constant (save_area, ix86_varargs_gpr_size + 127))); mem = gen_rtx_MEM (BLKmode, plus_constant (tmp_reg, -127)); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); set_mem_align (mem, BITS_PER_WORD); /* And finally do the dirty job! */ emit_insn (gen_sse_prologue_save (mem, nsse_reg, GEN_INT (cum->sse_regno), label)); } } static void setup_incoming_varargs_ms_64 (CUMULATIVE_ARGS *cum) { alias_set_type set = get_varargs_alias_set (); int i; for (i = cum->regno; i < X86_64_MS_REGPARM_MAX; i++) { rtx reg, mem; mem = gen_rtx_MEM (Pmode, plus_constant (virtual_incoming_args_rtx, i * UNITS_PER_WORD)); MEM_NOTRAP_P (mem) = 1; set_mem_alias_set (mem, set); reg = gen_rtx_REG (Pmode, x86_64_ms_abi_int_parameter_registers[i]); emit_move_insn (mem, reg); } } static void ix86_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type, int *pretend_size ATTRIBUTE_UNUSED, int no_rtl) { CUMULATIVE_ARGS next_cum; tree fntype; /* This argument doesn't appear to be used anymore. Which is good, because the old code here didn't suppress rtl generation. */ gcc_assert (!no_rtl); if (!TARGET_64BIT) return; fntype = TREE_TYPE (current_function_decl); /* For varargs, we do not want to skip the dummy va_dcl argument. For stdargs, we do want to skip the last named argument. */ next_cum = *cum; if (stdarg_p (fntype)) function_arg_advance (&next_cum, mode, type, 1); if (cum->call_abi == MS_ABI) setup_incoming_varargs_ms_64 (&next_cum); else setup_incoming_varargs_64 (&next_cum); } /* Checks if TYPE is of kind va_list char *. */ static bool is_va_list_char_pointer (tree type) { tree canonic; /* For 32-bit it is always true. */ if (!TARGET_64BIT) return true; canonic = ix86_canonical_va_list_type (type); return (canonic == ms_va_list_type_node || (ix86_abi == MS_ABI && canonic == va_list_type_node)); } /* Implement va_start. */ static void ix86_va_start (tree valist, rtx nextarg) { HOST_WIDE_INT words, n_gpr, n_fpr; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; tree type; /* Only 64bit target needs something special. */ if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist))) { std_expand_builtin_va_start (valist, nextarg); return; } f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist); gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr, NULL_TREE); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); /* Count number of gp and fp argument registers used. */ words = crtl->args.info.words; n_gpr = crtl->args.info.regno; n_fpr = crtl->args.info.sse_regno; if (cfun->va_list_gpr_size) { type = TREE_TYPE (gpr); t = build2 (MODIFY_EXPR, type, gpr, build_int_cst (type, n_gpr * 8)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } if (TARGET_SSE && cfun->va_list_fpr_size) { type = TREE_TYPE (fpr); t = build2 (MODIFY_EXPR, type, fpr, build_int_cst (type, n_fpr * 16 + 8*X86_64_REGPARM_MAX)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Find the overflow area. */ type = TREE_TYPE (ovf); t = make_tree (type, crtl->args.internal_arg_pointer); if (words != 0) t = build2 (POINTER_PLUS_EXPR, type, t, size_int (words * UNITS_PER_WORD)); t = build2 (MODIFY_EXPR, type, ovf, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); if (ix86_varargs_gpr_size || ix86_varargs_fpr_size) { /* Find the register save area. Prologue of the function save it right above stack frame. */ type = TREE_TYPE (sav); t = make_tree (type, frame_pointer_rtx); if (!ix86_varargs_gpr_size) t = build2 (POINTER_PLUS_EXPR, type, t, size_int (-8 * X86_64_REGPARM_MAX)); t = build2 (MODIFY_EXPR, type, sav, t); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } } /* Implement va_arg. */ static tree ix86_gimplify_va_arg (tree valist, tree type, gimple_seq *pre_p, gimple_seq *post_p) { static const int intreg[6] = { 0, 1, 2, 3, 4, 5 }; tree f_gpr, f_fpr, f_ovf, f_sav; tree gpr, fpr, ovf, sav, t; int size, rsize; tree lab_false, lab_over = NULL_TREE; tree addr, t2; rtx container; int indirect_p = 0; tree ptrtype; enum machine_mode nat_mode; int arg_boundary; /* Only 64bit target needs something special. */ if (!TARGET_64BIT || is_va_list_char_pointer (TREE_TYPE (valist))) return std_gimplify_va_arg_expr (valist, type, pre_p, post_p); f_gpr = TYPE_FIELDS (TREE_TYPE (sysv_va_list_type_node)); f_fpr = TREE_CHAIN (f_gpr); f_ovf = TREE_CHAIN (f_fpr); f_sav = TREE_CHAIN (f_ovf); gpr = build3 (COMPONENT_REF, TREE_TYPE (f_gpr), build_va_arg_indirect_ref (valist), f_gpr, NULL_TREE); valist = build_va_arg_indirect_ref (valist); fpr = build3 (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr, NULL_TREE); ovf = build3 (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf, NULL_TREE); sav = build3 (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav, NULL_TREE); indirect_p = pass_by_reference (NULL, TYPE_MODE (type), type, false); if (indirect_p) type = build_pointer_type (type); size = int_size_in_bytes (type); rsize = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; nat_mode = type_natural_mode (type, NULL); switch (nat_mode) { case V8SFmode: case V8SImode: case V32QImode: case V16HImode: case V4DFmode: case V4DImode: /* Unnamed 256bit vector mode parameters are passed on stack. */ if (ix86_cfun_abi () == SYSV_ABI) { container = NULL; break; } default: container = construct_container (nat_mode, TYPE_MODE (type), type, 0, X86_64_REGPARM_MAX, X86_64_SSE_REGPARM_MAX, intreg, 0); break; } /* Pull the value out of the saved registers. */ addr = create_tmp_var (ptr_type_node, "addr"); if (container) { int needed_intregs, needed_sseregs; bool need_temp; tree int_addr, sse_addr; lab_false = create_artificial_label (UNKNOWN_LOCATION); lab_over = create_artificial_label (UNKNOWN_LOCATION); examine_argument (nat_mode, type, 0, &needed_intregs, &needed_sseregs); need_temp = (!REG_P (container) && ((needed_intregs && TYPE_ALIGN (type) > 64) || TYPE_ALIGN (type) > 128)); /* In case we are passing structure, verify that it is consecutive block on the register save area. If not we need to do moves. */ if (!need_temp && !REG_P (container)) { /* Verify that all registers are strictly consecutive */ if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0)))) { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 16) need_temp = 1; } } else { int i; for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++) { rtx slot = XVECEXP (container, 0, i); if (REGNO (XEXP (slot, 0)) != (unsigned int) i || INTVAL (XEXP (slot, 1)) != i * 8) need_temp = 1; } } } if (!need_temp) { int_addr = addr; sse_addr = addr; } else { int_addr = create_tmp_var (ptr_type_node, "int_addr"); sse_addr = create_tmp_var (ptr_type_node, "sse_addr"); } /* First ensure that we fit completely in registers. */ if (needed_intregs) { t = build_int_cst (TREE_TYPE (gpr), (X86_64_REGPARM_MAX - needed_intregs + 1) * 8); t = build2 (GE_EXPR, boolean_type_node, gpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } if (needed_sseregs) { t = build_int_cst (TREE_TYPE (fpr), (X86_64_SSE_REGPARM_MAX - needed_sseregs + 1) * 16 + X86_64_REGPARM_MAX * 8); t = build2 (GE_EXPR, boolean_type_node, fpr, t); t2 = build1 (GOTO_EXPR, void_type_node, lab_false); t = build3 (COND_EXPR, void_type_node, t, t2, NULL_TREE); gimplify_and_add (t, pre_p); } /* Compute index to start of area used for integer regs. */ if (needed_intregs) { /* int_addr = gpr + sav; */ t = fold_convert (sizetype, gpr); t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, t); gimplify_assign (int_addr, t, pre_p); } if (needed_sseregs) { /* sse_addr = fpr + sav; */ t = fold_convert (sizetype, fpr); t = build2 (POINTER_PLUS_EXPR, ptr_type_node, sav, t); gimplify_assign (sse_addr, t, pre_p); } if (need_temp) { int i, prev_size = 0; tree temp = create_tmp_var (type, "va_arg_tmp"); /* addr = &temp; */ t = build1 (ADDR_EXPR, build_pointer_type (type), temp); gimplify_assign (addr, t, pre_p); for (i = 0; i < XVECLEN (container, 0); i++) { rtx slot = XVECEXP (container, 0, i); rtx reg = XEXP (slot, 0); enum machine_mode mode = GET_MODE (reg); tree piece_type; tree addr_type; tree daddr_type; tree src_addr, src; int src_offset; tree dest_addr, dest; int cur_size = GET_MODE_SIZE (mode); if (prev_size + cur_size > size) { cur_size = size - prev_size; mode = mode_for_size (cur_size * BITS_PER_UNIT, MODE_INT, 1); if (mode == BLKmode) mode = QImode; } piece_type = lang_hooks.types.type_for_mode (mode, 1); if (mode == GET_MODE (reg)) addr_type = build_pointer_type (piece_type); else addr_type = build_pointer_type_for_mode (piece_type, ptr_mode, true); daddr_type = build_pointer_type_for_mode (piece_type, ptr_mode, true); if (SSE_REGNO_P (REGNO (reg))) { src_addr = sse_addr; src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16; } else { src_addr = int_addr; src_offset = REGNO (reg) * 8; } src_addr = fold_convert (addr_type, src_addr); src_addr = fold_build2 (POINTER_PLUS_EXPR, addr_type, src_addr, size_int (src_offset)); dest_addr = fold_convert (daddr_type, addr); dest_addr = fold_build2 (POINTER_PLUS_EXPR, daddr_type, dest_addr, size_int (INTVAL (XEXP (slot, 1)))); if (cur_size == GET_MODE_SIZE (mode)) { src = build_va_arg_indirect_ref (src_addr); dest = build_va_arg_indirect_ref (dest_addr); gimplify_assign (dest, src, pre_p); } else { tree copy = build_call_expr (implicit_built_in_decls[BUILT_IN_MEMCPY], 3, dest_addr, src_addr, size_int (cur_size)); gimplify_and_add (copy, pre_p); } prev_size += cur_size; } } if (needed_intregs) { t = build2 (PLUS_EXPR, TREE_TYPE (gpr), gpr, build_int_cst (TREE_TYPE (gpr), needed_intregs * 8)); gimplify_assign (gpr, t, pre_p); } if (needed_sseregs) { t = build2 (PLUS_EXPR, TREE_TYPE (fpr), fpr, build_int_cst (TREE_TYPE (fpr), needed_sseregs * 16)); gimplify_assign (fpr, t, pre_p); } gimple_seq_add_stmt (pre_p, gimple_build_goto (lab_over)); gimple_seq_add_stmt (pre_p, gimple_build_label (lab_false)); } /* ... otherwise out of the overflow area. */ /* When we align parameter on stack for caller, if the parameter alignment is beyond MAX_SUPPORTED_STACK_ALIGNMENT, it will be aligned at MAX_SUPPORTED_STACK_ALIGNMENT. We will match callee here with caller. */ arg_boundary = FUNCTION_ARG_BOUNDARY (VOIDmode, type); if ((unsigned int) arg_boundary > MAX_SUPPORTED_STACK_ALIGNMENT) arg_boundary = MAX_SUPPORTED_STACK_ALIGNMENT; /* Care for on-stack alignment if needed. */ if (arg_boundary <= 64 || integer_zerop (TYPE_SIZE (type))) t = ovf; else { HOST_WIDE_INT align = arg_boundary / 8; t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (ovf), ovf, size_int (align - 1)); t = fold_convert (sizetype, t); t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, size_int (-align)); t = fold_convert (TREE_TYPE (ovf), t); } gimplify_expr (&t, pre_p, NULL, is_gimple_val, fb_rvalue); gimplify_assign (addr, t, pre_p); t = build2 (POINTER_PLUS_EXPR, TREE_TYPE (t), t, size_int (rsize * UNITS_PER_WORD)); gimplify_assign (unshare_expr (ovf), t, pre_p); if (container) gimple_seq_add_stmt (pre_p, gimple_build_label (lab_over)); ptrtype = build_pointer_type_for_mode (type, ptr_mode, true); addr = fold_convert (ptrtype, addr); if (indirect_p) addr = build_va_arg_indirect_ref (addr); return build_va_arg_indirect_ref (addr); } /* Return nonzero if OPNUM's MEM should be matched in movabs* patterns. */ int ix86_check_movabs (rtx insn, int opnum) { rtx set, mem; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); mem = XEXP (set, opnum); while (GET_CODE (mem) == SUBREG) mem = SUBREG_REG (mem); gcc_assert (MEM_P (mem)); return (volatile_ok || !MEM_VOLATILE_P (mem)); } /* Initialize the table of extra 80387 mathematical constants. */ static void init_ext_80387_constants (void) { static const char * cst[5] = { "0.3010299956639811952256464283594894482", /* 0: fldlg2 */ "0.6931471805599453094286904741849753009", /* 1: fldln2 */ "1.4426950408889634073876517827983434472", /* 2: fldl2e */ "3.3219280948873623478083405569094566090", /* 3: fldl2t */ "3.1415926535897932385128089594061862044", /* 4: fldpi */ }; int i; for (i = 0; i < 5; i++) { real_from_string (&ext_80387_constants_table[i], cst[i]); /* Ensure each constant is rounded to XFmode precision. */ real_convert (&ext_80387_constants_table[i], XFmode, &ext_80387_constants_table[i]); } ext_80387_constants_init = 1; } /* Return true if the constant is something that can be loaded with a special instruction. */ int standard_80387_constant_p (rtx x) { enum machine_mode mode = GET_MODE (x); REAL_VALUE_TYPE r; if (!(X87_FLOAT_MODE_P (mode) && (GET_CODE (x) == CONST_DOUBLE))) return -1; if (x == CONST0_RTX (mode)) return 1; if (x == CONST1_RTX (mode)) return 2; REAL_VALUE_FROM_CONST_DOUBLE (r, x); /* For XFmode constants, try to find a special 80387 instruction when optimizing for size or on those CPUs that benefit from them. */ if (mode == XFmode && (optimize_function_for_size_p (cfun) || TARGET_EXT_80387_CONSTANTS)) { int i; if (! ext_80387_constants_init) init_ext_80387_constants (); for (i = 0; i < 5; i++) if (real_identical (&r, &ext_80387_constants_table[i])) return i + 3; } /* Load of the constant -0.0 or -1.0 will be split as fldz;fchs or fld1;fchs sequence. */ if (real_isnegzero (&r)) return 8; if (real_identical (&r, &dconstm1)) return 9; return 0; } /* Return the opcode of the special instruction to be used to load the constant X. */ const char * standard_80387_constant_opcode (rtx x) { switch (standard_80387_constant_p (x)) { case 1: return "fldz"; case 2: return "fld1"; case 3: return "fldlg2"; case 4: return "fldln2"; case 5: return "fldl2e"; case 6: return "fldl2t"; case 7: return "fldpi"; case 8: case 9: return "#"; default: gcc_unreachable (); } } /* Return the CONST_DOUBLE representing the 80387 constant that is loaded by the specified special instruction. The argument IDX matches the return value from standard_80387_constant_p. */ rtx standard_80387_constant_rtx (int idx) { int i; if (! ext_80387_constants_init) init_ext_80387_constants (); switch (idx) { case 3: case 4: case 5: case 6: case 7: i = idx - 3; break; default: gcc_unreachable (); } return CONST_DOUBLE_FROM_REAL_VALUE (ext_80387_constants_table[i], XFmode); } /* Return 1 if X is all 0s and 2 if x is all 1s in supported SSE vector mode. */ int standard_sse_constant_p (rtx x) { enum machine_mode mode = GET_MODE (x); if (x == const0_rtx || x == CONST0_RTX (GET_MODE (x))) return 1; if (vector_all_ones_operand (x, mode)) switch (mode) { case V16QImode: case V8HImode: case V4SImode: case V2DImode: if (TARGET_SSE2) return 2; default: break; } return 0; } /* Return the opcode of the special instruction to be used to load the constant X. */ const char * standard_sse_constant_opcode (rtx insn, rtx x) { switch (standard_sse_constant_p (x)) { case 1: switch (get_attr_mode (insn)) { case MODE_V4SF: return TARGET_AVX ? "vxorps\t%0, %0, %0" : "xorps\t%0, %0"; case MODE_V2DF: return TARGET_AVX ? "vxorpd\t%0, %0, %0" : "xorpd\t%0, %0"; case MODE_TI: return TARGET_AVX ? "vpxor\t%0, %0, %0" : "pxor\t%0, %0"; case MODE_V8SF: return "vxorps\t%x0, %x0, %x0"; case MODE_V4DF: return "vxorpd\t%x0, %x0, %x0"; case MODE_OI: return "vpxor\t%x0, %x0, %x0"; default: break; } case 2: return TARGET_AVX ? "vpcmpeqd\t%0, %0, %0" : "pcmpeqd\t%0, %0"; default: break; } gcc_unreachable (); } /* Returns 1 if OP contains a symbol reference */ int symbolic_reference_mentioned_p (rtx op) { const char *fmt; int i; if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF) return 1; fmt = GET_RTX_FORMAT (GET_CODE (op)); for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--) { if (fmt[i] == 'E') { int j; for (j = XVECLEN (op, i) - 1; j >= 0; j--) if (symbolic_reference_mentioned_p (XVECEXP (op, i, j))) return 1; } else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i))) return 1; } return 0; } /* Return 1 if it is appropriate to emit `ret' instructions in the body of a function. Do this only if the epilogue is simple, needing a couple of insns. Prior to reloading, we can't tell how many registers must be saved, so return 0 then. Return 0 if there is no frame marker to de-allocate. */ int ix86_can_use_return_insn_p (void) { struct ix86_frame frame; if (! reload_completed || frame_pointer_needed) return 0; /* Don't allow more than 32 pop, since that's all we can do with one instruction. */ if (crtl->args.pops_args && crtl->args.size >= 32768) return 0; ix86_compute_frame_layout (&frame); return frame.to_allocate == 0 && frame.padding0 == 0 && (frame.nregs + frame.nsseregs) == 0; } /* Value should be nonzero if functions must have frame pointers. Zero means the frame pointer need not be set up (and parms may be accessed via the stack pointer) in functions that seem suitable. */ static bool ix86_frame_pointer_required (void) { /* If we accessed previous frames, then the generated code expects to be able to access the saved ebp value in our frame. */ if (cfun->machine->accesses_prev_frame) return true; /* Several x86 os'es need a frame pointer for other reasons, usually pertaining to setjmp. */ if (SUBTARGET_FRAME_POINTER_REQUIRED) return true; /* In override_options, TARGET_OMIT_LEAF_FRAME_POINTER turns off the frame pointer by default. Turn it back on now if we've not got a leaf function. */ if (TARGET_OMIT_LEAF_FRAME_POINTER && (!current_function_is_leaf || ix86_current_function_calls_tls_descriptor)) return true; if (crtl->profile) return true; return false; } /* Record that the current function accesses previous call frames. */ void ix86_setup_frame_addresses (void) { cfun->machine->accesses_prev_frame = 1; } #ifndef USE_HIDDEN_LINKONCE # if (defined(HAVE_GAS_HIDDEN) && (SUPPORTS_ONE_ONLY - 0)) || TARGET_MACHO # define USE_HIDDEN_LINKONCE 1 # else # define USE_HIDDEN_LINKONCE 0 # endif #endif static int pic_labels_used; /* Fills in the label name that should be used for a pc thunk for the given register. */ static void get_pc_thunk_name (char name[32], unsigned int regno) { gcc_assert (!TARGET_64BIT); if (USE_HIDDEN_LINKONCE) sprintf (name, "__i686.get_pc_thunk.%s", reg_names[regno]); else ASM_GENERATE_INTERNAL_LABEL (name, "LPR", regno); } /* This function generates code for -fpic that loads %ebx with the return address of the caller and then returns. */ static void ix86_code_end (void) { rtx xops[2]; int regno; for (regno = 0; regno < 8; ++regno) { char name[32]; tree decl; if (! ((pic_labels_used >> regno) & 1)) continue; get_pc_thunk_name (name, regno); decl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), build_function_type (void_type_node, void_list_node)); DECL_RESULT (decl) = build_decl (BUILTINS_LOCATION, RESULT_DECL, NULL_TREE, void_type_node); TREE_PUBLIC (decl) = 1; TREE_STATIC (decl) = 1; #if TARGET_MACHO if (TARGET_MACHO) { switch_to_section (darwin_sections[text_coal_section]); fputs ("\t.weak_definition\t", asm_out_file); assemble_name (asm_out_file, name); fputs ("\n\t.private_extern\t", asm_out_file); assemble_name (asm_out_file, name); fputs ("\n", asm_out_file); ASM_OUTPUT_LABEL (asm_out_file, name); DECL_WEAK (decl) = 1; } else #endif if (USE_HIDDEN_LINKONCE) { DECL_COMDAT_GROUP (decl) = DECL_ASSEMBLER_NAME (decl); (*targetm.asm_out.unique_section) (decl, 0); switch_to_section (get_named_section (decl, NULL, 0)); (*targetm.asm_out.globalize_label) (asm_out_file, name); fputs ("\t.hidden\t", asm_out_file); assemble_name (asm_out_file, name); putc ('\n', asm_out_file); ASM_DECLARE_FUNCTION_NAME (asm_out_file, name, decl); } else { switch_to_section (text_section); ASM_OUTPUT_LABEL (asm_out_file, name); } DECL_INITIAL (decl) = make_node (BLOCK); current_function_decl = decl; init_function_start (decl); first_function_block_is_cold = false; /* Make sure unwind info is emitted for the thunk if needed. */ final_start_function (emit_barrier (), asm_out_file, 1); xops[0] = gen_rtx_REG (Pmode, regno); xops[1] = gen_rtx_MEM (Pmode, stack_pointer_rtx); output_asm_insn ("mov%z0\t{%1, %0|%0, %1}", xops); output_asm_insn ("ret", xops); final_end_function (); init_insn_lengths (); free_after_compilation (cfun); set_cfun (NULL); current_function_decl = NULL; } } /* Emit code for the SET_GOT patterns. */ const char * output_set_got (rtx dest, rtx label ATTRIBUTE_UNUSED) { rtx xops[3]; xops[0] = dest; if (TARGET_VXWORKS_RTP && flag_pic) { /* Load (*VXWORKS_GOTT_BASE) into the PIC register. */ xops[2] = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_BASE)); output_asm_insn ("mov{l}\t{%2, %0|%0, %2}", xops); /* Load (*VXWORKS_GOTT_BASE)[VXWORKS_GOTT_INDEX] into the PIC register. Use %P and a local symbol in order to print VXWORKS_GOTT_INDEX as an unadorned address. */ xops[2] = gen_rtx_SYMBOL_REF (Pmode, VXWORKS_GOTT_INDEX); SYMBOL_REF_FLAGS (xops[2]) |= SYMBOL_FLAG_LOCAL; output_asm_insn ("mov{l}\t{%P2(%0), %0|%0, DWORD PTR %P2[%0]}", xops); return ""; } xops[1] = gen_rtx_SYMBOL_REF (Pmode, GOT_SYMBOL_NAME); if (! TARGET_DEEP_BRANCH_PREDICTION || !flag_pic) { xops[2] = gen_rtx_LABEL_REF (Pmode, label ? label : gen_label_rtx ()); if (!flag_pic) output_asm_insn ("mov%z0\t{%2, %0|%0, %2}", xops); else { output_asm_insn ("call\t%a2", xops); #ifdef DWARF2_UNWIND_INFO /* The call to next label acts as a push. */ if (dwarf2out_do_frame ()) { rtx insn; start_sequence (); insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-4)))); RTX_FRAME_RELATED_P (insn) = 1; dwarf2out_frame_debug (insn, true); end_sequence (); } #endif } #if TARGET_MACHO /* Output the Mach-O "canonical" label name ("Lxx$pb") here too. This is what will be referenced by the Mach-O PIC subsystem. */ if (!label) ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); #endif (*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (xops[2], 0))); if (flag_pic) { output_asm_insn ("pop%z0\t%0", xops); #ifdef DWARF2_UNWIND_INFO /* The pop is a pop and clobbers dest, but doesn't restore it for unwind info purposes. */ if (dwarf2out_do_frame ()) { rtx insn; start_sequence (); insn = emit_insn (gen_rtx_SET (VOIDmode, dest, const0_rtx)); dwarf2out_frame_debug (insn, true); insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (4)))); RTX_FRAME_RELATED_P (insn) = 1; dwarf2out_frame_debug (insn, true); end_sequence (); } #endif } } else { char name[32]; get_pc_thunk_name (name, REGNO (dest)); pic_labels_used |= 1 << REGNO (dest); #ifdef DWARF2_UNWIND_INFO /* Ensure all queued register saves are flushed before the call. */ if (dwarf2out_do_frame ()) { rtx insn; start_sequence (); insn = emit_barrier (); end_sequence (); dwarf2out_frame_debug (insn, false); } #endif xops[2] = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (name)); xops[2] = gen_rtx_MEM (QImode, xops[2]); output_asm_insn ("call\t%X2", xops); /* Output the Mach-O "canonical" label name ("Lxx$pb") here too. This is what will be referenced by the Mach-O PIC subsystem. */ #if TARGET_MACHO if (!label) ASM_OUTPUT_LABEL (asm_out_file, MACHOPIC_FUNCTION_BASE_NAME); else targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (label)); #endif } if (TARGET_MACHO) return ""; if (!flag_pic || TARGET_DEEP_BRANCH_PREDICTION) output_asm_insn ("add%z0\t{%1, %0|%0, %1}", xops); else output_asm_insn ("add%z0\t{%1+[.-%a2], %0|%0, %1+(.-%a2)}", xops); return ""; } /* Generate an "push" pattern for input ARG. */ static rtx gen_push (rtx arg) { if (ix86_cfa_state->reg == stack_pointer_rtx) ix86_cfa_state->offset += UNITS_PER_WORD; return gen_rtx_SET (VOIDmode, gen_rtx_MEM (Pmode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), arg); } /* Return >= 0 if there is an unused call-clobbered register available for the entire function. */ static unsigned int ix86_select_alt_pic_regnum (void) { if (current_function_is_leaf && !crtl->profile && !ix86_current_function_calls_tls_descriptor) { int i, drap; /* Can't use the same register for both PIC and DRAP. */ if (crtl->drap_reg) drap = REGNO (crtl->drap_reg); else drap = -1; for (i = 2; i >= 0; --i) if (i != drap && !df_regs_ever_live_p (i)) return i; } return INVALID_REGNUM; } /* Return 1 if we need to save REGNO. */ static int ix86_save_reg (unsigned int regno, int maybe_eh_return) { if (pic_offset_table_rtx && regno == REAL_PIC_OFFSET_TABLE_REGNUM && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) || crtl->profile || crtl->calls_eh_return || crtl->uses_const_pool)) { if (ix86_select_alt_pic_regnum () != INVALID_REGNUM) return 0; return 1; } if (crtl->calls_eh_return && maybe_eh_return) { unsigned i; for (i = 0; ; i++) { unsigned test = EH_RETURN_DATA_REGNO (i); if (test == INVALID_REGNUM) break; if (test == regno) return 1; } } if (crtl->drap_reg && regno == REGNO (crtl->drap_reg)) return 1; return (df_regs_ever_live_p (regno) && !call_used_regs[regno] && !fixed_regs[regno] && (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed)); } /* Return number of saved general prupose registers. */ static int ix86_nsaved_regs (void) { int nregs = 0; int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) nregs ++; return nregs; } /* Return number of saved SSE registrers. */ static int ix86_nsaved_sseregs (void) { int nregs = 0; int regno; if (ix86_cfun_abi () != MS_ABI) return 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) nregs ++; return nregs; } /* Given FROM and TO register numbers, say whether this elimination is allowed. If stack alignment is needed, we can only replace argument pointer with hard frame pointer, or replace frame pointer with stack pointer. Otherwise, frame pointer elimination is automatically handled and all other eliminations are valid. */ static bool ix86_can_eliminate (const int from, const int to) { if (stack_realign_fp) return ((from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) || (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)); else return to == STACK_POINTER_REGNUM ? !frame_pointer_needed : true; } /* Return the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ HOST_WIDE_INT ix86_initial_elimination_offset (int from, int to) { struct ix86_frame frame; ix86_compute_frame_layout (&frame); if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset; else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM) return frame.hard_frame_pointer_offset - frame.frame_pointer_offset; else { gcc_assert (to == STACK_POINTER_REGNUM); if (from == ARG_POINTER_REGNUM) return frame.stack_pointer_offset; gcc_assert (from == FRAME_POINTER_REGNUM); return frame.stack_pointer_offset - frame.frame_pointer_offset; } } /* In a dynamically-aligned function, we can't know the offset from stack pointer to frame pointer, so we must ensure that setjmp eliminates fp against the hard fp (%ebp) rather than trying to index from %esp up to the top of the frame across a gap that is of unknown (at compile-time) size. */ static rtx ix86_builtin_setjmp_frame_value (void) { return stack_realign_fp ? hard_frame_pointer_rtx : virtual_stack_vars_rtx; } /* Fill structure ix86_frame about frame of currently computed function. */ static void ix86_compute_frame_layout (struct ix86_frame *frame) { unsigned int stack_alignment_needed; HOST_WIDE_INT offset; unsigned int preferred_alignment; HOST_WIDE_INT size = get_frame_size (); frame->nregs = ix86_nsaved_regs (); frame->nsseregs = ix86_nsaved_sseregs (); stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT; preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT; /* MS ABI seem to require stack alignment to be always 16 except for function prologues. */ if (ix86_cfun_abi () == MS_ABI && preferred_alignment < 16) { preferred_alignment = 16; stack_alignment_needed = 16; crtl->preferred_stack_boundary = 128; crtl->stack_alignment_needed = 128; } gcc_assert (!size || stack_alignment_needed); gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT); gcc_assert (preferred_alignment <= stack_alignment_needed); /* During reload iteration the amount of registers saved can change. Recompute the value as needed. Do not recompute when amount of registers didn't change as reload does multiple calls to the function and does not expect the decision to change within single iteration. */ if (!optimize_function_for_size_p (cfun) && cfun->machine->use_fast_prologue_epilogue_nregs != frame->nregs) { int count = frame->nregs; cfun->machine->use_fast_prologue_epilogue_nregs = count; /* The fast prologue uses move instead of push to save registers. This is significantly longer, but also executes faster as modern hardware can execute the moves in parallel, but can't do that for push/pop. Be careful about choosing what prologue to emit: When function takes many instructions to execute we may use slow version as well as in case function is known to be outside hot spot (this is known with feedback only). Weight the size of function by number of registers to save as it is cheap to use one or two push instructions but very slow to use many of them. */ if (count) count = (count - 1) * FAST_PROLOGUE_INSN_COUNT; if (cfun->function_frequency < FUNCTION_FREQUENCY_NORMAL || (flag_branch_probabilities && cfun->function_frequency < FUNCTION_FREQUENCY_HOT)) cfun->machine->use_fast_prologue_epilogue = false; else cfun->machine->use_fast_prologue_epilogue = !expensive_function_p (count); } if (TARGET_PROLOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue) frame->save_regs_using_mov = true; else frame->save_regs_using_mov = false; /* Skip return address. */ offset = UNITS_PER_WORD; /* Skip pushed static chain. */ if (ix86_static_chain_on_stack) offset += UNITS_PER_WORD; /* Skip saved base pointer. */ if (frame_pointer_needed) offset += UNITS_PER_WORD; frame->hard_frame_pointer_offset = offset; /* Set offset to aligned because the realigned frame starts from here. */ if (stack_realign_fp) offset = (offset + stack_alignment_needed -1) & -stack_alignment_needed; /* Register save area */ offset += frame->nregs * UNITS_PER_WORD; /* Align SSE reg save area. */ if (frame->nsseregs) frame->padding0 = ((offset + 16 - 1) & -16) - offset; else frame->padding0 = 0; /* SSE register save area. */ offset += frame->padding0 + frame->nsseregs * 16; /* Va-arg area */ frame->va_arg_size = ix86_varargs_gpr_size + ix86_varargs_fpr_size; offset += frame->va_arg_size; /* Align start of frame for local function. */ frame->padding1 = ((offset + stack_alignment_needed - 1) & -stack_alignment_needed) - offset; offset += frame->padding1; /* Frame pointer points here. */ frame->frame_pointer_offset = offset; offset += size; /* Add outgoing arguments area. Can be skipped if we eliminated all the function calls as dead code. Skipping is however impossible when function calls alloca. Alloca expander assumes that last crtl->outgoing_args_size of stack frame are unused. */ if (ACCUMULATE_OUTGOING_ARGS && (!current_function_is_leaf || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor)) { offset += crtl->outgoing_args_size; frame->outgoing_arguments_size = crtl->outgoing_args_size; } else frame->outgoing_arguments_size = 0; /* Align stack boundary. Only needed if we're calling another function or using alloca. */ if (!current_function_is_leaf || cfun->calls_alloca || ix86_current_function_calls_tls_descriptor) frame->padding2 = ((offset + preferred_alignment - 1) & -preferred_alignment) - offset; else frame->padding2 = 0; offset += frame->padding2; /* We've reached end of stack frame. */ frame->stack_pointer_offset = offset; /* Size prologue needs to allocate. */ frame->to_allocate = (size + frame->padding1 + frame->padding2 + frame->outgoing_arguments_size + frame->va_arg_size); if ((!frame->to_allocate && frame->nregs <= 1) || (TARGET_64BIT && frame->to_allocate >= (HOST_WIDE_INT) 0x80000000)) frame->save_regs_using_mov = false; if (!TARGET_64BIT_MS_ABI && TARGET_RED_ZONE && current_function_sp_is_unchanging && current_function_is_leaf && !ix86_current_function_calls_tls_descriptor) { frame->red_zone_size = frame->to_allocate; if (frame->save_regs_using_mov) frame->red_zone_size += frame->nregs * UNITS_PER_WORD; if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE) frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE; } else frame->red_zone_size = 0; frame->to_allocate -= frame->red_zone_size; frame->stack_pointer_offset -= frame->red_zone_size; } /* Emit code to save registers in the prologue. */ static void ix86_emit_save_regs (void) { unsigned int regno; rtx insn; for (regno = FIRST_PSEUDO_REGISTER - 1; regno-- > 0; ) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) { insn = emit_insn (gen_push (gen_rtx_REG (Pmode, regno))); RTX_FRAME_RELATED_P (insn) = 1; } } /* Emit code to save registers using MOV insns. First register is restored from POINTER + OFFSET. */ static void ix86_emit_save_regs_using_mov (rtx pointer, HOST_WIDE_INT offset) { unsigned int regno; rtx insn; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) { insn = emit_move_insn (adjust_address (gen_rtx_MEM (Pmode, pointer), Pmode, offset), gen_rtx_REG (Pmode, regno)); RTX_FRAME_RELATED_P (insn) = 1; offset += UNITS_PER_WORD; } } /* Emit code to save registers using MOV insns. First register is restored from POINTER + OFFSET. */ static void ix86_emit_save_sse_regs_using_mov (rtx pointer, HOST_WIDE_INT offset) { unsigned int regno; rtx insn; rtx mem; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, true)) { mem = adjust_address (gen_rtx_MEM (TImode, pointer), TImode, offset); set_mem_align (mem, 128); insn = emit_move_insn (mem, gen_rtx_REG (TImode, regno)); RTX_FRAME_RELATED_P (insn) = 1; offset += 16; } } static GTY(()) rtx queued_cfa_restores; /* Add a REG_CFA_RESTORE REG note to INSN or queue them until next stack manipulation insn. Don't add it if the previously saved value will be left untouched within stack red-zone till return, as unwinders can find the same value in the register and on the stack. */ static void ix86_add_cfa_restore_note (rtx insn, rtx reg, HOST_WIDE_INT red_offset) { if (TARGET_RED_ZONE && !TARGET_64BIT_MS_ABI && red_offset + RED_ZONE_SIZE >= 0 && crtl->args.pops_args < 65536) return; if (insn) { add_reg_note (insn, REG_CFA_RESTORE, reg); RTX_FRAME_RELATED_P (insn) = 1; } else queued_cfa_restores = alloc_reg_note (REG_CFA_RESTORE, reg, queued_cfa_restores); } /* Add queued REG_CFA_RESTORE notes if any to INSN. */ static void ix86_add_queued_cfa_restore_notes (rtx insn) { rtx last; if (!queued_cfa_restores) return; for (last = queued_cfa_restores; XEXP (last, 1); last = XEXP (last, 1)) ; XEXP (last, 1) = REG_NOTES (insn); REG_NOTES (insn) = queued_cfa_restores; queued_cfa_restores = NULL_RTX; RTX_FRAME_RELATED_P (insn) = 1; } /* Expand prologue or epilogue stack adjustment. The pattern exist to put a dependency on all ebp-based memory accesses. STYLE should be negative if instructions should be marked as frame related, zero if %r11 register is live and cannot be freely used and positive otherwise. */ static void pro_epilogue_adjust_stack (rtx dest, rtx src, rtx offset, int style, bool set_cfa) { rtx insn; if (! TARGET_64BIT) insn = emit_insn (gen_pro_epilogue_adjust_stack_1 (dest, src, offset)); else if (x86_64_immediate_operand (offset, DImode)) insn = emit_insn (gen_pro_epilogue_adjust_stack_rex64 (dest, src, offset)); else { rtx r11; /* r11 is used by indirect sibcall return as well, set before the epilogue and used after the epilogue. ATM indirect sibcall shouldn't be used together with huge frame sizes in one function because of the frame_size check in sibcall.c. */ gcc_assert (style); r11 = gen_rtx_REG (DImode, R11_REG); insn = emit_insn (gen_rtx_SET (DImode, r11, offset)); if (style < 0) RTX_FRAME_RELATED_P (insn) = 1; insn = emit_insn (gen_pro_epilogue_adjust_stack_rex64_2 (dest, src, r11, offset)); } if (style >= 0) ix86_add_queued_cfa_restore_notes (insn); if (set_cfa) { rtx r; gcc_assert (ix86_cfa_state->reg == src); ix86_cfa_state->offset += INTVAL (offset); ix86_cfa_state->reg = dest; r = gen_rtx_PLUS (Pmode, src, offset); r = gen_rtx_SET (VOIDmode, dest, r); add_reg_note (insn, REG_CFA_ADJUST_CFA, r); RTX_FRAME_RELATED_P (insn) = 1; } else if (style < 0) RTX_FRAME_RELATED_P (insn) = 1; } /* Find an available register to be used as dynamic realign argument pointer regsiter. Such a register will be written in prologue and used in begin of body, so it must not be 1. parameter passing register. 2. GOT pointer. We reuse static-chain register if it is available. Otherwise, we use DI for i386 and R13 for x86-64. We chose R13 since it has shorter encoding. Return: the regno of chosen register. */ static unsigned int find_drap_reg (void) { tree decl = cfun->decl; if (TARGET_64BIT) { /* Use R13 for nested function or function need static chain. Since function with tail call may use any caller-saved registers in epilogue, DRAP must not use caller-saved register in such case. */ if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit) return R13_REG; return R10_REG; } else { /* Use DI for nested function or function need static chain. Since function with tail call may use any caller-saved registers in epilogue, DRAP must not use caller-saved register in such case. */ if (DECL_STATIC_CHAIN (decl) || crtl->tail_call_emit) return DI_REG; /* Reuse static chain register if it isn't used for parameter passing. */ if (ix86_function_regparm (TREE_TYPE (decl), decl) <= 2 && !lookup_attribute ("fastcall", TYPE_ATTRIBUTES (TREE_TYPE (decl)))) return CX_REG; else return DI_REG; } } /* Return minimum incoming stack alignment. */ static unsigned int ix86_minimum_incoming_stack_boundary (bool sibcall) { unsigned int incoming_stack_boundary; /* Prefer the one specified at command line. */ if (ix86_user_incoming_stack_boundary) incoming_stack_boundary = ix86_user_incoming_stack_boundary; /* In 32bit, use MIN_STACK_BOUNDARY for incoming stack boundary if -mstackrealign is used, it isn't used for sibcall check and estimated stack alignment is 128bit. */ else if (!sibcall && !TARGET_64BIT && ix86_force_align_arg_pointer && crtl->stack_alignment_estimated == 128) incoming_stack_boundary = MIN_STACK_BOUNDARY; else incoming_stack_boundary = ix86_default_incoming_stack_boundary; /* Incoming stack alignment can be changed on individual functions via force_align_arg_pointer attribute. We use the smallest incoming stack boundary. */ if (incoming_stack_boundary > MIN_STACK_BOUNDARY && lookup_attribute (ix86_force_align_arg_pointer_string, TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl)))) incoming_stack_boundary = MIN_STACK_BOUNDARY; /* The incoming stack frame has to be aligned at least at parm_stack_boundary. */ if (incoming_stack_boundary < crtl->parm_stack_boundary) incoming_stack_boundary = crtl->parm_stack_boundary; /* Stack at entrance of main is aligned by runtime. We use the smallest incoming stack boundary. */ if (incoming_stack_boundary > MAIN_STACK_BOUNDARY && DECL_NAME (current_function_decl) && MAIN_NAME_P (DECL_NAME (current_function_decl)) && DECL_FILE_SCOPE_P (current_function_decl)) incoming_stack_boundary = MAIN_STACK_BOUNDARY; return incoming_stack_boundary; } /* Update incoming stack boundary and estimated stack alignment. */ static void ix86_update_stack_boundary (void) { ix86_incoming_stack_boundary = ix86_minimum_incoming_stack_boundary (false); /* x86_64 vararg needs 16byte stack alignment for register save area. */ if (TARGET_64BIT && cfun->stdarg && crtl->stack_alignment_estimated < 128) crtl->stack_alignment_estimated = 128; } /* Handle the TARGET_GET_DRAP_RTX hook. Return NULL if no DRAP is needed or an rtx for DRAP otherwise. */ static rtx ix86_get_drap_rtx (void) { if (ix86_force_drap || !ACCUMULATE_OUTGOING_ARGS) crtl->need_drap = true; if (stack_realign_drap) { /* Assign DRAP to vDRAP and returns vDRAP */ unsigned int regno = find_drap_reg (); rtx drap_vreg; rtx arg_ptr; rtx seq, insn; arg_ptr = gen_rtx_REG (Pmode, regno); crtl->drap_reg = arg_ptr; start_sequence (); drap_vreg = copy_to_reg (arg_ptr); seq = get_insns (); end_sequence (); insn = emit_insn_before (seq, NEXT_INSN (entry_of_function ())); if (!optimize) { add_reg_note (insn, REG_CFA_SET_VDRAP, drap_vreg); RTX_FRAME_RELATED_P (insn) = 1; } return drap_vreg; } else return NULL; } /* Handle the TARGET_INTERNAL_ARG_POINTER hook. */ static rtx ix86_internal_arg_pointer (void) { return virtual_incoming_args_rtx; } /* Finalize stack_realign_needed flag, which will guide prologue/epilogue to be generated in correct form. */ static void ix86_finalize_stack_realign_flags (void) { /* Check if stack realign is really needed after reload, and stores result in cfun */ unsigned int incoming_stack_boundary = (crtl->parm_stack_boundary > ix86_incoming_stack_boundary ? crtl->parm_stack_boundary : ix86_incoming_stack_boundary); unsigned int stack_realign = (incoming_stack_boundary < (current_function_is_leaf ? crtl->max_used_stack_slot_alignment : crtl->stack_alignment_needed)); if (crtl->stack_realign_finalized) { /* After stack_realign_needed is finalized, we can't no longer change it. */ gcc_assert (crtl->stack_realign_needed == stack_realign); } else { crtl->stack_realign_needed = stack_realign; crtl->stack_realign_finalized = true; } } /* Expand the prologue into a bunch of separate insns. */ void ix86_expand_prologue (void) { rtx insn; bool pic_reg_used; struct ix86_frame frame; HOST_WIDE_INT allocate; int gen_frame_pointer = frame_pointer_needed; ix86_finalize_stack_realign_flags (); /* DRAP should not coexist with stack_realign_fp */ gcc_assert (!(crtl->drap_reg && stack_realign_fp)); /* Initialize CFA state for before the prologue. */ ix86_cfa_state->reg = stack_pointer_rtx; ix86_cfa_state->offset = INCOMING_FRAME_SP_OFFSET; ix86_compute_frame_layout (&frame); if (ix86_function_ms_hook_prologue (current_function_decl)) { rtx push, mov; /* Make sure the function starts with 8b ff movl.s %edi,%edi 55 push %ebp 8b ec movl.s %esp,%ebp This matches the hookable function prologue in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. Wine uses this to enable Windows apps to hook the Win32 API functions provided by Wine. */ insn = emit_insn (gen_vswapmov (gen_rtx_REG (SImode, DI_REG), gen_rtx_REG (SImode, DI_REG))); push = emit_insn (gen_push (hard_frame_pointer_rtx)); mov = emit_insn (gen_vswapmov (hard_frame_pointer_rtx, stack_pointer_rtx)); if (frame_pointer_needed && !(crtl->drap_reg && crtl->stack_realign_needed)) { /* The push %ebp and movl.s %esp, %ebp already set up the frame pointer. No need to do this again. */ gen_frame_pointer = 0; RTX_FRAME_RELATED_P (push) = 1; RTX_FRAME_RELATED_P (mov) = 1; if (ix86_cfa_state->reg == stack_pointer_rtx) ix86_cfa_state->reg = hard_frame_pointer_rtx; } else /* If the frame pointer is not needed, pop %ebp again. This could be optimized for cases where ebp needs to be backed up for some other reason. If stack realignment is needed, pop the base pointer again, align the stack, and later regenerate the frame pointer setup. The frame pointer generated by the hook prologue is not aligned, so it can't be used. */ insn = emit_insn ((*ix86_gen_pop1) (hard_frame_pointer_rtx)); } /* The first insn of a function that accepts its static chain on the stack is to push the register that would be filled in by a direct call. This insn will be skipped by the trampoline. */ if (ix86_static_chain_on_stack) { rtx t; insn = emit_insn (gen_push (ix86_static_chain (cfun->decl, false))); emit_insn (gen_blockage ()); /* We don't want to interpret this push insn as a register save, only as a stack adjustment. The real copy of the register as a save will be done later, if needed. */ t = plus_constant (stack_pointer_rtx, -UNITS_PER_WORD); t = gen_rtx_SET (VOIDmode, stack_pointer_rtx, t); add_reg_note (insn, REG_CFA_ADJUST_CFA, t); RTX_FRAME_RELATED_P (insn) = 1; } /* Emit prologue code to adjust stack alignment and setup DRAP, in case of DRAP is needed and stack realignment is really needed after reload */ if (crtl->drap_reg && crtl->stack_realign_needed) { rtx x, y; int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; int param_ptr_offset = UNITS_PER_WORD; if (ix86_static_chain_on_stack) param_ptr_offset += UNITS_PER_WORD; if (!call_used_regs[REGNO (crtl->drap_reg)]) param_ptr_offset += UNITS_PER_WORD; gcc_assert (stack_realign_drap); /* Grab the argument pointer. */ x = plus_constant (stack_pointer_rtx, param_ptr_offset); y = crtl->drap_reg; /* Only need to push parameter pointer reg if it is caller saved reg */ if (!call_used_regs[REGNO (crtl->drap_reg)]) { /* Push arg pointer reg */ insn = emit_insn (gen_push (y)); RTX_FRAME_RELATED_P (insn) = 1; } insn = emit_insn (gen_rtx_SET (VOIDmode, y, x)); RTX_FRAME_RELATED_P (insn) = 1; ix86_cfa_state->reg = crtl->drap_reg; /* Align the stack. */ insn = emit_insn ((*ix86_gen_andsp) (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-align_bytes))); RTX_FRAME_RELATED_P (insn) = 1; /* Replicate the return address on the stack so that return address can be reached via (argp - 1) slot. This is needed to implement macro RETURN_ADDR_RTX and intrinsic function expand_builtin_return_addr etc. */ x = crtl->drap_reg; x = gen_frame_mem (Pmode, plus_constant (x, -UNITS_PER_WORD)); insn = emit_insn (gen_push (x)); RTX_FRAME_RELATED_P (insn) = 1; } /* Note: AT&T enter does NOT have reversed args. Enter is probably slower on all targets. Also sdb doesn't like it. */ if (gen_frame_pointer) { insn = emit_insn (gen_push (hard_frame_pointer_rtx)); RTX_FRAME_RELATED_P (insn) = 1; insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx); RTX_FRAME_RELATED_P (insn) = 1; if (ix86_cfa_state->reg == stack_pointer_rtx) ix86_cfa_state->reg = hard_frame_pointer_rtx; } if (stack_realign_fp) { int align_bytes = crtl->stack_alignment_needed / BITS_PER_UNIT; gcc_assert (align_bytes > MIN_STACK_BOUNDARY / BITS_PER_UNIT); /* Align the stack. */ insn = emit_insn ((*ix86_gen_andsp) (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-align_bytes))); RTX_FRAME_RELATED_P (insn) = 1; } allocate = frame.to_allocate + frame.nsseregs * 16 + frame.padding0; if (!frame.save_regs_using_mov) ix86_emit_save_regs (); else allocate += frame.nregs * UNITS_PER_WORD; /* When using red zone we may start register saving before allocating the stack frame saving one cycle of the prologue. However I will avoid doing this if I am going to have to probe the stack since at least on x86_64 the stack probe can turn into a call that clobbers a red zone location */ if (!TARGET_64BIT_MS_ABI && TARGET_RED_ZONE && frame.save_regs_using_mov && (! TARGET_STACK_PROBE || allocate < CHECK_STACK_LIMIT)) ix86_emit_save_regs_using_mov ((frame_pointer_needed && !crtl->stack_realign_needed) ? hard_frame_pointer_rtx : stack_pointer_rtx, -frame.nregs * UNITS_PER_WORD); if (allocate == 0) ; else if (! TARGET_STACK_PROBE || allocate < CHECK_STACK_LIMIT) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-allocate), -1, ix86_cfa_state->reg == stack_pointer_rtx); else { rtx eax = gen_rtx_REG (Pmode, AX_REG); bool eax_live; rtx t; if (cfun->machine->call_abi == MS_ABI) eax_live = false; else eax_live = ix86_eax_live_at_start_p (); if (eax_live) { emit_insn (gen_push (eax)); allocate -= UNITS_PER_WORD; } emit_move_insn (eax, GEN_INT (allocate)); if (TARGET_64BIT) insn = gen_allocate_stack_worker_64 (eax, eax); else insn = gen_allocate_stack_worker_32 (eax, eax); insn = emit_insn (insn); if (ix86_cfa_state->reg == stack_pointer_rtx) { ix86_cfa_state->offset += allocate; t = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-allocate)); t = gen_rtx_SET (VOIDmode, stack_pointer_rtx, t); add_reg_note (insn, REG_CFA_ADJUST_CFA, t); RTX_FRAME_RELATED_P (insn) = 1; } if (eax_live) { if (frame_pointer_needed) t = plus_constant (hard_frame_pointer_rtx, allocate - frame.to_allocate - frame.nregs * UNITS_PER_WORD); else t = plus_constant (stack_pointer_rtx, allocate); emit_move_insn (eax, gen_rtx_MEM (Pmode, t)); } } if (frame.save_regs_using_mov && !(!TARGET_64BIT_MS_ABI && TARGET_RED_ZONE && (! TARGET_STACK_PROBE || allocate < CHECK_STACK_LIMIT))) { if (!frame_pointer_needed || !(frame.to_allocate + frame.padding0) || crtl->stack_realign_needed) ix86_emit_save_regs_using_mov (stack_pointer_rtx, frame.to_allocate + frame.nsseregs * 16 + frame.padding0); else ix86_emit_save_regs_using_mov (hard_frame_pointer_rtx, -frame.nregs * UNITS_PER_WORD); } if (!frame_pointer_needed || !(frame.to_allocate + frame.padding0) || crtl->stack_realign_needed) ix86_emit_save_sse_regs_using_mov (stack_pointer_rtx, frame.to_allocate); else ix86_emit_save_sse_regs_using_mov (hard_frame_pointer_rtx, - frame.nregs * UNITS_PER_WORD - frame.nsseregs * 16 - frame.padding0); pic_reg_used = false; if (pic_offset_table_rtx && (df_regs_ever_live_p (REAL_PIC_OFFSET_TABLE_REGNUM) || crtl->profile)) { unsigned int alt_pic_reg_used = ix86_select_alt_pic_regnum (); if (alt_pic_reg_used != INVALID_REGNUM) SET_REGNO (pic_offset_table_rtx, alt_pic_reg_used); pic_reg_used = true; } if (pic_reg_used) { if (TARGET_64BIT) { if (ix86_cmodel == CM_LARGE_PIC) { rtx tmp_reg = gen_rtx_REG (DImode, R11_REG); rtx label = gen_label_rtx (); emit_label (label); LABEL_PRESERVE_P (label) = 1; gcc_assert (REGNO (pic_offset_table_rtx) != REGNO (tmp_reg)); insn = emit_insn (gen_set_rip_rex64 (pic_offset_table_rtx, label)); insn = emit_insn (gen_set_got_offset_rex64 (tmp_reg, label)); insn = emit_insn (gen_adddi3 (pic_offset_table_rtx, pic_offset_table_rtx, tmp_reg)); } else insn = emit_insn (gen_set_got_rex64 (pic_offset_table_rtx)); } else insn = emit_insn (gen_set_got (pic_offset_table_rtx)); } /* In the pic_reg_used case, make sure that the got load isn't deleted when mcount needs it. Blockage to avoid call movement across mcount call is emitted in generic code after the NOTE_INSN_PROLOGUE_END note. */ if (crtl->profile && pic_reg_used) emit_insn (gen_prologue_use (pic_offset_table_rtx)); if (crtl->drap_reg && !crtl->stack_realign_needed) { /* vDRAP is setup but after reload it turns out stack realign isn't necessary, here we will emit prologue to setup DRAP without stack realign adjustment */ rtx x; int drap_bp_offset = UNITS_PER_WORD * 2; if (ix86_static_chain_on_stack) drap_bp_offset += UNITS_PER_WORD; x = plus_constant (hard_frame_pointer_rtx, drap_bp_offset); insn = emit_insn (gen_rtx_SET (VOIDmode, crtl->drap_reg, x)); } /* Prevent instructions from being scheduled into register save push sequence when access to the redzone area is done through frame pointer. The offset between the frame pointer and the stack pointer is calculated relative to the value of the stack pointer at the end of the function prologue, and moving instructions that access redzone area via frame pointer inside push sequence violates this assumption. */ if (frame_pointer_needed && frame.red_zone_size) emit_insn (gen_memory_blockage ()); /* Emit cld instruction if stringops are used in the function. */ if (TARGET_CLD && ix86_current_function_needs_cld) emit_insn (gen_cld ()); } /* Emit code to restore REG using a POP insn. */ static void ix86_emit_restore_reg_using_pop (rtx reg, HOST_WIDE_INT red_offset) { rtx insn = emit_insn (ix86_gen_pop1 (reg)); if (ix86_cfa_state->reg == crtl->drap_reg && REGNO (reg) == REGNO (crtl->drap_reg)) { /* Previously we'd represented the CFA as an expression like *(%ebp - 8). We've just popped that value from the stack, which means we need to reset the CFA to the drap register. This will remain until we restore the stack pointer. */ add_reg_note (insn, REG_CFA_DEF_CFA, reg); RTX_FRAME_RELATED_P (insn) = 1; return; } if (ix86_cfa_state->reg == stack_pointer_rtx) { ix86_cfa_state->offset -= UNITS_PER_WORD; add_reg_note (insn, REG_CFA_ADJUST_CFA, copy_rtx (XVECEXP (PATTERN (insn), 0, 1))); RTX_FRAME_RELATED_P (insn) = 1; } /* When the frame pointer is the CFA, and we pop it, we are swapping back to the stack pointer as the CFA. This happens for stack frames that don't allocate other data, so we assume the stack pointer is now pointing at the return address, i.e. the function entry state, which makes the offset be 1 word. */ else if (ix86_cfa_state->reg == hard_frame_pointer_rtx && reg == hard_frame_pointer_rtx) { ix86_cfa_state->reg = stack_pointer_rtx; ix86_cfa_state->offset -= UNITS_PER_WORD; add_reg_note (insn, REG_CFA_DEF_CFA, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (ix86_cfa_state->offset))); RTX_FRAME_RELATED_P (insn) = 1; } ix86_add_cfa_restore_note (insn, reg, red_offset); } /* Emit code to restore saved registers using POP insns. */ static void ix86_emit_restore_regs_using_pop (HOST_WIDE_INT red_offset) { int regno; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, false)) { ix86_emit_restore_reg_using_pop (gen_rtx_REG (Pmode, regno), red_offset); red_offset += UNITS_PER_WORD; } } /* Emit code and notes for the LEAVE instruction. */ static void ix86_emit_leave (HOST_WIDE_INT red_offset) { rtx insn = emit_insn (ix86_gen_leave ()); ix86_add_queued_cfa_restore_notes (insn); if (ix86_cfa_state->reg == hard_frame_pointer_rtx) { ix86_cfa_state->reg = stack_pointer_rtx; ix86_cfa_state->offset -= UNITS_PER_WORD; add_reg_note (insn, REG_CFA_ADJUST_CFA, copy_rtx (XVECEXP (PATTERN (insn), 0, 0))); RTX_FRAME_RELATED_P (insn) = 1; ix86_add_cfa_restore_note (insn, hard_frame_pointer_rtx, red_offset); } } /* Emit code to restore saved registers using MOV insns. First register is restored from POINTER + OFFSET. */ static void ix86_emit_restore_regs_using_mov (rtx pointer, HOST_WIDE_INT offset, HOST_WIDE_INT red_offset, int maybe_eh_return) { unsigned int regno; rtx base_address = gen_rtx_MEM (Pmode, pointer); rtx insn; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (!SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return)) { rtx reg = gen_rtx_REG (Pmode, regno); /* Ensure that adjust_address won't be forced to produce pointer out of range allowed by x86-64 instruction set. */ if (TARGET_64BIT && offset != trunc_int_for_mode (offset, SImode)) { rtx r11; r11 = gen_rtx_REG (DImode, R11_REG); emit_move_insn (r11, GEN_INT (offset)); emit_insn (gen_adddi3 (r11, r11, pointer)); base_address = gen_rtx_MEM (Pmode, r11); offset = 0; } insn = emit_move_insn (reg, adjust_address (base_address, Pmode, offset)); offset += UNITS_PER_WORD; if (ix86_cfa_state->reg == crtl->drap_reg && regno == REGNO (crtl->drap_reg)) { /* Previously we'd represented the CFA as an expression like *(%ebp - 8). We've just popped that value from the stack, which means we need to reset the CFA to the drap register. This will remain until we restore the stack pointer. */ add_reg_note (insn, REG_CFA_DEF_CFA, reg); RTX_FRAME_RELATED_P (insn) = 1; } else ix86_add_cfa_restore_note (NULL_RTX, reg, red_offset); red_offset += UNITS_PER_WORD; } } /* Emit code to restore saved registers using MOV insns. First register is restored from POINTER + OFFSET. */ static void ix86_emit_restore_sse_regs_using_mov (rtx pointer, HOST_WIDE_INT offset, HOST_WIDE_INT red_offset, int maybe_eh_return) { int regno; rtx base_address = gen_rtx_MEM (TImode, pointer); rtx mem; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (SSE_REGNO_P (regno) && ix86_save_reg (regno, maybe_eh_return)) { rtx reg = gen_rtx_REG (TImode, regno); /* Ensure that adjust_address won't be forced to produce pointer out of range allowed by x86-64 instruction set. */ if (TARGET_64BIT && offset != trunc_int_for_mode (offset, SImode)) { rtx r11; r11 = gen_rtx_REG (DImode, R11_REG); emit_move_insn (r11, GEN_INT (offset)); emit_insn (gen_adddi3 (r11, r11, pointer)); base_address = gen_rtx_MEM (TImode, r11); offset = 0; } mem = adjust_address (base_address, TImode, offset); set_mem_align (mem, 128); emit_move_insn (reg, mem); offset += 16; ix86_add_cfa_restore_note (NULL_RTX, reg, red_offset); red_offset += 16; } } /* Restore function stack, frame, and registers. */ void ix86_expand_epilogue (int style) { int sp_valid; struct ix86_frame frame; HOST_WIDE_INT offset, red_offset; struct machine_cfa_state cfa_state_save = *ix86_cfa_state; bool using_drap; ix86_finalize_stack_realign_flags (); /* When stack is realigned, SP must be valid. */ sp_valid = (!frame_pointer_needed || current_function_sp_is_unchanging || stack_realign_fp); ix86_compute_frame_layout (&frame); /* See the comment about red zone and frame pointer usage in ix86_expand_prologue. */ if (frame_pointer_needed && frame.red_zone_size) emit_insn (gen_memory_blockage ()); using_drap = crtl->drap_reg && crtl->stack_realign_needed; gcc_assert (!using_drap || ix86_cfa_state->reg == crtl->drap_reg); /* Calculate start of saved registers relative to ebp. Special care must be taken for the normal return case of a function using eh_return: the eax and edx registers are marked as saved, but not restored along this path. */ offset = frame.nregs; if (crtl->calls_eh_return && style != 2) offset -= 2; offset *= -UNITS_PER_WORD; offset -= frame.nsseregs * 16 + frame.padding0; /* Calculate start of saved registers relative to esp on entry of the function. When realigning stack, this needs to be the most negative value possible at runtime. */ red_offset = offset; if (using_drap) red_offset -= crtl->stack_alignment_needed / BITS_PER_UNIT + UNITS_PER_WORD; else if (stack_realign_fp) red_offset -= crtl->stack_alignment_needed / BITS_PER_UNIT - UNITS_PER_WORD; if (ix86_static_chain_on_stack) red_offset -= UNITS_PER_WORD; if (frame_pointer_needed) red_offset -= UNITS_PER_WORD; /* If we're only restoring one register and sp is not valid then using a move instruction to restore the register since it's less work than reloading sp and popping the register. The default code result in stack adjustment using add/lea instruction, while this code results in LEAVE instruction (or discrete equivalent), so it is profitable in some other cases as well. Especially when there are no registers to restore. We also use this code when TARGET_USE_LEAVE and there is exactly one register to pop. This heuristic may need some tuning in future. */ if ((!sp_valid && (frame.nregs + frame.nsseregs) <= 1) || (TARGET_EPILOGUE_USING_MOVE && cfun->machine->use_fast_prologue_epilogue && ((frame.nregs + frame.nsseregs) > 1 || (frame.to_allocate + frame.padding0) != 0)) || (frame_pointer_needed && !(frame.nregs + frame.nsseregs) && (frame.to_allocate + frame.padding0) != 0) || (frame_pointer_needed && TARGET_USE_LEAVE && cfun->machine->use_fast_prologue_epilogue && (frame.nregs + frame.nsseregs) == 1) || crtl->calls_eh_return) { /* Restore registers. We can use ebp or esp to address the memory locations. If both are available, default to ebp, since offsets are known to be small. Only exception is esp pointing directly to the end of block of saved registers, where we may simplify addressing mode. If we are realigning stack with bp and sp, regs restore can't be addressed by bp. sp must be used instead. */ if (!frame_pointer_needed || (sp_valid && !(frame.to_allocate + frame.padding0)) || stack_realign_fp) { ix86_emit_restore_sse_regs_using_mov (stack_pointer_rtx, frame.to_allocate, red_offset, style == 2); ix86_emit_restore_regs_using_mov (stack_pointer_rtx, frame.to_allocate + frame.nsseregs * 16 + frame.padding0, red_offset + frame.nsseregs * 16 + frame.padding0, style == 2); } else { ix86_emit_restore_sse_regs_using_mov (hard_frame_pointer_rtx, offset, red_offset, style == 2); ix86_emit_restore_regs_using_mov (hard_frame_pointer_rtx, offset + frame.nsseregs * 16 + frame.padding0, red_offset + frame.nsseregs * 16 + frame.padding0, style == 2); } red_offset -= offset; /* eh_return epilogues need %ecx added to the stack pointer. */ if (style == 2) { rtx tmp, sa = EH_RETURN_STACKADJ_RTX; /* Stack align doesn't work with eh_return. */ gcc_assert (!crtl->stack_realign_needed); /* Neither does regparm nested functions. */ gcc_assert (!ix86_static_chain_on_stack); if (frame_pointer_needed) { tmp = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa); tmp = plus_constant (tmp, UNITS_PER_WORD); tmp = emit_insn (gen_rtx_SET (VOIDmode, sa, tmp)); tmp = gen_rtx_MEM (Pmode, hard_frame_pointer_rtx); tmp = emit_move_insn (hard_frame_pointer_rtx, tmp); /* Note that we use SA as a temporary CFA, as the return address is at the proper place relative to it. We pretend this happens at the FP restore insn because prior to this insn the FP would be stored at the wrong offset relative to SA, and after this insn we have no other reasonable register to use for the CFA. We don't bother resetting the CFA to the SP for the duration of the return insn. */ add_reg_note (tmp, REG_CFA_DEF_CFA, plus_constant (sa, UNITS_PER_WORD)); ix86_add_queued_cfa_restore_notes (tmp); add_reg_note (tmp, REG_CFA_RESTORE, hard_frame_pointer_rtx); RTX_FRAME_RELATED_P (tmp) = 1; ix86_cfa_state->reg = sa; ix86_cfa_state->offset = UNITS_PER_WORD; pro_epilogue_adjust_stack (stack_pointer_rtx, sa, const0_rtx, style, false); } else { tmp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa); tmp = plus_constant (tmp, (frame.to_allocate + frame.nregs * UNITS_PER_WORD + frame.nsseregs * 16 + frame.padding0)); tmp = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, tmp)); ix86_add_queued_cfa_restore_notes (tmp); gcc_assert (ix86_cfa_state->reg == stack_pointer_rtx); if (ix86_cfa_state->offset != UNITS_PER_WORD) { ix86_cfa_state->offset = UNITS_PER_WORD; add_reg_note (tmp, REG_CFA_DEF_CFA, plus_constant (stack_pointer_rtx, UNITS_PER_WORD)); RTX_FRAME_RELATED_P (tmp) = 1; } } } else if (!frame_pointer_needed) pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (frame.to_allocate + frame.nregs * UNITS_PER_WORD + frame.nsseregs * 16 + frame.padding0), style, !using_drap); /* If not an i386, mov & pop is faster than "leave". */ else if (TARGET_USE_LEAVE || optimize_function_for_size_p (cfun) || !cfun->machine->use_fast_prologue_epilogue) ix86_emit_leave (red_offset); else { pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, const0_rtx, style, !using_drap); ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx, red_offset); } } else { /* First step is to deallocate the stack frame so that we can pop the registers. If we realign stack with frame pointer, then stack pointer won't be able to recover via lea $offset(%bp), %sp, because there is a padding area between bp and sp for realign. "add $to_allocate, %sp" must be used instead. */ if (!sp_valid) { gcc_assert (frame_pointer_needed); gcc_assert (!stack_realign_fp); pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, GEN_INT (offset), style, false); ix86_emit_restore_sse_regs_using_mov (stack_pointer_rtx, 0, red_offset, style == 2); pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (frame.nsseregs * 16 + frame.padding0), style, false); } else if (frame.to_allocate || frame.padding0 || frame.nsseregs) { ix86_emit_restore_sse_regs_using_mov (stack_pointer_rtx, frame.to_allocate, red_offset, style == 2); pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (frame.to_allocate + frame.nsseregs * 16 + frame.padding0), style, !using_drap && !frame_pointer_needed); } ix86_emit_restore_regs_using_pop (red_offset + frame.nsseregs * 16 + frame.padding0); red_offset -= offset; if (frame_pointer_needed) { /* Leave results in shorter dependency chains on CPUs that are able to grok it fast. */ if (TARGET_USE_LEAVE) ix86_emit_leave (red_offset); else { /* For stack realigned really happens, recover stack pointer to hard frame pointer is a must, if not using leave. */ if (stack_realign_fp) pro_epilogue_adjust_stack (stack_pointer_rtx, hard_frame_pointer_rtx, const0_rtx, style, !using_drap); ix86_emit_restore_reg_using_pop (hard_frame_pointer_rtx, red_offset); } } } if (using_drap) { int param_ptr_offset = UNITS_PER_WORD; rtx insn; gcc_assert (stack_realign_drap); if (ix86_static_chain_on_stack) param_ptr_offset += UNITS_PER_WORD; if (!call_used_regs[REGNO (crtl->drap_reg)]) param_ptr_offset += UNITS_PER_WORD; insn = emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, crtl->drap_reg, GEN_INT (-param_ptr_offset)))); ix86_cfa_state->reg = stack_pointer_rtx; ix86_cfa_state->offset = param_ptr_offset; add_reg_note (insn, REG_CFA_DEF_CFA, gen_rtx_PLUS (Pmode, ix86_cfa_state->reg, GEN_INT (ix86_cfa_state->offset))); RTX_FRAME_RELATED_P (insn) = 1; if (!call_used_regs[REGNO (crtl->drap_reg)]) ix86_emit_restore_reg_using_pop (crtl->drap_reg, -UNITS_PER_WORD); } /* Remove the saved static chain from the stack. The use of ECX is merely as a scratch register, not as the actual static chain. */ if (ix86_static_chain_on_stack) { rtx r, insn; gcc_assert (ix86_cfa_state->reg == stack_pointer_rtx); ix86_cfa_state->offset += UNITS_PER_WORD; r = gen_rtx_REG (Pmode, CX_REG); insn = emit_insn (ix86_gen_pop1 (r)); r = plus_constant (stack_pointer_rtx, UNITS_PER_WORD); r = gen_rtx_SET (VOIDmode, stack_pointer_rtx, r); add_reg_note (insn, REG_CFA_ADJUST_CFA, r); RTX_FRAME_RELATED_P (insn) = 1; } /* Sibcall epilogues don't want a return instruction. */ if (style == 0) { *ix86_cfa_state = cfa_state_save; return; } if (crtl->args.pops_args && crtl->args.size) { rtx popc = GEN_INT (crtl->args.pops_args); /* i386 can only pop 64K bytes. If asked to pop more, pop return address, do explicit add, and jump indirectly to the caller. */ if (crtl->args.pops_args >= 65536) { rtx ecx = gen_rtx_REG (SImode, CX_REG); rtx insn; /* There is no "pascal" calling convention in any 64bit ABI. */ gcc_assert (!TARGET_64BIT); insn = emit_insn (gen_popsi1 (ecx)); ix86_cfa_state->offset -= UNITS_PER_WORD; add_reg_note (insn, REG_CFA_ADJUST_CFA, copy_rtx (XVECEXP (PATTERN (insn), 0, 1))); add_reg_note (insn, REG_CFA_REGISTER, gen_rtx_SET (VOIDmode, ecx, pc_rtx)); RTX_FRAME_RELATED_P (insn) = 1; pro_epilogue_adjust_stack (stack_pointer_rtx, stack_pointer_rtx, popc, -1, true); emit_jump_insn (gen_return_indirect_internal (ecx)); } else emit_jump_insn (gen_return_pop_internal (popc)); } else emit_jump_insn (gen_return_internal ()); /* Restore the state back to the state from the prologue, so that it's correct for the next epilogue. */ *ix86_cfa_state = cfa_state_save; } /* Reset from the function's potential modifications. */ static void ix86_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED, HOST_WIDE_INT size ATTRIBUTE_UNUSED) { if (pic_offset_table_rtx) SET_REGNO (pic_offset_table_rtx, REAL_PIC_OFFSET_TABLE_REGNUM); #if TARGET_MACHO /* Mach-O doesn't support labels at the end of objects, so if it looks like we might want one, insert a NOP. */ { rtx insn = get_last_insn (); while (insn && NOTE_P (insn) && NOTE_KIND (insn) != NOTE_INSN_DELETED_LABEL) insn = PREV_INSN (insn); if (insn && (LABEL_P (insn) || (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_DELETED_LABEL))) fputs ("\tnop\n", file); } #endif } /* Extract the parts of an RTL expression that is a valid memory address for an instruction. Return 0 if the structure of the address is grossly off. Return -1 if the address contains ASHIFT, so it is not strictly valid, but still used for computing length of lea instruction. */ int ix86_decompose_address (rtx addr, struct ix86_address *out) { rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX; rtx base_reg, index_reg; HOST_WIDE_INT scale = 1; rtx scale_rtx = NULL_RTX; int retval = 1; enum ix86_address_seg seg = SEG_DEFAULT; if (REG_P (addr) || GET_CODE (addr) == SUBREG) base = addr; else if (GET_CODE (addr) == PLUS) { rtx addends[4], op; int n = 0, i; op = addr; do { if (n >= 4) return 0; addends[n++] = XEXP (op, 1); op = XEXP (op, 0); } while (GET_CODE (op) == PLUS); if (n >= 4) return 0; addends[n] = op; for (i = n; i >= 0; --i) { op = addends[i]; switch (GET_CODE (op)) { case MULT: if (index) return 0; index = XEXP (op, 0); scale_rtx = XEXP (op, 1); break; case UNSPEC: if (XINT (op, 1) == UNSPEC_TP && TARGET_TLS_DIRECT_SEG_REFS && seg == SEG_DEFAULT) seg = TARGET_64BIT ? SEG_FS : SEG_GS; else return 0; break; case REG: case SUBREG: if (!base) base = op; else if (!index) index = op; else return 0; break; case CONST: case CONST_INT: case SYMBOL_REF: case LABEL_REF: if (disp) return 0; disp = op; break; default: return 0; } } } else if (GET_CODE (addr) == MULT) { index = XEXP (addr, 0); /* index*scale */ scale_rtx = XEXP (addr, 1); } else if (GET_CODE (addr) == ASHIFT) { rtx tmp; /* We're called for lea too, which implements ashift on occasion. */ index = XEXP (addr, 0); tmp = XEXP (addr, 1); if (!CONST_INT_P (tmp)) return 0; scale = INTVAL (tmp); if ((unsigned HOST_WIDE_INT) scale > 3) return 0; scale = 1 << scale; retval = -1; } else disp = addr; /* displacement */ /* Extract the integral value of scale. */ if (scale_rtx) { if (!CONST_INT_P (scale_rtx)) return 0; scale = INTVAL (scale_rtx); } base_reg = base && GET_CODE (base) == SUBREG ? SUBREG_REG (base) : base; index_reg = index && GET_CODE (index) == SUBREG ? SUBREG_REG (index) : index; /* Avoid useless 0 displacement. */ if (disp == const0_rtx && (base || index)) disp = NULL_RTX; /* Allow arg pointer and stack pointer as index if there is not scaling. */ if (base_reg && index_reg && scale == 1 && (index_reg == arg_pointer_rtx || index_reg == frame_pointer_rtx || (REG_P (index_reg) && REGNO (index_reg) == STACK_POINTER_REGNUM))) { rtx tmp; tmp = base, base = index, index = tmp; tmp = base_reg, base_reg = index_reg, index_reg = tmp; } /* Special case: %ebp cannot be encoded as a base without a displacement. Similarly %r13. */ if (!disp && base_reg && (base_reg == hard_frame_pointer_rtx || base_reg == frame_pointer_rtx || base_reg == arg_pointer_rtx || (REG_P (base_reg) && (REGNO (base_reg) == HARD_FRAME_POINTER_REGNUM || REGNO (base_reg) == R13_REG)))) disp = const0_rtx; /* Special case: on K6, [%esi] makes the instruction vector decoded. Avoid this by transforming to [%esi+0]. Reload calls address legitimization without cfun defined, so we need to test cfun for being non-NULL. */ if (TARGET_K6 && cfun && optimize_function_for_speed_p (cfun) && base_reg && !index_reg && !disp && REG_P (base_reg) && REGNO (base_reg) == SI_REG) disp = const0_rtx; /* Special case: encode reg+reg instead of reg*2. */ if (!base && index && scale == 2) base = index, base_reg = index_reg, scale = 1; /* Special case: scaling cannot be encoded without base or displacement. */ if (!base && !disp && index && scale != 1) disp = const0_rtx; out->base = base; out->index = index; out->disp = disp; out->scale = scale; out->seg = seg; return retval; } /* Return cost of the memory address x. For i386, it is better to use a complex address than let gcc copy the address into a reg and make a new pseudo. But not if the address requires to two regs - that would mean more pseudos with longer lifetimes. */ static int ix86_address_cost (rtx x, bool speed ATTRIBUTE_UNUSED) { struct ix86_address parts; int cost = 1; int ok = ix86_decompose_address (x, &parts); gcc_assert (ok); if (parts.base && GET_CODE (parts.base) == SUBREG) parts.base = SUBREG_REG (parts.base); if (parts.index && GET_CODE (parts.index) == SUBREG) parts.index = SUBREG_REG (parts.index); /* Attempt to minimize number of registers in the address. */ if ((parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)) || (parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER))) cost++; if (parts.base && (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER) && parts.index && (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER) && parts.base != parts.index) cost++; /* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b, since it's predecode logic can't detect the length of instructions and it degenerates to vector decoded. Increase cost of such addresses here. The penalty is minimally 2 cycles. It may be worthwhile to split such addresses or even refuse such addresses at all. Following addressing modes are affected: [base+scale*index] [scale*index+disp] [base+index] The first and last case may be avoidable by explicitly coding the zero in memory address, but I don't have AMD-K6 machine handy to check this theory. */ if (TARGET_K6 && ((!parts.disp && parts.base && parts.index && parts.scale != 1) || (parts.disp && !parts.base && parts.index && parts.scale != 1) || (!parts.disp && parts.base && parts.index && parts.scale == 1))) cost += 10; return cost; } /* Allow {LABEL | SYMBOL}_REF - SYMBOL_REF-FOR-PICBASE for Mach-O as this is used for to form addresses to local data when -fPIC is in use. */ static bool darwin_local_data_pic (rtx disp) { return (GET_CODE (disp) == UNSPEC && XINT (disp, 1) == UNSPEC_MACHOPIC_OFFSET); } /* Determine if a given RTX is a valid constant. We already know this satisfies CONSTANT_P. */ bool legitimate_constant_p (rtx x) { switch (GET_CODE (x)) { case CONST: x = XEXP (x, 0); if (GET_CODE (x) == PLUS) { if (!CONST_INT_P (XEXP (x, 1))) return false; x = XEXP (x, 0); } if (TARGET_MACHO && darwin_local_data_pic (x)) return true; /* Only some unspecs are valid as "constants". */ if (GET_CODE (x) == UNSPEC) switch (XINT (x, 1)) { case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: return TARGET_64BIT; case UNSPEC_TPOFF: case UNSPEC_NTPOFF: x = XVECEXP (x, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_DTPOFF: x = XVECEXP (x, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC); default: return false; } /* We must have drilled down to a symbol. */ if (GET_CODE (x) == LABEL_REF) return true; if (GET_CODE (x) != SYMBOL_REF) return false; /* FALLTHRU */ case SYMBOL_REF: /* TLS symbols are never valid. */ if (SYMBOL_REF_TLS_MODEL (x)) return false; /* DLLIMPORT symbols are never valid. */ if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (x)) return false; break; case CONST_DOUBLE: if (GET_MODE (x) == TImode && x != CONST0_RTX (TImode) && !TARGET_64BIT) return false; break; case CONST_VECTOR: if (!standard_sse_constant_p (x)) return false; default: break; } /* Otherwise we handle everything else in the move patterns. */ return true; } /* Determine if it's legal to put X into the constant pool. This is not possible for the address of thread-local symbols, which is checked above. */ static bool ix86_cannot_force_const_mem (rtx x) { /* We can always put integral constants and vectors in memory. */ switch (GET_CODE (x)) { case CONST_INT: case CONST_DOUBLE: case CONST_VECTOR: return false; default: break; } return !legitimate_constant_p (x); } /* Nonzero if the constant value X is a legitimate general operand when generating PIC code. It is given that flag_pic is on and that X satisfies CONSTANT_P or is a CONST_DOUBLE. */ bool legitimate_pic_operand_p (rtx x) { rtx inner; switch (GET_CODE (x)) { case CONST: inner = XEXP (x, 0); if (GET_CODE (inner) == PLUS && CONST_INT_P (XEXP (inner, 1))) inner = XEXP (inner, 0); /* Only some unspecs are valid as "constants". */ if (GET_CODE (inner) == UNSPEC) switch (XINT (inner, 1)) { case UNSPEC_GOT: case UNSPEC_GOTOFF: case UNSPEC_PLTOFF: return TARGET_64BIT; case UNSPEC_TPOFF: x = XVECEXP (inner, 0, 0); return (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_MACHOPIC_OFFSET: return legitimate_pic_address_disp_p (x); default: return false; } /* FALLTHRU */ case SYMBOL_REF: case LABEL_REF: return legitimate_pic_address_disp_p (x); default: return true; } } /* Determine if a given CONST RTX is a valid memory displacement in PIC mode. */ int legitimate_pic_address_disp_p (rtx disp) { bool saw_plus; /* In 64bit mode we can allow direct addresses of symbols and labels when they are not dynamic symbols. */ if (TARGET_64BIT) { rtx op0 = disp, op1; switch (GET_CODE (disp)) { case LABEL_REF: return true; case CONST: if (GET_CODE (XEXP (disp, 0)) != PLUS) break; op0 = XEXP (XEXP (disp, 0), 0); op1 = XEXP (XEXP (disp, 0), 1); if (!CONST_INT_P (op1) || INTVAL (op1) >= 16*1024*1024 || INTVAL (op1) < -16*1024*1024) break; if (GET_CODE (op0) == LABEL_REF) return true; if (GET_CODE (op0) != SYMBOL_REF) break; /* FALLTHRU */ case SYMBOL_REF: /* TLS references should always be enclosed in UNSPEC. */ if (SYMBOL_REF_TLS_MODEL (op0)) return false; if (!SYMBOL_REF_FAR_ADDR_P (op0) && SYMBOL_REF_LOCAL_P (op0) && ix86_cmodel != CM_LARGE_PIC) return true; break; default: break; } } if (GET_CODE (disp) != CONST) return 0; disp = XEXP (disp, 0); if (TARGET_64BIT) { /* We are unsafe to allow PLUS expressions. This limit allowed distance of GOT tables. We should not need these anyway. */ if (GET_CODE (disp) != UNSPEC || (XINT (disp, 1) != UNSPEC_GOTPCREL && XINT (disp, 1) != UNSPEC_GOTOFF && XINT (disp, 1) != UNSPEC_PLTOFF)) return 0; if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF && GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF) return 0; return 1; } saw_plus = false; if (GET_CODE (disp) == PLUS) { if (!CONST_INT_P (XEXP (disp, 1))) return 0; disp = XEXP (disp, 0); saw_plus = true; } if (TARGET_MACHO && darwin_local_data_pic (disp)) return 1; if (GET_CODE (disp) != UNSPEC) return 0; switch (XINT (disp, 1)) { case UNSPEC_GOT: if (saw_plus) return false; /* We need to check for both symbols and labels because VxWorks loads text labels with @GOT rather than @GOTOFF. See gotoff_operand for details. */ return (GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF); case UNSPEC_GOTOFF: /* Refuse GOTOFF in 64bit mode since it is always 64bit when used. While ABI specify also 32bit relocation but we don't produce it in small PIC model at all. */ if ((GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF || GET_CODE (XVECEXP (disp, 0, 0)) == LABEL_REF) && !TARGET_64BIT) return gotoff_operand (XVECEXP (disp, 0, 0), Pmode); return false; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: if (saw_plus) return false; disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_INITIAL_EXEC); case UNSPEC_NTPOFF: disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_EXEC); case UNSPEC_DTPOFF: disp = XVECEXP (disp, 0, 0); return (GET_CODE (disp) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (disp) == TLS_MODEL_LOCAL_DYNAMIC); } return 0; } /* Recognizes RTL expressions that are valid memory addresses for an instruction. The MODE argument is the machine mode for the MEM expression that wants to use this address. It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should convert common non-canonical forms to canonical form so that they will be recognized. */ static bool ix86_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr, bool strict) { struct ix86_address parts; rtx base, index, disp; HOST_WIDE_INT scale; if (ix86_decompose_address (addr, &parts) <= 0) /* Decomposition failed. */ return false; base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; /* Validate base register. Don't allow SUBREG's that span more than a word here. It can lead to spill failures when the base is one word out of a two word structure, which is represented internally as a DImode int. */ if (base) { rtx reg; if (REG_P (base)) reg = base; else if (GET_CODE (base) == SUBREG && REG_P (SUBREG_REG (base)) && GET_MODE_SIZE (GET_MODE (SUBREG_REG (base))) <= UNITS_PER_WORD) reg = SUBREG_REG (base); else /* Base is not a register. */ return false; if (GET_MODE (base) != Pmode) /* Base is not in Pmode. */ return false; if ((strict && ! REG_OK_FOR_BASE_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (reg))) /* Base is not valid. */ return false; } /* Validate index register. Don't allow SUBREG's that span more than a word here -- same as above. */ if (index) { rtx reg; if (REG_P (index)) reg = index; else if (GET_CODE (index) == SUBREG && REG_P (SUBREG_REG (index)) && GET_MODE_SIZE (GET_MODE (SUBREG_REG (index))) <= UNITS_PER_WORD) reg = SUBREG_REG (index); else /* Index is not a register. */ return false; if (GET_MODE (index) != Pmode) /* Index is not in Pmode. */ return false; if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (reg)) || (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (reg))) /* Index is not valid. */ return false; } /* Validate scale factor. */ if (scale != 1) { if (!index) /* Scale without index. */ return false; if (scale != 2 && scale != 4 && scale != 8) /* Scale is not a valid multiplier. */ return false; } /* Validate displacement. */ if (disp) { if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == UNSPEC && XINT (XEXP (disp, 0), 1) != UNSPEC_MACHOPIC_OFFSET) switch (XINT (XEXP (disp, 0), 1)) { /* Refuse GOTOFF and GOT in 64bit mode since it is always 64bit when used. While ABI specify also 32bit relocations, we don't produce them at all and use IP relative instead. */ case UNSPEC_GOT: case UNSPEC_GOTOFF: gcc_assert (flag_pic); if (!TARGET_64BIT) goto is_legitimate_pic; /* 64bit address unspec. */ return false; case UNSPEC_GOTPCREL: gcc_assert (flag_pic); goto is_legitimate_pic; case UNSPEC_GOTTPOFF: case UNSPEC_GOTNTPOFF: case UNSPEC_INDNTPOFF: case UNSPEC_NTPOFF: case UNSPEC_DTPOFF: break; default: /* Invalid address unspec. */ return false; } else if (SYMBOLIC_CONST (disp) && (flag_pic || (TARGET_MACHO #if TARGET_MACHO && MACHOPIC_INDIRECT && !machopic_operand_p (disp) #endif ))) { is_legitimate_pic: if (TARGET_64BIT && (index || base)) { /* foo@dtpoff(%rX) is ok. */ if (GET_CODE (disp) != CONST || GET_CODE (XEXP (disp, 0)) != PLUS || GET_CODE (XEXP (XEXP (disp, 0), 0)) != UNSPEC || !CONST_INT_P (XEXP (XEXP (disp, 0), 1)) || (XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_DTPOFF && XINT (XEXP (XEXP (disp, 0), 0), 1) != UNSPEC_NTPOFF)) /* Non-constant pic memory reference. */ return false; } else if (! legitimate_pic_address_disp_p (disp)) /* Displacement is an invalid pic construct. */ return false; /* This code used to verify that a symbolic pic displacement includes the pic_offset_table_rtx register. While this is good idea, unfortunately these constructs may be created by "adds using lea" optimization for incorrect code like: int a; int foo(int i) { return *(&a+i); } This code is nonsensical, but results in addressing GOT table with pic_offset_table_rtx base. We can't just refuse it easily, since it gets matched by "addsi3" pattern, that later gets split to lea in the case output register differs from input. While this can be handled by separate addsi pattern for this case that never results in lea, this seems to be easier and correct fix for crash to disable this test. */ } else if (GET_CODE (disp) != LABEL_REF && !CONST_INT_P (disp) && (GET_CODE (disp) != CONST || !legitimate_constant_p (disp)) && (GET_CODE (disp) != SYMBOL_REF || !legitimate_constant_p (disp))) /* Displacement is not constant. */ return false; else if (TARGET_64BIT && !x86_64_immediate_operand (disp, VOIDmode)) /* Displacement is out of range. */ return false; } /* Everything looks valid. */ return true; } /* Determine if a given RTX is a valid constant address. */ bool constant_address_p (rtx x) { return CONSTANT_P (x) && ix86_legitimate_address_p (Pmode, x, 1); } /* Return a unique alias set for the GOT. */ static alias_set_type ix86_GOT_alias_set (void) { static alias_set_type set = -1; if (set == -1) set = new_alias_set (); return set; } /* Return a legitimate reference for ORIG (an address) using the register REG. If REG is 0, a new pseudo is generated. There are two types of references that must be handled: 1. Global data references must load the address from the GOT, via the PIC reg. An insn is emitted to do this load, and the reg is returned. 2. Static data references, constant pool addresses, and code labels compute the address as an offset from the GOT, whose base is in the PIC reg. Static data objects have SYMBOL_FLAG_LOCAL set to differentiate them from global data objects. The returned address is the PIC reg + an unspec constant. TARGET_LEGITIMATE_ADDRESS_P rejects symbolic references unless the PIC reg also appears in the address. */ static rtx legitimize_pic_address (rtx orig, rtx reg) { rtx addr = orig; rtx new_rtx = orig; rtx base; #if TARGET_MACHO if (TARGET_MACHO && !TARGET_64BIT) { if (reg == 0) reg = gen_reg_rtx (Pmode); /* Use the generic Mach-O PIC machinery. */ return machopic_legitimize_pic_address (orig, GET_MODE (orig), reg); } #endif if (TARGET_64BIT && legitimate_pic_address_disp_p (addr)) new_rtx = addr; else if (TARGET_64BIT && ix86_cmodel != CM_SMALL_PIC && gotoff_operand (addr, Pmode)) { rtx tmpreg; /* This symbol may be referenced via a displacement from the PIC base address (@GOTOFF). */ if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (GET_CODE (addr) == PLUS) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1)); } else new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (!reg) tmpreg = gen_reg_rtx (Pmode); else tmpreg = reg; emit_move_insn (tmpreg, new_rtx); if (reg != 0) { new_rtx = expand_simple_binop (Pmode, PLUS, reg, pic_offset_table_rtx, tmpreg, 1, OPTAB_DIRECT); new_rtx = reg; } else new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, tmpreg); } else if (!TARGET_64BIT && gotoff_operand (addr, Pmode)) { /* This symbol may be referenced via a displacement from the PIC base address (@GOTOFF). */ if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); if (GET_CODE (addr) == CONST) addr = XEXP (addr, 0); if (GET_CODE (addr) == PLUS) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, XEXP (addr, 0)), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, XEXP (addr, 1)); } else new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTOFF); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); if (reg != 0) { emit_move_insn (reg, new_rtx); new_rtx = reg; } } else if ((GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (addr) == 0) /* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */ || (TARGET_VXWORKS_RTP && GET_CODE (addr) == LABEL_REF)) { if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) { if (GET_CODE (addr) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (addr)) return legitimize_dllimport_symbol (addr, true); if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS && GET_CODE (XEXP (XEXP (addr, 0), 0)) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (addr, 0), 0))) { rtx t = legitimize_dllimport_symbol (XEXP (XEXP (addr, 0), 0), true); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (addr, 0), 1)); } } if (TARGET_64BIT && ix86_cmodel != CM_LARGE_PIC) { new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOTPCREL); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); if (reg == 0) reg = gen_reg_rtx (Pmode); /* Use directly gen_movsi, otherwise the address is loaded into register for CSE. We don't want to CSE this addresses, instead we CSE addresses from the GOT table, so skip this. */ emit_insn (gen_movsi (reg, new_rtx)); new_rtx = reg; } else { /* This symbol must be referenced via a load from the Global Offset Table (@GOT). */ if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), UNSPEC_GOT); new_rtx = gen_rtx_CONST (Pmode, new_rtx); if (TARGET_64BIT) new_rtx = force_reg (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); new_rtx = gen_const_mem (Pmode, new_rtx); set_mem_alias_set (new_rtx, ix86_GOT_alias_set ()); if (reg == 0) reg = gen_reg_rtx (Pmode); emit_move_insn (reg, new_rtx); new_rtx = reg; } } else { if (CONST_INT_P (addr) && !x86_64_immediate_operand (addr, VOIDmode)) { if (reg) { emit_move_insn (reg, addr); new_rtx = reg; } else new_rtx = force_reg (Pmode, addr); } else if (GET_CODE (addr) == CONST) { addr = XEXP (addr, 0); /* We must match stuff we generate before. Assume the only unspecs that can get here are ours. Not that we could do anything with them anyway.... */ if (GET_CODE (addr) == UNSPEC || (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 0)) == UNSPEC)) return orig; gcc_assert (GET_CODE (addr) == PLUS); } if (GET_CODE (addr) == PLUS) { rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1); /* Check first to see if this is a constant offset from a @GOTOFF symbol reference. */ if (gotoff_operand (op0, Pmode) && CONST_INT_P (op1)) { if (!TARGET_64BIT) { if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); new_rtx = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), UNSPEC_GOTOFF); new_rtx = gen_rtx_PLUS (Pmode, new_rtx, op1); new_rtx = gen_rtx_CONST (Pmode, new_rtx); new_rtx = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new_rtx); if (reg != 0) { emit_move_insn (reg, new_rtx); new_rtx = reg; } } else { if (INTVAL (op1) < -16*1024*1024 || INTVAL (op1) >= 16*1024*1024) { if (!x86_64_immediate_operand (op1, Pmode)) op1 = force_reg (Pmode, op1); new_rtx = gen_rtx_PLUS (Pmode, force_reg (Pmode, op0), op1); } } } else { base = legitimize_pic_address (XEXP (addr, 0), reg); new_rtx = legitimize_pic_address (XEXP (addr, 1), base == reg ? NULL_RTX : reg); if (CONST_INT_P (new_rtx)) new_rtx = plus_constant (base, INTVAL (new_rtx)); else { if (GET_CODE (new_rtx) == PLUS && CONSTANT_P (XEXP (new_rtx, 1))) { base = gen_rtx_PLUS (Pmode, base, XEXP (new_rtx, 0)); new_rtx = XEXP (new_rtx, 1); } new_rtx = gen_rtx_PLUS (Pmode, base, new_rtx); } } } } return new_rtx; } /* Load the thread pointer. If TO_REG is true, force it into a register. */ static rtx get_thread_pointer (int to_reg) { rtx tp, reg, insn; tp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx), UNSPEC_TP); if (!to_reg) return tp; reg = gen_reg_rtx (Pmode); insn = gen_rtx_SET (VOIDmode, reg, tp); insn = emit_insn (insn); return reg; } /* A subroutine of ix86_legitimize_address and ix86_expand_move. FOR_MOV is false if we expect this to be used for a memory address and true if we expect to load the address into a register. */ static rtx legitimize_tls_address (rtx x, enum tls_model model, int for_mov) { rtx dest, base, off, pic, tp; int type; switch (model) { case TLS_MODEL_GLOBAL_DYNAMIC: dest = gen_reg_rtx (Pmode); tp = TARGET_GNU2_TLS ? get_thread_pointer (1) : 0; if (TARGET_64BIT && ! TARGET_GNU2_TLS) { rtx rax = gen_rtx_REG (Pmode, AX_REG), insns; start_sequence (); emit_call_insn (gen_tls_global_dynamic_64 (rax, x)); insns = get_insns (); end_sequence (); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, dest, rax, x); } else if (TARGET_64BIT && TARGET_GNU2_TLS) emit_insn (gen_tls_global_dynamic_64 (dest, x)); else emit_insn (gen_tls_global_dynamic_32 (dest, x)); if (TARGET_GNU2_TLS) { dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, tp, dest)); set_unique_reg_note (get_last_insn (), REG_EQUIV, x); } break; case TLS_MODEL_LOCAL_DYNAMIC: base = gen_reg_rtx (Pmode); tp = TARGET_GNU2_TLS ? get_thread_pointer (1) : 0; if (TARGET_64BIT && ! TARGET_GNU2_TLS) { rtx rax = gen_rtx_REG (Pmode, AX_REG), insns, note; start_sequence (); emit_call_insn (gen_tls_local_dynamic_base_64 (rax)); insns = get_insns (); end_sequence (); note = gen_rtx_EXPR_LIST (VOIDmode, const0_rtx, NULL); note = gen_rtx_EXPR_LIST (VOIDmode, ix86_tls_get_addr (), note); RTL_CONST_CALL_P (insns) = 1; emit_libcall_block (insns, base, rax, note); } else if (TARGET_64BIT && TARGET_GNU2_TLS) emit_insn (gen_tls_local_dynamic_base_64 (base)); else emit_insn (gen_tls_local_dynamic_base_32 (base)); if (TARGET_GNU2_TLS) { rtx x = ix86_tls_module_base (); set_unique_reg_note (get_last_insn (), REG_EQUIV, gen_rtx_MINUS (Pmode, x, tp)); } off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), UNSPEC_DTPOFF); off = gen_rtx_CONST (Pmode, off); dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, off)); if (TARGET_GNU2_TLS) { dest = force_reg (Pmode, gen_rtx_PLUS (Pmode, dest, tp)); set_unique_reg_note (get_last_insn (), REG_EQUIV, x); } break; case TLS_MODEL_INITIAL_EXEC: if (TARGET_64BIT) { pic = NULL; type = UNSPEC_GOTNTPOFF; } else if (flag_pic) { if (reload_in_progress) df_set_regs_ever_live (PIC_OFFSET_TABLE_REGNUM, true); pic = pic_offset_table_rtx; type = TARGET_ANY_GNU_TLS ? UNSPEC_GOTNTPOFF : UNSPEC_GOTTPOFF; } else if (!TARGET_ANY_GNU_TLS) { pic = gen_reg_rtx (Pmode); emit_insn (gen_set_got (pic)); type = UNSPEC_GOTTPOFF; } else { pic = NULL; type = UNSPEC_INDNTPOFF; } off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), type); off = gen_rtx_CONST (Pmode, off); if (pic) off = gen_rtx_PLUS (Pmode, pic, off); off = gen_const_mem (Pmode, off); set_mem_alias_set (off, ix86_GOT_alias_set ()); if (TARGET_64BIT || TARGET_ANY_GNU_TLS) { base = get_thread_pointer (for_mov || !TARGET_TLS_DIRECT_SEG_REFS); off = force_reg (Pmode, off); return gen_rtx_PLUS (Pmode, base, off); } else { base = get_thread_pointer (true); dest = gen_reg_rtx (Pmode); emit_insn (gen_subsi3 (dest, base, off)); } break; case TLS_MODEL_LOCAL_EXEC: off = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, x), (TARGET_64BIT || TARGET_ANY_GNU_TLS) ? UNSPEC_NTPOFF : UNSPEC_TPOFF); off = gen_rtx_CONST (Pmode, off); if (TARGET_64BIT || TARGET_ANY_GNU_TLS) { base = get_thread_pointer (for_mov || !TARGET_TLS_DIRECT_SEG_REFS); return gen_rtx_PLUS (Pmode, base, off); } else { base = get_thread_pointer (true); dest = gen_reg_rtx (Pmode); emit_insn (gen_subsi3 (dest, base, off)); } break; default: gcc_unreachable (); } return dest; } /* Create or return the unique __imp_DECL dllimport symbol corresponding to symbol DECL. */ static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map))) htab_t dllimport_map; static tree get_dllimport_decl (tree decl) { struct tree_map *h, in; void **loc; const char *name; const char *prefix; size_t namelen, prefixlen; char *imp_name; tree to; rtx rtl; if (!dllimport_map) dllimport_map = htab_create_ggc (512, tree_map_hash, tree_map_eq, 0); in.hash = htab_hash_pointer (decl); in.base.from = decl; loc = htab_find_slot_with_hash (dllimport_map, &in, in.hash, INSERT); h = (struct tree_map *) *loc; if (h) return h->to; *loc = h = GGC_NEW (struct tree_map); h->hash = in.hash; h->base.from = decl; h->to = to = build_decl (DECL_SOURCE_LOCATION (decl), VAR_DECL, NULL, ptr_type_node); DECL_ARTIFICIAL (to) = 1; DECL_IGNORED_P (to) = 1; DECL_EXTERNAL (to) = 1; TREE_READONLY (to) = 1; name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); name = targetm.strip_name_encoding (name); prefix = name[0] == FASTCALL_PREFIX || user_label_prefix[0] == 0 ? "*__imp_" : "*__imp__"; namelen = strlen (name); prefixlen = strlen (prefix); imp_name = (char *) alloca (namelen + prefixlen + 1); memcpy (imp_name, prefix, prefixlen); memcpy (imp_name + prefixlen, name, namelen + 1); name = ggc_alloc_string (imp_name, namelen + prefixlen); rtl = gen_rtx_SYMBOL_REF (Pmode, name); SET_SYMBOL_REF_DECL (rtl, to); SYMBOL_REF_FLAGS (rtl) = SYMBOL_FLAG_LOCAL; rtl = gen_const_mem (Pmode, rtl); set_mem_alias_set (rtl, ix86_GOT_alias_set ()); SET_DECL_RTL (to, rtl); SET_DECL_ASSEMBLER_NAME (to, get_identifier (name)); return to; } /* Expand SYMBOL into its corresponding dllimport symbol. WANT_REG is true if we require the result be a register. */ static rtx legitimize_dllimport_symbol (rtx symbol, bool want_reg) { tree imp_decl; rtx x; gcc_assert (SYMBOL_REF_DECL (symbol)); imp_decl = get_dllimport_decl (SYMBOL_REF_DECL (symbol)); x = DECL_RTL (imp_decl); if (want_reg) x = force_reg (Pmode, x); return x; } /* Try machine-dependent ways of modifying an illegitimate address to be legitimate. If we find one, return the new, valid address. This macro is used in only one place: `memory_address' in explow.c. OLDX is the address as it was before break_out_memory_refs was called. In some cases it is useful to look at this to decide what needs to be done. It is always safe for this macro to do nothing. It exists to recognize opportunities to optimize the output. For the 80386, we handle X+REG by loading X into a register R and using R+REG. R will go in a general reg and indexing will be used. However, if REG is a broken-out memory address or multiplication, nothing needs to be done because REG can certainly go in a general reg. When -fpic is used, special handling is needed for symbolic references. See comments by legitimize_pic_address in i386.c for details. */ static rtx ix86_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode) { int changed = 0; unsigned log; log = GET_CODE (x) == SYMBOL_REF ? SYMBOL_REF_TLS_MODEL (x) : 0; if (log) return legitimize_tls_address (x, (enum tls_model) log, false); if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && (log = SYMBOL_REF_TLS_MODEL (XEXP (XEXP (x, 0), 0)))) { rtx t = legitimize_tls_address (XEXP (XEXP (x, 0), 0), (enum tls_model) log, false); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1)); } if (TARGET_DLLIMPORT_DECL_ATTRIBUTES) { if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (x)) return legitimize_dllimport_symbol (x, true); if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && SYMBOL_REF_DLLIMPORT_P (XEXP (XEXP (x, 0), 0))) { rtx t = legitimize_dllimport_symbol (XEXP (XEXP (x, 0), 0), true); return gen_rtx_PLUS (Pmode, t, XEXP (XEXP (x, 0), 1)); } } if (flag_pic && SYMBOLIC_CONST (x)) return legitimize_pic_address (x, 0); /* Canonicalize shifts by 0, 1, 2, 3 into multiply */ if (GET_CODE (x) == ASHIFT && CONST_INT_P (XEXP (x, 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) < 4) { changed = 1; log = INTVAL (XEXP (x, 1)); x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)), GEN_INT (1 << log)); } if (GET_CODE (x) == PLUS) { /* Canonicalize shifts by 0, 1, 2, 3 into multiply. */ if (GET_CODE (XEXP (x, 0)) == ASHIFT && CONST_INT_P (XEXP (XEXP (x, 0), 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 0), 1)) < 4) { changed = 1; log = INTVAL (XEXP (XEXP (x, 0), 1)); XEXP (x, 0) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 0), 0)), GEN_INT (1 << log)); } if (GET_CODE (XEXP (x, 1)) == ASHIFT && CONST_INT_P (XEXP (XEXP (x, 1), 1)) && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (x, 1), 1)) < 4) { changed = 1; log = INTVAL (XEXP (XEXP (x, 1), 1)); XEXP (x, 1) = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (XEXP (x, 1), 0)), GEN_INT (1 << log)); } /* Put multiply first if it isn't already. */ if (GET_CODE (XEXP (x, 1)) == MULT) { rtx tmp = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1); XEXP (x, 1) = tmp; changed = 1; } /* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const))) into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be created by virtual register instantiation, register elimination, and similar optimizations. */ if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (x, 0), XEXP (XEXP (x, 1), 0)), XEXP (XEXP (x, 1), 1)); } /* Canonicalize (plus (plus (mult (reg) (const)) (plus (reg) (const))) const) into (plus (plus (mult (reg) (const)) (reg)) (const)). */ else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS && CONSTANT_P (XEXP (x, 1))) { rtx constant; rtx other = NULL_RTX; if (CONST_INT_P (XEXP (x, 1))) { constant = XEXP (x, 1); other = XEXP (XEXP (XEXP (x, 0), 1), 1); } else if (CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 1), 1))) { constant = XEXP (XEXP (XEXP (x, 0), 1), 1); other = XEXP (x, 1); } else constant = 0; if (constant) { changed = 1; x = gen_rtx_PLUS (Pmode, gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0), XEXP (XEXP (XEXP (x, 0), 1), 0)), plus_constant (other, INTVAL (constant))); } } if (changed && ix86_legitimate_address_p (mode, x, FALSE)) return x; if (GET_CODE (XEXP (x, 0)) == MULT) { changed = 1; XEXP (x, 0) = force_operand (XEXP (x, 0), 0); } if (GET_CODE (XEXP (x, 1)) == MULT) { changed = 1; XEXP (x, 1) = force_operand (XEXP (x, 1), 0); } if (changed && REG_P (XEXP (x, 1)) && REG_P (XEXP (x, 0))) return x; if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1))) { changed = 1; x = legitimize_pic_address (x, 0); } if (changed && ix86_legitimate_address_p (mode, x, FALSE)) return x; if (REG_P (XEXP (x, 0))) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 1), temp); if (val != temp) emit_move_insn (temp, val); XEXP (x, 1) = temp; return x; } else if (REG_P (XEXP (x, 1))) { rtx temp = gen_reg_rtx (Pmode); rtx val = force_operand (XEXP (x, 0), temp); if (val != temp) emit_move_insn (temp, val); XEXP (x, 0) = temp; return x; } } return x; } /* Print an integer constant expression in assembler syntax. Addition and subtraction are the only arithmetic that may appear in these expressions. FILE is the stdio stream to write to, X is the rtx, and CODE is the operand print code from the output string. */ static void output_pic_addr_const (FILE *file, rtx x, int code) { char buf[256]; switch (GET_CODE (x)) { case PC: gcc_assert (flag_pic); putc ('.', file); break; case SYMBOL_REF: if (! TARGET_MACHO || TARGET_64BIT) output_addr_const (file, x); else { const char *name = XSTR (x, 0); /* Mark the decl as referenced so that cgraph will output the function. */ if (SYMBOL_REF_DECL (x)) mark_decl_referenced (SYMBOL_REF_DECL (x)); #if TARGET_MACHO if (MACHOPIC_INDIRECT && machopic_classify_symbol (x) == MACHOPIC_UNDEFINED_FUNCTION) name = machopic_indirection_name (x, /*stub_p=*/true); #endif assemble_name (file, name); } if (!TARGET_MACHO && !(TARGET_64BIT && DEFAULT_ABI == MS_ABI) && code == 'P' && ! SYMBOL_REF_LOCAL_P (x)) fputs ("@PLT", file); break; case LABEL_REF: x = XEXP (x, 0); /* FALLTHRU */ case CODE_LABEL: ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); assemble_name (asm_out_file, buf); break; case CONST_INT: fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); break; case CONST: /* This used to output parentheses around the expression, but that does not work on the 386 (either ATT or BSD assembler). */ output_pic_addr_const (file, XEXP (x, 0), code); break; case CONST_DOUBLE: if (GET_MODE (x) == VOIDmode) { /* We can use %d if the number is <32 bits and positive. */ if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0) fprintf (file, "0x%lx%08lx", (unsigned long) CONST_DOUBLE_HIGH (x), (unsigned long) CONST_DOUBLE_LOW (x)); else fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); } else /* We can't handle floating point constants; PRINT_OPERAND must handle them. */ output_operand_lossage ("floating constant misused"); break; case PLUS: /* Some assemblers need integer constants to appear first. */ if (CONST_INT_P (XEXP (x, 0))) { output_pic_addr_const (file, XEXP (x, 0), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 1), code); } else { gcc_assert (CONST_INT_P (XEXP (x, 1))); output_pic_addr_const (file, XEXP (x, 1), code); putc ('+', file); output_pic_addr_const (file, XEXP (x, 0), code); } break; case MINUS: if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? '(' : '[', file); output_pic_addr_const (file, XEXP (x, 0), code); putc ('-', file); output_pic_addr_const (file, XEXP (x, 1), code); if (!TARGET_MACHO) putc (ASSEMBLER_DIALECT == ASM_INTEL ? ')' : ']', file); break; case UNSPEC: gcc_assert (XVECLEN (x, 0) == 1); output_pic_addr_const (file, XVECEXP (x, 0, 0), code); switch (XINT (x, 1)) { case UNSPEC_GOT: fputs ("@GOT", file); break; case UNSPEC_GOTOFF: fputs ("@GOTOFF", file); break; case UNSPEC_PLTOFF: fputs ("@PLTOFF", file); break; case UNSPEC_GOTPCREL: fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@GOTPCREL(%rip)" : "@GOTPCREL[rip]", file); break; case UNSPEC_GOTTPOFF: /* FIXME: This might be @TPOFF in Sun ld too. */ fputs ("@gottpoff", file); break; case UNSPEC_TPOFF: fputs ("@tpoff", file); break; case UNSPEC_NTPOFF: if (TARGET_64BIT) fputs ("@tpoff", file); else fputs ("@ntpoff", file); break; case UNSPEC_DTPOFF: fputs ("@dtpoff", file); break; case UNSPEC_GOTNTPOFF: if (TARGET_64BIT) fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@gottpoff(%rip)": "@gottpoff[rip]", file); else fputs ("@gotntpoff", file); break; case UNSPEC_INDNTPOFF: fputs ("@indntpoff", file); break; #if TARGET_MACHO case UNSPEC_MACHOPIC_OFFSET: putc ('-', file); machopic_output_function_base_name (file); break; #endif default: output_operand_lossage ("invalid UNSPEC as operand"); break; } break; default: output_operand_lossage ("invalid expression as operand"); } } /* This is called from dwarf2out.c via TARGET_ASM_OUTPUT_DWARF_DTPREL. We need to emit DTP-relative relocations. */ static void ATTRIBUTE_UNUSED i386_output_dwarf_dtprel (FILE *file, int size, rtx x) { fputs (ASM_LONG, file); output_addr_const (file, x); fputs ("@dtpoff", file); switch (size) { case 4: break; case 8: fputs (", 0", file); break; default: gcc_unreachable (); } } /* Return true if X is a representation of the PIC register. This copes with calls from ix86_find_base_term, where the register might have been replaced by a cselib value. */ static bool ix86_pic_register_p (rtx x) { if (GET_CODE (x) == VALUE && CSELIB_VAL_PTR (x)) return (pic_offset_table_rtx && rtx_equal_for_cselib_p (x, pic_offset_table_rtx)); else return REG_P (x) && REGNO (x) == PIC_OFFSET_TABLE_REGNUM; } /* In the name of slightly smaller debug output, and to cater to general assembler lossage, recognize PIC+GOTOFF and turn it back into a direct symbol reference. On Darwin, this is necessary to avoid a crash, because Darwin has a different PIC label for each routine but the DWARF debugging information is not associated with any particular routine, so it's necessary to remove references to the PIC label from RTL stored by the DWARF output code. */ static rtx ix86_delegitimize_address (rtx x) { rtx orig_x = delegitimize_mem_from_attrs (x); /* addend is NULL or some rtx if x is something+GOTOFF where something doesn't include the PIC register. */ rtx addend = NULL_RTX; /* reg_addend is NULL or a multiple of some register. */ rtx reg_addend = NULL_RTX; /* const_addend is NULL or a const_int. */ rtx const_addend = NULL_RTX; /* This is the result, or NULL. */ rtx result = NULL_RTX; x = orig_x; if (MEM_P (x)) x = XEXP (x, 0); if (TARGET_64BIT) { if (GET_CODE (x) != CONST || GET_CODE (XEXP (x, 0)) != UNSPEC || XINT (XEXP (x, 0), 1) != UNSPEC_GOTPCREL || !MEM_P (orig_x)) return orig_x; x = XVECEXP (XEXP (x, 0), 0, 0); if (GET_MODE (orig_x) != Pmode) return simplify_gen_subreg (GET_MODE (orig_x), x, Pmode, 0); return x; } if (GET_CODE (x) != PLUS || GET_CODE (XEXP (x, 1)) != CONST) return orig_x; if (ix86_pic_register_p (XEXP (x, 0))) /* %ebx + GOT/GOTOFF */ ; else if (GET_CODE (XEXP (x, 0)) == PLUS) { /* %ebx + %reg * scale + GOT/GOTOFF */ reg_addend = XEXP (x, 0); if (ix86_pic_register_p (XEXP (reg_addend, 0))) reg_addend = XEXP (reg_addend, 1); else if (ix86_pic_register_p (XEXP (reg_addend, 1))) reg_addend = XEXP (reg_addend, 0); else { reg_addend = NULL_RTX; addend = XEXP (x, 0); } } else addend = XEXP (x, 0); x = XEXP (XEXP (x, 1), 0); if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1))) { const_addend = XEXP (x, 1); x = XEXP (x, 0); } if (GET_CODE (x) == UNSPEC && ((XINT (x, 1) == UNSPEC_GOT && MEM_P (orig_x) && !addend) || (XINT (x, 1) == UNSPEC_GOTOFF && !MEM_P (orig_x)))) result = XVECEXP (x, 0, 0); if (TARGET_MACHO && darwin_local_data_pic (x) && !MEM_P (orig_x)) result = XVECEXP (x, 0, 0); if (! result) return orig_x; if (const_addend) result = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, result, const_addend)); if (reg_addend) result = gen_rtx_PLUS (Pmode, reg_addend, result); if (addend) { /* If the rest of original X doesn't involve the PIC register, add addend and subtract pic_offset_table_rtx. This can happen e.g. for code like: leal (%ebx, %ecx, 4), %ecx ... movl foo@GOTOFF(%ecx), %edx in which case we return (%ecx - %ebx) + foo. */ if (pic_offset_table_rtx) result = gen_rtx_PLUS (Pmode, gen_rtx_MINUS (Pmode, copy_rtx (addend), pic_offset_table_rtx), result); else return orig_x; } if (GET_MODE (orig_x) != Pmode && MEM_P (orig_x)) return simplify_gen_subreg (GET_MODE (orig_x), result, Pmode, 0); return result; } /* If X is a machine specific address (i.e. a symbol or label being referenced as a displacement from the GOT implemented using an UNSPEC), then return the base term. Otherwise return X. */ rtx ix86_find_base_term (rtx x) { rtx term; if (TARGET_64BIT) { if (GET_CODE (x) != CONST) return x; term = XEXP (x, 0); if (GET_CODE (term) == PLUS && (CONST_INT_P (XEXP (term, 1)) || GET_CODE (XEXP (term, 1)) == CONST_DOUBLE)) term = XEXP (term, 0); if (GET_CODE (term) != UNSPEC || XINT (term, 1) != UNSPEC_GOTPCREL) return x; return XVECEXP (term, 0, 0); } return ix86_delegitimize_address (x); } static void put_condition_code (enum rtx_code code, enum machine_mode mode, int reverse, int fp, FILE *file) { const char *suffix; if (mode == CCFPmode || mode == CCFPUmode) { code = ix86_fp_compare_code_to_integer (code); mode = CCmode; } if (reverse) code = reverse_condition (code); switch (code) { case EQ: switch (mode) { case CCAmode: suffix = "a"; break; case CCCmode: suffix = "c"; break; case CCOmode: suffix = "o"; break; case CCSmode: suffix = "s"; break; default: suffix = "e"; } break; case NE: switch (mode) { case CCAmode: suffix = "na"; break; case CCCmode: suffix = "nc"; break; case CCOmode: suffix = "no"; break; case CCSmode: suffix = "ns"; break; default: suffix = "ne"; } break; case GT: gcc_assert (mode == CCmode || mode == CCNOmode || mode == CCGCmode); suffix = "g"; break; case GTU: /* ??? Use "nbe" instead of "a" for fcmov lossage on some assemblers. Those same assemblers have the same but opposite lossage on cmov. */ if (mode == CCmode) suffix = fp ? "nbe" : "a"; else if (mode == CCCmode) suffix = "b"; else gcc_unreachable (); break; case LT: switch (mode) { case CCNOmode: case CCGOCmode: suffix = "s"; break; case CCmode: case CCGCmode: suffix = "l"; break; default: gcc_unreachable (); } break; case LTU: gcc_assert (mode == CCmode || mode == CCCmode); suffix = "b"; break; case GE: switch (mode) { case CCNOmode: case CCGOCmode: suffix = "ns"; break; case CCmode: case CCGCmode: suffix = "ge"; break; default: gcc_unreachable (); } break; case GEU: /* ??? As above. */ gcc_assert (mode == CCmode || mode == CCCmode); suffix = fp ? "nb" : "ae"; break; case LE: gcc_assert (mode == CCmode || mode == CCGCmode || mode == CCNOmode); suffix = "le"; break; case LEU: /* ??? As above. */ if (mode == CCmode) suffix = "be"; else if (mode == CCCmode) suffix = fp ? "nb" : "ae"; else gcc_unreachable (); break; case UNORDERED: suffix = fp ? "u" : "p"; break; case ORDERED: suffix = fp ? "nu" : "np"; break; default: gcc_unreachable (); } fputs (suffix, file); } /* Print the name of register X to FILE based on its machine mode and number. If CODE is 'w', pretend the mode is HImode. If CODE is 'b', pretend the mode is QImode. If CODE is 'k', pretend the mode is SImode. If CODE is 'q', pretend the mode is DImode. If CODE is 'x', pretend the mode is V4SFmode. If CODE is 't', pretend the mode is V8SFmode. If CODE is 'h', pretend the reg is the 'high' byte register. If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. If CODE is 'd', duplicate the operand for AVX instruction. */ void print_reg (rtx x, int code, FILE *file) { const char *reg; bool duplicated = code == 'd' && TARGET_AVX; gcc_assert (x == pc_rtx || (REGNO (x) != ARG_POINTER_REGNUM && REGNO (x) != FRAME_POINTER_REGNUM && REGNO (x) != FLAGS_REG && REGNO (x) != FPSR_REG && REGNO (x) != FPCR_REG)); if (ASSEMBLER_DIALECT == ASM_ATT) putc ('%', file); if (x == pc_rtx) { gcc_assert (TARGET_64BIT); fputs ("rip", file); return; } if (code == 'w' || MMX_REG_P (x)) code = 2; else if (code == 'b') code = 1; else if (code == 'k') code = 4; else if (code == 'q') code = 8; else if (code == 'y') code = 3; else if (code == 'h') code = 0; else if (code == 'x') code = 16; else if (code == 't') code = 32; else code = GET_MODE_SIZE (GET_MODE (x)); /* Irritatingly, AMD extended registers use different naming convention from the normal registers. */ if (REX_INT_REG_P (x)) { gcc_assert (TARGET_64BIT); switch (code) { case 0: error ("extended registers have no high halves"); break; case 1: fprintf (file, "r%ib", REGNO (x) - FIRST_REX_INT_REG + 8); break; case 2: fprintf (file, "r%iw", REGNO (x) - FIRST_REX_INT_REG + 8); break; case 4: fprintf (file, "r%id", REGNO (x) - FIRST_REX_INT_REG + 8); break; case 8: fprintf (file, "r%i", REGNO (x) - FIRST_REX_INT_REG + 8); break; default: error ("unsupported operand size for extended register"); break; } return; } reg = NULL; switch (code) { case 3: if (STACK_TOP_P (x)) { reg = "st(0)"; break; } /* FALLTHRU */ case 8: case 4: case 12: if (! ANY_FP_REG_P (x)) putc (code == 8 && TARGET_64BIT ? 'r' : 'e', file); /* FALLTHRU */ case 16: case 2: normal: reg = hi_reg_name[REGNO (x)]; break; case 1: if (REGNO (x) >= ARRAY_SIZE (qi_reg_name)) goto normal; reg = qi_reg_name[REGNO (x)]; break; case 0: if (REGNO (x) >= ARRAY_SIZE (qi_high_reg_name)) goto normal; reg = qi_high_reg_name[REGNO (x)]; break; case 32: if (SSE_REG_P (x)) { gcc_assert (!duplicated); putc ('y', file); fputs (hi_reg_name[REGNO (x)] + 1, file); return; } break; default: gcc_unreachable (); } fputs (reg, file); if (duplicated) { if (ASSEMBLER_DIALECT == ASM_ATT) fprintf (file, ", %%%s", reg); else fprintf (file, ", %s", reg); } } /* Locate some local-dynamic symbol still in use by this function so that we can print its name in some tls_local_dynamic_base pattern. */ static int get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED) { rtx x = *px; if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC) { cfun->machine->some_ld_name = XSTR (x, 0); return 1; } return 0; } static const char * get_some_local_dynamic_name (void) { rtx insn; if (cfun->machine->some_ld_name) return cfun->machine->some_ld_name; for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) if (NONDEBUG_INSN_P (insn) && for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0)) return cfun->machine->some_ld_name; return NULL; } /* Meaning of CODE: L,W,B,Q,S,T -- print the opcode suffix for specified size of operand. C -- print opcode suffix for set/cmov insn. c -- like C, but print reversed condition F,f -- likewise, but for floating-point. O -- if HAVE_AS_IX86_CMOV_SUN_SYNTAX, expand to "w.", "l." or "q.", otherwise nothing R -- print the prefix for register names. z -- print the opcode suffix for the size of the current operand. Z -- likewise, with special suffixes for x87 instructions. * -- print a star (in certain assembler syntax) A -- print an absolute memory reference. w -- print the operand as if it's a "word" (HImode) even if it isn't. s -- print a shift double count, followed by the assemblers argument delimiter. b -- print the QImode name of the register for the indicated operand. %b0 would print %al if operands[0] is reg 0. w -- likewise, print the HImode name of the register. k -- likewise, print the SImode name of the register. q -- likewise, print the DImode name of the register. x -- likewise, print the V4SFmode name of the register. t -- likewise, print the V8SFmode name of the register. h -- print the QImode name for a "high" register, either ah, bh, ch or dh. y -- print "st(0)" instead of "st" as a register. d -- print duplicated register operand for AVX instruction. D -- print condition for SSE cmp instruction. P -- if PIC, print an @PLT suffix. X -- don't print any sort of PIC '@' suffix for a symbol. & -- print some in-use local-dynamic symbol name. H -- print a memory address offset by 8; used for sse high-parts Y -- print condition for XOP pcom* instruction. + -- print a branch hint as 'cs' or 'ds' prefix ; -- print a semicolon (after prefixes due to bug in older gas). */ void print_operand (FILE *file, rtx x, int code) { if (code) { switch (code) { case '*': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('*', file); return; case '&': { const char *name = get_some_local_dynamic_name (); if (name == NULL) output_operand_lossage ("'%%&' used without any " "local dynamic TLS references"); else assemble_name (file, name); return; } case 'A': switch (ASSEMBLER_DIALECT) { case ASM_ATT: putc ('*', file); break; case ASM_INTEL: /* Intel syntax. For absolute addresses, registers should not be surrounded by braces. */ if (!REG_P (x)) { putc ('[', file); PRINT_OPERAND (file, x, 0); putc (']', file); return; } break; default: gcc_unreachable (); } PRINT_OPERAND (file, x, 0); return; case 'L': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'W': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('w', file); return; case 'B': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('b', file); return; case 'Q': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('l', file); return; case 'S': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('s', file); return; case 'T': if (ASSEMBLER_DIALECT == ASM_ATT) putc ('t', file); return; case 'z': if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { /* Opcodes don't get size suffixes if using Intel opcodes. */ if (ASSEMBLER_DIALECT == ASM_INTEL) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 1: putc ('b', file); return; case 2: putc ('w', file); return; case 4: putc ('l', file); return; case 8: putc ('q', file); return; default: output_operand_lossage ("invalid operand size for operand code '%c'", code); return; } } if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) warning (0, "non-integer operand used with operand code '%c'", code); /* FALLTHRU */ case 'Z': /* 387 opcodes don't get size suffixes if using Intel opcodes. */ if (ASSEMBLER_DIALECT == ASM_INTEL) return; if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT) { switch (GET_MODE_SIZE (GET_MODE (x))) { case 2: #ifdef HAVE_AS_IX86_FILDS putc ('s', file); #endif return; case 4: putc ('l', file); return; case 8: #ifdef HAVE_AS_IX86_FILDQ putc ('q', file); #else fputs ("ll", file); #endif return; default: break; } } else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) { /* 387 opcodes don't get size suffixes if the operands are registers. */ if (STACK_REG_P (x)) return; switch (GET_MODE_SIZE (GET_MODE (x))) { case 4: putc ('s', file); return; case 8: putc ('l', file); return; case 12: case 16: putc ('t', file); return; default: break; } } else { output_operand_lossage ("invalid operand type used with operand code '%c'", code); return; } output_operand_lossage ("invalid operand size for operand code '%c'", code); return; case 'd': case 'b': case 'w': case 'k': case 'q': case 'h': case 't': case 'y': case 'x': case 'X': case 'P': break; case 's': if (CONST_INT_P (x) || ! SHIFT_DOUBLE_OMITS_COUNT) { PRINT_OPERAND (file, x, 0); fputs (", ", file); } return; case 'D': /* Little bit of braindamage here. The SSE compare instructions does use completely different names for the comparisons that the fp conditional moves. */ if (TARGET_AVX) { switch (GET_CODE (x)) { case EQ: fputs ("eq", file); break; case UNEQ: fputs ("eq_us", file); break; case LT: fputs ("lt", file); break; case UNLT: fputs ("nge", file); break; case LE: fputs ("le", file); break; case UNLE: fputs ("ngt", file); break; case UNORDERED: fputs ("unord", file); break; case NE: fputs ("neq", file); break; case LTGT: fputs ("neq_oq", file); break; case GE: fputs ("ge", file); break; case UNGE: fputs ("nlt", file); break; case GT: fputs ("gt", file); break; case UNGT: fputs ("nle", file); break; case ORDERED: fputs ("ord", file); break; default: output_operand_lossage ("operand is not a condition code, " "invalid operand code 'D'"); return; } } else { switch (GET_CODE (x)) { case EQ: case UNEQ: fputs ("eq", file); break; case LT: case UNLT: fputs ("lt", file); break; case LE: case UNLE: fputs ("le", file); break; case UNORDERED: fputs ("unord", file); break; case NE: case LTGT: fputs ("neq", file); break; case UNGE: case GE: fputs ("nlt", file); break; case UNGT: case GT: fputs ("nle", file); break; case ORDERED: fputs ("ord", file); break; default: output_operand_lossage ("operand is not a condition code, " "invalid operand code 'D'"); return; } } return; case 'O': #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) { switch (GET_MODE (x)) { case HImode: putc ('w', file); break; case SImode: case SFmode: putc ('l', file); break; case DImode: case DFmode: putc ('q', file); break; default: gcc_unreachable (); } putc ('.', file); } #endif return; case 'C': if (!COMPARISON_P (x)) { output_operand_lossage ("operand is neither a constant nor a " "condition code, invalid operand code " "'C'"); return; } put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 0, file); return; case 'F': if (!COMPARISON_P (x)) { output_operand_lossage ("operand is neither a constant nor a " "condition code, invalid operand code " "'F'"); return; } #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) putc ('.', file); #endif put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 1, file); return; /* Like above, but reverse condition */ case 'c': /* Check to see if argument to %c is really a constant and not a condition code which needs to be reversed. */ if (!COMPARISON_P (x)) { output_operand_lossage ("operand is neither a constant nor a " "condition code, invalid operand " "code 'c'"); return; } put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 0, file); return; case 'f': if (!COMPARISON_P (x)) { output_operand_lossage ("operand is neither a constant nor a " "condition code, invalid operand " "code 'f'"); return; } #ifdef HAVE_AS_IX86_CMOV_SUN_SYNTAX if (ASSEMBLER_DIALECT == ASM_ATT) putc ('.', file); #endif put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 1, file); return; case 'H': /* It doesn't actually matter what mode we use here, as we're only going to use this for printing. */ x = adjust_address_nv (x, DImode, 8); break; case '+': { rtx x; if (!optimize || optimize_function_for_size_p (cfun) || !TARGET_BRANCH_PREDICTION_HINTS) return; x = find_reg_note (current_output_insn, REG_BR_PROB, 0); if (x) { int pred_val = INTVAL (XEXP (x, 0)); if (pred_val < REG_BR_PROB_BASE * 45 / 100 || pred_val > REG_BR_PROB_BASE * 55 / 100) { int taken = pred_val > REG_BR_PROB_BASE / 2; int cputaken = final_forward_branch_p (current_output_insn) == 0; /* Emit hints only in the case default branch prediction heuristics would fail. */ if (taken != cputaken) { /* We use 3e (DS) prefix for taken branches and 2e (CS) prefix for not taken branches. */ if (taken) fputs ("ds ; ", file); else fputs ("cs ; ", file); } } } return; } case 'Y': switch (GET_CODE (x)) { case NE: fputs ("neq", file); break; case EQ: fputs ("eq", file); break; case GE: case GEU: fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "ge" : "unlt", file); break; case GT: case GTU: fputs (INTEGRAL_MODE_P (GET_MODE (x)) ? "gt" : "unle", file); break; case LE: case LEU: fputs ("le", file); break; case LT: case LTU: fputs ("lt", file); break; case UNORDERED: fputs ("unord", file); break; case ORDERED: fputs ("ord", file); break; case UNEQ: fputs ("ueq", file); break; case UNGE: fputs ("nlt", file); break; case UNGT: fputs ("nle", file); break; case UNLE: fputs ("ule", file); break; case UNLT: fputs ("ult", file); break; case LTGT: fputs ("une", file); break; default: output_operand_lossage ("operand is not a condition code, " "invalid operand code 'Y'"); return; } return; case ';': #if TARGET_MACHO || !HAVE_AS_IX86_REP_LOCK_PREFIX fputs (";", file); #endif return; default: output_operand_lossage ("invalid operand code '%c'", code); } } if (REG_P (x)) print_reg (x, code, file); else if (MEM_P (x)) { /* No `byte ptr' prefix for call instructions or BLKmode operands. */ if (ASSEMBLER_DIALECT == ASM_INTEL && code != 'X' && code != 'P' && GET_MODE (x) != BLKmode) { const char * size; switch (GET_MODE_SIZE (GET_MODE (x))) { case 1: size = "BYTE"; break; case 2: size = "WORD"; break; case 4: size = "DWORD"; break; case 8: size = "QWORD"; break; case 12: size = "TBYTE"; break; case 16: if (GET_MODE (x) == XFmode) size = "TBYTE"; else size = "XMMWORD"; break; case 32: size = "YMMWORD"; break; default: gcc_unreachable (); } /* Check for explicit size override (codes 'b', 'w' and 'k') */ if (code == 'b') size = "BYTE"; else if (code == 'w') size = "WORD"; else if (code == 'k') size = "DWORD"; fputs (size, file); fputs (" PTR ", file); } x = XEXP (x, 0); /* Avoid (%rip) for call operands. */ if (CONSTANT_ADDRESS_P (x) && code == 'P' && !CONST_INT_P (x)) output_addr_const (file, x); else if (this_is_asm_operands && ! address_operand (x, VOIDmode)) output_operand_lossage ("invalid constraints for operand"); else output_address (x); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode) { REAL_VALUE_TYPE r; long l; REAL_VALUE_FROM_CONST_DOUBLE (r, x); REAL_VALUE_TO_TARGET_SINGLE (r, l); if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); fprintf (file, "0x%08lx", (long unsigned int) l); } /* These float cases don't actually occur as immediate operands. */ else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode) { char dstr[30]; real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1); fputs (dstr, file); } else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == XFmode) { char dstr[30]; real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (x), sizeof (dstr), 0, 1); fputs (dstr, file); } else { /* We have patterns that allow zero sets of memory, for instance. In 64-bit mode, we should probably support all 8-byte vectors, since we can in fact encode that into an immediate. */ if (GET_CODE (x) == CONST_VECTOR) { gcc_assert (x == CONST0_RTX (GET_MODE (x))); x = const0_rtx; } if (code != 'P') { if (CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); } else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) { if (ASSEMBLER_DIALECT == ASM_ATT) putc ('$', file); else fputs ("OFFSET FLAT:", file); } } if (CONST_INT_P (x)) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); else if (flag_pic) output_pic_addr_const (file, x, code); else output_addr_const (file, x); } } /* Print a memory operand whose address is ADDR. */ void print_operand_address (FILE *file, rtx addr) { struct ix86_address parts; rtx base, index, disp; int scale; int ok = ix86_decompose_address (addr, &parts); gcc_assert (ok); base = parts.base; index = parts.index; disp = parts.disp; scale = parts.scale; switch (parts.seg) { case SEG_DEFAULT: break; case SEG_FS: case SEG_GS: if (ASSEMBLER_DIALECT == ASM_ATT) putc ('%', file); fputs ((parts.seg == SEG_FS ? "fs:" : "gs:"), file); break; default: gcc_unreachable (); } /* Use one byte shorter RIP relative addressing for 64bit mode. */ if (TARGET_64BIT && !base && !index) { rtx symbol = disp; if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) symbol = XEXP (XEXP (disp, 0), 0); if (GET_CODE (symbol) == LABEL_REF || (GET_CODE (symbol) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (symbol) == 0)) base = pc_rtx; } if (!base && !index) { /* Displacement only requires special attention. */ if (CONST_INT_P (disp)) { if (ASSEMBLER_DIALECT == ASM_INTEL && parts.seg == SEG_DEFAULT) fputs ("ds:", file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (disp)); } else if (flag_pic) output_pic_addr_const (file, disp, 0); else output_addr_const (file, disp); } else { if (ASSEMBLER_DIALECT == ASM_ATT) { if (disp) { if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else output_addr_const (file, disp); } putc ('(', file); if (base) print_reg (base, 0, file); if (index) { putc (',', file); print_reg (index, 0, file); if (scale != 1) fprintf (file, ",%d", scale); } putc (')', file); } else { rtx offset = NULL_RTX; if (disp) { /* Pull out the offset of a symbol; print any symbol itself. */ if (GET_CODE (disp) == CONST && GET_CODE (XEXP (disp, 0)) == PLUS && CONST_INT_P (XEXP (XEXP (disp, 0), 1))) { offset = XEXP (XEXP (disp, 0), 1); disp = gen_rtx_CONST (VOIDmode, XEXP (XEXP (disp, 0), 0)); } if (flag_pic) output_pic_addr_const (file, disp, 0); else if (GET_CODE (disp) == LABEL_REF) output_asm_label (disp); else if (CONST_INT_P (disp)) offset = disp; else output_addr_const (file, disp); } putc ('[', file); if (base) { print_reg (base, 0, file); if (offset) { if (INTVAL (offset) >= 0) putc ('+', file); fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); } } else if (offset) fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset)); else putc ('0', file); if (index) { putc ('+', file); print_reg (index, 0, file); if (scale != 1) fprintf (file, "*%d", scale); } putc (']', file); } } } bool output_addr_const_extra (FILE *file, rtx x) { rtx op; if (GET_CODE (x) != UNSPEC) return false; op = XVECEXP (x, 0, 0); switch (XINT (x, 1)) { case UNSPEC_GOTTPOFF: output_addr_const (file, op); /* FIXME: This might be @TPOFF in Sun ld. */ fputs ("@gottpoff", file); break; case UNSPEC_TPOFF: output_addr_const (file, op); fputs ("@tpoff", file); break; case UNSPEC_NTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs ("@tpoff", file); else fputs ("@ntpoff", file); break; case UNSPEC_DTPOFF: output_addr_const (file, op); fputs ("@dtpoff", file); break; case UNSPEC_GOTNTPOFF: output_addr_const (file, op); if (TARGET_64BIT) fputs (ASSEMBLER_DIALECT == ASM_ATT ? "@gottpoff(%rip)" : "@gottpoff[rip]", file); else fputs ("@gotntpoff", file); break; case UNSPEC_INDNTPOFF: output_addr_const (file, op); fputs ("@indntpoff", file); break; #if TARGET_MACHO case UNSPEC_MACHOPIC_OFFSET: output_addr_const (file, op); putc ('-', file); machopic_output_function_base_name (file); break; #endif default: return false; } return true; } /* Split one or more DImode RTL references into pairs of SImode references. The RTL can be REG, offsettable MEM, integer constant, or CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to split and "num" is its length. lo_half and hi_half are output arrays that parallel "operands". */ void split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[]) { while (num--) { rtx op = operands[num]; /* simplify_subreg refuse to split volatile memory addresses, but we still have to handle it. */ if (MEM_P (op)) { lo_half[num] = adjust_address (op, SImode, 0); hi_half[num] = adjust_address (op, SImode, 4); } else { lo_half[num] = simplify_gen_subreg (SImode, op, GET_MODE (op) == VOIDmode ? DImode : GET_MODE (op), 0); hi_half[num] = simplify_gen_subreg (SImode, op, GET_MODE (op) == VOIDmode ? DImode : GET_MODE (op), 4); } } } /* Split one or more TImode RTL references into pairs of DImode references. The RTL can be REG, offsettable MEM, integer constant, or CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to split and "num" is its length. lo_half and hi_half are output arrays that parallel "operands". */ void split_ti (rtx operands[], int num, rtx lo_half[], rtx hi_half[]) { while (num--) { rtx op = operands[num]; /* simplify_subreg refuse to split volatile memory addresses, but we still have to handle it. */ if (MEM_P (op)) { lo_half[num] = adjust_address (op, DImode, 0); hi_half[num] = adjust_address (op, DImode, 8); } else { lo_half[num] = simplify_gen_subreg (DImode, op, TImode, 0); hi_half[num] = simplify_gen_subreg (DImode, op, TImode, 8); } } } /* Output code to perform a 387 binary operation in INSN, one of PLUS, MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3] is the expression of the binary operation. The output may either be emitted here, or returned to the caller, like all output_* functions. There is no guarantee that the operands are the same mode, as they might be within FLOAT or FLOAT_EXTEND expressions. */ #ifndef SYSV386_COMPAT /* Set to 1 for compatibility with brain-damaged assemblers. No-one wants to fix the assemblers because that causes incompatibility with gcc. No-one wants to fix gcc because that causes incompatibility with assemblers... You can use the option of -DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */ #define SYSV386_COMPAT 1 #endif const char * output_387_binary_op (rtx insn, rtx *operands) { static char buf[40]; const char *p; const char *ssep; int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]) || SSE_REG_P (operands[2]); #ifdef ENABLE_CHECKING /* Even if we do not want to check the inputs, this documents input constraints. Which helps in understanding the following code. */ if (STACK_REG_P (operands[0]) && ((REG_P (operands[1]) && REGNO (operands[0]) == REGNO (operands[1]) && (STACK_REG_P (operands[2]) || MEM_P (operands[2]))) || (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]) && (STACK_REG_P (operands[1]) || MEM_P (operands[1])))) && (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2]))) ; /* ok */ else gcc_assert (is_sse); #endif switch (GET_CODE (operands[3])) { case PLUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fiadd"; else p = "fadd"; ssep = "vadd"; break; case MINUS: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fisub"; else p = "fsub"; ssep = "vsub"; break; case MULT: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fimul"; else p = "fmul"; ssep = "vmul"; break; case DIV: if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT || GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT) p = "fidiv"; else p = "fdiv"; ssep = "vdiv"; break; default: gcc_unreachable (); } if (is_sse) { if (TARGET_AVX) { strcpy (buf, ssep); if (GET_MODE (operands[0]) == SFmode) strcat (buf, "ss\t{%2, %1, %0|%0, %1, %2}"); else strcat (buf, "sd\t{%2, %1, %0|%0, %1, %2}"); } else { strcpy (buf, ssep + 1); if (GET_MODE (operands[0]) == SFmode) strcat (buf, "ss\t{%2, %0|%0, %2}"); else strcat (buf, "sd\t{%2, %0|%0, %2}"); } return buf; } strcpy (buf, p); switch (GET_CODE (operands[3])) { case MULT: case PLUS: if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2])) { rtx temp = operands[2]; operands[2] = operands[1]; operands[1] = temp; } /* know operands[0] == operands[1]. */ if (MEM_P (operands[2])) { p = "%Z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { if (STACK_TOP_P (operands[0])) /* How is it that we are storing to a dead operand[2]? Well, presumably operands[1] is dead too. We can't store the result to st(0) as st(0) gets popped on this instruction. Instead store to operands[2] (which I think has to be st(1)). st(1) will be popped later. gcc <= 2.8.1 didn't have this check and generated assembly code that the Unixware assembler rejected. */ p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ break; } if (STACK_TOP_P (operands[0])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ break; case MINUS: case DIV: if (MEM_P (operands[1])) { p = "r%Z1\t%1"; break; } if (MEM_P (operands[2])) { p = "%Z2\t%2"; break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[2]))) { #if SYSV386_COMPAT /* The SystemV/386 SVR3.2 assembler, and probably all AT&T derived assemblers, confusingly reverse the direction of the operation for fsub{r} and fdiv{r} when the destination register is not st(0). The Intel assembler doesn't have this brain damage. Read !SYSV386_COMPAT to figure out what the hardware really does. */ if (STACK_TOP_P (operands[0])) p = "{p\t%0, %2|rp\t%2, %0}"; else p = "{rp\t%2, %0|p\t%0, %2}"; #else if (STACK_TOP_P (operands[0])) /* As above for fmul/fadd, we can't store to st(0). */ p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */ else p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */ #endif break; } if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { #if SYSV386_COMPAT if (STACK_TOP_P (operands[0])) p = "{rp\t%0, %1|p\t%1, %0}"; else p = "{p\t%1, %0|rp\t%0, %1}"; #else if (STACK_TOP_P (operands[0])) p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */ else p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */ #endif break; } if (STACK_TOP_P (operands[0])) { if (STACK_TOP_P (operands[1])) p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */ else p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */ break; } else if (STACK_TOP_P (operands[1])) { #if SYSV386_COMPAT p = "{\t%1, %0|r\t%0, %1}"; #else p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */ #endif } else { #if SYSV386_COMPAT p = "{r\t%2, %0|\t%0, %2}"; #else p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */ #endif } break; default: gcc_unreachable (); } strcat (buf, p); return buf; } /* Return needed mode for entity in optimize_mode_switching pass. */ int ix86_mode_needed (int entity, rtx insn) { enum attr_i387_cw mode; /* The mode UNINITIALIZED is used to store control word after a function call or ASM pattern. The mode ANY specify that function has no requirements on the control word and make no changes in the bits we are interested in. */ if (CALL_P (insn) || (NONJUMP_INSN_P (insn) && (asm_noperands (PATTERN (insn)) >= 0 || GET_CODE (PATTERN (insn)) == ASM_INPUT))) return I387_CW_UNINITIALIZED; if (recog_memoized (insn) < 0) return I387_CW_ANY; mode = get_attr_i387_cw (insn); switch (entity) { case I387_TRUNC: if (mode == I387_CW_TRUNC) return mode; break; case I387_FLOOR: if (mode == I387_CW_FLOOR) return mode; break; case I387_CEIL: if (mode == I387_CW_CEIL) return mode; break; case I387_MASK_PM: if (mode == I387_CW_MASK_PM) return mode; break; default: gcc_unreachable (); } return I387_CW_ANY; } /* Output code to initialize control word copies used by trunc?f?i and rounding patterns. CURRENT_MODE is set to current control word, while NEW_MODE is set to new control word. */ void emit_i387_cw_initialization (int mode) { rtx stored_mode = assign_386_stack_local (HImode, SLOT_CW_STORED); rtx new_mode; enum ix86_stack_slot slot; rtx reg = gen_reg_rtx (HImode); emit_insn (gen_x86_fnstcw_1 (stored_mode)); emit_move_insn (reg, copy_rtx (stored_mode)); if (TARGET_64BIT || TARGET_PARTIAL_REG_STALL || optimize_function_for_size_p (cfun)) { switch (mode) { case I387_CW_TRUNC: /* round toward zero (truncate) */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0c00))); slot = SLOT_CW_TRUNC; break; case I387_CW_FLOOR: /* round down toward -oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0400))); slot = SLOT_CW_FLOOR; break; case I387_CW_CEIL: /* round up toward +oo */ emit_insn (gen_andhi3 (reg, reg, GEN_INT (~0x0c00))); emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0800))); slot = SLOT_CW_CEIL; break; case I387_CW_MASK_PM: /* mask precision exception for nearbyint() */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); slot = SLOT_CW_MASK_PM; break; default: gcc_unreachable (); } } else { switch (mode) { case I387_CW_TRUNC: /* round toward zero (truncate) */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0xc))); slot = SLOT_CW_TRUNC; break; case I387_CW_FLOOR: /* round down toward -oo */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x4))); slot = SLOT_CW_FLOOR; break; case I387_CW_CEIL: /* round up toward +oo */ emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0x8))); slot = SLOT_CW_CEIL; break; case I387_CW_MASK_PM: /* mask precision exception for nearbyint() */ emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0x0020))); slot = SLOT_CW_MASK_PM; break; default: gcc_unreachable (); } } gcc_assert (slot < MAX_386_STACK_LOCALS); new_mode = assign_386_stack_local (HImode, slot); emit_move_insn (new_mode, reg); } /* Output code for INSN to convert a float to a signed int. OPERANDS are the insn operands. The output may be [HSD]Imode and the input operand may be [SDX]Fmode. */ const char * output_fix_trunc (rtx insn, rtx *operands, int fisttp) { int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; int dimode_p = GET_MODE (operands[0]) == DImode; int round_mode = get_attr_i387_cw (insn); /* Jump through a hoop or two for DImode, since the hardware has no non-popping instruction. We used to do this a different way, but that was somewhat fragile and broke with post-reload splitters. */ if ((dimode_p || fisttp) && !stack_top_dies) output_asm_insn ("fld\t%y1", operands); gcc_assert (STACK_TOP_P (operands[1])); gcc_assert (MEM_P (operands[0])); gcc_assert (GET_MODE (operands[1]) != TFmode); if (fisttp) output_asm_insn ("fisttp%Z0\t%0", operands); else { if (round_mode != I387_CW_ANY) output_asm_insn ("fldcw\t%3", operands); if (stack_top_dies || dimode_p) output_asm_insn ("fistp%Z0\t%0", operands); else output_asm_insn ("fist%Z0\t%0", operands); if (round_mode != I387_CW_ANY) output_asm_insn ("fldcw\t%2", operands); } return ""; } /* Output code for x87 ffreep insn. The OPNO argument, which may only have the values zero or one, indicates the ffreep insn's operand from the OPERANDS array. */ static const char * output_387_ffreep (rtx *operands ATTRIBUTE_UNUSED, int opno) { if (TARGET_USE_FFREEP) #ifdef HAVE_AS_IX86_FFREEP return opno ? "ffreep\t%y1" : "ffreep\t%y0"; #else { static char retval[32]; int regno = REGNO (operands[opno]); gcc_assert (FP_REGNO_P (regno)); regno -= FIRST_STACK_REG; snprintf (retval, sizeof (retval), ASM_SHORT "0xc%ddf", regno); return retval; } #endif return opno ? "fstp\t%y1" : "fstp\t%y0"; } /* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi should be used. UNORDERED_P is true when fucom should be used. */ const char * output_fp_compare (rtx insn, rtx *operands, int eflags_p, int unordered_p) { int stack_top_dies; rtx cmp_op0, cmp_op1; int is_sse = SSE_REG_P (operands[0]) || SSE_REG_P (operands[1]); if (eflags_p) { cmp_op0 = operands[0]; cmp_op1 = operands[1]; } else { cmp_op0 = operands[1]; cmp_op1 = operands[2]; } if (is_sse) { static const char ucomiss[] = "vucomiss\t{%1, %0|%0, %1}"; static const char ucomisd[] = "vucomisd\t{%1, %0|%0, %1}"; static const char comiss[] = "vcomiss\t{%1, %0|%0, %1}"; static const char comisd[] = "vcomisd\t{%1, %0|%0, %1}"; if (GET_MODE (operands[0]) == SFmode) if (unordered_p) return &ucomiss[TARGET_AVX ? 0 : 1]; else return &comiss[TARGET_AVX ? 0 : 1]; else if (unordered_p) return &ucomisd[TARGET_AVX ? 0 : 1]; else return &comisd[TARGET_AVX ? 0 : 1]; } gcc_assert (STACK_TOP_P (cmp_op0)); stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0; if (cmp_op1 == CONST0_RTX (GET_MODE (cmp_op1))) { if (stack_top_dies) { output_asm_insn ("ftst\n\tfnstsw\t%0", operands); return output_387_ffreep (operands, 1); } else return "ftst\n\tfnstsw\t%0"; } if (STACK_REG_P (cmp_op1) && stack_top_dies && find_regno_note (insn, REG_DEAD, REGNO (cmp_op1)) && REGNO (cmp_op1) != FIRST_STACK_REG) { /* If both the top of the 387 stack dies, and the other operand is also a stack register that dies, then this must be a `fcompp' float compare */ if (eflags_p) { /* There is no double popping fcomi variant. Fortunately, eflags is immune from the fstp's cc clobbering. */ if (unordered_p) output_asm_insn ("fucomip\t{%y1, %0|%0, %y1}", operands); else output_asm_insn ("fcomip\t{%y1, %0|%0, %y1}", operands); return output_387_ffreep (operands, 0); } else { if (unordered_p) return "fucompp\n\tfnstsw\t%0"; else return "fcompp\n\tfnstsw\t%0"; } } else { /* Encoded here as eflags_p | intmode | unordered_p | stack_top_dies. */ static const char * const alt[16] = { "fcom%Z2\t%y2\n\tfnstsw\t%0", "fcomp%Z2\t%y2\n\tfnstsw\t%0", "fucom%Z2\t%y2\n\tfnstsw\t%0", "fucomp%Z2\t%y2\n\tfnstsw\t%0", "ficom%Z2\t%y2\n\tfnstsw\t%0", "ficomp%Z2\t%y2\n\tfnstsw\t%0", NULL, NULL, "fcomi\t{%y1, %0|%0, %y1}", "fcomip\t{%y1, %0|%0, %y1}", "fucomi\t{%y1, %0|%0, %y1}", "fucomip\t{%y1, %0|%0, %y1}", NULL, NULL, NULL, NULL }; int mask; const char *ret; mask = eflags_p << 3; mask |= (GET_MODE_CLASS (GET_MODE (cmp_op1)) == MODE_INT) << 2; mask |= unordered_p << 1; mask |= stack_top_dies; gcc_assert (mask < 16); ret = alt[mask]; gcc_assert (ret); return ret; } } void ix86_output_addr_vec_elt (FILE *file, int value) { const char *directive = ASM_LONG; #ifdef ASM_QUAD if (TARGET_64BIT) directive = ASM_QUAD; #else gcc_assert (!TARGET_64BIT); #endif fprintf (file, "%s%s%d\n", directive, LPREFIX, value); } void ix86_output_addr_diff_elt (FILE *file, int value, int rel) { const char *directive = ASM_LONG; #ifdef ASM_QUAD if (TARGET_64BIT && CASE_VECTOR_MODE == DImode) directive = ASM_QUAD; #else gcc_assert (!TARGET_64BIT); #endif /* We can't use @GOTOFF for text labels on VxWorks; see gotoff_operand. */ if (TARGET_64BIT || TARGET_VXWORKS_RTP) fprintf (file, "%s%s%d-%s%d\n", directive, LPREFIX, value, LPREFIX, rel); else if (HAVE_AS_GOTOFF_IN_DATA) fprintf (file, ASM_LONG "%s%d@GOTOFF\n", LPREFIX, value); #if TARGET_MACHO else if (TARGET_MACHO) { fprintf (file, ASM_LONG "%s%d-", LPREFIX, value); machopic_output_function_base_name (file); putc ('\n', file); } #endif else asm_fprintf (file, ASM_LONG "%U%s+[.-%s%d]\n", GOT_SYMBOL_NAME, LPREFIX, value); } /* Generate either "mov $0, reg" or "xor reg, reg", as appropriate for the target. */ void ix86_expand_clear (rtx dest) { rtx tmp; /* We play register width games, which are only valid after reload. */ gcc_assert (reload_completed); /* Avoid HImode and its attendant prefix byte. */ if (GET_MODE_SIZE (GET_MODE (dest)) < 4) dest = gen_rtx_REG (SImode, REGNO (dest)); tmp = gen_rtx_SET (VOIDmode, dest, const0_rtx); /* This predicate should match that for movsi_xor and movdi_xor_rex64. */ if (!TARGET_USE_MOV0 || optimize_insn_for_speed_p ()) { rtx clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob)); } emit_insn (tmp); } /* X is an unchanging MEM. If it is a constant pool reference, return the constant pool rtx, else NULL. */ rtx maybe_get_pool_constant (rtx x) { x = ix86_delegitimize_address (XEXP (x, 0)); if (GET_CODE (x) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (x)) return get_pool_constant (x); return NULL_RTX; } void ix86_expand_move (enum machine_mode mode, rtx operands[]) { rtx op0, op1; enum tls_model model; op0 = operands[0]; op1 = operands[1]; if (GET_CODE (op1) == SYMBOL_REF) { model = SYMBOL_REF_TLS_MODEL (op1); if (model) { op1 = legitimize_tls_address (op1, model, true); op1 = force_operand (op1, op0); if (op1 == op0) return; } else if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op1)) op1 = legitimize_dllimport_symbol (op1, false); } else if (GET_CODE (op1) == CONST && GET_CODE (XEXP (op1, 0)) == PLUS && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SYMBOL_REF) { rtx addend = XEXP (XEXP (op1, 0), 1); rtx symbol = XEXP (XEXP (op1, 0), 0); rtx tmp = NULL; model = SYMBOL_REF_TLS_MODEL (symbol); if (model) tmp = legitimize_tls_address (symbol, model, true); else if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (symbol)) tmp = legitimize_dllimport_symbol (symbol, true); if (tmp) { tmp = force_operand (tmp, NULL); tmp = expand_simple_binop (Pmode, PLUS, tmp, addend, op0, 1, OPTAB_DIRECT); if (tmp == op0) return; } } if (flag_pic && mode == Pmode && symbolic_operand (op1, Pmode)) { if (TARGET_MACHO && !TARGET_64BIT) { #if TARGET_MACHO if (MACHOPIC_PURE) { rtx temp = ((reload_in_progress || ((op0 && REG_P (op0)) && mode == Pmode)) ? op0 : gen_reg_rtx (Pmode)); op1 = machopic_indirect_data_reference (op1, temp); op1 = machopic_legitimize_pic_address (op1, mode, temp == op1 ? 0 : temp); } else if (MACHOPIC_INDIRECT) op1 = machopic_indirect_data_reference (op1, 0); if (op0 == op1) return; #endif } else { if (MEM_P (op0)) op1 = force_reg (Pmode, op1); else if (!TARGET_64BIT || !x86_64_movabs_operand (op1, Pmode)) { rtx reg = can_create_pseudo_p () ? NULL_RTX : op0; op1 = legitimize_pic_address (op1, reg); if (op0 == op1) return; } } } else { if (MEM_P (op0) && (PUSH_ROUNDING (GET_MODE_SIZE (mode)) != GET_MODE_SIZE (mode) || !push_operand (op0, mode)) && MEM_P (op1)) op1 = force_reg (mode, op1); if (push_operand (op0, mode) && ! general_no_elim_operand (op1, mode)) op1 = copy_to_mode_reg (mode, op1); /* Force large constants in 64bit compilation into register to get them CSEed. */ if (can_create_pseudo_p () && (mode == DImode) && TARGET_64BIT && immediate_operand (op1, mode) && !x86_64_zext_immediate_operand (op1, VOIDmode) && !register_operand (op0, mode) && optimize) op1 = copy_to_mode_reg (mode, op1); if (can_create_pseudo_p () && FLOAT_MODE_P (mode) && GET_CODE (op1) == CONST_DOUBLE) { /* If we are loading a floating point constant to a register, force the value to memory now, since we'll get better code out the back end. */ op1 = validize_mem (force_const_mem (mode, op1)); if (!register_operand (op0, mode)) { rtx temp = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, temp, op1)); emit_move_insn (op0, temp); return; } } } emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); } void ix86_expand_vector_move (enum machine_mode mode, rtx operands[]) { rtx op0 = operands[0], op1 = operands[1]; unsigned int align = GET_MODE_ALIGNMENT (mode); /* Force constants other than zero into memory. We do not know how the instructions used to build constants modify the upper 64 bits of the register, once we have that information we may be able to handle some of them more efficiently. */ if (can_create_pseudo_p () && register_operand (op0, mode) && (CONSTANT_P (op1) || (GET_CODE (op1) == SUBREG && CONSTANT_P (SUBREG_REG (op1)))) && !standard_sse_constant_p (op1)) op1 = validize_mem (force_const_mem (mode, op1)); /* We need to check memory alignment for SSE mode since attribute can make operands unaligned. */ if (can_create_pseudo_p () && SSE_REG_MODE_P (mode) && ((MEM_P (op0) && (MEM_ALIGN (op0) < align)) || (MEM_P (op1) && (MEM_ALIGN (op1) < align)))) { rtx tmp[2]; /* ix86_expand_vector_move_misalign() does not like constants ... */ if (CONSTANT_P (op1) || (GET_CODE (op1) == SUBREG && CONSTANT_P (SUBREG_REG (op1)))) op1 = validize_mem (force_const_mem (mode, op1)); /* ... nor both arguments in memory. */ if (!register_operand (op0, mode) && !register_operand (op1, mode)) op1 = force_reg (mode, op1); tmp[0] = op0; tmp[1] = op1; ix86_expand_vector_move_misalign (mode, tmp); return; } /* Make operand1 a register if it isn't already. */ if (can_create_pseudo_p () && !register_operand (op0, mode) && !register_operand (op1, mode)) { emit_move_insn (op0, force_reg (GET_MODE (op0), op1)); return; } emit_insn (gen_rtx_SET (VOIDmode, op0, op1)); } /* Implement the movmisalign patterns for SSE. Non-SSE modes go straight to ix86_expand_vector_move. */ /* Code generation for scalar reg-reg moves of single and double precision data: if (x86_sse_partial_reg_dependency == true | x86_sse_split_regs == true) movaps reg, reg else movss reg, reg if (x86_sse_partial_reg_dependency == true) movapd reg, reg else movsd reg, reg Code generation for scalar loads of double precision data: if (x86_sse_split_regs == true) movlpd mem, reg (gas syntax) else movsd mem, reg Code generation for unaligned packed loads of single precision data (x86_sse_unaligned_move_optimal overrides x86_sse_partial_reg_dependency): if (x86_sse_unaligned_move_optimal) movups mem, reg if (x86_sse_partial_reg_dependency == true) { xorps reg, reg movlps mem, reg movhps mem+8, reg } else { movlps mem, reg movhps mem+8, reg } Code generation for unaligned packed loads of double precision data (x86_sse_unaligned_move_optimal overrides x86_sse_split_regs): if (x86_sse_unaligned_move_optimal) movupd mem, reg if (x86_sse_split_regs == true) { movlpd mem, reg movhpd mem+8, reg } else { movsd mem, reg movhpd mem+8, reg } */ void ix86_expand_vector_move_misalign (enum machine_mode mode, rtx operands[]) { rtx op0, op1, m; op0 = operands[0]; op1 = operands[1]; if (TARGET_AVX) { switch (GET_MODE_CLASS (mode)) { case MODE_VECTOR_INT: case MODE_INT: switch (GET_MODE_SIZE (mode)) { case 16: op0 = gen_lowpart (V16QImode, op0); op1 = gen_lowpart (V16QImode, op1); emit_insn (gen_avx_movdqu (op0, op1)); break; case 32: op0 = gen_lowpart (V32QImode, op0); op1 = gen_lowpart (V32QImode, op1); emit_insn (gen_avx_movdqu256 (op0, op1)); break; default: gcc_unreachable (); } break; case MODE_VECTOR_FLOAT: op0 = gen_lowpart (mode, op0); op1 = gen_lowpart (mode, op1); switch (mode) { case V4SFmode: emit_insn (gen_avx_movups (op0, op1)); break; case V8SFmode: emit_insn (gen_avx_movups256 (op0, op1)); break; case V2DFmode: emit_insn (gen_avx_movupd (op0, op1)); break; case V4DFmode: emit_insn (gen_avx_movupd256 (op0, op1)); break; default: gcc_unreachable (); } break; default: gcc_unreachable (); } return; } if (MEM_P (op1)) { /* If we're optimizing for size, movups is the smallest. */ if (optimize_insn_for_size_p ()) { op0 = gen_lowpart (V4SFmode, op0); op1 = gen_lowpart (V4SFmode, op1); emit_insn (gen_sse_movups (op0, op1)); return; } /* ??? If we have typed data, then it would appear that using movdqu is the only way to get unaligned data loaded with integer type. */ if (TARGET_SSE2 && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { op0 = gen_lowpart (V16QImode, op0); op1 = gen_lowpart (V16QImode, op1); emit_insn (gen_sse2_movdqu (op0, op1)); return; } if (TARGET_SSE2 && mode == V2DFmode) { rtx zero; if (TARGET_SSE_UNALIGNED_MOVE_OPTIMAL) { op0 = gen_lowpart (V2DFmode, op0); op1 = gen_lowpart (V2DFmode, op1); emit_insn (gen_sse2_movupd (op0, op1)); return; } /* When SSE registers are split into halves, we can avoid writing to the top half twice. */ if (TARGET_SSE_SPLIT_REGS) { emit_clobber (op0); zero = op0; } else { /* ??? Not sure about the best option for the Intel chips. The following would seem to satisfy; the register is entirely cleared, breaking the dependency chain. We then store to the upper half, with a dependency depth of one. A rumor has it that Intel recommends two movsd followed by an unpacklpd, but this is unconfirmed. And given that the dependency depth of the unpacklpd would still be one, I'm not sure why this would be better. */ zero = CONST0_RTX (V2DFmode); } m = adjust_address (op1, DFmode, 0); emit_insn (gen_sse2_loadlpd (op0, zero, m)); m = adjust_address (op1, DFmode, 8); emit_insn (gen_sse2_loadhpd (op0, op0, m)); } else { if (TARGET_SSE_UNALIGNED_MOVE_OPTIMAL) { op0 = gen_lowpart (V4SFmode, op0); op1 = gen_lowpart (V4SFmode, op1); emit_insn (gen_sse_movups (op0, op1)); return; } if (TARGET_SSE_PARTIAL_REG_DEPENDENCY) emit_move_insn (op0, CONST0_RTX (mode)); else emit_clobber (op0); if (mode != V4SFmode) op0 = gen_lowpart (V4SFmode, op0); m = adjust_address (op1, V2SFmode, 0); emit_insn (gen_sse_loadlps (op0, op0, m)); m = adjust_address (op1, V2SFmode, 8); emit_insn (gen_sse_loadhps (op0, op0, m)); } } else if (MEM_P (op0)) { /* If we're optimizing for size, movups is the smallest. */ if (optimize_insn_for_size_p ()) { op0 = gen_lowpart (V4SFmode, op0); op1 = gen_lowpart (V4SFmode, op1); emit_insn (gen_sse_movups (op0, op1)); return; } /* ??? Similar to above, only less clear because of quote typeless stores unquote. */ if (TARGET_SSE2 && !TARGET_SSE_TYPELESS_STORES && GET_MODE_CLASS (mode) == MODE_VECTOR_INT) { op0 = gen_lowpart (V16QImode, op0); op1 = gen_lowpart (V16QImode, op1); emit_insn (gen_sse2_movdqu (op0, op1)); return; } if (TARGET_SSE2 && mode == V2DFmode) { m = adjust_address (op0, DFmode, 0); emit_insn (gen_sse2_storelpd (m, op1)); m = adjust_address (op0, DFmode, 8); emit_insn (gen_sse2_storehpd (m, op1)); } else { if (mode != V4SFmode) op1 = gen_lowpart (V4SFmode, op1); m = adjust_address (op0, V2SFmode, 0); emit_insn (gen_sse_storelps (m, op1)); m = adjust_address (op0, V2SFmode, 8); emit_insn (gen_sse_storehps (m, op1)); } } else gcc_unreachable (); } /* Expand a push in MODE. This is some mode for which we do not support proper push instructions, at least from the registers that we expect the value to live in. */ void ix86_expand_push (enum machine_mode mode, rtx x) { rtx tmp; tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx, GEN_INT (-GET_MODE_SIZE (mode)), stack_pointer_rtx, 1, OPTAB_DIRECT); if (tmp != stack_pointer_rtx) emit_move_insn (stack_pointer_rtx, tmp); tmp = gen_rtx_MEM (mode, stack_pointer_rtx); /* When we push an operand onto stack, it has to be aligned at least at the function argument boundary. However since we don't have the argument type, we can't determine the actual argument boundary. */ emit_move_insn (tmp, x); } /* Helper function of ix86_fixup_binary_operands to canonicalize operand order. Returns true if the operands should be swapped. */ static bool ix86_swap_binary_operands_p (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx dst = operands[0]; rtx src1 = operands[1]; rtx src2 = operands[2]; /* If the operation is not commutative, we can't do anything. */ if (GET_RTX_CLASS (code) != RTX_COMM_ARITH) return false; /* Highest priority is that src1 should match dst. */ if (rtx_equal_p (dst, src1)) return false; if (rtx_equal_p (dst, src2)) return true; /* Next highest priority is that immediate constants come second. */ if (immediate_operand (src2, mode)) return false; if (immediate_operand (src1, mode)) return true; /* Lowest priority is that memory references should come second. */ if (MEM_P (src2)) return false; if (MEM_P (src1)) return true; return false; } /* Fix up OPERANDS to satisfy ix86_binary_operator_ok. Return the destination to use for the operation. If different from the true destination in operands[0], a copy operation will be required. */ rtx ix86_fixup_binary_operands (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx dst = operands[0]; rtx src1 = operands[1]; rtx src2 = operands[2]; /* Canonicalize operand order. */ if (ix86_swap_binary_operands_p (code, mode, operands)) { rtx temp; /* It is invalid to swap operands of different modes. */ gcc_assert (GET_MODE (src1) == GET_MODE (src2)); temp = src1; src1 = src2; src2 = temp; } /* Both source operands cannot be in memory. */ if (MEM_P (src1) && MEM_P (src2)) { /* Optimization: Only read from memory once. */ if (rtx_equal_p (src1, src2)) { src2 = force_reg (mode, src2); src1 = src2; } else src2 = force_reg (mode, src2); } /* If the destination is memory, and we do not have matching source operands, do things in registers. */ if (MEM_P (dst) && !rtx_equal_p (dst, src1)) dst = gen_reg_rtx (mode); /* Source 1 cannot be a constant. */ if (CONSTANT_P (src1)) src1 = force_reg (mode, src1); /* Source 1 cannot be a non-matching memory. */ if (MEM_P (src1) && !rtx_equal_p (dst, src1)) src1 = force_reg (mode, src1); operands[1] = src1; operands[2] = src2; return dst; } /* Similarly, but assume that the destination has already been set up properly. */ void ix86_fixup_binary_operands_no_copy (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx dst = ix86_fixup_binary_operands (code, mode, operands); gcc_assert (dst == operands[0]); } /* Attempt to expand a binary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 3 separate memory references (one output, two input) in a single insn. */ void ix86_expand_binary_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx src1, src2, dst, op, clob; dst = ix86_fixup_binary_operands (code, mode, operands); src1 = operands[1]; src2 = operands[2]; /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, src1, src2)); if (reload_in_progress) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. We can only do this with PLUS. */ gcc_assert (code == PLUS); emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } /* Return TRUE or FALSE depending on whether the binary operator meets the appropriate constraints. */ int ix86_binary_operator_ok (enum rtx_code code, enum machine_mode mode, rtx operands[3]) { rtx dst = operands[0]; rtx src1 = operands[1]; rtx src2 = operands[2]; /* Both source operands cannot be in memory. */ if (MEM_P (src1) && MEM_P (src2)) return 0; /* Canonicalize operand order for commutative operators. */ if (ix86_swap_binary_operands_p (code, mode, operands)) { rtx temp = src1; src1 = src2; src2 = temp; } /* If the destination is memory, we must have a matching source operand. */ if (MEM_P (dst) && !rtx_equal_p (dst, src1)) return 0; /* Source 1 cannot be a constant. */ if (CONSTANT_P (src1)) return 0; /* Source 1 cannot be a non-matching memory. */ if (MEM_P (src1) && !rtx_equal_p (dst, src1)) return 0; return 1; } /* Attempt to expand a unary operator. Make the expansion closer to the actual machine, then just general_operand, which will allow 2 separate memory references (one output, one input) in a single insn. */ void ix86_expand_unary_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { int matching_memory; rtx src, dst, op, clob; dst = operands[0]; src = operands[1]; /* If the destination is memory, and we do not have matching source operands, do things in registers. */ matching_memory = 0; if (MEM_P (dst)) { if (rtx_equal_p (dst, src)) matching_memory = 1; else dst = gen_reg_rtx (mode); } /* When source operand is memory, destination must match. */ if (MEM_P (src) && !matching_memory) src = force_reg (mode, src); /* Emit the instruction. */ op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_e (code, mode, src)); if (reload_in_progress || code == NOT) { /* Reload doesn't know about the flags register, and doesn't know that it doesn't want to clobber it. */ gcc_assert (code == NOT); emit_insn (op); } else { clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob))); } /* Fix up the destination if needed. */ if (dst != operands[0]) emit_move_insn (operands[0], dst); } #define LEA_SEARCH_THRESHOLD 12 /* Search backward for non-agu definition of register number REGNO1 or register number REGNO2 in INSN's basic block until 1. Pass LEA_SEARCH_THRESHOLD instructions, or 2. Reach BB boundary, or 3. Reach agu definition. Returns the distance between the non-agu definition point and INSN. If no definition point, returns -1. */ static int distance_non_agu_define (unsigned int regno1, unsigned int regno2, rtx insn) { basic_block bb = BLOCK_FOR_INSN (insn); int distance = 0; df_ref *def_rec; enum attr_type insn_type; if (insn != BB_HEAD (bb)) { rtx prev = PREV_INSN (insn); while (prev && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (prev)) { distance++; for (def_rec = DF_INSN_DEFS (prev); *def_rec; def_rec++) if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF && !DF_REF_IS_ARTIFICIAL (*def_rec) && (regno1 == DF_REF_REGNO (*def_rec) || regno2 == DF_REF_REGNO (*def_rec))) { insn_type = get_attr_type (prev); if (insn_type != TYPE_LEA) goto done; } } if (prev == BB_HEAD (bb)) break; prev = PREV_INSN (prev); } } if (distance < LEA_SEARCH_THRESHOLD) { edge e; edge_iterator ei; bool simple_loop = false; FOR_EACH_EDGE (e, ei, bb->preds) if (e->src == bb) { simple_loop = true; break; } if (simple_loop) { rtx prev = BB_END (bb); while (prev && prev != insn && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (prev)) { distance++; for (def_rec = DF_INSN_DEFS (prev); *def_rec; def_rec++) if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF && !DF_REF_IS_ARTIFICIAL (*def_rec) && (regno1 == DF_REF_REGNO (*def_rec) || regno2 == DF_REF_REGNO (*def_rec))) { insn_type = get_attr_type (prev); if (insn_type != TYPE_LEA) goto done; } } prev = PREV_INSN (prev); } } } distance = -1; done: /* get_attr_type may modify recog data. We want to make sure that recog data is valid for instruction INSN, on which distance_non_agu_define is called. INSN is unchanged here. */ extract_insn_cached (insn); return distance; } /* Return the distance between INSN and the next insn that uses register number REGNO0 in memory address. Return -1 if no such a use is found within LEA_SEARCH_THRESHOLD or REGNO0 is set. */ static int distance_agu_use (unsigned int regno0, rtx insn) { basic_block bb = BLOCK_FOR_INSN (insn); int distance = 0; df_ref *def_rec; df_ref *use_rec; if (insn != BB_END (bb)) { rtx next = NEXT_INSN (insn); while (next && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (next)) { distance++; for (use_rec = DF_INSN_USES (next); *use_rec; use_rec++) if ((DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_LOAD || DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_STORE) && regno0 == DF_REF_REGNO (*use_rec)) { /* Return DISTANCE if OP0 is used in memory address in NEXT. */ return distance; } for (def_rec = DF_INSN_DEFS (next); *def_rec; def_rec++) if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF && !DF_REF_IS_ARTIFICIAL (*def_rec) && regno0 == DF_REF_REGNO (*def_rec)) { /* Return -1 if OP0 is set in NEXT. */ return -1; } } if (next == BB_END (bb)) break; next = NEXT_INSN (next); } } if (distance < LEA_SEARCH_THRESHOLD) { edge e; edge_iterator ei; bool simple_loop = false; FOR_EACH_EDGE (e, ei, bb->succs) if (e->dest == bb) { simple_loop = true; break; } if (simple_loop) { rtx next = BB_HEAD (bb); while (next && next != insn && distance < LEA_SEARCH_THRESHOLD) { if (NONDEBUG_INSN_P (next)) { distance++; for (use_rec = DF_INSN_USES (next); *use_rec; use_rec++) if ((DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_LOAD || DF_REF_TYPE (*use_rec) == DF_REF_REG_MEM_STORE) && regno0 == DF_REF_REGNO (*use_rec)) { /* Return DISTANCE if OP0 is used in memory address in NEXT. */ return distance; } for (def_rec = DF_INSN_DEFS (next); *def_rec; def_rec++) if (DF_REF_TYPE (*def_rec) == DF_REF_REG_DEF && !DF_REF_IS_ARTIFICIAL (*def_rec) && regno0 == DF_REF_REGNO (*def_rec)) { /* Return -1 if OP0 is set in NEXT. */ return -1; } } next = NEXT_INSN (next); } } } return -1; } /* Define this macro to tune LEA priority vs ADD, it take effect when there is a dilemma of choicing LEA or ADD Negative value: ADD is more preferred than LEA Zero: Netrual Positive value: LEA is more preferred than ADD*/ #define IX86_LEA_PRIORITY 2 /* Return true if it is ok to optimize an ADD operation to LEA operation to avoid flag register consumation. For the processors like ATOM, if the destination register of LEA holds an actual address which will be used soon, LEA is better and otherwise ADD is better. */ bool ix86_lea_for_add_ok (enum rtx_code code ATTRIBUTE_UNUSED, rtx insn, rtx operands[]) { unsigned int regno0 = true_regnum (operands[0]); unsigned int regno1 = true_regnum (operands[1]); unsigned int regno2; if (!TARGET_OPT_AGU || optimize_function_for_size_p (cfun)) return regno0 != regno1; regno2 = true_regnum (operands[2]); /* If a = b + c, (a!=b && a!=c), must use lea form. */ if (regno0 != regno1 && regno0 != regno2) return true; else { int dist_define, dist_use; dist_define = distance_non_agu_define (regno1, regno2, insn); if (dist_define <= 0) return true; /* If this insn has both backward non-agu dependence and forward agu dependence, the one with short distance take effect. */ dist_use = distance_agu_use (regno0, insn); if (dist_use <= 0 || (dist_define + IX86_LEA_PRIORITY) < dist_use) return false; return true; } } /* Return true if destination reg of SET_BODY is shift count of USE_BODY. */ static bool ix86_dep_by_shift_count_body (const_rtx set_body, const_rtx use_body) { rtx set_dest; rtx shift_rtx; int i; /* Retrieve destination of SET_BODY. */ switch (GET_CODE (set_body)) { case SET: set_dest = SET_DEST (set_body); if (!set_dest || !REG_P (set_dest)) return false; break; case PARALLEL: for (i = XVECLEN (set_body, 0) - 1; i >= 0; i--) if (ix86_dep_by_shift_count_body (XVECEXP (set_body, 0, i), use_body)) return true; default: return false; break; } /* Retrieve shift count of USE_BODY. */ switch (GET_CODE (use_body)) { case SET: shift_rtx = XEXP (use_body, 1); break; case PARALLEL: for (i = XVECLEN (use_body, 0) - 1; i >= 0; i--) if (ix86_dep_by_shift_count_body (set_body, XVECEXP (use_body, 0, i))) return true; default: return false; break; } if (shift_rtx && (GET_CODE (shift_rtx) == ASHIFT || GET_CODE (shift_rtx) == LSHIFTRT || GET_CODE (shift_rtx) == ASHIFTRT || GET_CODE (shift_rtx) == ROTATE || GET_CODE (shift_rtx) == ROTATERT)) { rtx shift_count = XEXP (shift_rtx, 1); /* Return true if shift count is dest of SET_BODY. */ if (REG_P (shift_count) && true_regnum (set_dest) == true_regnum (shift_count)) return true; } return false; } /* Return true if destination reg of SET_INSN is shift count of USE_INSN. */ bool ix86_dep_by_shift_count (const_rtx set_insn, const_rtx use_insn) { return ix86_dep_by_shift_count_body (PATTERN (set_insn), PATTERN (use_insn)); } /* Return TRUE or FALSE depending on whether the unary operator meets the appropriate constraints. */ int ix86_unary_operator_ok (enum rtx_code code ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, rtx operands[2] ATTRIBUTE_UNUSED) { /* If one of operands is memory, source and destination must match. */ if ((MEM_P (operands[0]) || MEM_P (operands[1])) && ! rtx_equal_p (operands[0], operands[1])) return FALSE; return TRUE; } /* Return TRUE if the operands to a vec_interleave_{high,low}v2df are ok, keeping in mind the possible movddup alternative. */ bool ix86_vec_interleave_v2df_operator_ok (rtx operands[3], bool high) { if (MEM_P (operands[0])) return rtx_equal_p (operands[0], operands[1 + high]); if (MEM_P (operands[1]) && MEM_P (operands[2])) return TARGET_SSE3 && rtx_equal_p (operands[1], operands[2]); return true; } /* Post-reload splitter for converting an SF or DFmode value in an SSE register into an unsigned SImode. */ void ix86_split_convert_uns_si_sse (rtx operands[]) { enum machine_mode vecmode; rtx value, large, zero_or_two31, input, two31, x; large = operands[1]; zero_or_two31 = operands[2]; input = operands[3]; two31 = operands[4]; vecmode = GET_MODE (large); value = gen_rtx_REG (vecmode, REGNO (operands[0])); /* Load up the value into the low element. We must ensure that the other elements are valid floats -- zero is the easiest such value. */ if (MEM_P (input)) { if (vecmode == V4SFmode) emit_insn (gen_vec_setv4sf_0 (value, CONST0_RTX (V4SFmode), input)); else emit_insn (gen_sse2_loadlpd (value, CONST0_RTX (V2DFmode), input)); } else { input = gen_rtx_REG (vecmode, REGNO (input)); emit_move_insn (value, CONST0_RTX (vecmode)); if (vecmode == V4SFmode) emit_insn (gen_sse_movss (value, value, input)); else emit_insn (gen_sse2_movsd (value, value, input)); } emit_move_insn (large, two31); emit_move_insn (zero_or_two31, MEM_P (two31) ? large : two31); x = gen_rtx_fmt_ee (LE, vecmode, large, value); emit_insn (gen_rtx_SET (VOIDmode, large, x)); x = gen_rtx_AND (vecmode, zero_or_two31, large); emit_insn (gen_rtx_SET (VOIDmode, zero_or_two31, x)); x = gen_rtx_MINUS (vecmode, value, zero_or_two31); emit_insn (gen_rtx_SET (VOIDmode, value, x)); large = gen_rtx_REG (V4SImode, REGNO (large)); emit_insn (gen_ashlv4si3 (large, large, GEN_INT (31))); x = gen_rtx_REG (V4SImode, REGNO (value)); if (vecmode == V4SFmode) emit_insn (gen_sse2_cvttps2dq (x, value)); else emit_insn (gen_sse2_cvttpd2dq (x, value)); value = x; emit_insn (gen_xorv4si3 (value, value, large)); } /* Convert an unsigned DImode value into a DFmode, using only SSE. Expects the 64-bit DImode to be supplied in a pair of integral registers. Requires SSE2; will use SSE3 if available. For x86_32, -mfpmath=sse, !optimize_size only. */ void ix86_expand_convert_uns_didf_sse (rtx target, rtx input) { REAL_VALUE_TYPE bias_lo_rvt, bias_hi_rvt; rtx int_xmm, fp_xmm; rtx biases, exponents; rtx x; int_xmm = gen_reg_rtx (V4SImode); if (TARGET_INTER_UNIT_MOVES) emit_insn (gen_movdi_to_sse (int_xmm, input)); else if (TARGET_SSE_SPLIT_REGS) { emit_clobber (int_xmm); emit_move_insn (gen_lowpart (DImode, int_xmm), input); } else { x = gen_reg_rtx (V2DImode); ix86_expand_vector_init_one_nonzero (false, V2DImode, x, input, 0); emit_move_insn (int_xmm, gen_lowpart (V4SImode, x)); } x = gen_rtx_CONST_VECTOR (V4SImode, gen_rtvec (4, GEN_INT (0x43300000UL), GEN_INT (0x45300000UL), const0_rtx, const0_rtx)); exponents = validize_mem (force_const_mem (V4SImode, x)); /* int_xmm = {0x45300000UL, fp_xmm/hi, 0x43300000, fp_xmm/lo } */ emit_insn (gen_vec_interleave_lowv4si (int_xmm, int_xmm, exponents)); /* Concatenating (juxtaposing) (0x43300000UL ## fp_value_low_xmm) yields a valid DF value equal to (0x1.0p52 + double(fp_value_lo_xmm)). Similarly (0x45300000UL ## fp_value_hi_xmm) yields (0x1.0p84 + double(fp_value_hi_xmm)). Note these exponents differ by 32. */ fp_xmm = copy_to_mode_reg (V2DFmode, gen_lowpart (V2DFmode, int_xmm)); /* Subtract off those 0x1.0p52 and 0x1.0p84 biases, to produce values in [0,2**32-1] and [0]+[2**32,2**64-1] respectively. */ real_ldexp (&bias_lo_rvt, &dconst1, 52); real_ldexp (&bias_hi_rvt, &dconst1, 84); biases = const_double_from_real_value (bias_lo_rvt, DFmode); x = const_double_from_real_value (bias_hi_rvt, DFmode); biases = gen_rtx_CONST_VECTOR (V2DFmode, gen_rtvec (2, biases, x)); biases = validize_mem (force_const_mem (V2DFmode, biases)); emit_insn (gen_subv2df3 (fp_xmm, fp_xmm, biases)); /* Add the upper and lower DFmode values together. */ if (TARGET_SSE3) emit_insn (gen_sse3_haddv2df3 (fp_xmm, fp_xmm, fp_xmm)); else { x = copy_to_mode_reg (V2DFmode, fp_xmm); emit_insn (gen_vec_interleave_highv2df (fp_xmm, fp_xmm, fp_xmm)); emit_insn (gen_addv2df3 (fp_xmm, fp_xmm, x)); } ix86_expand_vector_extract (false, target, fp_xmm, 0); } /* Not used, but eases macroization of patterns. */ void ix86_expand_convert_uns_sixf_sse (rtx target ATTRIBUTE_UNUSED, rtx input ATTRIBUTE_UNUSED) { gcc_unreachable (); } /* Convert an unsigned SImode value into a DFmode. Only currently used for SSE, but applicable anywhere. */ void ix86_expand_convert_uns_sidf_sse (rtx target, rtx input) { REAL_VALUE_TYPE TWO31r; rtx x, fp; x = expand_simple_binop (SImode, PLUS, input, GEN_INT (-2147483647 - 1), NULL, 1, OPTAB_DIRECT); fp = gen_reg_rtx (DFmode); emit_insn (gen_floatsidf2 (fp, x)); real_ldexp (&TWO31r, &dconst1, 31); x = const_double_from_real_value (TWO31r, DFmode); x = expand_simple_binop (DFmode, PLUS, fp, x, target, 0, OPTAB_DIRECT); if (x != target) emit_move_insn (target, x); } /* Convert a signed DImode value into a DFmode. Only used for SSE in 32-bit mode; otherwise we have a direct convert instruction. */ void ix86_expand_convert_sign_didf_sse (rtx target, rtx input) { REAL_VALUE_TYPE TWO32r; rtx fp_lo, fp_hi, x; fp_lo = gen_reg_rtx (DFmode); fp_hi = gen_reg_rtx (DFmode); emit_insn (gen_floatsidf2 (fp_hi, gen_highpart (SImode, input))); real_ldexp (&TWO32r, &dconst1, 32); x = const_double_from_real_value (TWO32r, DFmode); fp_hi = expand_simple_binop (DFmode, MULT, fp_hi, x, fp_hi, 0, OPTAB_DIRECT); ix86_expand_convert_uns_sidf_sse (fp_lo, gen_lowpart (SImode, input)); x = expand_simple_binop (DFmode, PLUS, fp_hi, fp_lo, target, 0, OPTAB_DIRECT); if (x != target) emit_move_insn (target, x); } /* Convert an unsigned SImode value into a SFmode, using only SSE. For x86_32, -mfpmath=sse, !optimize_size only. */ void ix86_expand_convert_uns_sisf_sse (rtx target, rtx input) { REAL_VALUE_TYPE ONE16r; rtx fp_hi, fp_lo, int_hi, int_lo, x; real_ldexp (&ONE16r, &dconst1, 16); x = const_double_from_real_value (ONE16r, SFmode); int_lo = expand_simple_binop (SImode, AND, input, GEN_INT(0xffff), NULL, 0, OPTAB_DIRECT); int_hi = expand_simple_binop (SImode, LSHIFTRT, input, GEN_INT(16), NULL, 0, OPTAB_DIRECT); fp_hi = gen_reg_rtx (SFmode); fp_lo = gen_reg_rtx (SFmode); emit_insn (gen_floatsisf2 (fp_hi, int_hi)); emit_insn (gen_floatsisf2 (fp_lo, int_lo)); fp_hi = expand_simple_binop (SFmode, MULT, fp_hi, x, fp_hi, 0, OPTAB_DIRECT); fp_hi = expand_simple_binop (SFmode, PLUS, fp_hi, fp_lo, target, 0, OPTAB_DIRECT); if (!rtx_equal_p (target, fp_hi)) emit_move_insn (target, fp_hi); } /* A subroutine of ix86_build_signbit_mask. If VECT is true, then replicate the value for all elements of the vector register. */ rtx ix86_build_const_vector (enum machine_mode mode, bool vect, rtx value) { rtvec v; switch (mode) { case SImode: gcc_assert (vect); v = gen_rtvec (4, value, value, value, value); return gen_rtx_CONST_VECTOR (V4SImode, v); case DImode: gcc_assert (vect); v = gen_rtvec (2, value, value); return gen_rtx_CONST_VECTOR (V2DImode, v); case SFmode: if (vect) v = gen_rtvec (4, value, value, value, value); else v = gen_rtvec (4, value, CONST0_RTX (SFmode), CONST0_RTX (SFmode), CONST0_RTX (SFmode)); return gen_rtx_CONST_VECTOR (V4SFmode, v); case DFmode: if (vect) v = gen_rtvec (2, value, value); else v = gen_rtvec (2, value, CONST0_RTX (DFmode)); return gen_rtx_CONST_VECTOR (V2DFmode, v); default: gcc_unreachable (); } } /* A subroutine of ix86_expand_fp_absneg_operator, copysign expanders and ix86_expand_int_vcond. Create a mask for the sign bit in MODE for an SSE register. If VECT is true, then replicate the mask for all elements of the vector register. If INVERT is true, then create a mask excluding the sign bit. */ rtx ix86_build_signbit_mask (enum machine_mode mode, bool vect, bool invert) { enum machine_mode vec_mode, imode; HOST_WIDE_INT hi, lo; int shift = 63; rtx v; rtx mask; /* Find the sign bit, sign extended to 2*HWI. */ switch (mode) { case SImode: case SFmode: imode = SImode; vec_mode = (mode == SImode) ? V4SImode : V4SFmode; lo = 0x80000000, hi = lo < 0; break; case DImode: case DFmode: imode = DImode; vec_mode = (mode == DImode) ? V2DImode : V2DFmode; if (HOST_BITS_PER_WIDE_INT >= 64) lo = (HOST_WIDE_INT)1 << shift, hi = -1; else lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT); break; case TImode: case TFmode: vec_mode = VOIDmode; if (HOST_BITS_PER_WIDE_INT >= 64) { imode = TImode; lo = 0, hi = (HOST_WIDE_INT)1 << shift; } else { rtvec vec; imode = DImode; lo = 0, hi = (HOST_WIDE_INT)1 << (shift - HOST_BITS_PER_WIDE_INT); if (invert) { lo = ~lo, hi = ~hi; v = constm1_rtx; } else v = const0_rtx; mask = immed_double_const (lo, hi, imode); vec = gen_rtvec (2, v, mask); v = gen_rtx_CONST_VECTOR (V2DImode, vec); v = copy_to_mode_reg (mode, gen_lowpart (mode, v)); return v; } break; default: gcc_unreachable (); } if (invert) lo = ~lo, hi = ~hi; /* Force this value into the low part of a fp vector constant. */ mask = immed_double_const (lo, hi, imode); mask = gen_lowpart (mode, mask); if (vec_mode == VOIDmode) return force_reg (mode, mask); v = ix86_build_const_vector (mode, vect, mask); return force_reg (vec_mode, v); } /* Generate code for floating point ABS or NEG. */ void ix86_expand_fp_absneg_operator (enum rtx_code code, enum machine_mode mode, rtx operands[]) { rtx mask, set, use, clob, dst, src; bool use_sse = false; bool vector_mode = VECTOR_MODE_P (mode); enum machine_mode elt_mode = mode; if (vector_mode) { elt_mode = GET_MODE_INNER (mode); use_sse = true; } else if (mode == TFmode) use_sse = true; else if (TARGET_SSE_MATH) use_sse = SSE_FLOAT_MODE_P (mode); /* NEG and ABS performed with SSE use bitwise mask operations. Create the appropriate mask now. */ if (use_sse) mask = ix86_build_signbit_mask (elt_mode, vector_mode, code == ABS); else mask = NULL_RTX; dst = operands[0]; src = operands[1]; if (vector_mode) { set = gen_rtx_fmt_ee (code == NEG ? XOR : AND, mode, src, mask); set = gen_rtx_SET (VOIDmode, dst, set); emit_insn (set); } else { set = gen_rtx_fmt_e (code, mode, src); set = gen_rtx_SET (VOIDmode, dst, set); if (mask) { use = gen_rtx_USE (VOIDmode, mask); clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG)); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (3, set, use, clob))); } else emit_insn (set); } } /* Expand a copysign operation. Special case operand 0 being a constant. */ void ix86_expand_copysign (rtx operands[]) { enum machine_mode mode; rtx dest, op0, op1, mask, nmask; dest = operands[0]; op0 = operands[1]; op1 = operands[2]; mode = GET_MODE (dest); if (GET_CODE (op0) == CONST_DOUBLE) { rtx (*copysign_insn)(rtx, rtx, rtx, rtx); if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0))) op0 = simplify_unary_operation (ABS, mode, op0, mode); if (mode == SFmode || mode == DFmode) { enum machine_mode vmode; vmode = mode == SFmode ? V4SFmode : V2DFmode; if (op0 == CONST0_RTX (mode)) op0 = CONST0_RTX (vmode); else { rtx v = ix86_build_const_vector (mode, false, op0); op0 = force_reg (vmode, v); } } else if (op0 != CONST0_RTX (mode)) op0 = force_reg (mode, op0); mask = ix86_build_signbit_mask (mode, 0, 0); if (mode == SFmode) copysign_insn = gen_copysignsf3_const; else if (mode == DFmode) copysign_insn = gen_copysigndf3_const; else copysign_insn = gen_copysigntf3_const; emit_insn (copysign_insn (dest, op0, op1, mask)); } else { rtx (*copysign_insn)(rtx, rtx, rtx, rtx, rtx, rtx); nmask = ix86_build_signbit_mask (mode, 0, 1); mask = ix86_build_signbit_mask (mode, 0, 0); if (mode == SFmode) copysign_insn = gen_copysignsf3_var; else if (mode == DFmode) copysign_insn = gen_copysigndf3_var; else copysign_insn = gen_copysigntf3_var; emit_insn (copysign_insn (dest, NULL_RTX, op0, op1, nmask, mask)); } } /* Deconstruct a copysign operation into bit masks. Operand 0 is known to be a constant, and so has already been expanded into a vector constant. */ void ix86_split_copysign_const (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, op0, mask, x; dest = operands[0]; op0 = operands[1]; mask = operands[3]; mode = GET_MODE (dest); vmode = GET_MODE (mask); dest = simplify_gen_subreg (vmode, dest, mode, 0); x = gen_rtx_AND (vmode, dest, mask); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); if (op0 != CONST0_RTX (vmode)) { x = gen_rtx_IOR (vmode, dest, op0); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } } /* Deconstruct a copysign operation into bit masks. Operand 0 is variable, so we have to do two masks. */ void ix86_split_copysign_var (rtx operands[]) { enum machine_mode mode, vmode; rtx dest, scratch, op0, op1, mask, nmask, x; dest = operands[0]; scratch = operands[1]; op0 = operands[2]; op1 = operands[3]; nmask = operands[4]; mask = operands[5]; mode = GET_MODE (dest); vmode = GET_MODE (mask); if (rtx_equal_p (op0, op1)) { /* Shouldn't happen often (it's useless, obviously), but when it does we'd generate incorrect code if we continue below. */ emit_move_insn (dest, op0); return; } if (REG_P (mask) && REGNO (dest) == REGNO (mask)) /* alternative 0 */ { gcc_assert (REGNO (op1) == REGNO (scratch)); x = gen_rtx_AND (vmode, scratch, mask); emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); dest = mask; op0 = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_NOT (vmode, dest); x = gen_rtx_AND (vmode, x, op0); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else { if (REGNO (op1) == REGNO (scratch)) /* alternative 1,3 */ { x = gen_rtx_AND (vmode, scratch, mask); } else /* alternative 2,4 */ { gcc_assert (REGNO (mask) == REGNO (scratch)); op1 = simplify_gen_subreg (vmode, op1, mode, 0); x = gen_rtx_AND (vmode, scratch, op1); } emit_insn (gen_rtx_SET (VOIDmode, scratch, x)); if (REGNO (op0) == REGNO (dest)) /* alternative 1,2 */ { dest = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_AND (vmode, dest, nmask); } else /* alternative 3,4 */ { gcc_assert (REGNO (nmask) == REGNO (dest)); dest = nmask; op0 = simplify_gen_subreg (vmode, op0, mode, 0); x = gen_rtx_AND (vmode, dest, op0); } emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } x = gen_rtx_IOR (vmode, dest, scratch); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } /* Return TRUE or FALSE depending on whether the first SET in INSN has source and destination with matching CC modes, and that the CC mode is at least as constrained as REQ_MODE. */ int ix86_match_ccmode (rtx insn, enum machine_mode req_mode) { rtx set; enum machine_mode set_mode; set = PATTERN (insn); if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); gcc_assert (GET_CODE (SET_SRC (set)) == COMPARE); set_mode = GET_MODE (SET_DEST (set)); switch (set_mode) { case CCNOmode: if (req_mode != CCNOmode && (req_mode != CCmode || XEXP (SET_SRC (set), 1) != const0_rtx)) return 0; break; case CCmode: if (req_mode == CCGCmode) return 0; /* FALLTHRU */ case CCGCmode: if (req_mode == CCGOCmode || req_mode == CCNOmode) return 0; /* FALLTHRU */ case CCGOCmode: if (req_mode == CCZmode) return 0; /* FALLTHRU */ case CCAmode: case CCCmode: case CCOmode: case CCSmode: case CCZmode: break; default: gcc_unreachable (); } return (GET_MODE (SET_SRC (set)) == set_mode); } /* Generate insn patterns to do an integer compare of OPERANDS. */ static rtx ix86_expand_int_compare (enum rtx_code code, rtx op0, rtx op1) { enum machine_mode cmpmode; rtx tmp, flags; cmpmode = SELECT_CC_MODE (code, op0, op1); flags = gen_rtx_REG (cmpmode, FLAGS_REG); /* This is very simple, but making the interface the same as in the FP case makes the rest of the code easier. */ tmp = gen_rtx_COMPARE (cmpmode, op0, op1); emit_insn (gen_rtx_SET (VOIDmode, flags, tmp)); /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx); } /* Figure out whether to use ordered or unordered fp comparisons. Return the appropriate mode to use. */ enum machine_mode ix86_fp_compare_mode (enum rtx_code code ATTRIBUTE_UNUSED) { /* ??? In order to make all comparisons reversible, we do all comparisons non-trapping when compiling for IEEE. Once gcc is able to distinguish all forms trapping and nontrapping comparisons, we can make inequality comparisons trapping again, since it results in better code when using FCOM based compares. */ return TARGET_IEEE_FP ? CCFPUmode : CCFPmode; } enum machine_mode ix86_cc_mode (enum rtx_code code, rtx op0, rtx op1) { enum machine_mode mode = GET_MODE (op0); if (SCALAR_FLOAT_MODE_P (mode)) { gcc_assert (!DECIMAL_FLOAT_MODE_P (mode)); return ix86_fp_compare_mode (code); } switch (code) { /* Only zero flag is needed. */ case EQ: /* ZF=0 */ case NE: /* ZF!=0 */ return CCZmode; /* Codes needing carry flag. */ case GEU: /* CF=0 */ case LTU: /* CF=1 */ /* Detect overflow checks. They need just the carry flag. */ if (GET_CODE (op0) == PLUS && rtx_equal_p (op1, XEXP (op0, 0))) return CCCmode; else return CCmode; case GTU: /* CF=0 & ZF=0 */ case LEU: /* CF=1 | ZF=1 */ /* Detect overflow checks. They need just the carry flag. */ if (GET_CODE (op0) == MINUS && rtx_equal_p (op1, XEXP (op0, 0))) return CCCmode; else return CCmode; /* Codes possibly doable only with sign flag when comparing against zero. */ case GE: /* SF=OF or SF=0 */ case LT: /* SF<>OF or SF=1 */ if (op1 == const0_rtx) return CCGOCmode; else /* For other cases Carry flag is not required. */ return CCGCmode; /* Codes doable only with sign flag when comparing against zero, but we miss jump instruction for it so we need to use relational tests against overflow that thus needs to be zero. */ case GT: /* ZF=0 & SF=OF */ case LE: /* ZF=1 | SF<>OF */ if (op1 == const0_rtx) return CCNOmode; else return CCGCmode; /* strcmp pattern do (use flags) and combine may ask us for proper mode. */ case USE: return CCmode; default: gcc_unreachable (); } } /* Return the fixed registers used for condition codes. */ static bool ix86_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2) { *p1 = FLAGS_REG; *p2 = FPSR_REG; return true; } /* If two condition code modes are compatible, return a condition code mode which is compatible with both. Otherwise, return VOIDmode. */ static enum machine_mode ix86_cc_modes_compatible (enum machine_mode m1, enum machine_mode m2) { if (m1 == m2) return m1; if (GET_MODE_CLASS (m1) != MODE_CC || GET_MODE_CLASS (m2) != MODE_CC) return VOIDmode; if ((m1 == CCGCmode && m2 == CCGOCmode) || (m1 == CCGOCmode && m2 == CCGCmode)) return CCGCmode; switch (m1) { default: gcc_unreachable (); case CCmode: case CCGCmode: case CCGOCmode: case CCNOmode: case CCAmode: case CCCmode: case CCOmode: case CCSmode: case CCZmode: switch (m2) { default: return VOIDmode; case CCmode: case CCGCmode: case CCGOCmode: case CCNOmode: case CCAmode: case CCCmode: case CCOmode: case CCSmode: case CCZmode: return CCmode; } case CCFPmode: case CCFPUmode: /* These are only compatible with themselves, which we already checked above. */ return VOIDmode; } } /* Return a comparison we can do and that it is equivalent to swap_condition (code) apart possibly from orderedness. But, never change orderedness if TARGET_IEEE_FP, returning UNKNOWN in that case if necessary. */ static enum rtx_code ix86_fp_swap_condition (enum rtx_code code) { switch (code) { case GT: /* GTU - CF=0 & ZF=0 */ return TARGET_IEEE_FP ? UNKNOWN : UNLT; case GE: /* GEU - CF=0 */ return TARGET_IEEE_FP ? UNKNOWN : UNLE; case UNLT: /* LTU - CF=1 */ return TARGET_IEEE_FP ? UNKNOWN : GT; case UNLE: /* LEU - CF=1 | ZF=1 */ return TARGET_IEEE_FP ? UNKNOWN : GE; default: return swap_condition (code); } } /* Return cost of comparison CODE using the best strategy for performance. All following functions do use number of instructions as a cost metrics. In future this should be tweaked to compute bytes for optimize_size and take into account performance of various instructions on various CPUs. */ static int ix86_fp_comparison_cost (enum rtx_code code) { int arith_cost; /* The cost of code using bit-twiddling on %ah. */ switch (code) { case UNLE: case UNLT: case LTGT: case GT: case GE: case UNORDERED: case ORDERED: case UNEQ: arith_cost = 4; break; case LT: case NE: case EQ: case UNGE: arith_cost = TARGET_IEEE_FP ? 5 : 4; break; case LE: case UNGT: arith_cost = TARGET_IEEE_FP ? 6 : 4; break; default: gcc_unreachable (); } switch (ix86_fp_comparison_strategy (code)) { case IX86_FPCMP_COMI: return arith_cost > 4 ? 3 : 2; case IX86_FPCMP_SAHF: return arith_cost > 4 ? 4 : 3; default: return arith_cost; } } /* Return strategy to use for floating-point. We assume that fcomi is always preferrable where available, since that is also true when looking at size (2 bytes, vs. 3 for fnstsw+sahf and at least 5 for fnstsw+test). */ enum ix86_fpcmp_strategy ix86_fp_comparison_strategy (enum rtx_code code ATTRIBUTE_UNUSED) { /* Do fcomi/sahf based test when profitable. */ if (TARGET_CMOVE) return IX86_FPCMP_COMI; if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_function_for_size_p (cfun))) return IX86_FPCMP_SAHF; return IX86_FPCMP_ARITH; } /* Swap, force into registers, or otherwise massage the two operands to a fp comparison. The operands are updated in place; the new comparison code is returned. */ static enum rtx_code ix86_prepare_fp_compare_args (enum rtx_code code, rtx *pop0, rtx *pop1) { enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code); rtx op0 = *pop0, op1 = *pop1; enum machine_mode op_mode = GET_MODE (op0); int is_sse = TARGET_SSE_MATH && SSE_FLOAT_MODE_P (op_mode); /* All of the unordered compare instructions only work on registers. The same is true of the fcomi compare instructions. The XFmode compare instructions require registers except when comparing against zero or when converting operand 1 from fixed point to floating point. */ if (!is_sse && (fpcmp_mode == CCFPUmode || (op_mode == XFmode && ! (standard_80387_constant_p (op0) == 1 || standard_80387_constant_p (op1) == 1) && GET_CODE (op1) != FLOAT) || ix86_fp_comparison_strategy (code) == IX86_FPCMP_COMI)) { op0 = force_reg (op_mode, op0); op1 = force_reg (op_mode, op1); } else { /* %%% We only allow op1 in memory; op0 must be st(0). So swap things around if they appear profitable, otherwise force op0 into a register. */ if (standard_80387_constant_p (op0) == 0 || (MEM_P (op0) && ! (standard_80387_constant_p (op1) == 0 || MEM_P (op1)))) { enum rtx_code new_code = ix86_fp_swap_condition (code); if (new_code != UNKNOWN) { rtx tmp; tmp = op0, op0 = op1, op1 = tmp; code = new_code; } } if (!REG_P (op0)) op0 = force_reg (op_mode, op0); if (CONSTANT_P (op1)) { int tmp = standard_80387_constant_p (op1); if (tmp == 0) op1 = validize_mem (force_const_mem (op_mode, op1)); else if (tmp == 1) { if (TARGET_CMOVE) op1 = force_reg (op_mode, op1); } else op1 = force_reg (op_mode, op1); } } /* Try to rearrange the comparison to make it cheaper. */ if (ix86_fp_comparison_cost (code) > ix86_fp_comparison_cost (swap_condition (code)) && (REG_P (op1) || can_create_pseudo_p ())) { rtx tmp; tmp = op0, op0 = op1, op1 = tmp; code = swap_condition (code); if (!REG_P (op0)) op0 = force_reg (op_mode, op0); } *pop0 = op0; *pop1 = op1; return code; } /* Convert comparison codes we use to represent FP comparison to integer code that will result in proper branch. Return UNKNOWN if no such code is available. */ enum rtx_code ix86_fp_compare_code_to_integer (enum rtx_code code) { switch (code) { case GT: return GTU; case GE: return GEU; case ORDERED: case UNORDERED: return code; break; case UNEQ: return EQ; break; case UNLT: return LTU; break; case UNLE: return LEU; break; case LTGT: return NE; break; default: return UNKNOWN; } } /* Generate insn patterns to do a floating point compare of OPERANDS. */ static rtx ix86_expand_fp_compare (enum rtx_code code, rtx op0, rtx op1, rtx scratch) { enum machine_mode fpcmp_mode, intcmp_mode; rtx tmp, tmp2; fpcmp_mode = ix86_fp_compare_mode (code); code = ix86_prepare_fp_compare_args (code, &op0, &op1); /* Do fcomi/sahf based test when profitable. */ switch (ix86_fp_comparison_strategy (code)) { case IX86_FPCMP_COMI: intcmp_mode = fpcmp_mode; tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), tmp); emit_insn (tmp); break; case IX86_FPCMP_SAHF: intcmp_mode = fpcmp_mode; tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG), tmp); if (!scratch) scratch = gen_reg_rtx (HImode); tmp2 = gen_rtx_CLOBBER (VOIDmode, scratch); emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, tmp2))); break; case IX86_FPCMP_ARITH: /* Sadness wrt reg-stack pops killing fpsr -- gotta get fnstsw first. */ tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1); tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), UNSPEC_FNSTSW); if (!scratch) scratch = gen_reg_rtx (HImode); emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2)); /* In the unordered case, we have to check C2 for NaN's, which doesn't happen to work out to anything nice combination-wise. So do some bit twiddling on the value we've got in AH to come up with an appropriate set of condition codes. */ intcmp_mode = CCNOmode; switch (code) { case GT: case UNGT: if (code == GT || !TARGET_IEEE_FP) { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = EQ; } else { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x44))); intcmp_mode = CCmode; code = GEU; } break; case LT: case UNLT: if (code == LT && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, const1_rtx)); intcmp_mode = CCmode; code = EQ; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, const1_rtx)); code = NE; } break; case GE: case UNGE: if (code == GE || !TARGET_IEEE_FP) { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x05))); code = EQ; } else { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, const1_rtx)); code = NE; } break; case LE: case UNLE: if (code == LE && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx)); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = LTU; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45))); code = NE; } break; case EQ: case UNEQ: if (code == EQ && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40))); intcmp_mode = CCmode; code = EQ; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = NE; } break; case NE: case LTGT: if (code == NE && TARGET_IEEE_FP) { emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45))); emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch, GEN_INT (0x40))); code = NE; } else { emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40))); code = EQ; } break; case UNORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = NE; break; case ORDERED: emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04))); code = EQ; break; default: gcc_unreachable (); } break; default: gcc_unreachable(); } /* Return the test that should be put into the flags user, i.e. the bcc, scc, or cmov instruction. */ return gen_rtx_fmt_ee (code, VOIDmode, gen_rtx_REG (intcmp_mode, FLAGS_REG), const0_rtx); } rtx ix86_expand_compare (enum rtx_code code) { rtx op0, op1, ret; op0 = ix86_compare_op0; op1 = ix86_compare_op1; if (GET_MODE_CLASS (GET_MODE (ix86_compare_op0)) == MODE_CC) ret = gen_rtx_fmt_ee (code, VOIDmode, ix86_compare_op0, ix86_compare_op1); else if (SCALAR_FLOAT_MODE_P (GET_MODE (op0))) { gcc_assert (!DECIMAL_FLOAT_MODE_P (GET_MODE (op0))); ret = ix86_expand_fp_compare (code, op0, op1, NULL_RTX); } else ret = ix86_expand_int_compare (code, op0, op1); return ret; } void ix86_expand_branch (enum rtx_code code, rtx label) { rtx tmp; switch (GET_MODE (ix86_compare_op0)) { case SFmode: case DFmode: case XFmode: case QImode: case HImode: case SImode: simple: tmp = ix86_expand_compare (code); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); return; case DImode: if (TARGET_64BIT) goto simple; case TImode: /* Expand DImode branch into multiple compare+branch. */ { rtx lo[2], hi[2], label2; enum rtx_code code1, code2, code3; enum machine_mode submode; if (CONSTANT_P (ix86_compare_op0) && ! CONSTANT_P (ix86_compare_op1)) { tmp = ix86_compare_op0; ix86_compare_op0 = ix86_compare_op1; ix86_compare_op1 = tmp; code = swap_condition (code); } if (GET_MODE (ix86_compare_op0) == DImode) { split_di (&ix86_compare_op0, 1, lo+0, hi+0); split_di (&ix86_compare_op1, 1, lo+1, hi+1); submode = SImode; } else { split_ti (&ix86_compare_op0, 1, lo+0, hi+0); split_ti (&ix86_compare_op1, 1, lo+1, hi+1); submode = DImode; } /* When comparing for equality, we can use (hi0^hi1)|(lo0^lo1) to avoid two branches. This costs one extra insn, so disable when optimizing for size. */ if ((code == EQ || code == NE) && (!optimize_insn_for_size_p () || hi[1] == const0_rtx || lo[1] == const0_rtx)) { rtx xor0, xor1; xor1 = hi[0]; if (hi[1] != const0_rtx) xor1 = expand_binop (submode, xor_optab, xor1, hi[1], NULL_RTX, 0, OPTAB_WIDEN); xor0 = lo[0]; if (lo[1] != const0_rtx) xor0 = expand_binop (submode, xor_optab, xor0, lo[1], NULL_RTX, 0, OPTAB_WIDEN); tmp = expand_binop (submode, ior_optab, xor1, xor0, NULL_RTX, 0, OPTAB_WIDEN); ix86_compare_op0 = tmp; ix86_compare_op1 = const0_rtx; ix86_expand_branch (code, label); return; } /* Otherwise, if we are doing less-than or greater-or-equal-than, op1 is a constant and the low word is zero, then we can just examine the high word. Similarly for low word -1 and less-or-equal-than or greater-than. */ if (CONST_INT_P (hi[1])) switch (code) { case LT: case LTU: case GE: case GEU: if (lo[1] == const0_rtx) { ix86_compare_op0 = hi[0]; ix86_compare_op1 = hi[1]; ix86_expand_branch (code, label); return; } break; case LE: case LEU: case GT: case GTU: if (lo[1] == constm1_rtx) { ix86_compare_op0 = hi[0]; ix86_compare_op1 = hi[1]; ix86_expand_branch (code, label); return; } break; default: break; } /* Otherwise, we need two or three jumps. */ label2 = gen_label_rtx (); code1 = code; code2 = swap_condition (code); code3 = unsigned_condition (code); switch (code) { case LT: case GT: case LTU: case GTU: break; case LE: code1 = LT; code2 = GT; break; case GE: code1 = GT; code2 = LT; break; case LEU: code1 = LTU; code2 = GTU; break; case GEU: code1 = GTU; code2 = LTU; break; case EQ: code1 = UNKNOWN; code2 = NE; break; case NE: code2 = UNKNOWN; break; default: gcc_unreachable (); } /* * a < b => * if (hi(a) < hi(b)) goto true; * if (hi(a) > hi(b)) goto false; * if (lo(a) < lo(b)) goto true; * false: */ ix86_compare_op0 = hi[0]; ix86_compare_op1 = hi[1]; if (code1 != UNKNOWN) ix86_expand_branch (code1, label); if (code2 != UNKNOWN) ix86_expand_branch (code2, label2); ix86_compare_op0 = lo[0]; ix86_compare_op1 = lo[1]; ix86_expand_branch (code3, label); if (code2 != UNKNOWN) emit_label (label2); return; } default: /* If we have already emitted a compare insn, go straight to simple. ix86_expand_compare won't emit anything if ix86_compare_emitted is non NULL. */ gcc_assert (GET_MODE_CLASS (GET_MODE (ix86_compare_op0)) == MODE_CC); goto simple; } } /* Split branch based on floating point condition. */ void ix86_split_fp_branch (enum rtx_code code, rtx op1, rtx op2, rtx target1, rtx target2, rtx tmp, rtx pushed) { rtx condition; rtx i; if (target2 != pc_rtx) { rtx tmp = target2; code = reverse_condition_maybe_unordered (code); target2 = target1; target1 = tmp; } condition = ix86_expand_fp_compare (code, op1, op2, tmp); /* Remove pushed operand from stack. */ if (pushed) ix86_free_from_memory (GET_MODE (pushed)); i = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, gen_rtx_IF_THEN_ELSE (VOIDmode, condition, target1, target2))); if (split_branch_probability >= 0) add_reg_note (i, REG_BR_PROB, GEN_INT (split_branch_probability)); } void ix86_expand_setcc (enum rtx_code code, rtx dest) { rtx ret; gcc_assert (GET_MODE (dest) == QImode); ret = ix86_expand_compare (code); PUT_MODE (ret, QImode); emit_insn (gen_rtx_SET (VOIDmode, dest, ret)); } /* Expand comparison setting or clearing carry flag. Return true when successful and set pop for the operation. */ static bool ix86_expand_carry_flag_compare (enum rtx_code code, rtx op0, rtx op1, rtx *pop) { enum machine_mode mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1); /* Do not handle DImode compares that go through special path. */ if (mode == (TARGET_64BIT ? TImode : DImode)) return false; if (SCALAR_FLOAT_MODE_P (mode)) { rtx compare_op, compare_seq; gcc_assert (!DECIMAL_FLOAT_MODE_P (mode)); /* Shortcut: following common codes never translate into carry flag compares. */ if (code == EQ || code == NE || code == UNEQ || code == LTGT || code == ORDERED || code == UNORDERED) return false; /* These comparisons require zero flag; swap operands so they won't. */ if ((code == GT || code == UNLE || code == LE || code == UNGT) && !TARGET_IEEE_FP) { rtx tmp = op0; op0 = op1; op1 = tmp; code = swap_condition (code); } /* Try to expand the comparison and verify that we end up with carry flag based comparison. This fails to be true only when we decide to expand comparison using arithmetic that is not too common scenario. */ start_sequence (); compare_op = ix86_expand_fp_compare (code, op0, op1, NULL_RTX); compare_seq = get_insns (); end_sequence (); if (GET_MODE (XEXP (compare_op, 0)) == CCFPmode || GET_MODE (XEXP (compare_op, 0)) == CCFPUmode) code = ix86_fp_compare_code_to_integer (GET_CODE (compare_op)); else code = GET_CODE (compare_op); if (code != LTU && code != GEU) return false; emit_insn (compare_seq); *pop = compare_op; return true; } if (!INTEGRAL_MODE_P (mode)) return false; switch (code) { case LTU: case GEU: break; /* Convert a==0 into (unsigned)a<1. */ case EQ: case NE: if (op1 != const0_rtx) return false; op1 = const1_rtx; code = (code == EQ ? LTU : GEU); break; /* Convert a>b into b<a or a>=b-1. */ case GTU: case LEU: if (CONST_INT_P (op1)) { op1 = gen_int_mode (INTVAL (op1) + 1, GET_MODE (op0)); /* Bail out on overflow. We still can swap operands but that would force loading of the constant into register. */ if (op1 == const0_rtx || !x86_64_immediate_operand (op1, GET_MODE (op1))) return false; code = (code == GTU ? GEU : LTU); } else { rtx tmp = op1; op1 = op0; op0 = tmp; code = (code == GTU ? LTU : GEU); } break; /* Convert a>=0 into (unsigned)a<0x80000000. */ case LT: case GE: if (mode == DImode || op1 != const0_rtx) return false; op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); code = (code == LT ? GEU : LTU); break; case LE: case GT: if (mode == DImode || op1 != constm1_rtx) return false; op1 = gen_int_mode (1 << (GET_MODE_BITSIZE (mode) - 1), mode); code = (code == LE ? GEU : LTU); break; default: return false; } /* Swapping operands may cause constant to appear as first operand. */ if (!nonimmediate_operand (op0, VOIDmode)) { if (!can_create_pseudo_p ()) return false; op0 = force_reg (mode, op0); } ix86_compare_op0 = op0; ix86_compare_op1 = op1; *pop = ix86_expand_compare (code); gcc_assert (GET_CODE (*pop) == LTU || GET_CODE (*pop) == GEU); return true; } int ix86_expand_int_movcc (rtx operands[]) { enum rtx_code code = GET_CODE (operands[1]), compare_code; rtx compare_seq, compare_op; enum machine_mode mode = GET_MODE (operands[0]); bool sign_bit_compare_p = false; start_sequence (); ix86_compare_op0 = XEXP (operands[1], 0); ix86_compare_op1 = XEXP (operands[1], 1); compare_op = ix86_expand_compare (code); compare_seq = get_insns (); end_sequence (); compare_code = GET_CODE (compare_op); if ((ix86_compare_op1 == const0_rtx && (code == GE || code == LT)) || (ix86_compare_op1 == constm1_rtx && (code == GT || code == LE))) sign_bit_compare_p = true; /* Don't attempt mode expansion here -- if we had to expand 5 or 6 HImode insns, we'd be swallowed in word prefix ops. */ if ((mode != HImode || TARGET_FAST_PREFIX) && (mode != (TARGET_64BIT ? TImode : DImode)) && CONST_INT_P (operands[2]) && CONST_INT_P (operands[3])) { rtx out = operands[0]; HOST_WIDE_INT ct = INTVAL (operands[2]); HOST_WIDE_INT cf = INTVAL (operands[3]); HOST_WIDE_INT diff; diff = ct - cf; /* Sign bit compares are better done using shifts than we do by using sbb. */ if (sign_bit_compare_p || ix86_expand_carry_flag_compare (code, ix86_compare_op0, ix86_compare_op1, &compare_op)) { /* Detect overlap between destination and compare sources. */ rtx tmp = out; if (!sign_bit_compare_p) { rtx flags; bool fpcmp = false; compare_code = GET_CODE (compare_op); flags = XEXP (compare_op, 0); if (GET_MODE (flags) == CCFPmode || GET_MODE (flags) == CCFPUmode) { fpcmp = true; compare_code = ix86_fp_compare_code_to_integer (compare_code); } /* To simplify rest of code, restrict to the GEU case. */ if (compare_code == LTU) { HOST_WIDE_INT tmp = ct; ct = cf; cf = tmp; compare_code = reverse_condition (compare_code); code = reverse_condition (code); } else { if (fpcmp) PUT_CODE (compare_op, reverse_condition_maybe_unordered (GET_CODE (compare_op))); else PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op))); } diff = ct - cf; if (reg_overlap_mentioned_p (out, ix86_compare_op0) || reg_overlap_mentioned_p (out, ix86_compare_op1)) tmp = gen_reg_rtx (mode); if (mode == DImode) emit_insn (gen_x86_movdicc_0_m1 (tmp, flags, compare_op)); else emit_insn (gen_x86_movsicc_0_m1 (gen_lowpart (SImode, tmp), flags, compare_op)); } else { if (code == GT || code == GE) code = reverse_condition (code); else { HOST_WIDE_INT tmp = ct; ct = cf; cf = tmp; diff = ct - cf; } tmp = emit_store_flag (tmp, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, -1); } if (diff == 1) { /* * cmpl op0,op1 * sbbl dest,dest * [addl dest, ct] * * Size 5 - 8. */ if (ct) tmp = expand_simple_binop (mode, PLUS, tmp, GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } else if (cf == -1) { /* * cmpl op0,op1 * sbbl dest,dest * orl $ct, dest * * Size 8. */ tmp = expand_simple_binop (mode, IOR, tmp, GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } else if (diff == -1 && ct) { /* * cmpl op0,op1 * sbbl dest,dest * notl dest * [addl dest, cf] * * Size 8 - 11. */ tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); if (cf) tmp = expand_simple_binop (mode, PLUS, copy_rtx (tmp), GEN_INT (cf), copy_rtx (tmp), 1, OPTAB_DIRECT); } else { /* * cmpl op0,op1 * sbbl dest,dest * [notl dest] * andl cf - ct, dest * [addl dest, ct] * * Size 8 - 11. */ if (cf == 0) { cf = ct; ct = 0; tmp = expand_simple_unop (mode, NOT, tmp, copy_rtx (tmp), 1); } tmp = expand_simple_binop (mode, AND, copy_rtx (tmp), gen_int_mode (cf - ct, mode), copy_rtx (tmp), 1, OPTAB_DIRECT); if (ct) tmp = expand_simple_binop (mode, PLUS, copy_rtx (tmp), GEN_INT (ct), copy_rtx (tmp), 1, OPTAB_DIRECT); } if (!rtx_equal_p (tmp, out)) emit_move_insn (copy_rtx (out), copy_rtx (tmp)); return 1; /* DONE */ } if (diff < 0) { enum machine_mode cmp_mode = GET_MODE (ix86_compare_op0); HOST_WIDE_INT tmp; tmp = ct, ct = cf, cf = tmp; diff = -diff; if (SCALAR_FLOAT_MODE_P (cmp_mode)) { gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode)); /* We may be reversing unordered compare to normal compare, that is not valid in general (we may convert non-trapping condition to trapping one), however on i386 we currently emit all comparisons unordered. */ compare_code = reverse_condition_maybe_unordered (compare_code); code = reverse_condition_maybe_unordered (code); } else { compare_code = reverse_condition (compare_code); code = reverse_condition (code); } } compare_code = UNKNOWN; if (GET_MODE_CLASS (GET_MODE (ix86_compare_op0)) == MODE_INT && CONST_INT_P (ix86_compare_op1)) { if (ix86_compare_op1 == const0_rtx && (code == LT || code == GE)) compare_code = code; else if (ix86_compare_op1 == constm1_rtx) { if (code == LE) compare_code = LT; else if (code == GT) compare_code = GE; } } /* Optimize dest = (op0 < 0) ? -1 : cf. */ if (compare_code != UNKNOWN && GET_MODE (ix86_compare_op0) == GET_MODE (out) && (cf == -1 || ct == -1)) { /* If lea code below could be used, only optimize if it results in a 2 insn sequence. */ if (! (diff == 1 || diff == 2 || diff == 4 || diff == 8 || diff == 3 || diff == 5 || diff == 9) || (compare_code == LT && ct == -1) || (compare_code == GE && cf == -1)) { /* * notl op1 (if necessary) * sarl $31, op1 * orl cf, op1 */ if (ct != -1) { cf = ct; ct = -1; code = reverse_condition (code); } out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, -1); out = expand_simple_binop (mode, IOR, out, GEN_INT (cf), out, 1, OPTAB_DIRECT); if (out != operands[0]) emit_move_insn (operands[0], out); return 1; /* DONE */ } } if ((diff == 1 || diff == 2 || diff == 4 || diff == 8 || diff == 3 || diff == 5 || diff == 9) && ((mode != QImode && mode != HImode) || !TARGET_PARTIAL_REG_STALL) && (mode != DImode || x86_64_immediate_operand (GEN_INT (cf), VOIDmode))) { /* * xorl dest,dest * cmpl op1,op2 * setcc dest * lea cf(dest*(ct-cf)),dest * * Size 14. * * This also catches the degenerate setcc-only case. */ rtx tmp; int nops; out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, 1); nops = 0; /* On x86_64 the lea instruction operates on Pmode, so we need to get arithmetics done in proper mode to match. */ if (diff == 1) tmp = copy_rtx (out); else { rtx out1; out1 = copy_rtx (out); tmp = gen_rtx_MULT (mode, out1, GEN_INT (diff & ~1)); nops++; if (diff & 1) { tmp = gen_rtx_PLUS (mode, tmp, out1); nops++; } } if (cf != 0) { tmp = gen_rtx_PLUS (mode, tmp, GEN_INT (cf)); nops++; } if (!rtx_equal_p (tmp, out)) { if (nops == 1) out = force_operand (tmp, copy_rtx (out)); else emit_insn (gen_rtx_SET (VOIDmode, copy_rtx (out), copy_rtx (tmp))); } if (!rtx_equal_p (out, operands[0])) emit_move_insn (operands[0], copy_rtx (out)); return 1; /* DONE */ } /* * General case: Jumpful: * xorl dest,dest cmpl op1, op2 * cmpl op1, op2 movl ct, dest * setcc dest jcc 1f * decl dest movl cf, dest * andl (cf-ct),dest 1: * addl ct,dest * * Size 20. Size 14. * * This is reasonably steep, but branch mispredict costs are * high on modern cpus, so consider failing only if optimizing * for space. */ if ((!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2) { if (cf == 0) { enum machine_mode cmp_mode = GET_MODE (ix86_compare_op0); cf = ct; ct = 0; if (SCALAR_FLOAT_MODE_P (cmp_mode)) { gcc_assert (!DECIMAL_FLOAT_MODE_P (cmp_mode)); /* We may be reversing unordered compare to normal compare, that is not valid in general (we may convert non-trapping condition to trapping one), however on i386 we currently emit all comparisons unordered. */ code = reverse_condition_maybe_unordered (code); } else { code = reverse_condition (code); if (compare_code != UNKNOWN) compare_code = reverse_condition (compare_code); } } if (compare_code != UNKNOWN) { /* notl op1 (if needed) sarl $31, op1 andl (cf-ct), op1 addl ct, op1 For x < 0 (resp. x <= -1) there will be no notl, so if possible swap the constants to get rid of the complement. True/false will be -1/0 while code below (store flag followed by decrement) is 0/-1, so the constants need to be exchanged once more. */ if (compare_code == GE || !cf) { code = reverse_condition (code); compare_code = LT; } else { HOST_WIDE_INT tmp = cf; cf = ct; ct = tmp; } out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, -1); } else { out = emit_store_flag (out, code, ix86_compare_op0, ix86_compare_op1, VOIDmode, 0, 1); out = expand_simple_binop (mode, PLUS, copy_rtx (out), constm1_rtx, copy_rtx (out), 1, OPTAB_DIRECT); } out = expand_simple_binop (mode, AND, copy_rtx (out), gen_int_mode (cf - ct, mode), copy_rtx (out), 1, OPTAB_DIRECT); if (ct) out = expand_simple_binop (mode, PLUS, copy_rtx (out), GEN_INT (ct), copy_rtx (out), 1, OPTAB_DIRECT); if (!rtx_equal_p (out, operands[0])) emit_move_insn (operands[0], copy_rtx (out)); return 1; /* DONE */ } } if (!TARGET_CMOVE || (mode == QImode && TARGET_PARTIAL_REG_STALL)) { /* Try a few things more with specific constants and a variable. */ optab op; rtx var, orig_out, out, tmp; if (BRANCH_COST (optimize_insn_for_speed_p (), false) <= 2) return 0; /* FAIL */ /* If one of the two operands is an interesting constant, load a constant with the above and mask it in with a logical operation. */ if (CONST_INT_P (operands[2])) { var = operands[3]; if (INTVAL (operands[2]) == 0 && operands[3] != constm1_rtx) operands[3] = constm1_rtx, op = and_optab; else if (INTVAL (operands[2]) == -1 && operands[3] != const0_rtx) operands[3] = const0_rtx, op = ior_optab; else return 0; /* FAIL */ } else if (CONST_INT_P (operands[3])) { var = operands[2]; if (INTVAL (operands[3]) == 0 && operands[2] != constm1_rtx) operands[2] = constm1_rtx, op = and_optab; else if (INTVAL (operands[3]) == -1 && operands[3] != const0_rtx) operands[2] = const0_rtx, op = ior_optab; else return 0; /* FAIL */ } else return 0; /* FAIL */ orig_out = operands[0]; tmp = gen_reg_rtx (mode); operands[0] = tmp; /* Recurse to get the constant loaded. */ if (ix86_expand_int_movcc (operands) == 0) return 0; /* FAIL */ /* Mask in the interesting variable. */ out = expand_binop (mode, op, var, tmp, orig_out, 0, OPTAB_WIDEN); if (!rtx_equal_p (out, orig_out)) emit_move_insn (copy_rtx (orig_out), copy_rtx (out)); return 1; /* DONE */ } /* * For comparison with above, * * movl cf,dest * movl ct,tmp * cmpl op1,op2 * cmovcc tmp,dest * * Size 15. */ if (! nonimmediate_operand (operands[2], mode)) operands[2] = force_reg (mode, operands[2]); if (! nonimmediate_operand (operands[3], mode)) operands[3] = force_reg (mode, operands[3]); if (! register_operand (operands[2], VOIDmode) && (mode == QImode || ! register_operand (operands[3], VOIDmode))) operands[2] = force_reg (mode, operands[2]); if (mode == QImode && ! register_operand (operands[3], VOIDmode)) operands[3] = force_reg (mode, operands[3]); emit_insn (compare_seq); emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, compare_op, operands[2], operands[3]))); return 1; /* DONE */ } /* Swap, force into registers, or otherwise massage the two operands to an sse comparison with a mask result. Thus we differ a bit from ix86_prepare_fp_compare_args which expects to produce a flags result. The DEST operand exists to help determine whether to commute commutative operators. The POP0/POP1 operands are updated in place. The new comparison code is returned, or UNKNOWN if not implementable. */ static enum rtx_code ix86_prepare_sse_fp_compare_args (rtx dest, enum rtx_code code, rtx *pop0, rtx *pop1) { rtx tmp; switch (code) { case LTGT: case UNEQ: /* We have no LTGT as an operator. We could implement it with NE & ORDERED, but this requires an extra temporary. It's not clear that it's worth it. */ return UNKNOWN; case LT: case LE: case UNGT: case UNGE: /* These are supported directly. */ break; case EQ: case NE: case UNORDERED: case ORDERED: /* For commutative operators, try to canonicalize the destination operand to be first in the comparison - this helps reload to avoid extra moves. */ if (!dest || !rtx_equal_p (dest, *pop1)) break; /* FALLTHRU */ case GE: case GT: case UNLE: case UNLT: /* These are not supported directly. Swap the comparison operands to transform into something that is supported. */ tmp = *pop0; *pop0 = *pop1; *pop1 = tmp; code = swap_condition (code); break; default: gcc_unreachable (); } return code; } /* Detect conditional moves that exactly match min/max operational semantics. Note that this is IEEE safe, as long as we don't interchange the operands. Returns FALSE if this conditional move doesn't match a MIN/MAX, and TRUE if the operation is successful and instructions are emitted. */ static bool ix86_expand_sse_fp_minmax (rtx dest, enum rtx_code code, rtx cmp_op0, rtx cmp_op1, rtx if_true, rtx if_false) { enum machine_mode mode; bool is_min; rtx tmp; if (code == LT) ; else if (code == UNGE) { tmp = if_true; if_true = if_false; if_false = tmp; } else return false; if (rtx_equal_p (cmp_op0, if_true) && rtx_equal_p (cmp_op1, if_false)) is_min = true; else if (rtx_equal_p (cmp_op1, if_true) && rtx_equal_p (cmp_op0, if_false)) is_min = false; else return false; mode = GET_MODE (dest); /* We want to check HONOR_NANS and HONOR_SIGNED_ZEROS here, but MODE may be a vector mode and thus not appropriate. */ if (!flag_finite_math_only || !flag_unsafe_math_optimizations) { int u = is_min ? UNSPEC_IEEE_MIN : UNSPEC_IEEE_MAX; rtvec v; if_true = force_reg (mode, if_true); v = gen_rtvec (2, if_true, if_false); tmp = gen_rtx_UNSPEC (mode, v, u); } else { code = is_min ? SMIN : SMAX; tmp = gen_rtx_fmt_ee (code, mode, if_true, if_false); } emit_insn (gen_rtx_SET (VOIDmode, dest, tmp)); return true; } /* Expand an sse vector comparison. Return the register with the result. */ static rtx ix86_expand_sse_cmp (rtx dest, enum rtx_code code, rtx cmp_op0, rtx cmp_op1, rtx op_true, rtx op_false) { enum machine_mode mode = GET_MODE (dest); rtx x; cmp_op0 = force_reg (mode, cmp_op0); if (!nonimmediate_operand (cmp_op1, mode)) cmp_op1 = force_reg (mode, cmp_op1); if (optimize || reg_overlap_mentioned_p (dest, op_true) || reg_overlap_mentioned_p (dest, op_false)) dest = gen_reg_rtx (mode); x = gen_rtx_fmt_ee (code, mode, cmp_op0, cmp_op1); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); return dest; } /* Expand DEST = CMP ? OP_TRUE : OP_FALSE into a sequence of logical operations. This is used for both scalar and vector conditional moves. */ static void ix86_expand_sse_movcc (rtx dest, rtx cmp, rtx op_true, rtx op_false) { enum machine_mode mode = GET_MODE (dest); rtx t2, t3, x; if (op_false == CONST0_RTX (mode)) { op_true = force_reg (mode, op_true); x = gen_rtx_AND (mode, cmp, op_true); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else if (op_true == CONST0_RTX (mode)) { op_false = force_reg (mode, op_false); x = gen_rtx_NOT (mode, cmp); x = gen_rtx_AND (mode, x, op_false); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } else if (TARGET_XOP) { rtx pcmov = gen_rtx_SET (mode, dest, gen_rtx_IF_THEN_ELSE (mode, cmp, op_true, op_false)); emit_insn (pcmov); } else { op_true = force_reg (mode, op_true); op_false = force_reg (mode, op_false); t2 = gen_reg_rtx (mode); if (optimize) t3 = gen_reg_rtx (mode); else t3 = dest; x = gen_rtx_AND (mode, op_true, cmp); emit_insn (gen_rtx_SET (VOIDmode, t2, x)); x = gen_rtx_NOT (mode, cmp); x = gen_rtx_AND (mode, x, op_false); emit_insn (gen_rtx_SET (VOIDmode, t3, x)); x = gen_rtx_IOR (mode, t3, t2); emit_insn (gen_rtx_SET (VOIDmode, dest, x)); } } /* Expand a floating-point conditional move. Return true if successful. */ int ix86_expand_fp_movcc (rtx operands[]) { enum machine_mode mode = GET_MODE (operands[0]); enum rtx_code code = GET_CODE (operands[1]); rtx tmp, compare_op; ix86_compare_op0 = XEXP (operands[1], 0); ix86_compare_op1 = XEXP (operands[1], 1); if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode)) { enum machine_mode cmode; /* Since we've no cmove for sse registers, don't force bad register allocation just to gain access to it. Deny movcc when the comparison mode doesn't match the move mode. */ cmode = GET_MODE (ix86_compare_op0); if (cmode == VOIDmode) cmode = GET_MODE (ix86_compare_op1); if (cmode != mode) return 0; code = ix86_prepare_sse_fp_compare_args (operands[0], code, &ix86_compare_op0, &ix86_compare_op1); if (code == UNKNOWN) return 0; if (ix86_expand_sse_fp_minmax (operands[0], code, ix86_compare_op0, ix86_compare_op1, operands[2], operands[3])) return 1; tmp = ix86_expand_sse_cmp (operands[0], code, ix86_compare_op0, ix86_compare_op1, operands[2], operands[3]); ix86_expand_sse_movcc (operands[0], tmp, operands[2], operands[3]); return 1; } /* The floating point conditional move instructions don't directly support conditions resulting from a signed integer comparison. */ compare_op = ix86_expand_compare (code); if (!fcmov_comparison_operator (compare_op, VOIDmode)) { tmp = gen_reg_rtx (QImode); ix86_expand_setcc (code, tmp); code = NE; ix86_compare_op0 = tmp; ix86_compare_op1 = const0_rtx; compare_op = ix86_expand_compare (code); } emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_IF_THEN_ELSE (mode, compare_op, operands[2], operands[3]))); return 1; } /* Expand a floating-point vector conditional move; a vcond operation rather than a movcc operation. */ bool ix86_expand_fp_vcond (rtx operands[]) { enum rtx_code code = GET_CODE (operands[3]); rtx cmp; code = ix86_prepare_sse_fp_compare_args (operands[0], code, &operands[4], &operands[5]); if (code == UNKNOWN) return false; if (ix86_expand_sse_fp_minmax (operands[0], code, operands[4], operands[5], operands[1], operands[2])) return true; cmp = ix86_expand_sse_cmp (operands[0], code, operands[4], operands[5], operands[1], operands[2]); ix86_expand_sse_movcc (operands[0], cmp, operands[1], operands[2]); return true; } /* Expand a signed/unsigned integral vector conditional move. */ bool ix86_expand_int_vcond (rtx operands[]) { enum machine_mode mode = GET_MODE (operands[0]); enum rtx_code code = GET_CODE (operands[3]); bool negate = false; rtx x, cop0, cop1; cop0 = operands[4]; cop1 = operands[5]; /* XOP supports all of the comparisons on all vector int types. */ if (!TARGET_XOP) { /* Canonicalize the comparison to EQ, GT, GTU. */ switch (code) { case EQ: case GT: case GTU: break; case NE: case LE: case LEU: code = reverse_condition (code); negate = true; break; case GE: case GEU: code = reverse_condition (code); negate = true; /* FALLTHRU */ case LT: case LTU: code = swap_condition (code); x = cop0, cop0 = cop1, cop1 = x; break; default: gcc_unreachable (); } /* Only SSE4.1/SSE4.2 supports V2DImode. */ if (mode == V2DImode) { switch (code) { case EQ: /* SSE4.1 supports EQ. */ if (!TARGET_SSE4_1) return false; break; case GT: case GTU: /* SSE4.2 supports GT/GTU. */ if (!TARGET_SSE4_2) return false; break; default: gcc_unreachable (); } } /* Unsigned parallel compare is not supported by the hardware. Play some tricks to turn this into a signed comparison against 0. */ if (code == GTU) { cop0 = force_reg (mode, cop0); switch (mode) { case V4SImode: case V2DImode: { rtx t1, t2, mask; rtx (*gen_sub3) (rtx, rtx, rtx); /* Subtract (-(INT MAX) - 1) from both operands to make them signed. */ mask = ix86_build_signbit_mask (GET_MODE_INNER (mode), true, false); gen_sub3 = (mode == V4SImode ? gen_subv4si3 : gen_subv2di3); t1 = gen_reg_rtx (mode); emit_insn (gen_sub3 (t1, cop0, mask)); t2 = gen_reg_rtx (mode); emit_insn (gen_sub3 (t2, cop1, mask)); cop0 = t1; cop1 = t2; code = GT; } break; case V16QImode: case V8HImode: /* Perform a parallel unsigned saturating subtraction. */ x = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, x, gen_rtx_US_MINUS (mode, cop0, cop1))); cop0 = x; cop1 = CONST0_RTX (mode); code = EQ; negate = !negate; break; default: gcc_unreachable (); } } } x = ix86_expand_sse_cmp (operands[0], code, cop0, cop1, operands[1+negate], operands[2-negate]); ix86_expand_sse_movcc (operands[0], x, operands[1+negate], operands[2-negate]); return true; } /* Unpack OP[1] into the next wider integer vector type. UNSIGNED_P is true if we should do zero extension, else sign extension. HIGH_P is true if we want the N/2 high elements, else the low elements. */ void ix86_expand_sse_unpack (rtx operands[2], bool unsigned_p, bool high_p) { enum machine_mode imode = GET_MODE (operands[1]); rtx (*unpack)(rtx, rtx, rtx); rtx se, dest; switch (imode) { case V16QImode: if (high_p) unpack = gen_vec_interleave_highv16qi; else unpack = gen_vec_interleave_lowv16qi; break; case V8HImode: if (high_p) unpack = gen_vec_interleave_highv8hi; else unpack = gen_vec_interleave_lowv8hi; break; case V4SImode: if (high_p) unpack = gen_vec_interleave_highv4si; else unpack = gen_vec_interleave_lowv4si; break; default: gcc_unreachable (); } dest = gen_lowpart (imode, operands[0]); if (unsigned_p) se = force_reg (imode, CONST0_RTX (imode)); else se = ix86_expand_sse_cmp (gen_reg_rtx (imode), GT, CONST0_RTX (imode), operands[1], pc_rtx, pc_rtx); emit_insn (unpack (dest, operands[1], se)); } /* This function performs the same task as ix86_expand_sse_unpack, but with SSE4.1 instructions. */ void ix86_expand_sse4_unpack (rtx operands[2], bool unsigned_p, bool high_p) { enum machine_mode imode = GET_MODE (operands[1]); rtx (*unpack)(rtx, rtx); rtx src, dest; switch (imode) { case V16QImode: if (unsigned_p) unpack = gen_sse4_1_zero_extendv8qiv8hi2; else unpack = gen_sse4_1_extendv8qiv8hi2; break; case V8HImode: if (unsigned_p) unpack = gen_sse4_1_zero_extendv4hiv4si2; else unpack = gen_sse4_1_extendv4hiv4si2; break; case V4SImode: if (unsigned_p) unpack = gen_sse4_1_zero_extendv2siv2di2; else unpack = gen_sse4_1_extendv2siv2di2; break; default: gcc_unreachable (); } dest = operands[0]; if (high_p) { /* Shift higher 8 bytes to lower 8 bytes. */ src = gen_reg_rtx (imode); emit_insn (gen_sse2_lshrv1ti3 (gen_lowpart (V1TImode, src), gen_lowpart (V1TImode, operands[1]), GEN_INT (64))); } else src = operands[1]; emit_insn (unpack (dest, src)); } /* Expand conditional increment or decrement using adb/sbb instructions. The default case using setcc followed by the conditional move can be done by generic code. */ int ix86_expand_int_addcc (rtx operands[]) { enum rtx_code code = GET_CODE (operands[1]); rtx flags; rtx (*insn)(rtx, rtx, rtx, rtx, rtx); rtx compare_op; rtx val = const0_rtx; bool fpcmp = false; enum machine_mode mode; ix86_compare_op0 = XEXP (operands[1], 0); ix86_compare_op1 = XEXP (operands[1], 1); if (operands[3] != const1_rtx && operands[3] != constm1_rtx) return 0; if (!ix86_expand_carry_flag_compare (code, ix86_compare_op0, ix86_compare_op1, &compare_op)) return 0; code = GET_CODE (compare_op); flags = XEXP (compare_op, 0); if (GET_MODE (flags) == CCFPmode || GET_MODE (flags) == CCFPUmode) { fpcmp = true; code = ix86_fp_compare_code_to_integer (code); } if (code != LTU) { val = constm1_rtx; if (fpcmp) PUT_CODE (compare_op, reverse_condition_maybe_unordered (GET_CODE (compare_op))); else PUT_CODE (compare_op, reverse_condition (GET_CODE (compare_op))); } mode = GET_MODE (operands[0]); /* Construct either adc or sbb insn. */ if ((code == LTU) == (operands[3] == constm1_rtx)) { switch (mode) { case QImode: insn = gen_subqi3_carry; break; case HImode: insn = gen_subhi3_carry; break; case SImode: insn = gen_subsi3_carry; break; case DImode: insn = gen_subdi3_carry; break; default: gcc_unreachable (); } } else { switch (mode) { case QImode: insn = gen_addqi3_carry; break; case HImode: insn = gen_addhi3_carry; break; case SImode: insn = gen_addsi3_carry; break; case DImode: insn = gen_adddi3_carry; break; default: gcc_unreachable (); } } emit_insn (insn (operands[0], operands[2], val, flags, compare_op)); return 1; /* DONE */ } /* Split operands 0 and 1 into SImode parts. Similar to split_di, but works for floating pointer parameters and nonoffsetable memories. For pushes, it returns just stack offsets; the values will be saved in the right order. Maximally three parts are generated. */ static int ix86_split_to_parts (rtx operand, rtx *parts, enum machine_mode mode) { int size; if (!TARGET_64BIT) size = mode==XFmode ? 3 : GET_MODE_SIZE (mode) / 4; else size = (GET_MODE_SIZE (mode) + 4) / 8; gcc_assert (!REG_P (operand) || !MMX_REGNO_P (REGNO (operand))); gcc_assert (size >= 2 && size <= 4); /* Optimize constant pool reference to immediates. This is used by fp moves, that force all constants to memory to allow combining. */ if (MEM_P (operand) && MEM_READONLY_P (operand)) { rtx tmp = maybe_get_pool_constant (operand); if (tmp) operand = tmp; } if (MEM_P (operand) && !offsettable_memref_p (operand)) { /* The only non-offsetable memories we handle are pushes. */ int ok = push_operand (operand, VOIDmode); gcc_assert (ok); operand = copy_rtx (operand); PUT_MODE (operand, Pmode); parts[0] = parts[1] = parts[2] = parts[3] = operand; return size; } if (GET_CODE (operand) == CONST_VECTOR) { enum machine_mode imode = int_mode_for_mode (mode); /* Caution: if we looked through a constant pool memory above, the operand may actually have a different mode now. That's ok, since we want to pun this all the way back to an integer. */ operand = simplify_subreg (imode, operand, GET_MODE (operand), 0); gcc_assert (operand != NULL); mode = imode; } if (!TARGET_64BIT) { if (mode == DImode) split_di (&operand, 1, &parts[0], &parts[1]); else { int i; if (REG_P (operand)) { gcc_assert (reload_completed); for (i = 0; i < size; i++) parts[i] = gen_rtx_REG (SImode, REGNO (operand) + i); } else if (offsettable_memref_p (operand)) { operand = adjust_address (operand, SImode, 0); parts[0] = operand; for (i = 1; i < size; i++) parts[i] = adjust_address (operand, SImode, 4 * i); } else if (GET_CODE (operand) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long l[4]; REAL_VALUE_FROM_CONST_DOUBLE (r, operand); switch (mode) { case TFmode: real_to_target (l, &r, mode); parts[3] = gen_int_mode (l[3], SImode); parts[2] = gen_int_mode (l[2], SImode); break; case XFmode: REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l); parts[2] = gen_int_mode (l[2], SImode); break; case DFmode: REAL_VALUE_TO_TARGET_DOUBLE (r, l); break; default: gcc_unreachable (); } parts[1] = gen_int_mode (l[1], SImode); parts[0] = gen_int_mode (l[0], SImode); } else gcc_unreachable (); } } else { if (mode == TImode) split_ti (&operand, 1, &parts[0], &parts[1]); if (mode == XFmode || mode == TFmode) { enum machine_mode upper_mode = mode==XFmode ? SImode : DImode; if (REG_P (operand)) { gcc_assert (reload_completed); parts[0] = gen_rtx_REG (DImode, REGNO (operand) + 0); parts[1] = gen_rtx_REG (upper_mode, REGNO (operand) + 1); } else if (offsettable_memref_p (operand)) { operand = adjust_address (operand, DImode, 0); parts[0] = operand; parts[1] = adjust_address (operand, upper_mode, 8); } else if (GET_CODE (operand) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long l[4]; REAL_VALUE_FROM_CONST_DOUBLE (r, operand); real_to_target (l, &r, mode); /* Do not use shift by 32 to avoid warning on 32bit systems. */ if (HOST_BITS_PER_WIDE_INT >= 64) parts[0] = gen_int_mode ((l[0] & (((HOST_WIDE_INT) 2 << 31) - 1)) + ((((HOST_WIDE_INT) l[1]) << 31) << 1), DImode); else parts[0] = immed_double_const (l[0], l[1], DImode); if (upper_mode == SImode) parts[1] = gen_int_mode (l[2], SImode); else if (HOST_BITS_PER_WIDE_INT >= 64) parts[1] = gen_int_mode ((l[2] & (((HOST_WIDE_INT) 2 << 31) - 1)) + ((((HOST_WIDE_INT) l[3]) << 31) << 1), DImode); else parts[1] = immed_double_const (l[2], l[3], DImode); } else gcc_unreachable (); } } return size; } /* Emit insns to perform a move or push of DI, DF, XF, and TF values. Return false when normal moves are needed; true when all required insns have been emitted. Operands 2-4 contain the input values int the correct order; operands 5-7 contain the output values. */ void ix86_split_long_move (rtx operands[]) { rtx part[2][4]; int nparts, i, j; int push = 0; int collisions = 0; enum machine_mode mode = GET_MODE (operands[0]); bool collisionparts[4]; /* The DFmode expanders may ask us to move double. For 64bit target this is single move. By hiding the fact here we simplify i386.md splitters. */ if (GET_MODE_SIZE (GET_MODE (operands[0])) == 8 && TARGET_64BIT) { /* Optimize constant pool reference to immediates. This is used by fp moves, that force all constants to memory to allow combining. */ if (MEM_P (operands[1]) && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) operands[1] = get_pool_constant (XEXP (operands[1], 0)); if (push_operand (operands[0], VOIDmode)) { operands[0] = copy_rtx (operands[0]); PUT_MODE (operands[0], Pmode); } else operands[0] = gen_lowpart (DImode, operands[0]); operands[1] = gen_lowpart (DImode, operands[1]); emit_move_insn (operands[0], operands[1]); return; } /* The only non-offsettable memory we handle is push. */ if (push_operand (operands[0], VOIDmode)) push = 1; else gcc_assert (!MEM_P (operands[0]) || offsettable_memref_p (operands[0])); nparts = ix86_split_to_parts (operands[1], part[1], GET_MODE (operands[0])); ix86_split_to_parts (operands[0], part[0], GET_MODE (operands[0])); /* When emitting push, take care for source operands on the stack. */ if (push && MEM_P (operands[1]) && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1])) { rtx src_base = XEXP (part[1][nparts - 1], 0); /* Compensate for the stack decrement by 4. */ if (!TARGET_64BIT && nparts == 3 && mode == XFmode && TARGET_128BIT_LONG_DOUBLE) src_base = plus_constant (src_base, 4); /* src_base refers to the stack pointer and is automatically decreased by emitted push. */ for (i = 0; i < nparts; i++) part[1][i] = change_address (part[1][i], GET_MODE (part[1][i]), src_base); } /* We need to do copy in the right order in case an address register of the source overlaps the destination. */ if (REG_P (part[0][0]) && MEM_P (part[1][0])) { rtx tmp; for (i = 0; i < nparts; i++) { collisionparts[i] = reg_overlap_mentioned_p (part[0][i], XEXP (part[1][0], 0)); if (collisionparts[i]) collisions++; } /* Collision in the middle part can be handled by reordering. */ if (collisions == 1 && nparts == 3 && collisionparts [1]) { tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; } else if (collisions == 1 && nparts == 4 && (collisionparts [1] || collisionparts [2])) { if (collisionparts [1]) { tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp; tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp; } else { tmp = part[0][2]; part[0][2] = part[0][3]; part[0][3] = tmp; tmp = part[1][2]; part[1][2] = part[1][3]; part[1][3] = tmp; } } /* If there are more collisions, we can't handle it by reordering. Do an lea to the last part and use only one colliding move. */ else if (collisions > 1) { rtx base; collisions = 1; base = part[0][nparts - 1]; /* Handle the case when the last part isn't valid for lea. Happens in 64-bit mode storing the 12-byte XFmode. */ if (GET_MODE (base) != Pmode) base = gen_rtx_REG (Pmode, REGNO (base)); emit_insn (gen_rtx_SET (VOIDmode, base, XEXP (part[1][0], 0))); part[1][0] = replace_equiv_address (part[1][0], base); for (i = 1; i < nparts; i++) { tmp = plus_constant (base, UNITS_PER_WORD * i); part[1][i] = replace_equiv_address (part[1][i], tmp); } } } if (push) { if (!TARGET_64BIT) { if (nparts == 3) { if (TARGET_128BIT_LONG_DOUBLE && mode == XFmode) emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-4))); emit_move_insn (part[0][2], part[1][2]); } else if (nparts == 4) { emit_move_insn (part[0][3], part[1][3]); emit_move_insn (part[0][2], part[1][2]); } } else { /* In 64bit mode we don't have 32bit push available. In case this is register, it is OK - we will just use larger counterpart. We also retype memory - these comes from attempt to avoid REX prefix on moving of second half of TFmode value. */ if (GET_MODE (part[1][1]) == SImode) { switch (GET_CODE (part[1][1])) { case MEM: part[1][1] = adjust_address (part[1][1], DImode, 0); break; case REG: part[1][1] = gen_rtx_REG (DImode, REGNO (part[1][1])); break; default: gcc_unreachable (); } if (GET_MODE (part[1][0]) == SImode) part[1][0] = part[1][1]; } } emit_move_insn (part[0][1], part[1][1]); emit_move_insn (part[0][0], part[1][0]); return; } /* Choose correct order to not overwrite the source before it is copied. */ if ((REG_P (part[0][0]) && REG_P (part[1][1]) && (REGNO (part[0][0]) == REGNO (part[1][1]) || (nparts == 3 && REGNO (part[0][0]) == REGNO (part[1][2])) || (nparts == 4 && REGNO (part[0][0]) == REGNO (part[1][3])))) || (collisions > 0 && reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0)))) { for (i = 0, j = nparts - 1; i < nparts; i++, j--) { operands[2 + i] = part[0][j]; operands[6 + i] = part[1][j]; } } else { for (i = 0; i < nparts; i++) { operands[2 + i] = part[0][i]; operands[6 + i] = part[1][i]; } } /* If optimizing for size, attempt to locally unCSE nonzero constants. */ if (optimize_insn_for_size_p ()) { for (j = 0; j < nparts - 1; j++) if (CONST_INT_P (operands[6 + j]) && operands[6 + j] != const0_rtx && REG_P (operands[2 + j])) for (i = j; i < nparts - 1; i++) if (CONST_INT_P (operands[7 + i]) && INTVAL (operands[7 + i]) == INTVAL (operands[6 + j])) operands[7 + i] = operands[2 + j]; } for (i = 0; i < nparts; i++) emit_move_insn (operands[2 + i], operands[6 + i]); return; } /* Helper function of ix86_split_ashl used to generate an SImode/DImode left shift by a constant, either using a single shift or a sequence of add instructions. */ static void ix86_expand_ashl_const (rtx operand, int count, enum machine_mode mode) { if (count == 1) { emit_insn ((mode == DImode ? gen_addsi3 : gen_adddi3) (operand, operand, operand)); } else if (!optimize_insn_for_size_p () && count * ix86_cost->add <= ix86_cost->shift_const) { int i; for (i=0; i<count; i++) { emit_insn ((mode == DImode ? gen_addsi3 : gen_adddi3) (operand, operand, operand)); } } else emit_insn ((mode == DImode ? gen_ashlsi3 : gen_ashldi3) (operand, operand, GEN_INT (count))); } void ix86_split_ashl (rtx *operands, rtx scratch, enum machine_mode mode) { rtx low[2], high[2]; int count; const int single_width = mode == DImode ? 32 : 64; if (CONST_INT_P (operands[2])) { (mode == DImode ? split_di : split_ti) (operands, 2, low, high); count = INTVAL (operands[2]) & (single_width * 2 - 1); if (count >= single_width) { emit_move_insn (high[0], low[1]); emit_move_insn (low[0], const0_rtx); if (count > single_width) ix86_expand_ashl_const (high[0], count - single_width, mode); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn ((mode == DImode ? gen_x86_shld : gen_x86_64_shld) (high[0], low[0], GEN_INT (count))); ix86_expand_ashl_const (low[0], count, mode); } return; } (mode == DImode ? split_di : split_ti) (operands, 1, low, high); if (operands[1] == const1_rtx) { /* Assuming we've chosen a QImode capable registers, then 1 << N can be done with two 32/64-bit shifts, no branches, no cmoves. */ if (ANY_QI_REG_P (low[0]) && ANY_QI_REG_P (high[0])) { rtx s, d, flags = gen_rtx_REG (CCZmode, FLAGS_REG); ix86_expand_clear (low[0]); ix86_expand_clear (high[0]); emit_insn (gen_testqi_ccz_1 (operands[2], GEN_INT (single_width))); d = gen_lowpart (QImode, low[0]); d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); s = gen_rtx_EQ (QImode, flags, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, d, s)); d = gen_lowpart (QImode, high[0]); d = gen_rtx_STRICT_LOW_PART (VOIDmode, d); s = gen_rtx_NE (QImode, flags, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, d, s)); } /* Otherwise, we can get the same results by manually performing a bit extract operation on bit 5/6, and then performing the two shifts. The two methods of getting 0/1 into low/high are exactly the same size. Avoiding the shift in the bit extract case helps pentium4 a bit; no one else seems to care much either way. */ else { rtx x; if (TARGET_PARTIAL_REG_STALL && !optimize_insn_for_size_p ()) x = gen_rtx_ZERO_EXTEND (mode == DImode ? SImode : DImode, operands[2]); else x = gen_lowpart (mode == DImode ? SImode : DImode, operands[2]); emit_insn (gen_rtx_SET (VOIDmode, high[0], x)); emit_insn ((mode == DImode ? gen_lshrsi3 : gen_lshrdi3) (high[0], high[0], GEN_INT (mode == DImode ? 5 : 6))); emit_insn ((mode == DImode ? gen_andsi3 : gen_anddi3) (high[0], high[0], const1_rtx)); emit_move_insn (low[0], high[0]); emit_insn ((mode == DImode ? gen_xorsi3 : gen_xordi3) (low[0], low[0], const1_rtx)); } emit_insn ((mode == DImode ? gen_ashlsi3 : gen_ashldi3) (low[0], low[0], operands[2])); emit_insn ((mode == DImode ? gen_ashlsi3 : gen_ashldi3) (high[0], high[0], operands[2])); return; } if (operands[1] == constm1_rtx) { /* For -1 << N, we can avoid the shld instruction, because we know that we're shifting 0...31/63 ones into a -1. */ emit_move_insn (low[0], constm1_rtx); if (optimize_insn_for_size_p ()) emit_move_insn (high[0], low[0]); else emit_move_insn (high[0], constm1_rtx); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); (mode == DImode ? split_di : split_ti) (operands, 1, low, high); emit_insn ((mode == DImode ? gen_x86_shld : gen_x86_64_shld) (high[0], low[0], operands[2])); } emit_insn ((mode == DImode ? gen_ashlsi3 : gen_ashldi3) (low[0], low[0], operands[2])); if (TARGET_CMOVE && scratch) { ix86_expand_clear (scratch); emit_insn ((mode == DImode ? gen_x86_shift_adj_1 : gen_x86_64_shift_adj_1) (high[0], low[0], operands[2], scratch)); } else emit_insn ((mode == DImode ? gen_x86_shift_adj_2 : gen_x86_64_shift_adj_2) (high[0], low[0], operands[2])); } void ix86_split_ashr (rtx *operands, rtx scratch, enum machine_mode mode) { rtx low[2], high[2]; int count; const int single_width = mode == DImode ? 32 : 64; if (CONST_INT_P (operands[2])) { (mode == DImode ? split_di : split_ti) (operands, 2, low, high); count = INTVAL (operands[2]) & (single_width * 2 - 1); if (count == single_width * 2 - 1) { emit_move_insn (high[0], high[1]); emit_insn ((mode == DImode ? gen_ashrsi3 : gen_ashrdi3) (high[0], high[0], GEN_INT (single_width - 1))); emit_move_insn (low[0], high[0]); } else if (count >= single_width) { emit_move_insn (low[0], high[1]); emit_move_insn (high[0], low[0]); emit_insn ((mode == DImode ? gen_ashrsi3 : gen_ashrdi3) (high[0], high[0], GEN_INT (single_width - 1))); if (count > single_width) emit_insn ((mode == DImode ? gen_ashrsi3 : gen_ashrdi3) (low[0], low[0], GEN_INT (count - single_width))); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn ((mode == DImode ? gen_x86_shrd : gen_x86_64_shrd) (low[0], high[0], GEN_INT (count))); emit_insn ((mode == DImode ? gen_ashrsi3 : gen_ashrdi3) (high[0], high[0], GEN_INT (count))); } } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); (mode == DImode ? split_di : split_ti) (operands, 1, low, high); emit_insn ((mode == DImode ? gen_x86_shrd : gen_x86_64_shrd) (low[0], high[0], operands[2])); emit_insn ((mode == DImode ? gen_ashrsi3 : gen_ashrdi3) (high[0], high[0], operands[2])); if (TARGET_CMOVE && scratch) { emit_move_insn (scratch, high[0]); emit_insn ((mode == DImode ? gen_ashrsi3 : gen_ashrdi3) (scratch, scratch, GEN_INT (single_width - 1))); emit_insn ((mode == DImode ? gen_x86_shift_adj_1 : gen_x86_64_shift_adj_1) (low[0], high[0], operands[2], scratch)); } else emit_insn ((mode == DImode ? gen_x86_shift_adj_3 : gen_x86_64_shift_adj_3) (low[0], high[0], operands[2])); } } void ix86_split_lshr (rtx *operands, rtx scratch, enum machine_mode mode) { rtx low[2], high[2]; int count; const int single_width = mode == DImode ? 32 : 64; if (CONST_INT_P (operands[2])) { (mode == DImode ? split_di : split_ti) (operands, 2, low, high); count = INTVAL (operands[2]) & (single_width * 2 - 1); if (count >= single_width) { emit_move_insn (low[0], high[1]); ix86_expand_clear (high[0]); if (count > single_width) emit_insn ((mode == DImode ? gen_lshrsi3 : gen_lshrdi3) (low[0], low[0], GEN_INT (count - single_width))); } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); emit_insn ((mode == DImode ? gen_x86_shrd : gen_x86_64_shrd) (low[0], high[0], GEN_INT (count))); emit_insn ((mode == DImode ? gen_lshrsi3 : gen_lshrdi3) (high[0], high[0], GEN_INT (count))); } } else { if (!rtx_equal_p (operands[0], operands[1])) emit_move_insn (operands[0], operands[1]); (mode == DImode ? split_di : split_ti) (operands, 1, low, high); emit_insn ((mode == DImode ? gen_x86_shrd : gen_x86_64_shrd) (low[0], high[0], operands[2])); emit_insn ((mode == DImode ? gen_lshrsi3 : gen_lshrdi3) (high[0], high[0], operands[2])); /* Heh. By reversing the arguments, we can reuse this pattern. */ if (TARGET_CMOVE && scratch) { ix86_expand_clear (scratch); emit_insn ((mode == DImode ? gen_x86_shift_adj_1 : gen_x86_64_shift_adj_1) (low[0], high[0], operands[2], scratch)); } else emit_insn ((mode == DImode ? gen_x86_shift_adj_2 : gen_x86_64_shift_adj_2) (low[0], high[0], operands[2])); } } /* Predict just emitted jump instruction to be taken with probability PROB. */ static void predict_jump (int prob) { rtx insn = get_last_insn (); gcc_assert (JUMP_P (insn)); add_reg_note (insn, REG_BR_PROB, GEN_INT (prob)); } /* Helper function for the string operations below. Dest VARIABLE whether it is aligned to VALUE bytes. If true, jump to the label. */ static rtx ix86_expand_aligntest (rtx variable, int value, bool epilogue) { rtx label = gen_label_rtx (); rtx tmpcount = gen_reg_rtx (GET_MODE (variable)); if (GET_MODE (variable) == DImode) emit_insn (gen_anddi3 (tmpcount, variable, GEN_INT (value))); else emit_insn (gen_andsi3 (tmpcount, variable, GEN_INT (value))); emit_cmp_and_jump_insns (tmpcount, const0_rtx, EQ, 0, GET_MODE (variable), 1, label); if (epilogue) predict_jump (REG_BR_PROB_BASE * 50 / 100); else predict_jump (REG_BR_PROB_BASE * 90 / 100); return label; } /* Adjust COUNTER by the VALUE. */ static void ix86_adjust_counter (rtx countreg, HOST_WIDE_INT value) { if (GET_MODE (countreg) == DImode) emit_insn (gen_adddi3 (countreg, countreg, GEN_INT (-value))); else emit_insn (gen_addsi3 (countreg, countreg, GEN_INT (-value))); } /* Zero extend possibly SImode EXP to Pmode register. */ rtx ix86_zero_extend_to_Pmode (rtx exp) { rtx r; if (GET_MODE (exp) == VOIDmode) return force_reg (Pmode, exp); if (GET_MODE (exp) == Pmode) return copy_to_mode_reg (Pmode, exp); r = gen_reg_rtx (Pmode); emit_insn (gen_zero_extendsidi2 (r, exp)); return r; } /* Divide COUNTREG by SCALE. */ static rtx scale_counter (rtx countreg, int scale) { rtx sc; if (scale == 1) return countreg; if (CONST_INT_P (countreg)) return GEN_INT (INTVAL (countreg) / scale); gcc_assert (REG_P (countreg)); sc = expand_simple_binop (GET_MODE (countreg), LSHIFTRT, countreg, GEN_INT (exact_log2 (scale)), NULL, 1, OPTAB_DIRECT); return sc; } /* Return mode for the memcpy/memset loop counter. Prefer SImode over DImode for constant loop counts. */ static enum machine_mode counter_mode (rtx count_exp) { if (GET_MODE (count_exp) != VOIDmode) return GET_MODE (count_exp); if (!CONST_INT_P (count_exp)) return Pmode; if (TARGET_64BIT && (INTVAL (count_exp) & ~0xffffffff)) return DImode; return SImode; } /* When SRCPTR is non-NULL, output simple loop to move memory pointer to SRCPTR to DESTPTR via chunks of MODE unrolled UNROLL times, overall size is COUNT specified in bytes. When SRCPTR is NULL, output the equivalent loop to set memory by VALUE (supposed to be in MODE). The size is rounded down to whole number of chunk size moved at once. SRCMEM and DESTMEM provide MEMrtx to feed proper aliasing info. */ static void expand_set_or_movmem_via_loop (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx value, rtx count, enum machine_mode mode, int unroll, int expected_size) { rtx out_label, top_label, iter, tmp; enum machine_mode iter_mode = counter_mode (count); rtx piece_size = GEN_INT (GET_MODE_SIZE (mode) * unroll); rtx piece_size_mask = GEN_INT (~((GET_MODE_SIZE (mode) * unroll) - 1)); rtx size; rtx x_addr; rtx y_addr; int i; top_label = gen_label_rtx (); out_label = gen_label_rtx (); iter = gen_reg_rtx (iter_mode); size = expand_simple_binop (iter_mode, AND, count, piece_size_mask, NULL, 1, OPTAB_DIRECT); /* Those two should combine. */ if (piece_size == const1_rtx) { emit_cmp_and_jump_insns (size, const0_rtx, EQ, NULL_RTX, iter_mode, true, out_label); predict_jump (REG_BR_PROB_BASE * 10 / 100); } emit_move_insn (iter, const0_rtx); emit_label (top_label); tmp = convert_modes (Pmode, iter_mode, iter, true); x_addr = gen_rtx_PLUS (Pmode, destptr, tmp); destmem = change_address (destmem, mode, x_addr); if (srcmem) { y_addr = gen_rtx_PLUS (Pmode, srcptr, copy_rtx (tmp)); srcmem = change_address (srcmem, mode, y_addr); /* When unrolling for chips that reorder memory reads and writes, we can save registers by using single temporary. Also using 4 temporaries is overkill in 32bit mode. */ if (!TARGET_64BIT && 0) { for (i = 0; i < unroll; i++) { if (i) { destmem = adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); srcmem = adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode)); } emit_move_insn (destmem, srcmem); } } else { rtx tmpreg[4]; gcc_assert (unroll <= 4); for (i = 0; i < unroll; i++) { tmpreg[i] = gen_reg_rtx (mode); if (i) { srcmem = adjust_address (copy_rtx (srcmem), mode, GET_MODE_SIZE (mode)); } emit_move_insn (tmpreg[i], srcmem); } for (i = 0; i < unroll; i++) { if (i) { destmem = adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); } emit_move_insn (destmem, tmpreg[i]); } } } else for (i = 0; i < unroll; i++) { if (i) destmem = adjust_address (copy_rtx (destmem), mode, GET_MODE_SIZE (mode)); emit_move_insn (destmem, value); } tmp = expand_simple_binop (iter_mode, PLUS, iter, piece_size, iter, true, OPTAB_LIB_WIDEN); if (tmp != iter) emit_move_insn (iter, tmp); emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode, true, top_label); if (expected_size != -1) { expected_size /= GET_MODE_SIZE (mode) * unroll; if (expected_size == 0) predict_jump (0); else if (expected_size > REG_BR_PROB_BASE) predict_jump (REG_BR_PROB_BASE - 1); else predict_jump (REG_BR_PROB_BASE - (REG_BR_PROB_BASE + expected_size / 2) / expected_size); } else predict_jump (REG_BR_PROB_BASE * 80 / 100); iter = ix86_zero_extend_to_Pmode (iter); tmp = expand_simple_binop (Pmode, PLUS, destptr, iter, destptr, true, OPTAB_LIB_WIDEN); if (tmp != destptr) emit_move_insn (destptr, tmp); if (srcptr) { tmp = expand_simple_binop (Pmode, PLUS, srcptr, iter, srcptr, true, OPTAB_LIB_WIDEN); if (tmp != srcptr) emit_move_insn (srcptr, tmp); } emit_label (out_label); } /* Output "rep; mov" instruction. Arguments have same meaning as for previous function */ static void expand_movmem_via_rep_mov (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx count, enum machine_mode mode) { rtx destexp; rtx srcexp; rtx countreg; /* If the size is known, it is shorter to use rep movs. */ if (mode == QImode && CONST_INT_P (count) && !(INTVAL (count) & 3)) mode = SImode; if (destptr != XEXP (destmem, 0) || GET_MODE (destmem) != BLKmode) destmem = adjust_automodify_address_nv (destmem, BLKmode, destptr, 0); if (srcptr != XEXP (srcmem, 0) || GET_MODE (srcmem) != BLKmode) srcmem = adjust_automodify_address_nv (srcmem, BLKmode, srcptr, 0); countreg = ix86_zero_extend_to_Pmode (scale_counter (count, GET_MODE_SIZE (mode))); if (mode != QImode) { destexp = gen_rtx_ASHIFT (Pmode, countreg, GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); destexp = gen_rtx_PLUS (Pmode, destexp, destptr); srcexp = gen_rtx_ASHIFT (Pmode, countreg, GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); srcexp = gen_rtx_PLUS (Pmode, srcexp, srcptr); } else { destexp = gen_rtx_PLUS (Pmode, destptr, countreg); srcexp = gen_rtx_PLUS (Pmode, srcptr, countreg); } if (CONST_INT_P (count)) { count = GEN_INT (INTVAL (count) & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1)); destmem = shallow_copy_rtx (destmem); srcmem = shallow_copy_rtx (srcmem); set_mem_size (destmem, count); set_mem_size (srcmem, count); } else { if (MEM_SIZE (destmem)) set_mem_size (destmem, NULL_RTX); if (MEM_SIZE (srcmem)) set_mem_size (srcmem, NULL_RTX); } emit_insn (gen_rep_mov (destptr, destmem, srcptr, srcmem, countreg, destexp, srcexp)); } /* Output "rep; stos" instruction. Arguments have same meaning as for previous function */ static void expand_setmem_via_rep_stos (rtx destmem, rtx destptr, rtx value, rtx count, enum machine_mode mode, rtx orig_value) { rtx destexp; rtx countreg; if (destptr != XEXP (destmem, 0) || GET_MODE (destmem) != BLKmode) destmem = adjust_automodify_address_nv (destmem, BLKmode, destptr, 0); value = force_reg (mode, gen_lowpart (mode, value)); countreg = ix86_zero_extend_to_Pmode (scale_counter (count, GET_MODE_SIZE (mode))); if (mode != QImode) { destexp = gen_rtx_ASHIFT (Pmode, countreg, GEN_INT (exact_log2 (GET_MODE_SIZE (mode)))); destexp = gen_rtx_PLUS (Pmode, destexp, destptr); } else destexp = gen_rtx_PLUS (Pmode, destptr, countreg); if (orig_value == const0_rtx && CONST_INT_P (count)) { count = GEN_INT (INTVAL (count) & ~((HOST_WIDE_INT) GET_MODE_SIZE (mode) - 1)); destmem = shallow_copy_rtx (destmem); set_mem_size (destmem, count); } else if (MEM_SIZE (destmem)) set_mem_size (destmem, NULL_RTX); emit_insn (gen_rep_stos (destptr, countreg, destmem, value, destexp)); } static void emit_strmov (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, enum machine_mode mode, int offset) { rtx src = adjust_automodify_address_nv (srcmem, mode, srcptr, offset); rtx dest = adjust_automodify_address_nv (destmem, mode, destptr, offset); emit_insn (gen_strmov (destptr, dest, srcptr, src)); } /* Output code to copy at most count & (max_size - 1) bytes from SRC to DEST. */ static void expand_movmem_epilogue (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx count, int max_size) { rtx src, dest; if (CONST_INT_P (count)) { HOST_WIDE_INT countval = INTVAL (count); int offset = 0; if ((countval & 0x10) && max_size > 16) { if (TARGET_64BIT) { emit_strmov (destmem, srcmem, destptr, srcptr, DImode, offset); emit_strmov (destmem, srcmem, destptr, srcptr, DImode, offset + 8); } else gcc_unreachable (); offset += 16; } if ((countval & 0x08) && max_size > 8) { if (TARGET_64BIT) emit_strmov (destmem, srcmem, destptr, srcptr, DImode, offset); else { emit_strmov (destmem, srcmem, destptr, srcptr, SImode, offset); emit_strmov (destmem, srcmem, destptr, srcptr, SImode, offset + 4); } offset += 8; } if ((countval & 0x04) && max_size > 4) { emit_strmov (destmem, srcmem, destptr, srcptr, SImode, offset); offset += 4; } if ((countval & 0x02) && max_size > 2) { emit_strmov (destmem, srcmem, destptr, srcptr, HImode, offset); offset += 2; } if ((countval & 0x01) && max_size > 1) { emit_strmov (destmem, srcmem, destptr, srcptr, QImode, offset); offset += 1; } return; } if (max_size > 8) { count = expand_simple_binop (GET_MODE (count), AND, count, GEN_INT (max_size - 1), count, 1, OPTAB_DIRECT); expand_set_or_movmem_via_loop (destmem, srcmem, destptr, srcptr, NULL, count, QImode, 1, 4); return; } /* When there are stringops, we can cheaply increase dest and src pointers. Otherwise we save code size by maintaining offset (zero is readily available from preceding rep operation) and using x86 addressing modes. */ if (TARGET_SINGLE_STRINGOP) { if (max_size > 4) { rtx label = ix86_expand_aligntest (count, 4, true); src = change_address (srcmem, SImode, srcptr); dest = change_address (destmem, SImode, destptr); emit_insn (gen_strmov (destptr, dest, srcptr, src)); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 2) { rtx label = ix86_expand_aligntest (count, 2, true); src = change_address (srcmem, HImode, srcptr); dest = change_address (destmem, HImode, destptr); emit_insn (gen_strmov (destptr, dest, srcptr, src)); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 1) { rtx label = ix86_expand_aligntest (count, 1, true); src = change_address (srcmem, QImode, srcptr); dest = change_address (destmem, QImode, destptr); emit_insn (gen_strmov (destptr, dest, srcptr, src)); emit_label (label); LABEL_NUSES (label) = 1; } } else { rtx offset = force_reg (Pmode, const0_rtx); rtx tmp; if (max_size > 4) { rtx label = ix86_expand_aligntest (count, 4, true); src = change_address (srcmem, SImode, srcptr); dest = change_address (destmem, SImode, destptr); emit_move_insn (dest, src); tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (4), NULL, true, OPTAB_LIB_WIDEN); if (tmp != offset) emit_move_insn (offset, tmp); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 2) { rtx label = ix86_expand_aligntest (count, 2, true); tmp = gen_rtx_PLUS (Pmode, srcptr, offset); src = change_address (srcmem, HImode, tmp); tmp = gen_rtx_PLUS (Pmode, destptr, offset); dest = change_address (destmem, HImode, tmp); emit_move_insn (dest, src); tmp = expand_simple_binop (Pmode, PLUS, offset, GEN_INT (2), tmp, true, OPTAB_LIB_WIDEN); if (tmp != offset) emit_move_insn (offset, tmp); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 1) { rtx label = ix86_expand_aligntest (count, 1, true); tmp = gen_rtx_PLUS (Pmode, srcptr, offset); src = change_address (srcmem, QImode, tmp); tmp = gen_rtx_PLUS (Pmode, destptr, offset); dest = change_address (destmem, QImode, tmp); emit_move_insn (dest, src); emit_label (label); LABEL_NUSES (label) = 1; } } } /* Output code to set at most count & (max_size - 1) bytes starting by DEST. */ static void expand_setmem_epilogue_via_loop (rtx destmem, rtx destptr, rtx value, rtx count, int max_size) { count = expand_simple_binop (counter_mode (count), AND, count, GEN_INT (max_size - 1), count, 1, OPTAB_DIRECT); expand_set_or_movmem_via_loop (destmem, NULL, destptr, NULL, gen_lowpart (QImode, value), count, QImode, 1, max_size / 2); } /* Output code to set at most count & (max_size - 1) bytes starting by DEST. */ static void expand_setmem_epilogue (rtx destmem, rtx destptr, rtx value, rtx count, int max_size) { rtx dest; if (CONST_INT_P (count)) { HOST_WIDE_INT countval = INTVAL (count); int offset = 0; if ((countval & 0x10) && max_size > 16) { if (TARGET_64BIT) { dest = adjust_automodify_address_nv (destmem, DImode, destptr, offset); emit_insn (gen_strset (destptr, dest, value)); dest = adjust_automodify_address_nv (destmem, DImode, destptr, offset + 8); emit_insn (gen_strset (destptr, dest, value)); } else gcc_unreachable (); offset += 16; } if ((countval & 0x08) && max_size > 8) { if (TARGET_64BIT) { dest = adjust_automodify_address_nv (destmem, DImode, destptr, offset); emit_insn (gen_strset (destptr, dest, value)); } else { dest = adjust_automodify_address_nv (destmem, SImode, destptr, offset); emit_insn (gen_strset (destptr, dest, value)); dest = adjust_automodify_address_nv (destmem, SImode, destptr, offset + 4); emit_insn (gen_strset (destptr, dest, value)); } offset += 8; } if ((countval & 0x04) && max_size > 4) { dest = adjust_automodify_address_nv (destmem, SImode, destptr, offset); emit_insn (gen_strset (destptr, dest, gen_lowpart (SImode, value))); offset += 4; } if ((countval & 0x02) && max_size > 2) { dest = adjust_automodify_address_nv (destmem, HImode, destptr, offset); emit_insn (gen_strset (destptr, dest, gen_lowpart (HImode, value))); offset += 2; } if ((countval & 0x01) && max_size > 1) { dest = adjust_automodify_address_nv (destmem, QImode, destptr, offset); emit_insn (gen_strset (destptr, dest, gen_lowpart (QImode, value))); offset += 1; } return; } if (max_size > 32) { expand_setmem_epilogue_via_loop (destmem, destptr, value, count, max_size); return; } if (max_size > 16) { rtx label = ix86_expand_aligntest (count, 16, true); if (TARGET_64BIT) { dest = change_address (destmem, DImode, destptr); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); } else { dest = change_address (destmem, SImode, destptr); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); } emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 8) { rtx label = ix86_expand_aligntest (count, 8, true); if (TARGET_64BIT) { dest = change_address (destmem, DImode, destptr); emit_insn (gen_strset (destptr, dest, value)); } else { dest = change_address (destmem, SImode, destptr); emit_insn (gen_strset (destptr, dest, value)); emit_insn (gen_strset (destptr, dest, value)); } emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 4) { rtx label = ix86_expand_aligntest (count, 4, true); dest = change_address (destmem, SImode, destptr); emit_insn (gen_strset (destptr, dest, gen_lowpart (SImode, value))); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 2) { rtx label = ix86_expand_aligntest (count, 2, true); dest = change_address (destmem, HImode, destptr); emit_insn (gen_strset (destptr, dest, gen_lowpart (HImode, value))); emit_label (label); LABEL_NUSES (label) = 1; } if (max_size > 1) { rtx label = ix86_expand_aligntest (count, 1, true); dest = change_address (destmem, QImode, destptr); emit_insn (gen_strset (destptr, dest, gen_lowpart (QImode, value))); emit_label (label); LABEL_NUSES (label) = 1; } } /* Copy enough from DEST to SRC to align DEST known to by aligned by ALIGN to DESIRED_ALIGNMENT. */ static void expand_movmem_prologue (rtx destmem, rtx srcmem, rtx destptr, rtx srcptr, rtx count, int align, int desired_alignment) { if (align <= 1 && desired_alignment > 1) { rtx label = ix86_expand_aligntest (destptr, 1, false); srcmem = change_address (srcmem, QImode, srcptr); destmem = change_address (destmem, QImode, destptr); emit_insn (gen_strmov (destptr, destmem, srcptr, srcmem)); ix86_adjust_counter (count, 1); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 2 && desired_alignment > 2) { rtx label = ix86_expand_aligntest (destptr, 2, false); srcmem = change_address (srcmem, HImode, srcptr); destmem = change_address (destmem, HImode, destptr); emit_insn (gen_strmov (destptr, destmem, srcptr, srcmem)); ix86_adjust_counter (count, 2); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 4 && desired_alignment > 4) { rtx label = ix86_expand_aligntest (destptr, 4, false); srcmem = change_address (srcmem, SImode, srcptr); destmem = change_address (destmem, SImode, destptr); emit_insn (gen_strmov (destptr, destmem, srcptr, srcmem)); ix86_adjust_counter (count, 4); emit_label (label); LABEL_NUSES (label) = 1; } gcc_assert (desired_alignment <= 8); } /* Copy enough from DST to SRC to align DST known to DESIRED_ALIGN. ALIGN_BYTES is how many bytes need to be copied. */ static rtx expand_constant_movmem_prologue (rtx dst, rtx *srcp, rtx destreg, rtx srcreg, int desired_align, int align_bytes) { rtx src = *srcp; rtx src_size, dst_size; int off = 0; int src_align_bytes = get_mem_align_offset (src, desired_align * BITS_PER_UNIT); if (src_align_bytes >= 0) src_align_bytes = desired_align - src_align_bytes; src_size = MEM_SIZE (src); dst_size = MEM_SIZE (dst); if (align_bytes & 1) { dst = adjust_automodify_address_nv (dst, QImode, destreg, 0); src = adjust_automodify_address_nv (src, QImode, srcreg, 0); off = 1; emit_insn (gen_strmov (destreg, dst, srcreg, src)); } if (align_bytes & 2) { dst = adjust_automodify_address_nv (dst, HImode, destreg, off); src = adjust_automodify_address_nv (src, HImode, srcreg, off); if (MEM_ALIGN (dst) < 2 * BITS_PER_UNIT) set_mem_align (dst, 2 * BITS_PER_UNIT); if (src_align_bytes >= 0 && (src_align_bytes & 1) == (align_bytes & 1) && MEM_ALIGN (src) < 2 * BITS_PER_UNIT) set_mem_align (src, 2 * BITS_PER_UNIT); off = 2; emit_insn (gen_strmov (destreg, dst, srcreg, src)); } if (align_bytes & 4) { dst = adjust_automodify_address_nv (dst, SImode, destreg, off); src = adjust_automodify_address_nv (src, SImode, srcreg, off); if (MEM_ALIGN (dst) < 4 * BITS_PER_UNIT) set_mem_align (dst, 4 * BITS_PER_UNIT); if (src_align_bytes >= 0) { unsigned int src_align = 0; if ((src_align_bytes & 3) == (align_bytes & 3)) src_align = 4; else if ((src_align_bytes & 1) == (align_bytes & 1)) src_align = 2; if (MEM_ALIGN (src) < src_align * BITS_PER_UNIT) set_mem_align (src, src_align * BITS_PER_UNIT); } off = 4; emit_insn (gen_strmov (destreg, dst, srcreg, src)); } dst = adjust_automodify_address_nv (dst, BLKmode, destreg, off); src = adjust_automodify_address_nv (src, BLKmode, srcreg, off); if (MEM_ALIGN (dst) < (unsigned int) desired_align * BITS_PER_UNIT) set_mem_align (dst, desired_align * BITS_PER_UNIT); if (src_align_bytes >= 0) { unsigned int src_align = 0; if ((src_align_bytes & 7) == (align_bytes & 7)) src_align = 8; else if ((src_align_bytes & 3) == (align_bytes & 3)) src_align = 4; else if ((src_align_bytes & 1) == (align_bytes & 1)) src_align = 2; if (src_align > (unsigned int) desired_align) src_align = desired_align; if (MEM_ALIGN (src) < src_align * BITS_PER_UNIT) set_mem_align (src, src_align * BITS_PER_UNIT); } if (dst_size) set_mem_size (dst, GEN_INT (INTVAL (dst_size) - align_bytes)); if (src_size) set_mem_size (dst, GEN_INT (INTVAL (src_size) - align_bytes)); *srcp = src; return dst; } /* Set enough from DEST to align DEST known to by aligned by ALIGN to DESIRED_ALIGNMENT. */ static void expand_setmem_prologue (rtx destmem, rtx destptr, rtx value, rtx count, int align, int desired_alignment) { if (align <= 1 && desired_alignment > 1) { rtx label = ix86_expand_aligntest (destptr, 1, false); destmem = change_address (destmem, QImode, destptr); emit_insn (gen_strset (destptr, destmem, gen_lowpart (QImode, value))); ix86_adjust_counter (count, 1); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 2 && desired_alignment > 2) { rtx label = ix86_expand_aligntest (destptr, 2, false); destmem = change_address (destmem, HImode, destptr); emit_insn (gen_strset (destptr, destmem, gen_lowpart (HImode, value))); ix86_adjust_counter (count, 2); emit_label (label); LABEL_NUSES (label) = 1; } if (align <= 4 && desired_alignment > 4) { rtx label = ix86_expand_aligntest (destptr, 4, false); destmem = change_address (destmem, SImode, destptr); emit_insn (gen_strset (destptr, destmem, gen_lowpart (SImode, value))); ix86_adjust_counter (count, 4); emit_label (label); LABEL_NUSES (label) = 1; } gcc_assert (desired_alignment <= 8); } /* Set enough from DST to align DST known to by aligned by ALIGN to DESIRED_ALIGN. ALIGN_BYTES is how many bytes need to be stored. */ static rtx expand_constant_setmem_prologue (rtx dst, rtx destreg, rtx value, int desired_align, int align_bytes) { int off = 0; rtx dst_size = MEM_SIZE (dst); if (align_bytes & 1) { dst = adjust_automodify_address_nv (dst, QImode, destreg, 0); off = 1; emit_insn (gen_strset (destreg, dst, gen_lowpart (QImode, value))); } if (align_bytes & 2) { dst = adjust_automodify_address_nv (dst, HImode, destreg, off); if (MEM_ALIGN (dst) < 2 * BITS_PER_UNIT) set_mem_align (dst, 2 * BITS_PER_UNIT); off = 2; emit_insn (gen_strset (destreg, dst, gen_lowpart (HImode, value))); } if (align_bytes & 4) { dst = adjust_automodify_address_nv (dst, SImode, destreg, off); if (MEM_ALIGN (dst) < 4 * BITS_PER_UNIT) set_mem_align (dst, 4 * BITS_PER_UNIT); off = 4; emit_insn (gen_strset (destreg, dst, gen_lowpart (SImode, value))); } dst = adjust_automodify_address_nv (dst, BLKmode, destreg, off); if (MEM_ALIGN (dst) < (unsigned int) desired_align * BITS_PER_UNIT) set_mem_align (dst, desired_align * BITS_PER_UNIT); if (dst_size) set_mem_size (dst, GEN_INT (INTVAL (dst_size) - align_bytes)); return dst; } /* Given COUNT and EXPECTED_SIZE, decide on codegen of string operation. */ static enum stringop_alg decide_alg (HOST_WIDE_INT count, HOST_WIDE_INT expected_size, bool memset, int *dynamic_check) { const struct stringop_algs * algs; bool optimize_for_speed; /* Algorithms using the rep prefix want at least edi and ecx; additionally, memset wants eax and memcpy wants esi. Don't consider such algorithms if the user has appropriated those registers for their own purposes. */ bool rep_prefix_usable = !(fixed_regs[CX_REG] || fixed_regs[DI_REG] || (memset ? fixed_regs[AX_REG] : fixed_regs[SI_REG])); #define ALG_USABLE_P(alg) (rep_prefix_usable \ || (alg != rep_prefix_1_byte \ && alg != rep_prefix_4_byte \ && alg != rep_prefix_8_byte)) const struct processor_costs *cost; /* Even if the string operation call is cold, we still might spend a lot of time processing large blocks. */ if (optimize_function_for_size_p (cfun) || (optimize_insn_for_size_p () && expected_size != -1 && expected_size < 256)) optimize_for_speed = false; else optimize_for_speed = true; cost = optimize_for_speed ? ix86_cost : &ix86_size_cost; *dynamic_check = -1; if (memset) algs = &cost->memset[TARGET_64BIT != 0]; else algs = &cost->memcpy[TARGET_64BIT != 0]; if (stringop_alg != no_stringop && ALG_USABLE_P (stringop_alg)) return stringop_alg; /* rep; movq or rep; movl is the smallest variant. */ else if (!optimize_for_speed) { if (!count || (count & 3)) return rep_prefix_usable ? rep_prefix_1_byte : loop_1_byte; else return rep_prefix_usable ? rep_prefix_4_byte : loop; } /* Very tiny blocks are best handled via the loop, REP is expensive to setup. */ else if (expected_size != -1 && expected_size < 4) return loop_1_byte; else if (expected_size != -1) { unsigned int i; enum stringop_alg alg = libcall; for (i = 0; i < NAX_STRINGOP_ALGS; i++) { /* We get here if the algorithms that were not libcall-based were rep-prefix based and we are unable to use rep prefixes based on global register usage. Break out of the loop and use the heuristic below. */ if (algs->size[i].max == 0) break; if (algs->size[i].max >= expected_size || algs->size[i].max == -1) { enum stringop_alg candidate = algs->size[i].alg; if (candidate != libcall && ALG_USABLE_P (candidate)) alg = candidate; /* Honor TARGET_INLINE_ALL_STRINGOPS by picking last non-libcall inline algorithm. */ if (TARGET_INLINE_ALL_STRINGOPS) { /* When the current size is best to be copied by a libcall, but we are still forced to inline, run the heuristic below that will pick code for medium sized blocks. */ if (alg != libcall) return alg; break; } else if (ALG_USABLE_P (candidate)) return candidate; } } gcc_assert (TARGET_INLINE_ALL_STRINGOPS || !rep_prefix_usable); } /* When asked to inline the call anyway, try to pick meaningful choice. We look for maximal size of block that is faster to copy by hand and take blocks of at most of that size guessing that average size will be roughly half of the block. If this turns out to be bad, we might simply specify the preferred choice in ix86_costs. */ if ((TARGET_INLINE_ALL_STRINGOPS || TARGET_INLINE_STRINGOPS_DYNAMICALLY) && (algs->unknown_size == libcall || !ALG_USABLE_P (algs->unknown_size))) { int max = -1; enum stringop_alg alg; int i; bool any_alg_usable_p = true; for (i = 0; i < NAX_STRINGOP_ALGS; i++) { enum stringop_alg candidate = algs->size[i].alg; any_alg_usable_p = any_alg_usable_p && ALG_USABLE_P (candidate); if (candidate != libcall && candidate && ALG_USABLE_P (candidate)) max = algs->size[i].max; } /* If there aren't any usable algorithms, then recursing on smaller sizes isn't going to find anything. Just return the simple byte-at-a-time copy loop. */ if (!any_alg_usable_p) { /* Pick something reasonable. */ if (TARGET_INLINE_STRINGOPS_DYNAMICALLY) *dynamic_check = 128; return loop_1_byte; } if (max == -1) max = 4096; alg = decide_alg (count, max / 2, memset, dynamic_check); gcc_assert (*dynamic_check == -1); gcc_assert (alg != libcall); if (TARGET_INLINE_STRINGOPS_DYNAMICALLY) *dynamic_check = max; return alg; } return ALG_USABLE_P (algs->unknown_size) ? algs->unknown_size : libcall; #undef ALG_USABLE_P } /* Decide on alignment. We know that the operand is already aligned to ALIGN (ALIGN can be based on profile feedback and thus it is not 100% guaranteed). */ static int decide_alignment (int align, enum stringop_alg alg, int expected_size) { int desired_align = 0; switch (alg) { case no_stringop: gcc_unreachable (); case loop: case unrolled_loop: desired_align = GET_MODE_SIZE (Pmode); break; case rep_prefix_8_byte: desired_align = 8; break; case rep_prefix_4_byte: /* PentiumPro has special logic triggering for 8 byte aligned blocks. copying whole cacheline at once. */ if (TARGET_PENTIUMPRO) desired_align = 8; else desired_align = 4; break; case rep_prefix_1_byte: /* PentiumPro has special logic triggering for 8 byte aligned blocks. copying whole cacheline at once. */ if (TARGET_PENTIUMPRO) desired_align = 8; else desired_align = 1; break; case loop_1_byte: desired_align = 1; break; case libcall: return 0; } if (optimize_size) desired_align = 1; if (desired_align < align) desired_align = align; if (expected_size != -1 && expected_size < 4) desired_align = align; return desired_align; } /* Return the smallest power of 2 greater than VAL. */ static int smallest_pow2_greater_than (int val) { int ret = 1; while (ret <= val) ret <<= 1; return ret; } /* Expand string move (memcpy) operation. Use i386 string operations when profitable. expand_setmem contains similar code. The code depends upon architecture, block size and alignment, but always has the same overall structure: 1) Prologue guard: Conditional that jumps up to epilogues for small blocks that can be handled by epilogue alone. This is faster but also needed for correctness, since prologue assume the block is larger than the desired alignment. Optional dynamic check for size and libcall for large blocks is emitted here too, with -minline-stringops-dynamically. 2) Prologue: copy first few bytes in order to get destination aligned to DESIRED_ALIGN. It is emitted only when ALIGN is less than DESIRED_ALIGN and and up to DESIRED_ALIGN - ALIGN bytes can be copied. We emit either a jump tree on power of two sized blocks, or a byte loop. 3) Main body: the copying loop itself, copying in SIZE_NEEDED chunks with specified algorithm. 4) Epilogue: code copying tail of the block that is too small to be handled by main body (or up to size guarded by prologue guard). */ int ix86_expand_movmem (rtx dst, rtx src, rtx count_exp, rtx align_exp, rtx expected_align_exp, rtx expected_size_exp) { rtx destreg; rtx srcreg; rtx label = NULL; rtx tmp; rtx jump_around_label = NULL; HOST_WIDE_INT align = 1; unsigned HOST_WIDE_INT count = 0; HOST_WIDE_INT expected_size = -1; int size_needed = 0, epilogue_size_needed; int desired_align = 0, align_bytes = 0; enum stringop_alg alg; int dynamic_check; bool need_zero_guard = false; if (CONST_INT_P (align_exp)) align = INTVAL (align_exp); /* i386 can do misaligned access on reasonably increased cost. */ if (CONST_INT_P (expected_align_exp) && INTVAL (expected_align_exp) > align) align = INTVAL (expected_align_exp); /* ALIGN is the minimum of destination and source alignment, but we care here just about destination alignment. */ else if (MEM_ALIGN (dst) > (unsigned HOST_WIDE_INT) align * BITS_PER_UNIT) align = MEM_ALIGN (dst) / BITS_PER_UNIT; if (CONST_INT_P (count_exp)) count = expected_size = INTVAL (count_exp); if (CONST_INT_P (expected_size_exp) && count == 0) expected_size = INTVAL (expected_size_exp); /* Make sure we don't need to care about overflow later on. */ if (count > ((unsigned HOST_WIDE_INT) 1 << 30)) return 0; /* Step 0: Decide on preferred algorithm, desired alignment and size of chunks to be copied by main loop. */ alg = decide_alg (count, expected_size, false, &dynamic_check); desired_align = decide_alignment (align, alg, expected_size); if (!TARGET_ALIGN_STRINGOPS) align = desired_align; if (alg == libcall) return 0; gcc_assert (alg != no_stringop); if (!count) count_exp = copy_to_mode_reg (GET_MODE (count_exp), count_exp); destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0)); srcreg = copy_to_mode_reg (Pmode, XEXP (src, 0)); switch (alg) { case libcall: case no_stringop: gcc_unreachable (); case loop: need_zero_guard = true; size_needed = GET_MODE_SIZE (Pmode); break; case unrolled_loop: need_zero_guard = true; size_needed = GET_MODE_SIZE (Pmode) * (TARGET_64BIT ? 4 : 2); break; case rep_prefix_8_byte: size_needed = 8; break; case rep_prefix_4_byte: size_needed = 4; break; case rep_prefix_1_byte: size_needed = 1; break; case loop_1_byte: need_zero_guard = true; size_needed = 1; break; } epilogue_size_needed = size_needed; /* Step 1: Prologue guard. */ /* Alignment code needs count to be in register. */ if (CONST_INT_P (count_exp) && desired_align > align) { if (INTVAL (count_exp) > desired_align && INTVAL (count_exp) > size_needed) { align_bytes = get_mem_align_offset (dst, desired_align * BITS_PER_UNIT); if (align_bytes <= 0) align_bytes = 0; else align_bytes = desired_align - align_bytes; } if (align_bytes == 0) count_exp = force_reg (counter_mode (count_exp), count_exp); } gcc_assert (desired_align >= 1 && align >= 1); /* Ensure that alignment prologue won't copy past end of block. */ if (size_needed > 1 || (desired_align > 1 && desired_align > align)) { epilogue_size_needed = MAX (size_needed - 1, desired_align - align); /* Epilogue always copies COUNT_EXP & EPILOGUE_SIZE_NEEDED bytes. Make sure it is power of 2. */ epilogue_size_needed = smallest_pow2_greater_than (epilogue_size_needed); if (count) { if (count < (unsigned HOST_WIDE_INT)epilogue_size_needed) { /* If main algorithm works on QImode, no epilogue is needed. For small sizes just don't align anything. */ if (size_needed == 1) desired_align = align; else goto epilogue; } } else { label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (epilogue_size_needed), LTU, 0, counter_mode (count_exp), 1, label); if (expected_size == -1 || expected_size < epilogue_size_needed) predict_jump (REG_BR_PROB_BASE * 60 / 100); else predict_jump (REG_BR_PROB_BASE * 20 / 100); } } /* Emit code to decide on runtime whether library call or inline should be used. */ if (dynamic_check != -1) { if (CONST_INT_P (count_exp)) { if (UINTVAL (count_exp) >= (unsigned HOST_WIDE_INT)dynamic_check) { emit_block_move_via_libcall (dst, src, count_exp, false); count_exp = const0_rtx; goto epilogue; } } else { rtx hot_label = gen_label_rtx (); jump_around_label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (dynamic_check - 1), LEU, 0, GET_MODE (count_exp), 1, hot_label); predict_jump (REG_BR_PROB_BASE * 90 / 100); emit_block_move_via_libcall (dst, src, count_exp, false); emit_jump (jump_around_label); emit_label (hot_label); } } /* Step 2: Alignment prologue. */ if (desired_align > align) { if (align_bytes == 0) { /* Except for the first move in epilogue, we no longer know constant offset in aliasing info. It don't seems to worth the pain to maintain it for the first move, so throw away the info early. */ src = change_address (src, BLKmode, srcreg); dst = change_address (dst, BLKmode, destreg); expand_movmem_prologue (dst, src, destreg, srcreg, count_exp, align, desired_align); } else { /* If we know how many bytes need to be stored before dst is sufficiently aligned, maintain aliasing info accurately. */ dst = expand_constant_movmem_prologue (dst, &src, destreg, srcreg, desired_align, align_bytes); count_exp = plus_constant (count_exp, -align_bytes); count -= align_bytes; } if (need_zero_guard && (count < (unsigned HOST_WIDE_INT) size_needed || (align_bytes == 0 && count < ((unsigned HOST_WIDE_INT) size_needed + desired_align - align)))) { /* It is possible that we copied enough so the main loop will not execute. */ gcc_assert (size_needed > 1); if (label == NULL_RTX) label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (size_needed), LTU, 0, counter_mode (count_exp), 1, label); if (expected_size == -1 || expected_size < (desired_align - align) / 2 + size_needed) predict_jump (REG_BR_PROB_BASE * 20 / 100); else predict_jump (REG_BR_PROB_BASE * 60 / 100); } } if (label && size_needed == 1) { emit_label (label); LABEL_NUSES (label) = 1; label = NULL; epilogue_size_needed = 1; } else if (label == NULL_RTX) epilogue_size_needed = size_needed; /* Step 3: Main loop. */ switch (alg) { case libcall: case no_stringop: gcc_unreachable (); case loop_1_byte: expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, NULL, count_exp, QImode, 1, expected_size); break; case loop: expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, NULL, count_exp, Pmode, 1, expected_size); break; case unrolled_loop: /* Unroll only by factor of 2 in 32bit mode, since we don't have enough registers for 4 temporaries anyway. */ expand_set_or_movmem_via_loop (dst, src, destreg, srcreg, NULL, count_exp, Pmode, TARGET_64BIT ? 4 : 2, expected_size); break; case rep_prefix_8_byte: expand_movmem_via_rep_mov (dst, src, destreg, srcreg, count_exp, DImode); break; case rep_prefix_4_byte: expand_movmem_via_rep_mov (dst, src, destreg, srcreg, count_exp, SImode); break; case rep_prefix_1_byte: expand_movmem_via_rep_mov (dst, src, destreg, srcreg, count_exp, QImode); break; } /* Adjust properly the offset of src and dest memory for aliasing. */ if (CONST_INT_P (count_exp)) { src = adjust_automodify_address_nv (src, BLKmode, srcreg, (count / size_needed) * size_needed); dst = adjust_automodify_address_nv (dst, BLKmode, destreg, (count / size_needed) * size_needed); } else { src = change_address (src, BLKmode, srcreg); dst = change_address (dst, BLKmode, destreg); } /* Step 4: Epilogue to copy the remaining bytes. */ epilogue: if (label) { /* When the main loop is done, COUNT_EXP might hold original count, while we want to copy only COUNT_EXP & SIZE_NEEDED bytes. Epilogue code will actually copy COUNT_EXP & EPILOGUE_SIZE_NEEDED bytes. Compensate if needed. */ if (size_needed < epilogue_size_needed) { tmp = expand_simple_binop (counter_mode (count_exp), AND, count_exp, GEN_INT (size_needed - 1), count_exp, 1, OPTAB_DIRECT); if (tmp != count_exp) emit_move_insn (count_exp, tmp); } emit_label (label); LABEL_NUSES (label) = 1; } if (count_exp != const0_rtx && epilogue_size_needed > 1) expand_movmem_epilogue (dst, src, destreg, srcreg, count_exp, epilogue_size_needed); if (jump_around_label) emit_label (jump_around_label); return 1; } /* Helper function for memcpy. For QImode value 0xXY produce 0xXYXYXYXY of wide specified by MODE. This is essentially a * 0x10101010, but we can do slightly better than synth_mult by unwinding the sequence by hand on CPUs with slow multiply. */ static rtx promote_duplicated_reg (enum machine_mode mode, rtx val) { enum machine_mode valmode = GET_MODE (val); rtx tmp; int nops = mode == DImode ? 3 : 2; gcc_assert (mode == SImode || mode == DImode); if (val == const0_rtx) return copy_to_mode_reg (mode, const0_rtx); if (CONST_INT_P (val)) { HOST_WIDE_INT v = INTVAL (val) & 255; v |= v << 8; v |= v << 16; if (mode == DImode) v |= (v << 16) << 16; return copy_to_mode_reg (mode, gen_int_mode (v, mode)); } if (valmode == VOIDmode) valmode = QImode; if (valmode != QImode) val = gen_lowpart (QImode, val); if (mode == QImode) return val; if (!TARGET_PARTIAL_REG_STALL) nops--; if (ix86_cost->mult_init[mode == DImode ? 3 : 2] + ix86_cost->mult_bit * (mode == DImode ? 8 : 4) <= (ix86_cost->shift_const + ix86_cost->add) * nops + (COSTS_N_INSNS (TARGET_PARTIAL_REG_STALL == 0))) { rtx reg = convert_modes (mode, QImode, val, true); tmp = promote_duplicated_reg (mode, const1_rtx); return expand_simple_binop (mode, MULT, reg, tmp, NULL, 1, OPTAB_DIRECT); } else { rtx reg = convert_modes (mode, QImode, val, true); if (!TARGET_PARTIAL_REG_STALL) if (mode == SImode) emit_insn (gen_movsi_insv_1 (reg, reg)); else emit_insn (gen_movdi_insv_1_rex64 (reg, reg)); else { tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (8), NULL, 1, OPTAB_DIRECT); reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); } tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (16), NULL, 1, OPTAB_DIRECT); reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); if (mode == SImode) return reg; tmp = expand_simple_binop (mode, ASHIFT, reg, GEN_INT (32), NULL, 1, OPTAB_DIRECT); reg = expand_simple_binop (mode, IOR, reg, tmp, reg, 1, OPTAB_DIRECT); return reg; } } /* Duplicate value VAL using promote_duplicated_reg into maximal size that will be needed by main loop copying SIZE_NEEDED chunks and prologue getting alignment from ALIGN to DESIRED_ALIGN. */ static rtx promote_duplicated_reg_to_size (rtx val, int size_needed, int desired_align, int align) { rtx promoted_val; if (TARGET_64BIT && (size_needed > 4 || (desired_align > align && desired_align > 4))) promoted_val = promote_duplicated_reg (DImode, val); else if (size_needed > 2 || (desired_align > align && desired_align > 2)) promoted_val = promote_duplicated_reg (SImode, val); else if (size_needed > 1 || (desired_align > align && desired_align > 1)) promoted_val = promote_duplicated_reg (HImode, val); else promoted_val = val; return promoted_val; } /* Expand string clear operation (bzero). Use i386 string operations when profitable. See expand_movmem comment for explanation of individual steps performed. */ int ix86_expand_setmem (rtx dst, rtx count_exp, rtx val_exp, rtx align_exp, rtx expected_align_exp, rtx expected_size_exp) { rtx destreg; rtx label = NULL; rtx tmp; rtx jump_around_label = NULL; HOST_WIDE_INT align = 1; unsigned HOST_WIDE_INT count = 0; HOST_WIDE_INT expected_size = -1; int size_needed = 0, epilogue_size_needed; int desired_align = 0, align_bytes = 0; enum stringop_alg alg; rtx promoted_val = NULL; bool force_loopy_epilogue = false; int dynamic_check; bool need_zero_guard = false; if (CONST_INT_P (align_exp)) align = INTVAL (align_exp); /* i386 can do misaligned access on reasonably increased cost. */ if (CONST_INT_P (expected_align_exp) && INTVAL (expected_align_exp) > align) align = INTVAL (expected_align_exp); if (CONST_INT_P (count_exp)) count = expected_size = INTVAL (count_exp); if (CONST_INT_P (expected_size_exp) && count == 0) expected_size = INTVAL (expected_size_exp); /* Make sure we don't need to care about overflow later on. */ if (count > ((unsigned HOST_WIDE_INT) 1 << 30)) return 0; /* Step 0: Decide on preferred algorithm, desired alignment and size of chunks to be copied by main loop. */ alg = decide_alg (count, expected_size, true, &dynamic_check); desired_align = decide_alignment (align, alg, expected_size); if (!TARGET_ALIGN_STRINGOPS) align = desired_align; if (alg == libcall) return 0; gcc_assert (alg != no_stringop); if (!count) count_exp = copy_to_mode_reg (counter_mode (count_exp), count_exp); destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0)); switch (alg) { case libcall: case no_stringop: gcc_unreachable (); case loop: need_zero_guard = true; size_needed = GET_MODE_SIZE (Pmode); break; case unrolled_loop: need_zero_guard = true; size_needed = GET_MODE_SIZE (Pmode) * 4; break; case rep_prefix_8_byte: size_needed = 8; break; case rep_prefix_4_byte: size_needed = 4; break; case rep_prefix_1_byte: size_needed = 1; break; case loop_1_byte: need_zero_guard = true; size_needed = 1; break; } epilogue_size_needed = size_needed; /* Step 1: Prologue guard. */ /* Alignment code needs count to be in register. */ if (CONST_INT_P (count_exp) && desired_align > align) { if (INTVAL (count_exp) > desired_align && INTVAL (count_exp) > size_needed) { align_bytes = get_mem_align_offset (dst, desired_align * BITS_PER_UNIT); if (align_bytes <= 0) align_bytes = 0; else align_bytes = desired_align - align_bytes; } if (align_bytes == 0) { enum machine_mode mode = SImode; if (TARGET_64BIT && (count & ~0xffffffff)) mode = DImode; count_exp = force_reg (mode, count_exp); } } /* Do the cheap promotion to allow better CSE across the main loop and epilogue (ie one load of the big constant in the front of all code. */ if (CONST_INT_P (val_exp)) promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed, desired_align, align); /* Ensure that alignment prologue won't copy past end of block. */ if (size_needed > 1 || (desired_align > 1 && desired_align > align)) { epilogue_size_needed = MAX (size_needed - 1, desired_align - align); /* Epilogue always copies COUNT_EXP & (EPILOGUE_SIZE_NEEDED - 1) bytes. Make sure it is power of 2. */ epilogue_size_needed = smallest_pow2_greater_than (epilogue_size_needed); /* To improve performance of small blocks, we jump around the VAL promoting mode. This mean that if the promoted VAL is not constant, we might not use it in the epilogue and have to use byte loop variant. */ if (epilogue_size_needed > 2 && !promoted_val) force_loopy_epilogue = true; if (count) { if (count < (unsigned HOST_WIDE_INT)epilogue_size_needed) { /* If main algorithm works on QImode, no epilogue is needed. For small sizes just don't align anything. */ if (size_needed == 1) desired_align = align; else goto epilogue; } } else { label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (epilogue_size_needed), LTU, 0, counter_mode (count_exp), 1, label); if (expected_size == -1 || expected_size <= epilogue_size_needed) predict_jump (REG_BR_PROB_BASE * 60 / 100); else predict_jump (REG_BR_PROB_BASE * 20 / 100); } } if (dynamic_check != -1) { rtx hot_label = gen_label_rtx (); jump_around_label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (dynamic_check - 1), LEU, 0, counter_mode (count_exp), 1, hot_label); predict_jump (REG_BR_PROB_BASE * 90 / 100); set_storage_via_libcall (dst, count_exp, val_exp, false); emit_jump (jump_around_label); emit_label (hot_label); } /* Step 2: Alignment prologue. */ /* Do the expensive promotion once we branched off the small blocks. */ if (!promoted_val) promoted_val = promote_duplicated_reg_to_size (val_exp, size_needed, desired_align, align); gcc_assert (desired_align >= 1 && align >= 1); if (desired_align > align) { if (align_bytes == 0) { /* Except for the first move in epilogue, we no longer know constant offset in aliasing info. It don't seems to worth the pain to maintain it for the first move, so throw away the info early. */ dst = change_address (dst, BLKmode, destreg); expand_setmem_prologue (dst, destreg, promoted_val, count_exp, align, desired_align); } else { /* If we know how many bytes need to be stored before dst is sufficiently aligned, maintain aliasing info accurately. */ dst = expand_constant_setmem_prologue (dst, destreg, promoted_val, desired_align, align_bytes); count_exp = plus_constant (count_exp, -align_bytes); count -= align_bytes; } if (need_zero_guard && (count < (unsigned HOST_WIDE_INT) size_needed || (align_bytes == 0 && count < ((unsigned HOST_WIDE_INT) size_needed + desired_align - align)))) { /* It is possible that we copied enough so the main loop will not execute. */ gcc_assert (size_needed > 1); if (label == NULL_RTX) label = gen_label_rtx (); emit_cmp_and_jump_insns (count_exp, GEN_INT (size_needed), LTU, 0, counter_mode (count_exp), 1, label); if (expected_size == -1 || expected_size < (desired_align - align) / 2 + size_needed) predict_jump (REG_BR_PROB_BASE * 20 / 100); else predict_jump (REG_BR_PROB_BASE * 60 / 100); } } if (label && size_needed == 1) { emit_label (label); LABEL_NUSES (label) = 1; label = NULL; promoted_val = val_exp; epilogue_size_needed = 1; } else if (label == NULL_RTX) epilogue_size_needed = size_needed; /* Step 3: Main loop. */ switch (alg) { case libcall: case no_stringop: gcc_unreachable (); case loop_1_byte: expand_set_or_movmem_via_loop (dst, NULL, destreg, NULL, promoted_val, count_exp, QImode, 1, expected_size); break; case loop: expand_set_or_movmem_via_loop (dst, NULL, destreg, NULL, promoted_val, count_exp, Pmode, 1, expected_size); break; case unrolled_loop: expand_set_or_movmem_via_loop (dst, NULL, destreg, NULL, promoted_val, count_exp, Pmode, 4, expected_size); break; case rep_prefix_8_byte: expand_setmem_via_rep_stos (dst, destreg, promoted_val, count_exp, DImode, val_exp); break; case rep_prefix_4_byte: expand_setmem_via_rep_stos (dst, destreg, promoted_val, count_exp, SImode, val_exp); break; case rep_prefix_1_byte: expand_setmem_via_rep_stos (dst, destreg, promoted_val, count_exp, QImode, val_exp); break; } /* Adjust properly the offset of src and dest memory for aliasing. */ if (CONST_INT_P (count_exp)) dst = adjust_automodify_address_nv (dst, BLKmode, destreg, (count / size_needed) * size_needed); else dst = change_address (dst, BLKmode, destreg); /* Step 4: Epilogue to copy the remaining bytes. */ if (label) { /* When the main loop is done, COUNT_EXP might hold original count, while we want to copy only COUNT_EXP & SIZE_NEEDED bytes. Epilogue code will actually copy COUNT_EXP & EPILOGUE_SIZE_NEEDED bytes. Compensate if needed. */ if (size_needed < epilogue_size_needed) { tmp = expand_simple_binop (counter_mode (count_exp), AND, count_exp, GEN_INT (size_needed - 1), count_exp, 1, OPTAB_DIRECT); if (tmp != count_exp) emit_move_insn (count_exp, tmp); } emit_label (label); LABEL_NUSES (label) = 1; } epilogue: if (count_exp != const0_rtx && epilogue_size_needed > 1) { if (force_loopy_epilogue) expand_setmem_epilogue_via_loop (dst, destreg, val_exp, count_exp, epilogue_size_needed); else expand_setmem_epilogue (dst, destreg, promoted_val, count_exp, epilogue_size_needed); } if (jump_around_label) emit_label (jump_around_label); return 1; } /* Expand the appropriate insns for doing strlen if not just doing repnz; scasb out = result, initialized with the start address align_rtx = alignment of the address. scratch = scratch register, initialized with the startaddress when not aligned, otherwise undefined This is just the body. It needs the initializations mentioned above and some address computing at the end. These things are done in i386.md. */ static void ix86_expand_strlensi_unroll_1 (rtx out, rtx src, rtx align_rtx) { int align; rtx tmp; rtx align_2_label = NULL_RTX; rtx align_3_label = NULL_RTX; rtx align_4_label = gen_label_rtx (); rtx end_0_label = gen_label_rtx (); rtx mem; rtx tmpreg = gen_reg_rtx (SImode); rtx scratch = gen_reg_rtx (SImode); rtx cmp; align = 0; if (CONST_INT_P (align_rtx)) align = INTVAL (align_rtx); /* Loop to check 1..3 bytes for null to get an aligned pointer. */ /* Is there a known alignment and is it less than 4? */ if (align < 4) { rtx scratch1 = gen_reg_rtx (Pmode); emit_move_insn (scratch1, out); /* Is there a known alignment and is it not 2? */ if (align != 2) { align_3_label = gen_label_rtx (); /* Label when aligned to 3-byte */ align_2_label = gen_label_rtx (); /* Label when aligned to 2-byte */ /* Leave just the 3 lower bits. */ align_rtx = expand_binop (Pmode, and_optab, scratch1, GEN_INT (3), NULL_RTX, 0, OPTAB_WIDEN); emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, Pmode, 1, align_4_label); emit_cmp_and_jump_insns (align_rtx, const2_rtx, EQ, NULL, Pmode, 1, align_2_label); emit_cmp_and_jump_insns (align_rtx, const2_rtx, GTU, NULL, Pmode, 1, align_3_label); } else { /* Since the alignment is 2, we have to check 2 or 0 bytes; check if is aligned to 4 - byte. */ align_rtx = expand_binop (Pmode, and_optab, scratch1, const2_rtx, NULL_RTX, 0, OPTAB_WIDEN); emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL, Pmode, 1, align_4_label); } mem = change_address (src, QImode, out); /* Now compare the bytes. */ /* Compare the first n unaligned byte on a byte per byte basis. */ emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); /* Increment the address. */ emit_insn ((*ix86_gen_add3) (out, out, const1_rtx)); /* Not needed with an alignment of 2 */ if (align != 2) { emit_label (align_2_label); emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); emit_insn ((*ix86_gen_add3) (out, out, const1_rtx)); emit_label (align_3_label); } emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1, end_0_label); emit_insn ((*ix86_gen_add3) (out, out, const1_rtx)); } /* Generate loop to check 4 bytes at a time. It is not a good idea to align this loop. It gives only huge programs, but does not help to speed up. */ emit_label (align_4_label); mem = change_address (src, SImode, out); emit_move_insn (scratch, mem); emit_insn ((*ix86_gen_add3) (out, out, GEN_INT (4))); /* This formula yields a nonzero result iff one of the bytes is zero. This saves three branches inside loop and many cycles. */ emit_insn (gen_addsi3 (tmpreg, scratch, GEN_INT (-0x01010101))); emit_insn (gen_one_cmplsi2 (scratch, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, scratch)); emit_insn (gen_andsi3 (tmpreg, tmpreg, gen_int_mode (0x80808080, SImode))); emit_cmp_and_jump_insns (tmpreg, const0_rtx, EQ, 0, SImode, 1, align_4_label); if (TARGET_CMOVE) { rtx reg = gen_reg_rtx (SImode); rtx reg2 = gen_reg_rtx (Pmode); emit_move_insn (reg, tmpreg); emit_insn (gen_lshrsi3 (reg, reg, GEN_INT (16))); /* If zero is not in the first two bytes, move two bytes forward. */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, tmpreg, gen_rtx_IF_THEN_ELSE (SImode, tmp, reg, tmpreg))); /* Emit lea manually to avoid clobbering of flags. */ emit_insn (gen_rtx_SET (SImode, reg2, gen_rtx_PLUS (Pmode, out, const2_rtx))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_IF_THEN_ELSE (Pmode, tmp, reg2, out))); } else { rtx end_2_label = gen_label_rtx (); /* Is zero in the first two bytes? */ emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080))); tmp = gen_rtx_REG (CCNOmode, FLAGS_REG); tmp = gen_rtx_NE (VOIDmode, tmp, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, end_2_label), pc_rtx); tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); JUMP_LABEL (tmp) = end_2_label; /* Not in the first two. Move two bytes forward. */ emit_insn (gen_lshrsi3 (tmpreg, tmpreg, GEN_INT (16))); emit_insn ((*ix86_gen_add3) (out, out, const2_rtx)); emit_label (end_2_label); } /* Avoid branch in fixing the byte. */ tmpreg = gen_lowpart (QImode, tmpreg); emit_insn (gen_addqi3_cc (tmpreg, tmpreg, tmpreg)); tmp = gen_rtx_REG (CCmode, FLAGS_REG); cmp = gen_rtx_LTU (VOIDmode, tmp, const0_rtx); emit_insn ((*ix86_gen_sub3_carry) (out, out, GEN_INT (3), tmp, cmp)); emit_label (end_0_label); } /* Expand strlen. */ int ix86_expand_strlen (rtx out, rtx src, rtx eoschar, rtx align) { rtx addr, scratch1, scratch2, scratch3, scratch4; /* The generic case of strlen expander is long. Avoid it's expanding unless TARGET_INLINE_ALL_STRINGOPS. */ if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 && !TARGET_INLINE_ALL_STRINGOPS && !optimize_insn_for_size_p () && (!CONST_INT_P (align) || INTVAL (align) < 4)) return 0; addr = force_reg (Pmode, XEXP (src, 0)); scratch1 = gen_reg_rtx (Pmode); if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1 && !optimize_insn_for_size_p ()) { /* Well it seems that some optimizer does not combine a call like foo(strlen(bar), strlen(bar)); when the move and the subtraction is done here. It does calculate the length just once when these instructions are done inside of output_strlen_unroll(). But I think since &bar[strlen(bar)] is often used and I use one fewer register for the lifetime of output_strlen_unroll() this is better. */ emit_move_insn (out, addr); ix86_expand_strlensi_unroll_1 (out, src, align); /* strlensi_unroll_1 returns the address of the zero at the end of the string, like memchr(), so compute the length by subtracting the start address. */ emit_insn ((*ix86_gen_sub3) (out, out, addr)); } else { rtx unspec; /* Can't use this if the user has appropriated eax, ecx, or edi. */ if (fixed_regs[AX_REG] || fixed_regs[CX_REG] || fixed_regs[DI_REG]) return false; scratch2 = gen_reg_rtx (Pmode); scratch3 = gen_reg_rtx (Pmode); scratch4 = force_reg (Pmode, constm1_rtx); emit_move_insn (scratch3, addr); eoschar = force_reg (QImode, eoschar); src = replace_equiv_address_nv (src, scratch3); /* If .md starts supporting :P, this can be done in .md. */ unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (4, src, eoschar, align, scratch4), UNSPEC_SCAS); emit_insn (gen_strlenqi_1 (scratch1, scratch3, unspec)); emit_insn ((*ix86_gen_one_cmpl2) (scratch2, scratch1)); emit_insn ((*ix86_gen_add3) (out, scratch2, constm1_rtx)); } return 1; } /* For given symbol (function) construct code to compute address of it's PLT entry in large x86-64 PIC model. */ rtx construct_plt_address (rtx symbol) { rtx tmp = gen_reg_rtx (Pmode); rtx unspec = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, symbol), UNSPEC_PLTOFF); gcc_assert (GET_CODE (symbol) == SYMBOL_REF); gcc_assert (ix86_cmodel == CM_LARGE_PIC); emit_move_insn (tmp, gen_rtx_CONST (Pmode, unspec)); emit_insn (gen_adddi3 (tmp, tmp, pic_offset_table_rtx)); return tmp; } void ix86_expand_call (rtx retval, rtx fnaddr, rtx callarg1, rtx callarg2, rtx pop, int sibcall) { rtx use = NULL, call; if (pop == const0_rtx) pop = NULL; gcc_assert (!TARGET_64BIT || !pop); if (TARGET_MACHO && !TARGET_64BIT) { #if TARGET_MACHO if (flag_pic && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF) fnaddr = machopic_indirect_call_target (fnaddr); #endif } else { /* Static functions and indirect calls don't need the pic register. */ if (flag_pic && (!TARGET_64BIT || ix86_cmodel == CM_LARGE_PIC) && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF && ! SYMBOL_REF_LOCAL_P (XEXP (fnaddr, 0))) use_reg (&use, pic_offset_table_rtx); } if (TARGET_64BIT && INTVAL (callarg2) >= 0) { rtx al = gen_rtx_REG (QImode, AX_REG); emit_move_insn (al, callarg2); use_reg (&use, al); } if (ix86_cmodel == CM_LARGE_PIC && MEM_P (fnaddr) && GET_CODE (XEXP (fnaddr, 0)) == SYMBOL_REF && !local_symbolic_operand (XEXP (fnaddr, 0), VOIDmode)) fnaddr = gen_rtx_MEM (QImode, construct_plt_address (XEXP (fnaddr, 0))); else if (sibcall ? !sibcall_insn_operand (XEXP (fnaddr, 0), Pmode) : !call_insn_operand (XEXP (fnaddr, 0), Pmode)) { fnaddr = copy_to_mode_reg (Pmode, XEXP (fnaddr, 0)); fnaddr = gen_rtx_MEM (QImode, fnaddr); } call = gen_rtx_CALL (VOIDmode, fnaddr, callarg1); if (retval) call = gen_rtx_SET (VOIDmode, retval, call); if (pop) { pop = gen_rtx_PLUS (Pmode, stack_pointer_rtx, pop); pop = gen_rtx_SET (VOIDmode, stack_pointer_rtx, pop); call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, call, pop)); } if (TARGET_64BIT && ix86_cfun_abi () == MS_ABI && (!callarg2 || INTVAL (callarg2) != -2)) { /* We need to represent that SI and DI registers are clobbered by SYSV calls. */ static int clobbered_registers[] = { XMM6_REG, XMM7_REG, XMM8_REG, XMM9_REG, XMM10_REG, XMM11_REG, XMM12_REG, XMM13_REG, XMM14_REG, XMM15_REG, SI_REG, DI_REG }; unsigned int i; rtx vec[ARRAY_SIZE (clobbered_registers) + 2]; rtx unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, const0_rtx), UNSPEC_MS_TO_SYSV_CALL); vec[0] = call; vec[1] = unspec; for (i = 0; i < ARRAY_SIZE (clobbered_registers); i++) vec[i + 2] = gen_rtx_CLOBBER (SSE_REGNO_P (clobbered_registers[i]) ? TImode : DImode, gen_rtx_REG (SSE_REGNO_P (clobbered_registers[i]) ? TImode : DImode, clobbered_registers[i])); call = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (ARRAY_SIZE (clobbered_registers) + 2, vec)); } call = emit_call_insn (call); if (use) CALL_INSN_FUNCTION_USAGE (call) = use; } /* Clear stack slot assignments remembered from previous functions. This is called from INIT_EXPANDERS once before RTL is emitted for each function. */ static struct machine_function * ix86_init_machine_status (void) { struct machine_function *f; f = GGC_CNEW (struct machine_function); f->use_fast_prologue_epilogue_nregs = -1; f->tls_descriptor_call_expanded_p = 0; f->call_abi = ix86_abi; return f; } /* Return a MEM corresponding to a stack slot with mode MODE. Allocate a new slot if necessary. The RTL for a function can have several slots available: N is which slot to use. */ rtx assign_386_stack_local (enum machine_mode mode, enum ix86_stack_slot n) { struct stack_local_entry *s; gcc_assert (n < MAX_386_STACK_LOCALS); /* Virtual slot is valid only before vregs are instantiated. */ gcc_assert ((n == SLOT_VIRTUAL) == !virtuals_instantiated); for (s = ix86_stack_locals; s; s = s->next) if (s->mode == mode && s->n == n) return copy_rtx (s->rtl); s = (struct stack_local_entry *) ggc_alloc (sizeof (struct stack_local_entry)); s->n = n; s->mode = mode; s->rtl = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); s->next = ix86_stack_locals; ix86_stack_locals = s; return s->rtl; } /* Construct the SYMBOL_REF for the tls_get_addr function. */ static GTY(()) rtx ix86_tls_symbol; rtx ix86_tls_get_addr (void) { if (!ix86_tls_symbol) { ix86_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, (TARGET_ANY_GNU_TLS && !TARGET_64BIT) ? "___tls_get_addr" : "__tls_get_addr"); } return ix86_tls_symbol; } /* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */ static GTY(()) rtx ix86_tls_module_base_symbol; rtx ix86_tls_module_base (void) { if (!ix86_tls_module_base_symbol) { ix86_tls_module_base_symbol = gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_"); SYMBOL_REF_FLAGS (ix86_tls_module_base_symbol) |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT; } return ix86_tls_module_base_symbol; } /* Calculate the length of the memory address in the instruction encoding. Does not include the one-byte modrm, opcode, or prefix. */ int memory_address_length (rtx addr) { struct ix86_address parts; rtx base, index, disp; int len; int ok; if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_INC || GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY) return 0; ok = ix86_decompose_address (addr, &parts); gcc_assert (ok); if (parts.base && GET_CODE (parts.base) == SUBREG) parts.base = SUBREG_REG (parts.base); if (parts.index && GET_CODE (parts.index) == SUBREG) parts.index = SUBREG_REG (parts.index); base = parts.base; index = parts.index; disp = parts.disp; len = 0; /* Rule of thumb: - esp as the base always wants an index, - ebp as the base always wants a displacement, - r12 as the base always wants an index, - r13 as the base always wants a displacement. */ /* Register Indirect. */ if (base && !index && !disp) { /* esp (for its index) and ebp (for its displacement) need the two-byte modrm form. Similarly for r12 and r13 in 64-bit code. */ if (REG_P (addr) && (addr == arg_pointer_rtx || addr == frame_pointer_rtx || REGNO (addr) == SP_REG || REGNO (addr) == BP_REG || REGNO (addr) == R12_REG || REGNO (addr) == R13_REG)) len = 1; } /* Direct Addressing. In 64-bit mode mod 00 r/m 5 is not disp32, but disp32(%rip), so for disp32 SIB byte is needed, unless print_operand_address optimizes it into disp32(%rip) or (%rip) is implied by UNSPEC. */ else if (disp && !base && !index) { len = 4; if (TARGET_64BIT) { rtx symbol = disp; if (GET_CODE (disp) == CONST) symbol = XEXP (disp, 0); if (GET_CODE (symbol) == PLUS && CONST_INT_P (XEXP (symbol, 1))) symbol = XEXP (symbol, 0); if (GET_CODE (symbol) != LABEL_REF && (GET_CODE (symbol) != SYMBOL_REF || SYMBOL_REF_TLS_MODEL (symbol) != 0) && (GET_CODE (symbol) != UNSPEC || (XINT (symbol, 1) != UNSPEC_GOTPCREL && XINT (symbol, 1) != UNSPEC_GOTNTPOFF))) len += 1; } } else { /* Find the length of the displacement constant. */ if (disp) { if (base && satisfies_constraint_K (disp)) len = 1; else len = 4; } /* ebp always wants a displacement. Similarly r13. */ else if (base && REG_P (base) && (REGNO (base) == BP_REG || REGNO (base) == R13_REG)) len = 1; /* An index requires the two-byte modrm form.... */ if (index /* ...like esp (or r12), which always wants an index. */ || base == arg_pointer_rtx || base == frame_pointer_rtx || (base && REG_P (base) && (REGNO (base) == SP_REG || REGNO (base) == R12_REG))) len += 1; } switch (parts.seg) { case SEG_FS: case SEG_GS: len += 1; break; default: break; } return len; } /* Compute default value for "length_immediate" attribute. When SHORTFORM is set, expect that insn have 8bit immediate alternative. */ int ix86_attr_length_immediate_default (rtx insn, int shortform) { int len = 0; int i; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (CONSTANT_P (recog_data.operand[i])) { enum attr_mode mode = get_attr_mode (insn); gcc_assert (!len); if (shortform && CONST_INT_P (recog_data.operand[i])) { HOST_WIDE_INT ival = INTVAL (recog_data.operand[i]); switch (mode) { case MODE_QI: len = 1; continue; case MODE_HI: ival = trunc_int_for_mode (ival, HImode); break; case MODE_SI: ival = trunc_int_for_mode (ival, SImode); break; default: break; } if (IN_RANGE (ival, -128, 127)) { len = 1; continue; } } switch (mode) { case MODE_QI: len = 1; break; case MODE_HI: len = 2; break; case MODE_SI: len = 4; break; /* Immediates for DImode instructions are encoded as 32bit sign extended values. */ case MODE_DI: len = 4; break; default: fatal_insn ("unknown insn mode", insn); } } return len; } /* Compute default value for "length_address" attribute. */ int ix86_attr_length_address_default (rtx insn) { int i; if (get_attr_type (insn) == TYPE_LEA) { rtx set = PATTERN (insn), addr; if (GET_CODE (set) == PARALLEL) set = XVECEXP (set, 0, 0); gcc_assert (GET_CODE (set) == SET); addr = SET_SRC (set); if (TARGET_64BIT && get_attr_mode (insn) == MODE_SI) { if (GET_CODE (addr) == ZERO_EXTEND) addr = XEXP (addr, 0); if (GET_CODE (addr) == SUBREG) addr = SUBREG_REG (addr); } return memory_address_length (addr); } extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (MEM_P (recog_data.operand[i])) { constrain_operands_cached (reload_completed); if (which_alternative != -1) { const char *constraints = recog_data.constraints[i]; int alt = which_alternative; while (*constraints == '=' || *constraints == '+') constraints++; while (alt-- > 0) while (*constraints++ != ',') ; /* Skip ignored operands. */ if (*constraints == 'X') continue; } return memory_address_length (XEXP (recog_data.operand[i], 0)); } return 0; } /* Compute default value for "length_vex" attribute. It includes 2 or 3 byte VEX prefix and 1 opcode byte. */ int ix86_attr_length_vex_default (rtx insn, int has_0f_opcode, int has_vex_w) { int i; /* Only 0f opcode can use 2 byte VEX prefix and VEX W bit uses 3 byte VEX prefix. */ if (!has_0f_opcode || has_vex_w) return 3 + 1; /* We can always use 2 byte VEX prefix in 32bit. */ if (!TARGET_64BIT) return 2 + 1; extract_insn_cached (insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (REG_P (recog_data.operand[i])) { /* REX.W bit uses 3 byte VEX prefix. */ if (GET_MODE (recog_data.operand[i]) == DImode && GENERAL_REG_P (recog_data.operand[i])) return 3 + 1; } else { /* REX.X or REX.B bits use 3 byte VEX prefix. */ if (MEM_P (recog_data.operand[i]) && x86_extended_reg_mentioned_p (recog_data.operand[i])) return 3 + 1; } return 2 + 1; } /* Return the maximum number of instructions a cpu can issue. */ static int ix86_issue_rate (void) { switch (ix86_tune) { case PROCESSOR_PENTIUM: case PROCESSOR_ATOM: case PROCESSOR_K6: return 2; case PROCESSOR_PENTIUMPRO: case PROCESSOR_PENTIUM4: case PROCESSOR_ATHLON: case PROCESSOR_K8: case PROCESSOR_AMDFAM10: case PROCESSOR_NOCONA: case PROCESSOR_GENERIC32: case PROCESSOR_GENERIC64: return 3; case PROCESSOR_CORE2: return 4; default: return 1; } } /* A subroutine of ix86_adjust_cost -- return true iff INSN reads flags set by DEP_INSN and nothing set by DEP_INSN. */ static int ix86_flags_dependent (rtx insn, rtx dep_insn, enum attr_type insn_type) { rtx set, set2; /* Simplify the test for uninteresting insns. */ if (insn_type != TYPE_SETCC && insn_type != TYPE_ICMOV && insn_type != TYPE_FCMOV && insn_type != TYPE_IBR) return 0; if ((set = single_set (dep_insn)) != 0) { set = SET_DEST (set); set2 = NULL_RTX; } else if (GET_CODE (PATTERN (dep_insn)) == PARALLEL && XVECLEN (PATTERN (dep_insn), 0) == 2 && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 0)) == SET && GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 1)) == SET) { set = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); set2 = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0)); } else return 0; if (!REG_P (set) || REGNO (set) != FLAGS_REG) return 0; /* This test is true if the dependent insn reads the flags but not any other potentially set register. */ if (!reg_overlap_mentioned_p (set, PATTERN (insn))) return 0; if (set2 && reg_overlap_mentioned_p (set2, PATTERN (insn))) return 0; return 1; } /* Return true iff USE_INSN has a memory address with operands set by SET_INSN. */ bool ix86_agi_dependent (rtx set_insn, rtx use_insn) { int i; extract_insn_cached (use_insn); for (i = recog_data.n_operands - 1; i >= 0; --i) if (MEM_P (recog_data.operand[i])) { rtx addr = XEXP (recog_data.operand[i], 0); return modified_in_p (addr, set_insn) != 0; } return false; } static int ix86_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost) { enum attr_type insn_type, dep_insn_type; enum attr_memory memory; rtx set, set2; int dep_insn_code_number; /* Anti and output dependencies have zero cost on all CPUs. */ if (REG_NOTE_KIND (link) != 0) return 0; dep_insn_code_number = recog_memoized (dep_insn); /* If we can't recognize the insns, we can't really do anything. */ if (dep_insn_code_number < 0 || recog_memoized (insn) < 0) return cost; insn_type = get_attr_type (insn); dep_insn_type = get_attr_type (dep_insn); switch (ix86_tune) { case PROCESSOR_PENTIUM: /* Address Generation Interlock adds a cycle of latency. */ if (insn_type == TYPE_LEA) { rtx addr = PATTERN (insn); if (GET_CODE (addr) == PARALLEL) addr = XVECEXP (addr, 0, 0); gcc_assert (GET_CODE (addr) == SET); addr = SET_SRC (addr); if (modified_in_p (addr, dep_insn)) cost += 1; } else if (ix86_agi_dependent (dep_insn, insn)) cost += 1; /* ??? Compares pair with jump/setcc. */ if (ix86_flags_dependent (insn, dep_insn, insn_type)) cost = 0; /* Floating point stores require value to be ready one cycle earlier. */ if (insn_type == TYPE_FMOV && get_attr_memory (insn) == MEMORY_STORE && !ix86_agi_dependent (dep_insn, insn)) cost += 1; break; case PROCESSOR_PENTIUMPRO: memory = get_attr_memory (insn); /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; /* There is one cycle extra latency between an FP op and a store. */ if (insn_type == TYPE_FMOV && (set = single_set (dep_insn)) != NULL_RTX && (set2 = single_set (insn)) != NULL_RTX && rtx_equal_p (SET_DEST (set), SET_SRC (set2)) && MEM_P (SET_DEST (set2))) cost += 1; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependent (dep_insn, insn)) { /* Claim moves to take one cycle, as core can issue one load at time and the next load can start cycle later. */ if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV) cost = 1; else if (cost > 1) cost--; } break; case PROCESSOR_K6: memory = get_attr_memory (insn); /* The esp dependency is resolved before the instruction is really finished. */ if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP) && (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP)) return 1; /* INT->FP conversion is expensive. */ if (get_attr_fp_int_src (dep_insn)) cost += 5; /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependent (dep_insn, insn)) { /* Claim moves to take one cycle, as core can issue one load at time and the next load can start cycle later. */ if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV) cost = 1; else if (cost > 2) cost -= 2; else cost = 1; } break; case PROCESSOR_ATHLON: case PROCESSOR_K8: case PROCESSOR_AMDFAM10: case PROCESSOR_ATOM: case PROCESSOR_GENERIC32: case PROCESSOR_GENERIC64: memory = get_attr_memory (insn); /* Show ability of reorder buffer to hide latency of load by executing in parallel with previous instruction in case previous instruction is not needed to compute the address. */ if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH) && !ix86_agi_dependent (dep_insn, insn)) { enum attr_unit unit = get_attr_unit (insn); int loadcost = 3; /* Because of the difference between the length of integer and floating unit pipeline preparation stages, the memory operands for floating point are cheaper. ??? For Athlon it the difference is most probably 2. */ if (unit == UNIT_INTEGER || unit == UNIT_UNKNOWN) loadcost = 3; else loadcost = TARGET_ATHLON ? 2 : 0; if (cost >= loadcost) cost -= loadcost; else cost = 0; } default: break; } return cost; } /* How many alternative schedules to try. This should be as wide as the scheduling freedom in the DFA, but no wider. Making this value too large results extra work for the scheduler. */ static int ia32_multipass_dfa_lookahead (void) { switch (ix86_tune) { case PROCESSOR_PENTIUM: return 2; case PROCESSOR_PENTIUMPRO: case PROCESSOR_K6: return 1; default: return 0; } } /* Compute the alignment given to a constant that is being placed in memory. EXP is the constant and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_constant_alignment (tree exp, int align) { if (TREE_CODE (exp) == REAL_CST || TREE_CODE (exp) == VECTOR_CST || TREE_CODE (exp) == INTEGER_CST) { if (TYPE_MODE (TREE_TYPE (exp)) == DFmode && align < 64) return 64; else if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (exp))) && align < 128) return 128; } else if (!optimize_size && TREE_CODE (exp) == STRING_CST && TREE_STRING_LENGTH (exp) >= 31 && align < BITS_PER_WORD) return BITS_PER_WORD; return align; } /* Compute the alignment for a static variable. TYPE is the data type, and ALIGN is the alignment that the object would ordinarily have. The value of this function is used instead of that alignment to align the object. */ int ix86_data_alignment (tree type, int align) { int max_align = optimize_size ? BITS_PER_WORD : MIN (256, MAX_OFILE_ALIGNMENT); if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= (unsigned) max_align || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < max_align) align = max_align; /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. */ if (TARGET_64BIT) { if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 128 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) return 128; } if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if ((TYPE_MODE (type) == XCmode || TYPE_MODE (type) == TCmode) && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the alignment for a local variable or a stack slot. EXP is the data type or decl itself, MODE is the widest mode available and ALIGN is the alignment that the object would ordinarily have. The value of this macro is used instead of that alignment to align the object. */ unsigned int ix86_local_alignment (tree exp, enum machine_mode mode, unsigned int align) { tree type, decl; if (exp && DECL_P (exp)) { type = TREE_TYPE (exp); decl = exp; } else { type = exp; decl = NULL; } /* Don't do dynamic stack realignment for long long objects with -mpreferred-stack-boundary=2. */ if (!TARGET_64BIT && align == 64 && ix86_preferred_stack_boundary < 64 && (mode == DImode || (type && TYPE_MODE (type) == DImode)) && (!type || !TYPE_USER_ALIGN (type)) && (!decl || !DECL_USER_ALIGN (decl))) align = 32; /* If TYPE is NULL, we are allocating a stack slot for caller-save register in MODE. We will return the largest alignment of XF and DF. */ if (!type) { if (mode == XFmode && align < GET_MODE_ALIGNMENT (DFmode)) align = GET_MODE_ALIGNMENT (DFmode); return align; } /* x86-64 ABI requires arrays greater than 16 bytes to be aligned to 16byte boundary. */ if (TARGET_64BIT) { if (AGGREGATE_TYPE_P (type) && TYPE_SIZE (type) && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 16 || TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128) return 128; } if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128) return 128; } else if (TREE_CODE (type) == COMPLEX_TYPE) { if (TYPE_MODE (type) == DCmode && align < 64) return 64; if ((TYPE_MODE (type) == XCmode || TYPE_MODE (type) == TCmode) && align < 128) return 128; } else if ((TREE_CODE (type) == RECORD_TYPE || TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == QUAL_UNION_TYPE) && TYPE_FIELDS (type)) { if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128) return 128; } else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE || TREE_CODE (type) == INTEGER_TYPE) { if (TYPE_MODE (type) == DFmode && align < 64) return 64; if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128) return 128; } return align; } /* Compute the minimum required alignment for dynamic stack realignment purposes for a local variable, parameter or a stack slot. EXP is the data type or decl itself, MODE is its mode and ALIGN is the alignment that the object would ordinarily have. */ unsigned int ix86_minimum_alignment (tree exp, enum machine_mode mode, unsigned int align) { tree type, decl; if (TARGET_64BIT || align != 64 || ix86_preferred_stack_boundary >= 64) return align; if (exp && DECL_P (exp)) { type = TREE_TYPE (exp); decl = exp; } else { type = exp; decl = NULL; } /* Don't do dynamic stack realignment for long long objects with -mpreferred-stack-boundary=2. */ if ((mode == DImode || (type && TYPE_MODE (type) == DImode)) && (!type || !TYPE_USER_ALIGN (type)) && (!decl || !DECL_USER_ALIGN (decl))) return 32; return align; } /* Find a location for the static chain incoming to a nested function. This is a register, unless all free registers are used by arguments. */ static rtx ix86_static_chain (const_tree fndecl, bool incoming_p) { unsigned regno; if (!DECL_STATIC_CHAIN (fndecl)) return NULL; if (TARGET_64BIT) { /* We always use R10 in 64-bit mode. */ regno = R10_REG; } else { tree fntype; /* By default in 32-bit mode we use ECX to pass the static chain. */ regno = CX_REG; fntype = TREE_TYPE (fndecl); if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (fntype))) { /* Fastcall functions use ecx/edx for arguments, which leaves us with EAX for the static chain. */ regno = AX_REG; } else if (ix86_function_regparm (fntype, fndecl) == 3) { /* For regparm 3, we have no free call-clobbered registers in which to store the static chain. In order to implement this, we have the trampoline push the static chain to the stack. However, we can't push a value below the return address when we call the nested function directly, so we have to use an alternate entry point. For this we use ESI, and have the alternate entry point push ESI, so that things appear the same once we're executing the nested function. */ if (incoming_p) { if (fndecl == current_function_decl) ix86_static_chain_on_stack = true; return gen_frame_mem (SImode, plus_constant (arg_pointer_rtx, -8)); } regno = SI_REG; } } return gen_rtx_REG (Pmode, regno); } /* Emit RTL insns to initialize the variable parts of a trampoline. FNDECL is the decl of the target address; M_TRAMP is a MEM for the trampoline, and CHAIN_VALUE is an RTX for the static chain to be passed to the target function. */ static void ix86_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value) { rtx mem, fnaddr; fnaddr = XEXP (DECL_RTL (fndecl), 0); if (!TARGET_64BIT) { rtx disp, chain; int opcode; /* Depending on the static chain location, either load a register with a constant, or push the constant to the stack. All of the instructions are the same size. */ chain = ix86_static_chain (fndecl, true); if (REG_P (chain)) { if (REGNO (chain) == CX_REG) opcode = 0xb9; else if (REGNO (chain) == AX_REG) opcode = 0xb8; else gcc_unreachable (); } else opcode = 0x68; mem = adjust_address (m_tramp, QImode, 0); emit_move_insn (mem, gen_int_mode (opcode, QImode)); mem = adjust_address (m_tramp, SImode, 1); emit_move_insn (mem, chain_value); /* Compute offset from the end of the jmp to the target function. In the case in which the trampoline stores the static chain on the stack, we need to skip the first insn which pushes the (call-saved) register static chain; this push is 1 byte. */ disp = expand_binop (SImode, sub_optab, fnaddr, plus_constant (XEXP (m_tramp, 0), MEM_P (chain) ? 9 : 10), NULL_RTX, 1, OPTAB_DIRECT); mem = adjust_address (m_tramp, QImode, 5); emit_move_insn (mem, gen_int_mode (0xe9, QImode)); mem = adjust_address (m_tramp, SImode, 6); emit_move_insn (mem, disp); } else { int offset = 0; /* Load the function address to r11. Try to load address using the shorter movl instead of movabs. We may want to support movq for kernel mode, but kernel does not use trampolines at the moment. */ if (x86_64_zext_immediate_operand (fnaddr, VOIDmode)) { fnaddr = copy_to_mode_reg (DImode, fnaddr); mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (0xbb41, HImode)); mem = adjust_address (m_tramp, SImode, offset + 2); emit_move_insn (mem, gen_lowpart (SImode, fnaddr)); offset += 6; } else { mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (0xbb49, HImode)); mem = adjust_address (m_tramp, DImode, offset + 2); emit_move_insn (mem, fnaddr); offset += 10; } /* Load static chain using movabs to r10. */ mem = adjust_address (m_tramp, HImode, offset); emit_move_insn (mem, gen_int_mode (0xba49, HImode)); mem = adjust_address (m_tramp, DImode, offset + 2); emit_move_insn (mem, chain_value); offset += 10; /* Jump to r11; the last (unused) byte is a nop, only there to pad the write out to a single 32-bit store. */ mem = adjust_address (m_tramp, SImode, offset); emit_move_insn (mem, gen_int_mode (0x90e3ff49, SImode)); offset += 4; gcc_assert (offset <= TRAMPOLINE_SIZE); } #ifdef ENABLE_EXECUTE_STACK #ifdef CHECK_EXECUTE_STACK_ENABLED if (CHECK_EXECUTE_STACK_ENABLED) #endif emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"), LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode); #endif } /* The following file contains several enumerations and data structures built from the definitions in i386-builtin-types.def. */ #include "i386-builtin-types.inc" /* Table for the ix86 builtin non-function types. */ static GTY(()) tree ix86_builtin_type_tab[(int) IX86_BT_LAST_CPTR + 1]; /* Retrieve an element from the above table, building some of the types lazily. */ static tree ix86_get_builtin_type (enum ix86_builtin_type tcode) { unsigned int index; tree type, itype; gcc_assert ((unsigned)tcode < ARRAY_SIZE(ix86_builtin_type_tab)); type = ix86_builtin_type_tab[(int) tcode]; if (type != NULL) return type; gcc_assert (tcode > IX86_BT_LAST_PRIM); if (tcode <= IX86_BT_LAST_VECT) { enum machine_mode mode; index = tcode - IX86_BT_LAST_PRIM - 1; itype = ix86_get_builtin_type (ix86_builtin_type_vect_base[index]); mode = ix86_builtin_type_vect_mode[index]; type = build_vector_type_for_mode (itype, mode); } else { int quals; index = tcode - IX86_BT_LAST_VECT - 1; if (tcode <= IX86_BT_LAST_PTR) quals = TYPE_UNQUALIFIED; else quals = TYPE_QUAL_CONST; itype = ix86_get_builtin_type (ix86_builtin_type_ptr_base[index]); if (quals != TYPE_UNQUALIFIED) itype = build_qualified_type (itype, quals); type = build_pointer_type (itype); } ix86_builtin_type_tab[(int) tcode] = type; return type; } /* Table for the ix86 builtin function types. */ static GTY(()) tree ix86_builtin_func_type_tab[(int) IX86_BT_LAST_ALIAS + 1]; /* Retrieve an element from the above table, building some of the types lazily. */ static tree ix86_get_builtin_func_type (enum ix86_builtin_func_type tcode) { tree type; gcc_assert ((unsigned)tcode < ARRAY_SIZE (ix86_builtin_func_type_tab)); type = ix86_builtin_func_type_tab[(int) tcode]; if (type != NULL) return type; if (tcode <= IX86_BT_LAST_FUNC) { unsigned start = ix86_builtin_func_start[(int) tcode]; unsigned after = ix86_builtin_func_start[(int) tcode + 1]; tree rtype, atype, args = void_list_node; unsigned i; rtype = ix86_get_builtin_type (ix86_builtin_func_args[start]); for (i = after - 1; i > start; --i) { atype = ix86_get_builtin_type (ix86_builtin_func_args[i]); args = tree_cons (NULL, atype, args); } type = build_function_type (rtype, args); } else { unsigned index = tcode - IX86_BT_LAST_FUNC - 1; enum ix86_builtin_func_type icode; icode = ix86_builtin_func_alias_base[index]; type = ix86_get_builtin_func_type (icode); } ix86_builtin_func_type_tab[(int) tcode] = type; return type; } /* Codes for all the SSE/MMX builtins. */ enum ix86_builtins { IX86_BUILTIN_ADDPS, IX86_BUILTIN_ADDSS, IX86_BUILTIN_DIVPS, IX86_BUILTIN_DIVSS, IX86_BUILTIN_MULPS, IX86_BUILTIN_MULSS, IX86_BUILTIN_SUBPS, IX86_BUILTIN_SUBSS, IX86_BUILTIN_CMPEQPS, IX86_BUILTIN_CMPLTPS, IX86_BUILTIN_CMPLEPS, IX86_BUILTIN_CMPGTPS, IX86_BUILTIN_CMPGEPS, IX86_BUILTIN_CMPNEQPS, IX86_BUILTIN_CMPNLTPS, IX86_BUILTIN_CMPNLEPS, IX86_BUILTIN_CMPNGTPS, IX86_BUILTIN_CMPNGEPS, IX86_BUILTIN_CMPORDPS, IX86_BUILTIN_CMPUNORDPS, IX86_BUILTIN_CMPEQSS, IX86_BUILTIN_CMPLTSS, IX86_BUILTIN_CMPLESS, IX86_BUILTIN_CMPNEQSS, IX86_BUILTIN_CMPNLTSS, IX86_BUILTIN_CMPNLESS, IX86_BUILTIN_CMPNGTSS, IX86_BUILTIN_CMPNGESS, IX86_BUILTIN_CMPORDSS, IX86_BUILTIN_CMPUNORDSS, IX86_BUILTIN_COMIEQSS, IX86_BUILTIN_COMILTSS, IX86_BUILTIN_COMILESS, IX86_BUILTIN_COMIGTSS, IX86_BUILTIN_COMIGESS, IX86_BUILTIN_COMINEQSS, IX86_BUILTIN_UCOMIEQSS, IX86_BUILTIN_UCOMILTSS, IX86_BUILTIN_UCOMILESS, IX86_BUILTIN_UCOMIGTSS, IX86_BUILTIN_UCOMIGESS, IX86_BUILTIN_UCOMINEQSS, IX86_BUILTIN_CVTPI2PS, IX86_BUILTIN_CVTPS2PI, IX86_BUILTIN_CVTSI2SS, IX86_BUILTIN_CVTSI642SS, IX86_BUILTIN_CVTSS2SI, IX86_BUILTIN_CVTSS2SI64, IX86_BUILTIN_CVTTPS2PI, IX86_BUILTIN_CVTTSS2SI, IX86_BUILTIN_CVTTSS2SI64, IX86_BUILTIN_MAXPS, IX86_BUILTIN_MAXSS, IX86_BUILTIN_MINPS, IX86_BUILTIN_MINSS, IX86_BUILTIN_LOADUPS, IX86_BUILTIN_STOREUPS, IX86_BUILTIN_MOVSS, IX86_BUILTIN_MOVHLPS, IX86_BUILTIN_MOVLHPS, IX86_BUILTIN_LOADHPS, IX86_BUILTIN_LOADLPS, IX86_BUILTIN_STOREHPS, IX86_BUILTIN_STORELPS, IX86_BUILTIN_MASKMOVQ, IX86_BUILTIN_MOVMSKPS, IX86_BUILTIN_PMOVMSKB, IX86_BUILTIN_MOVNTPS, IX86_BUILTIN_MOVNTQ, IX86_BUILTIN_LOADDQU, IX86_BUILTIN_STOREDQU, IX86_BUILTIN_PACKSSWB, IX86_BUILTIN_PACKSSDW, IX86_BUILTIN_PACKUSWB, IX86_BUILTIN_PADDB, IX86_BUILTIN_PADDW, IX86_BUILTIN_PADDD, IX86_BUILTIN_PADDQ, IX86_BUILTIN_PADDSB, IX86_BUILTIN_PADDSW, IX86_BUILTIN_PADDUSB, IX86_BUILTIN_PADDUSW, IX86_BUILTIN_PSUBB, IX86_BUILTIN_PSUBW, IX86_BUILTIN_PSUBD, IX86_BUILTIN_PSUBQ, IX86_BUILTIN_PSUBSB, IX86_BUILTIN_PSUBSW, IX86_BUILTIN_PSUBUSB, IX86_BUILTIN_PSUBUSW, IX86_BUILTIN_PAND, IX86_BUILTIN_PANDN, IX86_BUILTIN_POR, IX86_BUILTIN_PXOR, IX86_BUILTIN_PAVGB, IX86_BUILTIN_PAVGW, IX86_BUILTIN_PCMPEQB, IX86_BUILTIN_PCMPEQW, IX86_BUILTIN_PCMPEQD, IX86_BUILTIN_PCMPGTB, IX86_BUILTIN_PCMPGTW, IX86_BUILTIN_PCMPGTD, IX86_BUILTIN_PMADDWD, IX86_BUILTIN_PMAXSW, IX86_BUILTIN_PMAXUB, IX86_BUILTIN_PMINSW, IX86_BUILTIN_PMINUB, IX86_BUILTIN_PMULHUW, IX86_BUILTIN_PMULHW, IX86_BUILTIN_PMULLW, IX86_BUILTIN_PSADBW, IX86_BUILTIN_PSHUFW, IX86_BUILTIN_PSLLW, IX86_BUILTIN_PSLLD, IX86_BUILTIN_PSLLQ, IX86_BUILTIN_PSRAW, IX86_BUILTIN_PSRAD, IX86_BUILTIN_PSRLW, IX86_BUILTIN_PSRLD, IX86_BUILTIN_PSRLQ, IX86_BUILTIN_PSLLWI, IX86_BUILTIN_PSLLDI, IX86_BUILTIN_PSLLQI, IX86_BUILTIN_PSRAWI, IX86_BUILTIN_PSRADI, IX86_BUILTIN_PSRLWI, IX86_BUILTIN_PSRLDI, IX86_BUILTIN_PSRLQI, IX86_BUILTIN_PUNPCKHBW, IX86_BUILTIN_PUNPCKHWD, IX86_BUILTIN_PUNPCKHDQ, IX86_BUILTIN_PUNPCKLBW, IX86_BUILTIN_PUNPCKLWD, IX86_BUILTIN_PUNPCKLDQ, IX86_BUILTIN_SHUFPS, IX86_BUILTIN_RCPPS, IX86_BUILTIN_RCPSS, IX86_BUILTIN_RSQRTPS, IX86_BUILTIN_RSQRTPS_NR, IX86_BUILTIN_RSQRTSS, IX86_BUILTIN_RSQRTF, IX86_BUILTIN_SQRTPS, IX86_BUILTIN_SQRTPS_NR, IX86_BUILTIN_SQRTSS, IX86_BUILTIN_UNPCKHPS, IX86_BUILTIN_UNPCKLPS, IX86_BUILTIN_ANDPS, IX86_BUILTIN_ANDNPS, IX86_BUILTIN_ORPS, IX86_BUILTIN_XORPS, IX86_BUILTIN_EMMS, IX86_BUILTIN_LDMXCSR, IX86_BUILTIN_STMXCSR, IX86_BUILTIN_SFENCE, /* 3DNow! Original */ IX86_BUILTIN_FEMMS, IX86_BUILTIN_PAVGUSB, IX86_BUILTIN_PF2ID, IX86_BUILTIN_PFACC, IX86_BUILTIN_PFADD, IX86_BUILTIN_PFCMPEQ, IX86_BUILTIN_PFCMPGE, IX86_BUILTIN_PFCMPGT, IX86_BUILTIN_PFMAX, IX86_BUILTIN_PFMIN, IX86_BUILTIN_PFMUL, IX86_BUILTIN_PFRCP, IX86_BUILTIN_PFRCPIT1, IX86_BUILTIN_PFRCPIT2, IX86_BUILTIN_PFRSQIT1, IX86_BUILTIN_PFRSQRT, IX86_BUILTIN_PFSUB, IX86_BUILTIN_PFSUBR, IX86_BUILTIN_PI2FD, IX86_BUILTIN_PMULHRW, /* 3DNow! Athlon Extensions */ IX86_BUILTIN_PF2IW, IX86_BUILTIN_PFNACC, IX86_BUILTIN_PFPNACC, IX86_BUILTIN_PI2FW, IX86_BUILTIN_PSWAPDSI, IX86_BUILTIN_PSWAPDSF, /* SSE2 */ IX86_BUILTIN_ADDPD, IX86_BUILTIN_ADDSD, IX86_BUILTIN_DIVPD, IX86_BUILTIN_DIVSD, IX86_BUILTIN_MULPD, IX86_BUILTIN_MULSD, IX86_BUILTIN_SUBPD, IX86_BUILTIN_SUBSD, IX86_BUILTIN_CMPEQPD, IX86_BUILTIN_CMPLTPD, IX86_BUILTIN_CMPLEPD, IX86_BUILTIN_CMPGTPD, IX86_BUILTIN_CMPGEPD, IX86_BUILTIN_CMPNEQPD, IX86_BUILTIN_CMPNLTPD, IX86_BUILTIN_CMPNLEPD, IX86_BUILTIN_CMPNGTPD, IX86_BUILTIN_CMPNGEPD, IX86_BUILTIN_CMPORDPD, IX86_BUILTIN_CMPUNORDPD, IX86_BUILTIN_CMPEQSD, IX86_BUILTIN_CMPLTSD, IX86_BUILTIN_CMPLESD, IX86_BUILTIN_CMPNEQSD, IX86_BUILTIN_CMPNLTSD, IX86_BUILTIN_CMPNLESD, IX86_BUILTIN_CMPORDSD, IX86_BUILTIN_CMPUNORDSD, IX86_BUILTIN_COMIEQSD, IX86_BUILTIN_COMILTSD, IX86_BUILTIN_COMILESD, IX86_BUILTIN_COMIGTSD, IX86_BUILTIN_COMIGESD, IX86_BUILTIN_COMINEQSD, IX86_BUILTIN_UCOMIEQSD, IX86_BUILTIN_UCOMILTSD, IX86_BUILTIN_UCOMILESD, IX86_BUILTIN_UCOMIGTSD, IX86_BUILTIN_UCOMIGESD, IX86_BUILTIN_UCOMINEQSD, IX86_BUILTIN_MAXPD, IX86_BUILTIN_MAXSD, IX86_BUILTIN_MINPD, IX86_BUILTIN_MINSD, IX86_BUILTIN_ANDPD, IX86_BUILTIN_ANDNPD, IX86_BUILTIN_ORPD, IX86_BUILTIN_XORPD, IX86_BUILTIN_SQRTPD, IX86_BUILTIN_SQRTSD, IX86_BUILTIN_UNPCKHPD, IX86_BUILTIN_UNPCKLPD, IX86_BUILTIN_SHUFPD, IX86_BUILTIN_LOADUPD, IX86_BUILTIN_STOREUPD, IX86_BUILTIN_MOVSD, IX86_BUILTIN_LOADHPD, IX86_BUILTIN_LOADLPD, IX86_BUILTIN_CVTDQ2PD, IX86_BUILTIN_CVTDQ2PS, IX86_BUILTIN_CVTPD2DQ, IX86_BUILTIN_CVTPD2PI, IX86_BUILTIN_CVTPD2PS, IX86_BUILTIN_CVTTPD2DQ, IX86_BUILTIN_CVTTPD2PI, IX86_BUILTIN_CVTPI2PD, IX86_BUILTIN_CVTSI2SD, IX86_BUILTIN_CVTSI642SD, IX86_BUILTIN_CVTSD2SI, IX86_BUILTIN_CVTSD2SI64, IX86_BUILTIN_CVTSD2SS, IX86_BUILTIN_CVTSS2SD, IX86_BUILTIN_CVTTSD2SI, IX86_BUILTIN_CVTTSD2SI64, IX86_BUILTIN_CVTPS2DQ, IX86_BUILTIN_CVTPS2PD, IX86_BUILTIN_CVTTPS2DQ, IX86_BUILTIN_MOVNTI, IX86_BUILTIN_MOVNTPD, IX86_BUILTIN_MOVNTDQ, IX86_BUILTIN_MOVQ128, /* SSE2 MMX */ IX86_BUILTIN_MASKMOVDQU, IX86_BUILTIN_MOVMSKPD, IX86_BUILTIN_PMOVMSKB128, IX86_BUILTIN_PACKSSWB128, IX86_BUILTIN_PACKSSDW128, IX86_BUILTIN_PACKUSWB128, IX86_BUILTIN_PADDB128, IX86_BUILTIN_PADDW128, IX86_BUILTIN_PADDD128, IX86_BUILTIN_PADDQ128, IX86_BUILTIN_PADDSB128, IX86_BUILTIN_PADDSW128, IX86_BUILTIN_PADDUSB128, IX86_BUILTIN_PADDUSW128, IX86_BUILTIN_PSUBB128, IX86_BUILTIN_PSUBW128, IX86_BUILTIN_PSUBD128, IX86_BUILTIN_PSUBQ128, IX86_BUILTIN_PSUBSB128, IX86_BUILTIN_PSUBSW128, IX86_BUILTIN_PSUBUSB128, IX86_BUILTIN_PSUBUSW128, IX86_BUILTIN_PAND128, IX86_BUILTIN_PANDN128, IX86_BUILTIN_POR128, IX86_BUILTIN_PXOR128, IX86_BUILTIN_PAVGB128, IX86_BUILTIN_PAVGW128, IX86_BUILTIN_PCMPEQB128, IX86_BUILTIN_PCMPEQW128, IX86_BUILTIN_PCMPEQD128, IX86_BUILTIN_PCMPGTB128, IX86_BUILTIN_PCMPGTW128, IX86_BUILTIN_PCMPGTD128, IX86_BUILTIN_PMADDWD128, IX86_BUILTIN_PMAXSW128, IX86_BUILTIN_PMAXUB128, IX86_BUILTIN_PMINSW128, IX86_BUILTIN_PMINUB128, IX86_BUILTIN_PMULUDQ, IX86_BUILTIN_PMULUDQ128, IX86_BUILTIN_PMULHUW128, IX86_BUILTIN_PMULHW128, IX86_BUILTIN_PMULLW128, IX86_BUILTIN_PSADBW128, IX86_BUILTIN_PSHUFHW, IX86_BUILTIN_PSHUFLW, IX86_BUILTIN_PSHUFD, IX86_BUILTIN_PSLLDQI128, IX86_BUILTIN_PSLLWI128, IX86_BUILTIN_PSLLDI128, IX86_BUILTIN_PSLLQI128, IX86_BUILTIN_PSRAWI128, IX86_BUILTIN_PSRADI128, IX86_BUILTIN_PSRLDQI128, IX86_BUILTIN_PSRLWI128, IX86_BUILTIN_PSRLDI128, IX86_BUILTIN_PSRLQI128, IX86_BUILTIN_PSLLDQ128, IX86_BUILTIN_PSLLW128, IX86_BUILTIN_PSLLD128, IX86_BUILTIN_PSLLQ128, IX86_BUILTIN_PSRAW128, IX86_BUILTIN_PSRAD128, IX86_BUILTIN_PSRLW128, IX86_BUILTIN_PSRLD128, IX86_BUILTIN_PSRLQ128, IX86_BUILTIN_PUNPCKHBW128, IX86_BUILTIN_PUNPCKHWD128, IX86_BUILTIN_PUNPCKHDQ128, IX86_BUILTIN_PUNPCKHQDQ128, IX86_BUILTIN_PUNPCKLBW128, IX86_BUILTIN_PUNPCKLWD128, IX86_BUILTIN_PUNPCKLDQ128, IX86_BUILTIN_PUNPCKLQDQ128, IX86_BUILTIN_CLFLUSH, IX86_BUILTIN_MFENCE, IX86_BUILTIN_LFENCE, IX86_BUILTIN_BSRSI, IX86_BUILTIN_BSRDI, IX86_BUILTIN_RDPMC, IX86_BUILTIN_RDTSC, IX86_BUILTIN_RDTSCP, IX86_BUILTIN_ROLQI, IX86_BUILTIN_ROLHI, IX86_BUILTIN_RORQI, IX86_BUILTIN_RORHI, /* SSE3. */ IX86_BUILTIN_ADDSUBPS, IX86_BUILTIN_HADDPS, IX86_BUILTIN_HSUBPS, IX86_BUILTIN_MOVSHDUP, IX86_BUILTIN_MOVSLDUP, IX86_BUILTIN_ADDSUBPD, IX86_BUILTIN_HADDPD, IX86_BUILTIN_HSUBPD, IX86_BUILTIN_LDDQU, IX86_BUILTIN_MONITOR, IX86_BUILTIN_MWAIT, /* SSSE3. */ IX86_BUILTIN_PHADDW, IX86_BUILTIN_PHADDD, IX86_BUILTIN_PHADDSW, IX86_BUILTIN_PHSUBW, IX86_BUILTIN_PHSUBD, IX86_BUILTIN_PHSUBSW, IX86_BUILTIN_PMADDUBSW, IX86_BUILTIN_PMULHRSW, IX86_BUILTIN_PSHUFB, IX86_BUILTIN_PSIGNB, IX86_BUILTIN_PSIGNW, IX86_BUILTIN_PSIGND, IX86_BUILTIN_PALIGNR, IX86_BUILTIN_PABSB, IX86_BUILTIN_PABSW, IX86_BUILTIN_PABSD, IX86_BUILTIN_PHADDW128, IX86_BUILTIN_PHADDD128, IX86_BUILTIN_PHADDSW128, IX86_BUILTIN_PHSUBW128, IX86_BUILTIN_PHSUBD128, IX86_BUILTIN_PHSUBSW128, IX86_BUILTIN_PMADDUBSW128, IX86_BUILTIN_PMULHRSW128, IX86_BUILTIN_PSHUFB128, IX86_BUILTIN_PSIGNB128, IX86_BUILTIN_PSIGNW128, IX86_BUILTIN_PSIGND128, IX86_BUILTIN_PALIGNR128, IX86_BUILTIN_PABSB128, IX86_BUILTIN_PABSW128, IX86_BUILTIN_PABSD128, /* AMDFAM10 - SSE4A New Instructions. */ IX86_BUILTIN_MOVNTSD, IX86_BUILTIN_MOVNTSS, IX86_BUILTIN_EXTRQI, IX86_BUILTIN_EXTRQ, IX86_BUILTIN_INSERTQI, IX86_BUILTIN_INSERTQ, /* SSE4.1. */ IX86_BUILTIN_BLENDPD, IX86_BUILTIN_BLENDPS, IX86_BUILTIN_BLENDVPD, IX86_BUILTIN_BLENDVPS, IX86_BUILTIN_PBLENDVB128, IX86_BUILTIN_PBLENDW128, IX86_BUILTIN_DPPD, IX86_BUILTIN_DPPS, IX86_BUILTIN_INSERTPS128, IX86_BUILTIN_MOVNTDQA, IX86_BUILTIN_MPSADBW128, IX86_BUILTIN_PACKUSDW128, IX86_BUILTIN_PCMPEQQ, IX86_BUILTIN_PHMINPOSUW128, IX86_BUILTIN_PMAXSB128, IX86_BUILTIN_PMAXSD128, IX86_BUILTIN_PMAXUD128, IX86_BUILTIN_PMAXUW128, IX86_BUILTIN_PMINSB128, IX86_BUILTIN_PMINSD128, IX86_BUILTIN_PMINUD128, IX86_BUILTIN_PMINUW128, IX86_BUILTIN_PMOVSXBW128, IX86_BUILTIN_PMOVSXBD128, IX86_BUILTIN_PMOVSXBQ128, IX86_BUILTIN_PMOVSXWD128, IX86_BUILTIN_PMOVSXWQ128, IX86_BUILTIN_PMOVSXDQ128, IX86_BUILTIN_PMOVZXBW128, IX86_BUILTIN_PMOVZXBD128, IX86_BUILTIN_PMOVZXBQ128, IX86_BUILTIN_PMOVZXWD128, IX86_BUILTIN_PMOVZXWQ128, IX86_BUILTIN_PMOVZXDQ128, IX86_BUILTIN_PMULDQ128, IX86_BUILTIN_PMULLD128, IX86_BUILTIN_ROUNDPD, IX86_BUILTIN_ROUNDPS, IX86_BUILTIN_ROUNDSD, IX86_BUILTIN_ROUNDSS, IX86_BUILTIN_PTESTZ, IX86_BUILTIN_PTESTC, IX86_BUILTIN_PTESTNZC, IX86_BUILTIN_VEC_INIT_V2SI, IX86_BUILTIN_VEC_INIT_V4HI, IX86_BUILTIN_VEC_INIT_V8QI, IX86_BUILTIN_VEC_EXT_V2DF, IX86_BUILTIN_VEC_EXT_V2DI, IX86_BUILTIN_VEC_EXT_V4SF, IX86_BUILTIN_VEC_EXT_V4SI, IX86_BUILTIN_VEC_EXT_V8HI, IX86_BUILTIN_VEC_EXT_V2SI, IX86_BUILTIN_VEC_EXT_V4HI, IX86_BUILTIN_VEC_EXT_V16QI, IX86_BUILTIN_VEC_SET_V2DI, IX86_BUILTIN_VEC_SET_V4SF, IX86_BUILTIN_VEC_SET_V4SI, IX86_BUILTIN_VEC_SET_V8HI, IX86_BUILTIN_VEC_SET_V4HI, IX86_BUILTIN_VEC_SET_V16QI, IX86_BUILTIN_VEC_PACK_SFIX, /* SSE4.2. */ IX86_BUILTIN_CRC32QI, IX86_BUILTIN_CRC32HI, IX86_BUILTIN_CRC32SI, IX86_BUILTIN_CRC32DI, IX86_BUILTIN_PCMPESTRI128, IX86_BUILTIN_PCMPESTRM128, IX86_BUILTIN_PCMPESTRA128, IX86_BUILTIN_PCMPESTRC128, IX86_BUILTIN_PCMPESTRO128, IX86_BUILTIN_PCMPESTRS128, IX86_BUILTIN_PCMPESTRZ128, IX86_BUILTIN_PCMPISTRI128, IX86_BUILTIN_PCMPISTRM128, IX86_BUILTIN_PCMPISTRA128, IX86_BUILTIN_PCMPISTRC128, IX86_BUILTIN_PCMPISTRO128, IX86_BUILTIN_PCMPISTRS128, IX86_BUILTIN_PCMPISTRZ128, IX86_BUILTIN_PCMPGTQ, /* AES instructions */ IX86_BUILTIN_AESENC128, IX86_BUILTIN_AESENCLAST128, IX86_BUILTIN_AESDEC128, IX86_BUILTIN_AESDECLAST128, IX86_BUILTIN_AESIMC128, IX86_BUILTIN_AESKEYGENASSIST128, /* PCLMUL instruction */ IX86_BUILTIN_PCLMULQDQ128, /* AVX */ IX86_BUILTIN_ADDPD256, IX86_BUILTIN_ADDPS256, IX86_BUILTIN_ADDSUBPD256, IX86_BUILTIN_ADDSUBPS256, IX86_BUILTIN_ANDPD256, IX86_BUILTIN_ANDPS256, IX86_BUILTIN_ANDNPD256, IX86_BUILTIN_ANDNPS256, IX86_BUILTIN_BLENDPD256, IX86_BUILTIN_BLENDPS256, IX86_BUILTIN_BLENDVPD256, IX86_BUILTIN_BLENDVPS256, IX86_BUILTIN_DIVPD256, IX86_BUILTIN_DIVPS256, IX86_BUILTIN_DPPS256, IX86_BUILTIN_HADDPD256, IX86_BUILTIN_HADDPS256, IX86_BUILTIN_HSUBPD256, IX86_BUILTIN_HSUBPS256, IX86_BUILTIN_MAXPD256, IX86_BUILTIN_MAXPS256, IX86_BUILTIN_MINPD256, IX86_BUILTIN_MINPS256, IX86_BUILTIN_MULPD256, IX86_BUILTIN_MULPS256, IX86_BUILTIN_ORPD256, IX86_BUILTIN_ORPS256, IX86_BUILTIN_SHUFPD256, IX86_BUILTIN_SHUFPS256, IX86_BUILTIN_SUBPD256, IX86_BUILTIN_SUBPS256, IX86_BUILTIN_XORPD256, IX86_BUILTIN_XORPS256, IX86_BUILTIN_CMPSD, IX86_BUILTIN_CMPSS, IX86_BUILTIN_CMPPD, IX86_BUILTIN_CMPPS, IX86_BUILTIN_CMPPD256, IX86_BUILTIN_CMPPS256, IX86_BUILTIN_CVTDQ2PD256, IX86_BUILTIN_CVTDQ2PS256, IX86_BUILTIN_CVTPD2PS256, IX86_BUILTIN_CVTPS2DQ256, IX86_BUILTIN_CVTPS2PD256, IX86_BUILTIN_CVTTPD2DQ256, IX86_BUILTIN_CVTPD2DQ256, IX86_BUILTIN_CVTTPS2DQ256, IX86_BUILTIN_EXTRACTF128PD256, IX86_BUILTIN_EXTRACTF128PS256, IX86_BUILTIN_EXTRACTF128SI256, IX86_BUILTIN_VZEROALL, IX86_BUILTIN_VZEROUPPER, IX86_BUILTIN_VPERMILVARPD, IX86_BUILTIN_VPERMILVARPS, IX86_BUILTIN_VPERMILVARPD256, IX86_BUILTIN_VPERMILVARPS256, IX86_BUILTIN_VPERMILPD, IX86_BUILTIN_VPERMILPS, IX86_BUILTIN_VPERMILPD256, IX86_BUILTIN_VPERMILPS256, IX86_BUILTIN_VPERMIL2PD, IX86_BUILTIN_VPERMIL2PS, IX86_BUILTIN_VPERMIL2PD256, IX86_BUILTIN_VPERMIL2PS256, IX86_BUILTIN_VPERM2F128PD256, IX86_BUILTIN_VPERM2F128PS256, IX86_BUILTIN_VPERM2F128SI256, IX86_BUILTIN_VBROADCASTSS, IX86_BUILTIN_VBROADCASTSD256, IX86_BUILTIN_VBROADCASTSS256, IX86_BUILTIN_VBROADCASTPD256, IX86_BUILTIN_VBROADCASTPS256, IX86_BUILTIN_VINSERTF128PD256, IX86_BUILTIN_VINSERTF128PS256, IX86_BUILTIN_VINSERTF128SI256, IX86_BUILTIN_LOADUPD256, IX86_BUILTIN_LOADUPS256, IX86_BUILTIN_STOREUPD256, IX86_BUILTIN_STOREUPS256, IX86_BUILTIN_LDDQU256, IX86_BUILTIN_MOVNTDQ256, IX86_BUILTIN_MOVNTPD256, IX86_BUILTIN_MOVNTPS256, IX86_BUILTIN_LOADDQU256, IX86_BUILTIN_STOREDQU256, IX86_BUILTIN_MASKLOADPD, IX86_BUILTIN_MASKLOADPS, IX86_BUILTIN_MASKSTOREPD, IX86_BUILTIN_MASKSTOREPS, IX86_BUILTIN_MASKLOADPD256, IX86_BUILTIN_MASKLOADPS256, IX86_BUILTIN_MASKSTOREPD256, IX86_BUILTIN_MASKSTOREPS256, IX86_BUILTIN_MOVSHDUP256, IX86_BUILTIN_MOVSLDUP256, IX86_BUILTIN_MOVDDUP256, IX86_BUILTIN_SQRTPD256, IX86_BUILTIN_SQRTPS256, IX86_BUILTIN_SQRTPS_NR256, IX86_BUILTIN_RSQRTPS256, IX86_BUILTIN_RSQRTPS_NR256, IX86_BUILTIN_RCPPS256, IX86_BUILTIN_ROUNDPD256, IX86_BUILTIN_ROUNDPS256, IX86_BUILTIN_UNPCKHPD256, IX86_BUILTIN_UNPCKLPD256, IX86_BUILTIN_UNPCKHPS256, IX86_BUILTIN_UNPCKLPS256, IX86_BUILTIN_SI256_SI, IX86_BUILTIN_PS256_PS, IX86_BUILTIN_PD256_PD, IX86_BUILTIN_SI_SI256, IX86_BUILTIN_PS_PS256, IX86_BUILTIN_PD_PD256, IX86_BUILTIN_VTESTZPD, IX86_BUILTIN_VTESTCPD, IX86_BUILTIN_VTESTNZCPD, IX86_BUILTIN_VTESTZPS, IX86_BUILTIN_VTESTCPS, IX86_BUILTIN_VTESTNZCPS, IX86_BUILTIN_VTESTZPD256, IX86_BUILTIN_VTESTCPD256, IX86_BUILTIN_VTESTNZCPD256, IX86_BUILTIN_VTESTZPS256, IX86_BUILTIN_VTESTCPS256, IX86_BUILTIN_VTESTNZCPS256, IX86_BUILTIN_PTESTZ256, IX86_BUILTIN_PTESTC256, IX86_BUILTIN_PTESTNZC256, IX86_BUILTIN_MOVMSKPD256, IX86_BUILTIN_MOVMSKPS256, /* TFmode support builtins. */ IX86_BUILTIN_INFQ, IX86_BUILTIN_HUGE_VALQ, IX86_BUILTIN_FABSQ, IX86_BUILTIN_COPYSIGNQ, /* Vectorizer support builtins. */ IX86_BUILTIN_CPYSGNPS, IX86_BUILTIN_CPYSGNPD, IX86_BUILTIN_CVTUDQ2PS, IX86_BUILTIN_VEC_PERM_V2DF, IX86_BUILTIN_VEC_PERM_V4SF, IX86_BUILTIN_VEC_PERM_V2DI, IX86_BUILTIN_VEC_PERM_V4SI, IX86_BUILTIN_VEC_PERM_V8HI, IX86_BUILTIN_VEC_PERM_V16QI, IX86_BUILTIN_VEC_PERM_V2DI_U, IX86_BUILTIN_VEC_PERM_V4SI_U, IX86_BUILTIN_VEC_PERM_V8HI_U, IX86_BUILTIN_VEC_PERM_V16QI_U, IX86_BUILTIN_VEC_PERM_V4DF, IX86_BUILTIN_VEC_PERM_V8SF, /* FMA4 and XOP instructions. */ IX86_BUILTIN_VFMADDSS, IX86_BUILTIN_VFMADDSD, IX86_BUILTIN_VFMADDPS, IX86_BUILTIN_VFMADDPD, IX86_BUILTIN_VFMSUBSS, IX86_BUILTIN_VFMSUBSD, IX86_BUILTIN_VFMSUBPS, IX86_BUILTIN_VFMSUBPD, IX86_BUILTIN_VFMADDSUBPS, IX86_BUILTIN_VFMADDSUBPD, IX86_BUILTIN_VFMSUBADDPS, IX86_BUILTIN_VFMSUBADDPD, IX86_BUILTIN_VFNMADDSS, IX86_BUILTIN_VFNMADDSD, IX86_BUILTIN_VFNMADDPS, IX86_BUILTIN_VFNMADDPD, IX86_BUILTIN_VFNMSUBSS, IX86_BUILTIN_VFNMSUBSD, IX86_BUILTIN_VFNMSUBPS, IX86_BUILTIN_VFNMSUBPD, IX86_BUILTIN_VFMADDPS256, IX86_BUILTIN_VFMADDPD256, IX86_BUILTIN_VFMSUBPS256, IX86_BUILTIN_VFMSUBPD256, IX86_BUILTIN_VFMADDSUBPS256, IX86_BUILTIN_VFMADDSUBPD256, IX86_BUILTIN_VFMSUBADDPS256, IX86_BUILTIN_VFMSUBADDPD256, IX86_BUILTIN_VFNMADDPS256, IX86_BUILTIN_VFNMADDPD256, IX86_BUILTIN_VFNMSUBPS256, IX86_BUILTIN_VFNMSUBPD256, IX86_BUILTIN_VPCMOV, IX86_BUILTIN_VPCMOV_V2DI, IX86_BUILTIN_VPCMOV_V4SI, IX86_BUILTIN_VPCMOV_V8HI, IX86_BUILTIN_VPCMOV_V16QI, IX86_BUILTIN_VPCMOV_V4SF, IX86_BUILTIN_VPCMOV_V2DF, IX86_BUILTIN_VPCMOV256, IX86_BUILTIN_VPCMOV_V4DI256, IX86_BUILTIN_VPCMOV_V8SI256, IX86_BUILTIN_VPCMOV_V16HI256, IX86_BUILTIN_VPCMOV_V32QI256, IX86_BUILTIN_VPCMOV_V8SF256, IX86_BUILTIN_VPCMOV_V4DF256, IX86_BUILTIN_VPPERM, IX86_BUILTIN_VPMACSSWW, IX86_BUILTIN_VPMACSWW, IX86_BUILTIN_VPMACSSWD, IX86_BUILTIN_VPMACSWD, IX86_BUILTIN_VPMACSSDD, IX86_BUILTIN_VPMACSDD, IX86_BUILTIN_VPMACSSDQL, IX86_BUILTIN_VPMACSSDQH, IX86_BUILTIN_VPMACSDQL, IX86_BUILTIN_VPMACSDQH, IX86_BUILTIN_VPMADCSSWD, IX86_BUILTIN_VPMADCSWD, IX86_BUILTIN_VPHADDBW, IX86_BUILTIN_VPHADDBD, IX86_BUILTIN_VPHADDBQ, IX86_BUILTIN_VPHADDWD, IX86_BUILTIN_VPHADDWQ, IX86_BUILTIN_VPHADDDQ, IX86_BUILTIN_VPHADDUBW, IX86_BUILTIN_VPHADDUBD, IX86_BUILTIN_VPHADDUBQ, IX86_BUILTIN_VPHADDUWD, IX86_BUILTIN_VPHADDUWQ, IX86_BUILTIN_VPHADDUDQ, IX86_BUILTIN_VPHSUBBW, IX86_BUILTIN_VPHSUBWD, IX86_BUILTIN_VPHSUBDQ, IX86_BUILTIN_VPROTB, IX86_BUILTIN_VPROTW, IX86_BUILTIN_VPROTD, IX86_BUILTIN_VPROTQ, IX86_BUILTIN_VPROTB_IMM, IX86_BUILTIN_VPROTW_IMM, IX86_BUILTIN_VPROTD_IMM, IX86_BUILTIN_VPROTQ_IMM, IX86_BUILTIN_VPSHLB, IX86_BUILTIN_VPSHLW, IX86_BUILTIN_VPSHLD, IX86_BUILTIN_VPSHLQ, IX86_BUILTIN_VPSHAB, IX86_BUILTIN_VPSHAW, IX86_BUILTIN_VPSHAD, IX86_BUILTIN_VPSHAQ, IX86_BUILTIN_VFRCZSS, IX86_BUILTIN_VFRCZSD, IX86_BUILTIN_VFRCZPS, IX86_BUILTIN_VFRCZPD, IX86_BUILTIN_VFRCZPS256, IX86_BUILTIN_VFRCZPD256, IX86_BUILTIN_VPCOMEQUB, IX86_BUILTIN_VPCOMNEUB, IX86_BUILTIN_VPCOMLTUB, IX86_BUILTIN_VPCOMLEUB, IX86_BUILTIN_VPCOMGTUB, IX86_BUILTIN_VPCOMGEUB, IX86_BUILTIN_VPCOMFALSEUB, IX86_BUILTIN_VPCOMTRUEUB, IX86_BUILTIN_VPCOMEQUW, IX86_BUILTIN_VPCOMNEUW, IX86_BUILTIN_VPCOMLTUW, IX86_BUILTIN_VPCOMLEUW, IX86_BUILTIN_VPCOMGTUW, IX86_BUILTIN_VPCOMGEUW, IX86_BUILTIN_VPCOMFALSEUW, IX86_BUILTIN_VPCOMTRUEUW, IX86_BUILTIN_VPCOMEQUD, IX86_BUILTIN_VPCOMNEUD, IX86_BUILTIN_VPCOMLTUD, IX86_BUILTIN_VPCOMLEUD, IX86_BUILTIN_VPCOMGTUD, IX86_BUILTIN_VPCOMGEUD, IX86_BUILTIN_VPCOMFALSEUD, IX86_BUILTIN_VPCOMTRUEUD, IX86_BUILTIN_VPCOMEQUQ, IX86_BUILTIN_VPCOMNEUQ, IX86_BUILTIN_VPCOMLTUQ, IX86_BUILTIN_VPCOMLEUQ, IX86_BUILTIN_VPCOMGTUQ, IX86_BUILTIN_VPCOMGEUQ, IX86_BUILTIN_VPCOMFALSEUQ, IX86_BUILTIN_VPCOMTRUEUQ, IX86_BUILTIN_VPCOMEQB, IX86_BUILTIN_VPCOMNEB, IX86_BUILTIN_VPCOMLTB, IX86_BUILTIN_VPCOMLEB, IX86_BUILTIN_VPCOMGTB, IX86_BUILTIN_VPCOMGEB, IX86_BUILTIN_VPCOMFALSEB, IX86_BUILTIN_VPCOMTRUEB, IX86_BUILTIN_VPCOMEQW, IX86_BUILTIN_VPCOMNEW, IX86_BUILTIN_VPCOMLTW, IX86_BUILTIN_VPCOMLEW, IX86_BUILTIN_VPCOMGTW, IX86_BUILTIN_VPCOMGEW, IX86_BUILTIN_VPCOMFALSEW, IX86_BUILTIN_VPCOMTRUEW, IX86_BUILTIN_VPCOMEQD, IX86_BUILTIN_VPCOMNED, IX86_BUILTIN_VPCOMLTD, IX86_BUILTIN_VPCOMLED, IX86_BUILTIN_VPCOMGTD, IX86_BUILTIN_VPCOMGED, IX86_BUILTIN_VPCOMFALSED, IX86_BUILTIN_VPCOMTRUED, IX86_BUILTIN_VPCOMEQQ, IX86_BUILTIN_VPCOMNEQ, IX86_BUILTIN_VPCOMLTQ, IX86_BUILTIN_VPCOMLEQ, IX86_BUILTIN_VPCOMGTQ, IX86_BUILTIN_VPCOMGEQ, IX86_BUILTIN_VPCOMFALSEQ, IX86_BUILTIN_VPCOMTRUEQ, /* LWP instructions. */ IX86_BUILTIN_LLWPCB, IX86_BUILTIN_SLWPCB, IX86_BUILTIN_LWPVAL32, IX86_BUILTIN_LWPVAL64, IX86_BUILTIN_LWPINS32, IX86_BUILTIN_LWPINS64, IX86_BUILTIN_CLZS, IX86_BUILTIN_MAX }; /* Table for the ix86 builtin decls. */ static GTY(()) tree ix86_builtins[(int) IX86_BUILTIN_MAX]; /* Table of all of the builtin functions that are possible with different ISA's but are waiting to be built until a function is declared to use that ISA. */ struct builtin_isa { const char *name; /* function name */ enum ix86_builtin_func_type tcode; /* type to use in the declaration */ int isa; /* isa_flags this builtin is defined for */ bool const_p; /* true if the declaration is constant */ bool set_and_not_built_p; }; static struct builtin_isa ix86_builtins_isa[(int) IX86_BUILTIN_MAX]; /* Add an ix86 target builtin function with CODE, NAME and TYPE. Save the MASK of which isa_flags to use in the ix86_builtins_isa array. Stores the function decl in the ix86_builtins array. Returns the function decl or NULL_TREE, if the builtin was not added. If the front end has a special hook for builtin functions, delay adding builtin functions that aren't in the current ISA until the ISA is changed with function specific optimization. Doing so, can save about 300K for the default compiler. When the builtin is expanded, check at that time whether it is valid. If the front end doesn't have a special hook, record all builtins, even if it isn't an instruction set in the current ISA in case the user uses function specific options for a different ISA, so that we don't get scope errors if a builtin is added in the middle of a function scope. */ static inline tree def_builtin (int mask, const char *name, enum ix86_builtin_func_type tcode, enum ix86_builtins code) { tree decl = NULL_TREE; if (!(mask & OPTION_MASK_ISA_64BIT) || TARGET_64BIT) { ix86_builtins_isa[(int) code].isa = mask; mask &= ~OPTION_MASK_ISA_64BIT; if (mask == 0 || (mask & ix86_isa_flags) != 0 || (lang_hooks.builtin_function == lang_hooks.builtin_function_ext_scope)) { tree type = ix86_get_builtin_func_type (tcode); decl = add_builtin_function (name, type, code, BUILT_IN_MD, NULL, NULL_TREE); ix86_builtins[(int) code] = decl; ix86_builtins_isa[(int) code].set_and_not_built_p = false; } else { ix86_builtins[(int) code] = NULL_TREE; ix86_builtins_isa[(int) code].tcode = tcode; ix86_builtins_isa[(int) code].name = name; ix86_builtins_isa[(int) code].const_p = false; ix86_builtins_isa[(int) code].set_and_not_built_p = true; } } return decl; } /* Like def_builtin, but also marks the function decl "const". */ static inline tree def_builtin_const (int mask, const char *name, enum ix86_builtin_func_type tcode, enum ix86_builtins code) { tree decl = def_builtin (mask, name, tcode, code); if (decl) TREE_READONLY (decl) = 1; else ix86_builtins_isa[(int) code].const_p = true; return decl; } /* Add any new builtin functions for a given ISA that may not have been declared. This saves a bit of space compared to adding all of the declarations to the tree, even if we didn't use them. */ static void ix86_add_new_builtins (int isa) { int i; for (i = 0; i < (int)IX86_BUILTIN_MAX; i++) { if ((ix86_builtins_isa[i].isa & isa) != 0 && ix86_builtins_isa[i].set_and_not_built_p) { tree decl, type; /* Don't define the builtin again. */ ix86_builtins_isa[i].set_and_not_built_p = false; type = ix86_get_builtin_func_type (ix86_builtins_isa[i].tcode); decl = add_builtin_function_ext_scope (ix86_builtins_isa[i].name, type, i, BUILT_IN_MD, NULL, NULL_TREE); ix86_builtins[i] = decl; if (ix86_builtins_isa[i].const_p) TREE_READONLY (decl) = 1; } } } /* Bits for builtin_description.flag. */ /* Set when we don't support the comparison natively, and should swap_comparison in order to support it. */ #define BUILTIN_DESC_SWAP_OPERANDS 1 struct builtin_description { const unsigned int mask; const enum insn_code icode; const char *const name; const enum ix86_builtins code; const enum rtx_code comparison; const int flag; }; static const struct builtin_description bdesc_comi[] = { { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comieq", IX86_BUILTIN_COMIEQSS, UNEQ, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comilt", IX86_BUILTIN_COMILTSS, UNLT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comile", IX86_BUILTIN_COMILESS, UNLE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comigt", IX86_BUILTIN_COMIGTSS, GT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comige", IX86_BUILTIN_COMIGESS, GE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comineq", IX86_BUILTIN_COMINEQSS, LTGT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomieq", IX86_BUILTIN_UCOMIEQSS, UNEQ, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomilt", IX86_BUILTIN_UCOMILTSS, UNLT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomile", IX86_BUILTIN_UCOMILESS, UNLE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomigt", IX86_BUILTIN_UCOMIGTSS, GT, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomige", IX86_BUILTIN_UCOMIGESS, GE, 0 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomineq", IX86_BUILTIN_UCOMINEQSS, LTGT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdeq", IX86_BUILTIN_COMIEQSD, UNEQ, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdlt", IX86_BUILTIN_COMILTSD, UNLT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdle", IX86_BUILTIN_COMILESD, UNLE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdgt", IX86_BUILTIN_COMIGTSD, GT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdge", IX86_BUILTIN_COMIGESD, GE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_comi, "__builtin_ia32_comisdneq", IX86_BUILTIN_COMINEQSD, LTGT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdeq", IX86_BUILTIN_UCOMIEQSD, UNEQ, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdlt", IX86_BUILTIN_UCOMILTSD, UNLT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdle", IX86_BUILTIN_UCOMILESD, UNLE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdgt", IX86_BUILTIN_UCOMIGTSD, GT, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdge", IX86_BUILTIN_UCOMIGESD, GE, 0 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ucomi, "__builtin_ia32_ucomisdneq", IX86_BUILTIN_UCOMINEQSD, LTGT, 0 }, }; static const struct builtin_description bdesc_pcmpestr[] = { /* SSE4.2 */ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestri128", IX86_BUILTIN_PCMPESTRI128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrm128", IX86_BUILTIN_PCMPESTRM128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestria128", IX86_BUILTIN_PCMPESTRA128, UNKNOWN, (int) CCAmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestric128", IX86_BUILTIN_PCMPESTRC128, UNKNOWN, (int) CCCmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestrio128", IX86_BUILTIN_PCMPESTRO128, UNKNOWN, (int) CCOmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestris128", IX86_BUILTIN_PCMPESTRS128, UNKNOWN, (int) CCSmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpestr, "__builtin_ia32_pcmpestriz128", IX86_BUILTIN_PCMPESTRZ128, UNKNOWN, (int) CCZmode }, }; static const struct builtin_description bdesc_pcmpistr[] = { /* SSE4.2 */ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistri128", IX86_BUILTIN_PCMPISTRI128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrm128", IX86_BUILTIN_PCMPISTRM128, UNKNOWN, 0 }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistria128", IX86_BUILTIN_PCMPISTRA128, UNKNOWN, (int) CCAmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistric128", IX86_BUILTIN_PCMPISTRC128, UNKNOWN, (int) CCCmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistrio128", IX86_BUILTIN_PCMPISTRO128, UNKNOWN, (int) CCOmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistris128", IX86_BUILTIN_PCMPISTRS128, UNKNOWN, (int) CCSmode }, { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_pcmpistr, "__builtin_ia32_pcmpistriz128", IX86_BUILTIN_PCMPISTRZ128, UNKNOWN, (int) CCZmode }, }; /* Special builtins with variable number of arguments. */ static const struct builtin_description bdesc_special_args[] = { { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rdtsc, "__builtin_ia32_rdtsc", IX86_BUILTIN_RDTSC, UNKNOWN, (int) UINT64_FTYPE_VOID }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rdtscp, "__builtin_ia32_rdtscp", IX86_BUILTIN_RDTSCP, UNKNOWN, (int) UINT64_FTYPE_PUNSIGNED }, /* MMX */ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_emms, "__builtin_ia32_emms", IX86_BUILTIN_EMMS, UNKNOWN, (int) VOID_FTYPE_VOID }, /* 3DNow! */ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_femms, "__builtin_ia32_femms", IX86_BUILTIN_FEMMS, UNKNOWN, (int) VOID_FTYPE_VOID }, /* SSE */ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movups, "__builtin_ia32_storeups", IX86_BUILTIN_STOREUPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movntv4sf, "__builtin_ia32_movntps", IX86_BUILTIN_MOVNTPS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movups, "__builtin_ia32_loadups", IX86_BUILTIN_LOADUPS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadhps_exp, "__builtin_ia32_loadhps", IX86_BUILTIN_LOADHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_loadlps_exp, "__builtin_ia32_loadlps", IX86_BUILTIN_LOADLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_PCV2SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storehps, "__builtin_ia32_storehps", IX86_BUILTIN_STOREHPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_storelps, "__builtin_ia32_storelps", IX86_BUILTIN_STORELPS, UNKNOWN, (int) VOID_FTYPE_PV2SF_V4SF }, /* SSE or 3DNow!A */ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_sfence, "__builtin_ia32_sfence", IX86_BUILTIN_SFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_sse_movntdi, "__builtin_ia32_movntq", IX86_BUILTIN_MOVNTQ, UNKNOWN, (int) VOID_FTYPE_PULONGLONG_ULONGLONG }, /* SSE2 */ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lfence, "__builtin_ia32_lfence", IX86_BUILTIN_LFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_mfence, 0, IX86_BUILTIN_MFENCE, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movupd, "__builtin_ia32_storeupd", IX86_BUILTIN_STOREUPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movdqu, "__builtin_ia32_storedqu", IX86_BUILTIN_STOREDQU, UNKNOWN, (int) VOID_FTYPE_PCHAR_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2df, "__builtin_ia32_movntpd", IX86_BUILTIN_MOVNTPD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntv2di, "__builtin_ia32_movntdq", IX86_BUILTIN_MOVNTDQ, UNKNOWN, (int) VOID_FTYPE_PV2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movntsi, "__builtin_ia32_movnti", IX86_BUILTIN_MOVNTI, UNKNOWN, (int) VOID_FTYPE_PINT_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movupd, "__builtin_ia32_loadupd", IX86_BUILTIN_LOADUPD, UNKNOWN, (int) V2DF_FTYPE_PCDOUBLE }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movdqu, "__builtin_ia32_loaddqu", IX86_BUILTIN_LOADDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadhpd_exp, "__builtin_ia32_loadhpd", IX86_BUILTIN_LOADHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_loadlpd_exp, "__builtin_ia32_loadlpd", IX86_BUILTIN_LOADLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_PCDOUBLE }, /* SSE3 */ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_lddqu, "__builtin_ia32_lddqu", IX86_BUILTIN_LDDQU, UNKNOWN, (int) V16QI_FTYPE_PCCHAR }, /* SSE4.1 */ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_movntdqa, "__builtin_ia32_movntdqa", IX86_BUILTIN_MOVNTDQA, UNKNOWN, (int) V2DI_FTYPE_PV2DI }, /* SSE4A */ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv2df, "__builtin_ia32_movntsd", IX86_BUILTIN_MOVNTSD, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V2DF }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_vmmovntv4sf, "__builtin_ia32_movntss", IX86_BUILTIN_MOVNTSS, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V4SF }, /* AVX */ { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroall, "__builtin_ia32_vzeroall", IX86_BUILTIN_VZEROALL, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vzeroupper, "__builtin_ia32_vzeroupper", IX86_BUILTIN_VZEROUPPER, UNKNOWN, (int) VOID_FTYPE_VOID }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4sf, "__builtin_ia32_vbroadcastss", IX86_BUILTIN_VBROADCASTSS, UNKNOWN, (int) V4SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv4df, "__builtin_ia32_vbroadcastsd256", IX86_BUILTIN_VBROADCASTSD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE }, { OPTION_MASK_ISA_AVX, CODE_FOR_vec_dupv8sf, "__builtin_ia32_vbroadcastss256", IX86_BUILTIN_VBROADCASTSS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v4df, "__builtin_ia32_vbroadcastf128_pd256", IX86_BUILTIN_VBROADCASTPD256, UNKNOWN, (int) V4DF_FTYPE_PCV2DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vbroadcastf128_v8sf, "__builtin_ia32_vbroadcastf128_ps256", IX86_BUILTIN_VBROADCASTPS256, UNKNOWN, (int) V8SF_FTYPE_PCV4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movupd256, "__builtin_ia32_loadupd256", IX86_BUILTIN_LOADUPD256, UNKNOWN, (int) V4DF_FTYPE_PCDOUBLE }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movups256, "__builtin_ia32_loadups256", IX86_BUILTIN_LOADUPS256, UNKNOWN, (int) V8SF_FTYPE_PCFLOAT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movupd256, "__builtin_ia32_storeupd256", IX86_BUILTIN_STOREUPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movups256, "__builtin_ia32_storeups256", IX86_BUILTIN_STOREUPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movdqu256, "__builtin_ia32_loaddqu256", IX86_BUILTIN_LOADDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movdqu256, "__builtin_ia32_storedqu256", IX86_BUILTIN_STOREDQU256, UNKNOWN, (int) VOID_FTYPE_PCHAR_V32QI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_lddqu256, "__builtin_ia32_lddqu256", IX86_BUILTIN_LDDQU256, UNKNOWN, (int) V32QI_FTYPE_PCCHAR }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4di, "__builtin_ia32_movntdq256", IX86_BUILTIN_MOVNTDQ256, UNKNOWN, (int) VOID_FTYPE_PV4DI_V4DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv4df, "__builtin_ia32_movntpd256", IX86_BUILTIN_MOVNTPD256, UNKNOWN, (int) VOID_FTYPE_PDOUBLE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movntv8sf, "__builtin_ia32_movntps256", IX86_BUILTIN_MOVNTPS256, UNKNOWN, (int) VOID_FTYPE_PFLOAT_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd, "__builtin_ia32_maskloadpd", IX86_BUILTIN_MASKLOADPD, UNKNOWN, (int) V2DF_FTYPE_PCV2DF_V2DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps, "__builtin_ia32_maskloadps", IX86_BUILTIN_MASKLOADPS, UNKNOWN, (int) V4SF_FTYPE_PCV4SF_V4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadpd256, "__builtin_ia32_maskloadpd256", IX86_BUILTIN_MASKLOADPD256, UNKNOWN, (int) V4DF_FTYPE_PCV4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskloadps256, "__builtin_ia32_maskloadps256", IX86_BUILTIN_MASKLOADPS256, UNKNOWN, (int) V8SF_FTYPE_PCV8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd, "__builtin_ia32_maskstorepd", IX86_BUILTIN_MASKSTOREPD, UNKNOWN, (int) VOID_FTYPE_PV2DF_V2DF_V2DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps, "__builtin_ia32_maskstoreps", IX86_BUILTIN_MASKSTOREPS, UNKNOWN, (int) VOID_FTYPE_PV4SF_V4SF_V4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstorepd256, "__builtin_ia32_maskstorepd256", IX86_BUILTIN_MASKSTOREPD256, UNKNOWN, (int) VOID_FTYPE_PV4DF_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_maskstoreps256, "__builtin_ia32_maskstoreps256", IX86_BUILTIN_MASKSTOREPS256, UNKNOWN, (int) VOID_FTYPE_PV8SF_V8SF_V8SF }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_llwpcb, "__builtin_ia32_llwpcb", IX86_BUILTIN_LLWPCB, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_slwpcb, "__builtin_ia32_slwpcb", IX86_BUILTIN_SLWPCB, UNKNOWN, (int) PVOID_FTYPE_VOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvalsi3, "__builtin_ia32_lwpval32", IX86_BUILTIN_LWPVAL32, UNKNOWN, (int) VOID_FTYPE_UINT_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvaldi3, "__builtin_ia32_lwpval64", IX86_BUILTIN_LWPVAL64, UNKNOWN, (int) VOID_FTYPE_UINT64_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinssi3, "__builtin_ia32_lwpins32", IX86_BUILTIN_LWPINS32, UNKNOWN, (int) UCHAR_FTYPE_UINT_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinsdi3, "__builtin_ia32_lwpins64", IX86_BUILTIN_LWPINS64, UNKNOWN, (int) UCHAR_FTYPE_UINT64_UINT_UINT }, }; /* Builtins with variable number of arguments. */ static const struct builtin_description bdesc_args[] = { { ~OPTION_MASK_ISA_64BIT, CODE_FOR_bsr, "__builtin_ia32_bsrsi", IX86_BUILTIN_BSRSI, UNKNOWN, (int) INT_FTYPE_INT }, { OPTION_MASK_ISA_64BIT, CODE_FOR_bsr_rex64, "__builtin_ia32_bsrdi", IX86_BUILTIN_BSRDI, UNKNOWN, (int) INT64_FTYPE_INT64 }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rdpmc, "__builtin_ia32_rdpmc", IX86_BUILTIN_RDPMC, UNKNOWN, (int) UINT64_FTYPE_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlqi3, "__builtin_ia32_rolqi", IX86_BUILTIN_ROLQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotlhi3, "__builtin_ia32_rolhi", IX86_BUILTIN_ROLHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrqi3, "__builtin_ia32_rorqi", IX86_BUILTIN_RORQI, UNKNOWN, (int) UINT8_FTYPE_UINT8_INT }, { ~OPTION_MASK_ISA_64BIT, CODE_FOR_rotrhi3, "__builtin_ia32_rorhi", IX86_BUILTIN_RORHI, UNKNOWN, (int) UINT16_FTYPE_UINT16_INT }, /* MMX */ { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv8qi3, "__builtin_ia32_paddb", IX86_BUILTIN_PADDB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv4hi3, "__builtin_ia32_paddw", IX86_BUILTIN_PADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_addv2si3, "__builtin_ia32_paddd", IX86_BUILTIN_PADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv8qi3, "__builtin_ia32_psubb", IX86_BUILTIN_PSUBB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv4hi3, "__builtin_ia32_psubw", IX86_BUILTIN_PSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_subv2si3, "__builtin_ia32_psubd", IX86_BUILTIN_PSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv8qi3, "__builtin_ia32_paddsb", IX86_BUILTIN_PADDSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ssaddv4hi3, "__builtin_ia32_paddsw", IX86_BUILTIN_PADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv8qi3, "__builtin_ia32_psubsb", IX86_BUILTIN_PSUBSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_sssubv4hi3, "__builtin_ia32_psubsw", IX86_BUILTIN_PSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv8qi3, "__builtin_ia32_paddusb", IX86_BUILTIN_PADDUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_usaddv4hi3, "__builtin_ia32_paddusw", IX86_BUILTIN_PADDUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv8qi3, "__builtin_ia32_psubusb", IX86_BUILTIN_PSUBUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ussubv4hi3, "__builtin_ia32_psubusw", IX86_BUILTIN_PSUBUSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_mulv4hi3, "__builtin_ia32_pmullw", IX86_BUILTIN_PMULLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_smulv4hi3_highpart, "__builtin_ia32_pmulhw", IX86_BUILTIN_PMULHW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andv2si3, "__builtin_ia32_pand", IX86_BUILTIN_PAND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_andnotv2si3, "__builtin_ia32_pandn", IX86_BUILTIN_PANDN, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_iorv2si3, "__builtin_ia32_por", IX86_BUILTIN_POR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_xorv2si3, "__builtin_ia32_pxor", IX86_BUILTIN_PXOR, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv8qi3, "__builtin_ia32_pcmpeqb", IX86_BUILTIN_PCMPEQB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv4hi3, "__builtin_ia32_pcmpeqw", IX86_BUILTIN_PCMPEQW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_eqv2si3, "__builtin_ia32_pcmpeqd", IX86_BUILTIN_PCMPEQD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv8qi3, "__builtin_ia32_pcmpgtb", IX86_BUILTIN_PCMPGTB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv4hi3, "__builtin_ia32_pcmpgtw", IX86_BUILTIN_PCMPGTW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_gtv2si3, "__builtin_ia32_pcmpgtd", IX86_BUILTIN_PCMPGTD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhbw, "__builtin_ia32_punpckhbw", IX86_BUILTIN_PUNPCKHBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhwd, "__builtin_ia32_punpckhwd", IX86_BUILTIN_PUNPCKHWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckhdq, "__builtin_ia32_punpckhdq", IX86_BUILTIN_PUNPCKHDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklbw, "__builtin_ia32_punpcklbw", IX86_BUILTIN_PUNPCKLBW, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpcklwd, "__builtin_ia32_punpcklwd", IX86_BUILTIN_PUNPCKLWD, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI}, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_punpckldq, "__builtin_ia32_punpckldq", IX86_BUILTIN_PUNPCKLDQ, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI}, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packsswb, "__builtin_ia32_packsswb", IX86_BUILTIN_PACKSSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packssdw, "__builtin_ia32_packssdw", IX86_BUILTIN_PACKSSDW, UNKNOWN, (int) V4HI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_packuswb, "__builtin_ia32_packuswb", IX86_BUILTIN_PACKUSWB, UNKNOWN, (int) V8QI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_pmaddwd, "__builtin_ia32_pmaddwd", IX86_BUILTIN_PMADDWD, UNKNOWN, (int) V2SI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllwi", IX86_BUILTIN_PSLLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslldi", IX86_BUILTIN_PSLLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllqi", IX86_BUILTIN_PSLLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv4hi3, "__builtin_ia32_psllw", IX86_BUILTIN_PSLLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv2si3, "__builtin_ia32_pslld", IX86_BUILTIN_PSLLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashlv1di3, "__builtin_ia32_psllq", IX86_BUILTIN_PSLLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlwi", IX86_BUILTIN_PSRLWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrldi", IX86_BUILTIN_PSRLDI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlqi", IX86_BUILTIN_PSRLQI, UNKNOWN, (int) V1DI_FTYPE_V1DI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv4hi3, "__builtin_ia32_psrlw", IX86_BUILTIN_PSRLW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv2si3, "__builtin_ia32_psrld", IX86_BUILTIN_PSRLD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_lshrv1di3, "__builtin_ia32_psrlq", IX86_BUILTIN_PSRLQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psrawi", IX86_BUILTIN_PSRAWI, UNKNOWN, (int) V4HI_FTYPE_V4HI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psradi", IX86_BUILTIN_PSRADI, UNKNOWN, (int) V2SI_FTYPE_V2SI_SI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv4hi3, "__builtin_ia32_psraw", IX86_BUILTIN_PSRAW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI_COUNT }, { OPTION_MASK_ISA_MMX, CODE_FOR_mmx_ashrv2si3, "__builtin_ia32_psrad", IX86_BUILTIN_PSRAD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI_COUNT }, /* 3DNow! */ { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pf2id, "__builtin_ia32_pf2id", IX86_BUILTIN_PF2ID, UNKNOWN, (int) V2SI_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_floatv2si2, "__builtin_ia32_pi2fd", IX86_BUILTIN_PI2FD, UNKNOWN, (int) V2SF_FTYPE_V2SI }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpv2sf2, "__builtin_ia32_pfrcp", IX86_BUILTIN_PFRCP, UNKNOWN, (int) V2SF_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqrtv2sf2, "__builtin_ia32_pfrsqrt", IX86_BUILTIN_PFRSQRT, UNKNOWN, (int) V2SF_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgusb", IX86_BUILTIN_PAVGUSB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_haddv2sf3, "__builtin_ia32_pfacc", IX86_BUILTIN_PFACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_addv2sf3, "__builtin_ia32_pfadd", IX86_BUILTIN_PFADD, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_eqv2sf3, "__builtin_ia32_pfcmpeq", IX86_BUILTIN_PFCMPEQ, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gev2sf3, "__builtin_ia32_pfcmpge", IX86_BUILTIN_PFCMPGE, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_gtv2sf3, "__builtin_ia32_pfcmpgt", IX86_BUILTIN_PFCMPGT, UNKNOWN, (int) V2SI_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_smaxv2sf3, "__builtin_ia32_pfmax", IX86_BUILTIN_PFMAX, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_sminv2sf3, "__builtin_ia32_pfmin", IX86_BUILTIN_PFMIN, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_mulv2sf3, "__builtin_ia32_pfmul", IX86_BUILTIN_PFMUL, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit1v2sf3, "__builtin_ia32_pfrcpit1", IX86_BUILTIN_PFRCPIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rcpit2v2sf3, "__builtin_ia32_pfrcpit2", IX86_BUILTIN_PFRCPIT2, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_rsqit1v2sf3, "__builtin_ia32_pfrsqit1", IX86_BUILTIN_PFRSQIT1, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subv2sf3, "__builtin_ia32_pfsub", IX86_BUILTIN_PFSUB, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_subrv2sf3, "__builtin_ia32_pfsubr", IX86_BUILTIN_PFSUBR, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW, CODE_FOR_mmx_pmulhrwv4hi3, "__builtin_ia32_pmulhrw", IX86_BUILTIN_PMULHRW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, /* 3DNow!A */ { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pf2iw, "__builtin_ia32_pf2iw", IX86_BUILTIN_PF2IW, UNKNOWN, (int) V2SI_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pi2fw, "__builtin_ia32_pi2fw", IX86_BUILTIN_PI2FW, UNKNOWN, (int) V2SF_FTYPE_V2SI }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2si2, "__builtin_ia32_pswapdsi", IX86_BUILTIN_PSWAPDSI, UNKNOWN, (int) V2SI_FTYPE_V2SI }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pswapdv2sf2, "__builtin_ia32_pswapdsf", IX86_BUILTIN_PSWAPDSF, UNKNOWN, (int) V2SF_FTYPE_V2SF }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_hsubv2sf3, "__builtin_ia32_pfnacc", IX86_BUILTIN_PFNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, { OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_addsubv2sf3, "__builtin_ia32_pfpnacc", IX86_BUILTIN_PFPNACC, UNKNOWN, (int) V2SF_FTYPE_V2SF_V2SF }, /* SSE */ { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movmskps, "__builtin_ia32_movmskps", IX86_BUILTIN_MOVMSKPS, UNKNOWN, (int) INT_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_sqrtv4sf2, "__builtin_ia32_sqrtps", IX86_BUILTIN_SQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sqrtv4sf2, "__builtin_ia32_sqrtps_nr", IX86_BUILTIN_SQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rsqrtv4sf2, "__builtin_ia32_rsqrtps", IX86_BUILTIN_RSQRTPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtv4sf2, "__builtin_ia32_rsqrtps_nr", IX86_BUILTIN_RSQRTPS_NR, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_rcpv4sf2, "__builtin_ia32_rcpps", IX86_BUILTIN_RCPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtps2pi, "__builtin_ia32_cvtps2pi", IX86_BUILTIN_CVTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtss2si, "__builtin_ia32_cvtss2si", IX86_BUILTIN_CVTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtss2siq, "__builtin_ia32_cvtss2si64", IX86_BUILTIN_CVTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttps2pi, "__builtin_ia32_cvttps2pi", IX86_BUILTIN_CVTTPS2PI, UNKNOWN, (int) V2SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvttss2si, "__builtin_ia32_cvttss2si", IX86_BUILTIN_CVTTSS2SI, UNKNOWN, (int) INT_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvttss2siq, "__builtin_ia32_cvttss2si64", IX86_BUILTIN_CVTTSS2SI64, UNKNOWN, (int) INT64_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_shufps, "__builtin_ia32_shufps", IX86_BUILTIN_SHUFPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE, CODE_FOR_addv4sf3, "__builtin_ia32_addps", IX86_BUILTIN_ADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_subv4sf3, "__builtin_ia32_subps", IX86_BUILTIN_SUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_mulv4sf3, "__builtin_ia32_mulps", IX86_BUILTIN_MULPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_divv4sf3, "__builtin_ia32_divps", IX86_BUILTIN_DIVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmaddv4sf3, "__builtin_ia32_addss", IX86_BUILTIN_ADDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsubv4sf3, "__builtin_ia32_subss", IX86_BUILTIN_SUBSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmulv4sf3, "__builtin_ia32_mulss", IX86_BUILTIN_MULSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmdivv4sf3, "__builtin_ia32_divss", IX86_BUILTIN_DIVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpeqps", IX86_BUILTIN_CMPEQPS, EQ, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpltps", IX86_BUILTIN_CMPLTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpleps", IX86_BUILTIN_CMPLEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgtps", IX86_BUILTIN_CMPGTPS, LT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpgeps", IX86_BUILTIN_CMPGEPS, LE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpunordps", IX86_BUILTIN_CMPUNORDPS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpneqps", IX86_BUILTIN_CMPNEQPS, NE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnltps", IX86_BUILTIN_CMPNLTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpnleps", IX86_BUILTIN_CMPNLEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngtps", IX86_BUILTIN_CMPNGTPS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpngeps", IX86_BUILTIN_CMPNGEPS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP}, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_maskcmpv4sf3, "__builtin_ia32_cmpordps", IX86_BUILTIN_CMPORDPS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpeqss", IX86_BUILTIN_CMPEQSS, EQ, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpltss", IX86_BUILTIN_CMPLTSS, LT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpless", IX86_BUILTIN_CMPLESS, LE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpunordss", IX86_BUILTIN_CMPUNORDSS, UNORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpneqss", IX86_BUILTIN_CMPNEQSS, NE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnltss", IX86_BUILTIN_CMPNLTSS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpnless", IX86_BUILTIN_CMPNLESS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpngtss", IX86_BUILTIN_CMPNGTSS, UNGE, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpngess", IX86_BUILTIN_CMPNGESS, UNGT, (int) V4SF_FTYPE_V4SF_V4SF_SWAP }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmmaskcmpv4sf3, "__builtin_ia32_cmpordss", IX86_BUILTIN_CMPORDSS, ORDERED, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sminv4sf3, "__builtin_ia32_minps", IX86_BUILTIN_MINPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_smaxv4sf3, "__builtin_ia32_maxps", IX86_BUILTIN_MAXPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsminv4sf3, "__builtin_ia32_minss", IX86_BUILTIN_MINSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsmaxv4sf3, "__builtin_ia32_maxss", IX86_BUILTIN_MAXSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_andv4sf3, "__builtin_ia32_andps", IX86_BUILTIN_ANDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_andnotv4sf3, "__builtin_ia32_andnps", IX86_BUILTIN_ANDNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_iorv4sf3, "__builtin_ia32_orps", IX86_BUILTIN_ORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_xorv4sf3, "__builtin_ia32_xorps", IX86_BUILTIN_XORPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_copysignv4sf3, "__builtin_ia32_copysignps", IX86_BUILTIN_CPYSGNPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movss, "__builtin_ia32_movss", IX86_BUILTIN_MOVSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movhlps_exp, "__builtin_ia32_movhlps", IX86_BUILTIN_MOVHLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_movlhps_exp, "__builtin_ia32_movlhps", IX86_BUILTIN_MOVLHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_highv4sf, "__builtin_ia32_unpckhps", IX86_BUILTIN_UNPCKHPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_vec_interleave_lowv4sf, "__builtin_ia32_unpcklps", IX86_BUILTIN_UNPCKLPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtpi2ps, "__builtin_ia32_cvtpi2ps", IX86_BUILTIN_CVTPI2PS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2SI }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_cvtsi2ss, "__builtin_ia32_cvtsi2ss", IX86_BUILTIN_CVTSI2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_SI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_64BIT, CODE_FOR_sse_cvtsi2ssq, "__builtin_ia32_cvtsi642ss", IX86_BUILTIN_CVTSI642SS, UNKNOWN, V4SF_FTYPE_V4SF_DI }, { OPTION_MASK_ISA_SSE, CODE_FOR_rsqrtsf2, "__builtin_ia32_rsqrtf", IX86_BUILTIN_RSQRTF, UNKNOWN, (int) FLOAT_FTYPE_FLOAT }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmsqrtv4sf2, "__builtin_ia32_sqrtss", IX86_BUILTIN_SQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrsqrtv4sf2, "__builtin_ia32_rsqrtss", IX86_BUILTIN_RSQRTSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse_vmrcpv4sf2, "__builtin_ia32_rcpss", IX86_BUILTIN_RCPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_VEC_MERGE }, /* SSE MMX or 3Dnow!A */ { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgb", IX86_BUILTIN_PAVGB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uavgv4hi3, "__builtin_ia32_pavgw", IX86_BUILTIN_PAVGW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umulv4hi3_highpart, "__builtin_ia32_pmulhuw", IX86_BUILTIN_PMULHUW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_umaxv8qi3, "__builtin_ia32_pmaxub", IX86_BUILTIN_PMAXUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_smaxv4hi3, "__builtin_ia32_pmaxsw", IX86_BUILTIN_PMAXSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_uminv8qi3, "__builtin_ia32_pminub", IX86_BUILTIN_PMINUB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_sminv4hi3, "__builtin_ia32_pminsw", IX86_BUILTIN_PMINSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_psadbw, "__builtin_ia32_psadbw", IX86_BUILTIN_PSADBW, UNKNOWN, (int) V1DI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pmovmskb, "__builtin_ia32_pmovmskb", IX86_BUILTIN_PMOVMSKB, UNKNOWN, (int) INT_FTYPE_V8QI }, { OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, CODE_FOR_mmx_pshufw, "__builtin_ia32_pshufw", IX86_BUILTIN_PSHUFW, UNKNOWN, (int) V4HI_FTYPE_V4HI_INT }, /* SSE2 */ { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_shufpd, "__builtin_ia32_shufpd", IX86_BUILTIN_SHUFPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v2df", IX86_BUILTIN_VEC_PERM_V2DF, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DI }, { OPTION_MASK_ISA_SSE, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4sf", IX86_BUILTIN_VEC_PERM_V4SF, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v2di", IX86_BUILTIN_VEC_PERM_V2DI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4si", IX86_BUILTIN_VEC_PERM_V4SI, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v8hi", IX86_BUILTIN_VEC_PERM_V8HI, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v16qi", IX86_BUILTIN_VEC_PERM_V16QI, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v2di_u", IX86_BUILTIN_VEC_PERM_V2DI_U, UNKNOWN, (int) V2UDI_FTYPE_V2UDI_V2UDI_V2UDI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4si_u", IX86_BUILTIN_VEC_PERM_V4SI_U, UNKNOWN, (int) V4USI_FTYPE_V4USI_V4USI_V4USI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v8hi_u", IX86_BUILTIN_VEC_PERM_V8HI_U, UNKNOWN, (int) V8UHI_FTYPE_V8UHI_V8UHI_V8UHI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v16qi_u", IX86_BUILTIN_VEC_PERM_V16QI_U, UNKNOWN, (int) V16UQI_FTYPE_V16UQI_V16UQI_V16UQI }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v4df", IX86_BUILTIN_VEC_PERM_V4DF, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_V4DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_nothing, "__builtin_ia32_vec_perm_v8sf", IX86_BUILTIN_VEC_PERM_V8SF, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_V8SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movmskpd, "__builtin_ia32_movmskpd", IX86_BUILTIN_MOVMSKPD, UNKNOWN, (int) INT_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmovmskb, "__builtin_ia32_pmovmskb128", IX86_BUILTIN_PMOVMSKB128, UNKNOWN, (int) INT_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sqrtv2df2, "__builtin_ia32_sqrtpd", IX86_BUILTIN_SQRTPD, UNKNOWN, (int) V2DF_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtdq2pd, "__builtin_ia32_cvtdq2pd", IX86_BUILTIN_CVTDQ2PD, UNKNOWN, (int) V2DF_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtdq2ps, "__builtin_ia32_cvtdq2ps", IX86_BUILTIN_CVTDQ2PS, UNKNOWN, (int) V4SF_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtudq2ps, "__builtin_ia32_cvtudq2ps", IX86_BUILTIN_CVTUDQ2PS, UNKNOWN, (int) V4SF_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2dq, "__builtin_ia32_cvtpd2dq", IX86_BUILTIN_CVTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2pi, "__builtin_ia32_cvtpd2pi", IX86_BUILTIN_CVTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpd2ps, "__builtin_ia32_cvtpd2ps", IX86_BUILTIN_CVTPD2PS, UNKNOWN, (int) V4SF_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2dq, "__builtin_ia32_cvttpd2dq", IX86_BUILTIN_CVTTPD2DQ, UNKNOWN, (int) V4SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttpd2pi, "__builtin_ia32_cvttpd2pi", IX86_BUILTIN_CVTTPD2PI, UNKNOWN, (int) V2SI_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtpi2pd, "__builtin_ia32_cvtpi2pd", IX86_BUILTIN_CVTPI2PD, UNKNOWN, (int) V2DF_FTYPE_V2SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2si, "__builtin_ia32_cvtsd2si", IX86_BUILTIN_CVTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttsd2si, "__builtin_ia32_cvttsd2si", IX86_BUILTIN_CVTTSD2SI, UNKNOWN, (int) INT_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsd2siq, "__builtin_ia32_cvtsd2si64", IX86_BUILTIN_CVTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvttsd2siq, "__builtin_ia32_cvttsd2si64", IX86_BUILTIN_CVTTSD2SI64, UNKNOWN, (int) INT64_FTYPE_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtps2dq, "__builtin_ia32_cvtps2dq", IX86_BUILTIN_CVTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtps2pd, "__builtin_ia32_cvtps2pd", IX86_BUILTIN_CVTPS2PD, UNKNOWN, (int) V2DF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvttps2dq, "__builtin_ia32_cvttps2dq", IX86_BUILTIN_CVTTPS2DQ, UNKNOWN, (int) V4SI_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2df3, "__builtin_ia32_addpd", IX86_BUILTIN_ADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2df3, "__builtin_ia32_subpd", IX86_BUILTIN_SUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv2df3, "__builtin_ia32_mulpd", IX86_BUILTIN_MULPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_divv2df3, "__builtin_ia32_divpd", IX86_BUILTIN_DIVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmaddv2df3, "__builtin_ia32_addsd", IX86_BUILTIN_ADDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsubv2df3, "__builtin_ia32_subsd", IX86_BUILTIN_SUBSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmulv2df3, "__builtin_ia32_mulsd", IX86_BUILTIN_MULSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmdivv2df3, "__builtin_ia32_divsd", IX86_BUILTIN_DIVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpeqpd", IX86_BUILTIN_CMPEQPD, EQ, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpltpd", IX86_BUILTIN_CMPLTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmplepd", IX86_BUILTIN_CMPLEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgtpd", IX86_BUILTIN_CMPGTPD, LT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpgepd", IX86_BUILTIN_CMPGEPD, LE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP}, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpunordpd", IX86_BUILTIN_CMPUNORDPD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpneqpd", IX86_BUILTIN_CMPNEQPD, NE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnltpd", IX86_BUILTIN_CMPNLTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpnlepd", IX86_BUILTIN_CMPNLEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngtpd", IX86_BUILTIN_CMPNGTPD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpngepd", IX86_BUILTIN_CMPNGEPD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF_SWAP }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_maskcmpv2df3, "__builtin_ia32_cmpordpd", IX86_BUILTIN_CMPORDPD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpeqsd", IX86_BUILTIN_CMPEQSD, EQ, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpltsd", IX86_BUILTIN_CMPLTSD, LT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmplesd", IX86_BUILTIN_CMPLESD, LE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpunordsd", IX86_BUILTIN_CMPUNORDSD, UNORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpneqsd", IX86_BUILTIN_CMPNEQSD, NE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnltsd", IX86_BUILTIN_CMPNLTSD, UNGE, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpnlesd", IX86_BUILTIN_CMPNLESD, UNGT, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmmaskcmpv2df3, "__builtin_ia32_cmpordsd", IX86_BUILTIN_CMPORDSD, ORDERED, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv2df3, "__builtin_ia32_minpd", IX86_BUILTIN_MINPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv2df3, "__builtin_ia32_maxpd", IX86_BUILTIN_MAXPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsminv2df3, "__builtin_ia32_minsd", IX86_BUILTIN_MINSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsmaxv2df3, "__builtin_ia32_maxsd", IX86_BUILTIN_MAXSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2df3, "__builtin_ia32_andpd", IX86_BUILTIN_ANDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2df3, "__builtin_ia32_andnpd", IX86_BUILTIN_ANDNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2df3, "__builtin_ia32_orpd", IX86_BUILTIN_ORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2df3, "__builtin_ia32_xorpd", IX86_BUILTIN_XORPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_copysignv2df3, "__builtin_ia32_copysignpd", IX86_BUILTIN_CPYSGNPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_movsd, "__builtin_ia32_movsd", IX86_BUILTIN_MOVSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2df, "__builtin_ia32_unpckhpd", IX86_BUILTIN_UNPCKHPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2df, "__builtin_ia32_unpcklpd", IX86_BUILTIN_UNPCKLPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_pack_sfix_v2df, "__builtin_ia32_vec_pack_sfix", IX86_BUILTIN_VEC_PACK_SFIX, UNKNOWN, (int) V4SI_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv16qi3, "__builtin_ia32_paddb128", IX86_BUILTIN_PADDB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv8hi3, "__builtin_ia32_paddw128", IX86_BUILTIN_PADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv4si3, "__builtin_ia32_paddd128", IX86_BUILTIN_PADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_addv2di3, "__builtin_ia32_paddq128", IX86_BUILTIN_PADDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv16qi3, "__builtin_ia32_psubb128", IX86_BUILTIN_PSUBB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv8hi3, "__builtin_ia32_psubw128", IX86_BUILTIN_PSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv4si3, "__builtin_ia32_psubd128", IX86_BUILTIN_PSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_subv2di3, "__builtin_ia32_psubq128", IX86_BUILTIN_PSUBQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv16qi3, "__builtin_ia32_paddsb128", IX86_BUILTIN_PADDSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ssaddv8hi3, "__builtin_ia32_paddsw128", IX86_BUILTIN_PADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv16qi3, "__builtin_ia32_psubsb128", IX86_BUILTIN_PSUBSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_sssubv8hi3, "__builtin_ia32_psubsw128", IX86_BUILTIN_PSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv16qi3, "__builtin_ia32_paddusb128", IX86_BUILTIN_PADDUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_usaddv8hi3, "__builtin_ia32_paddusw128", IX86_BUILTIN_PADDUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv16qi3, "__builtin_ia32_psubusb128", IX86_BUILTIN_PSUBUSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ussubv8hi3, "__builtin_ia32_psubusw128", IX86_BUILTIN_PSUBUSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_mulv8hi3, "__builtin_ia32_pmullw128", IX86_BUILTIN_PMULLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_smulv8hi3_highpart, "__builtin_ia32_pmulhw128", IX86_BUILTIN_PMULHW128, UNKNOWN,(int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_andv2di3, "__builtin_ia32_pand128", IX86_BUILTIN_PAND128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_andnotv2di3, "__builtin_ia32_pandn128", IX86_BUILTIN_PANDN128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_iorv2di3, "__builtin_ia32_por128", IX86_BUILTIN_POR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_xorv2di3, "__builtin_ia32_pxor128", IX86_BUILTIN_PXOR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv16qi3, "__builtin_ia32_pavgb128", IX86_BUILTIN_PAVGB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_uavgv8hi3, "__builtin_ia32_pavgw128", IX86_BUILTIN_PAVGW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv16qi3, "__builtin_ia32_pcmpeqb128", IX86_BUILTIN_PCMPEQB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv8hi3, "__builtin_ia32_pcmpeqw128", IX86_BUILTIN_PCMPEQW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_eqv4si3, "__builtin_ia32_pcmpeqd128", IX86_BUILTIN_PCMPEQD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv16qi3, "__builtin_ia32_pcmpgtb128", IX86_BUILTIN_PCMPGTB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv8hi3, "__builtin_ia32_pcmpgtw128", IX86_BUILTIN_PCMPGTW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_gtv4si3, "__builtin_ia32_pcmpgtd128", IX86_BUILTIN_PCMPGTD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_umaxv16qi3, "__builtin_ia32_pmaxub128", IX86_BUILTIN_PMAXUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_smaxv8hi3, "__builtin_ia32_pmaxsw128", IX86_BUILTIN_PMAXSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_uminv16qi3, "__builtin_ia32_pminub128", IX86_BUILTIN_PMINUB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sminv8hi3, "__builtin_ia32_pminsw128", IX86_BUILTIN_PMINSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv16qi, "__builtin_ia32_punpckhbw128", IX86_BUILTIN_PUNPCKHBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv8hi, "__builtin_ia32_punpckhwd128", IX86_BUILTIN_PUNPCKHWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv4si, "__builtin_ia32_punpckhdq128", IX86_BUILTIN_PUNPCKHDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_highv2di, "__builtin_ia32_punpckhqdq128", IX86_BUILTIN_PUNPCKHQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv16qi, "__builtin_ia32_punpcklbw128", IX86_BUILTIN_PUNPCKLBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv8hi, "__builtin_ia32_punpcklwd128", IX86_BUILTIN_PUNPCKLWD128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv4si, "__builtin_ia32_punpckldq128", IX86_BUILTIN_PUNPCKLDQ128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_vec_interleave_lowv2di, "__builtin_ia32_punpcklqdq128", IX86_BUILTIN_PUNPCKLQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packsswb, "__builtin_ia32_packsswb128", IX86_BUILTIN_PACKSSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packssdw, "__builtin_ia32_packssdw128", IX86_BUILTIN_PACKSSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_packuswb, "__builtin_ia32_packuswb128", IX86_BUILTIN_PACKUSWB128, UNKNOWN, (int) V16QI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_umulv8hi3_highpart, "__builtin_ia32_pmulhuw128", IX86_BUILTIN_PMULHUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_psadbw, "__builtin_ia32_psadbw128", IX86_BUILTIN_PSADBW128, UNKNOWN, (int) V2DI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_umulv1siv1di3, "__builtin_ia32_pmuludq", IX86_BUILTIN_PMULUDQ, UNKNOWN, (int) V1DI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_umulv2siv2di3, "__builtin_ia32_pmuludq128", IX86_BUILTIN_PMULUDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pmaddwd, "__builtin_ia32_pmaddwd128", IX86_BUILTIN_PMADDWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsi2sd, "__builtin_ia32_cvtsi2sd", IX86_BUILTIN_CVTSI2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_SI }, { OPTION_MASK_ISA_SSE2 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse2_cvtsi2sdq, "__builtin_ia32_cvtsi642sd", IX86_BUILTIN_CVTSI642SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtsd2ss, "__builtin_ia32_cvtsd2ss", IX86_BUILTIN_CVTSD2SS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V2DF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_cvtss2sd, "__builtin_ia32_cvtss2sd", IX86_BUILTIN_CVTSS2SD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V4SF }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_ashlv1ti3, "__builtin_ia32_pslldqi128", IX86_BUILTIN_PSLLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllwi128", IX86_BUILTIN_PSLLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslldi128", IX86_BUILTIN_PSLLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllqi128", IX86_BUILTIN_PSLLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv8hi3, "__builtin_ia32_psllw128", IX86_BUILTIN_PSLLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv4si3, "__builtin_ia32_pslld128", IX86_BUILTIN_PSLLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashlv2di3, "__builtin_ia32_psllq128", IX86_BUILTIN_PSLLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_lshrv1ti3, "__builtin_ia32_psrldqi128", IX86_BUILTIN_PSRLDQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT_CONVERT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlwi128", IX86_BUILTIN_PSRLWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrldi128", IX86_BUILTIN_PSRLDI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlqi128", IX86_BUILTIN_PSRLQI128, UNKNOWN, (int) V2DI_FTYPE_V2DI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv8hi3, "__builtin_ia32_psrlw128", IX86_BUILTIN_PSRLW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv4si3, "__builtin_ia32_psrld128", IX86_BUILTIN_PSRLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_lshrv2di3, "__builtin_ia32_psrlq128", IX86_BUILTIN_PSRLQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psrawi128", IX86_BUILTIN_PSRAWI128, UNKNOWN, (int) V8HI_FTYPE_V8HI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psradi128", IX86_BUILTIN_PSRADI128, UNKNOWN, (int) V4SI_FTYPE_V4SI_SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv8hi3, "__builtin_ia32_psraw128", IX86_BUILTIN_PSRAW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_ashrv4si3, "__builtin_ia32_psrad128", IX86_BUILTIN_PSRAD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI_COUNT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufd, "__builtin_ia32_pshufd", IX86_BUILTIN_PSHUFD, UNKNOWN, (int) V4SI_FTYPE_V4SI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshuflw, "__builtin_ia32_pshuflw", IX86_BUILTIN_PSHUFLW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_pshufhw, "__builtin_ia32_pshufhw", IX86_BUILTIN_PSHUFHW, UNKNOWN, (int) V8HI_FTYPE_V8HI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_sse2_vmsqrtv2df2, "__builtin_ia32_sqrtsd", IX86_BUILTIN_SQRTSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_VEC_MERGE }, { OPTION_MASK_ISA_SSE2, CODE_FOR_abstf2, 0, IX86_BUILTIN_FABSQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128 }, { OPTION_MASK_ISA_SSE2, CODE_FOR_copysigntf3, 0, IX86_BUILTIN_COPYSIGNQ, UNKNOWN, (int) FLOAT128_FTYPE_FLOAT128_FLOAT128 }, { OPTION_MASK_ISA_SSE, CODE_FOR_sse2_movq128, "__builtin_ia32_movq128", IX86_BUILTIN_MOVQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI }, /* SSE2 MMX */ { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_addv1di3, "__builtin_ia32_paddq", IX86_BUILTIN_PADDQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_mmx_subv1di3, "__builtin_ia32_psubq", IX86_BUILTIN_PSUBQ, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI }, /* SSE3 */ { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movshdup, "__builtin_ia32_movshdup", IX86_BUILTIN_MOVSHDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF}, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_movsldup, "__builtin_ia32_movsldup", IX86_BUILTIN_MOVSLDUP, UNKNOWN, (int) V4SF_FTYPE_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv4sf3, "__builtin_ia32_addsubps", IX86_BUILTIN_ADDSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_addsubv2df3, "__builtin_ia32_addsubpd", IX86_BUILTIN_ADDSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv4sf3, "__builtin_ia32_haddps", IX86_BUILTIN_HADDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_haddv2df3, "__builtin_ia32_haddpd", IX86_BUILTIN_HADDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv4sf3, "__builtin_ia32_hsubps", IX86_BUILTIN_HSUBPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF }, { OPTION_MASK_ISA_SSE3, CODE_FOR_sse3_hsubv2df3, "__builtin_ia32_hsubpd", IX86_BUILTIN_HSUBPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF }, /* SSSE3 */ { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv16qi2, "__builtin_ia32_pabsb128", IX86_BUILTIN_PABSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8qi2, "__builtin_ia32_pabsb", IX86_BUILTIN_PABSB, UNKNOWN, (int) V8QI_FTYPE_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv8hi2, "__builtin_ia32_pabsw128", IX86_BUILTIN_PABSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4hi2, "__builtin_ia32_pabsw", IX86_BUILTIN_PABSW, UNKNOWN, (int) V4HI_FTYPE_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv4si2, "__builtin_ia32_pabsd128", IX86_BUILTIN_PABSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_absv2si2, "__builtin_ia32_pabsd", IX86_BUILTIN_PABSD, UNKNOWN, (int) V2SI_FTYPE_V2SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv8hi3, "__builtin_ia32_phaddw128", IX86_BUILTIN_PHADDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddwv4hi3, "__builtin_ia32_phaddw", IX86_BUILTIN_PHADDW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv4si3, "__builtin_ia32_phaddd128", IX86_BUILTIN_PHADDD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phadddv2si3, "__builtin_ia32_phaddd", IX86_BUILTIN_PHADDD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv8hi3, "__builtin_ia32_phaddsw128", IX86_BUILTIN_PHADDSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phaddswv4hi3, "__builtin_ia32_phaddsw", IX86_BUILTIN_PHADDSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv8hi3, "__builtin_ia32_phsubw128", IX86_BUILTIN_PHSUBW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubwv4hi3, "__builtin_ia32_phsubw", IX86_BUILTIN_PHSUBW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv4si3, "__builtin_ia32_phsubd128", IX86_BUILTIN_PHSUBD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubdv2si3, "__builtin_ia32_phsubd", IX86_BUILTIN_PHSUBD, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv8hi3, "__builtin_ia32_phsubsw128", IX86_BUILTIN_PHSUBSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_phsubswv4hi3, "__builtin_ia32_phsubsw", IX86_BUILTIN_PHSUBSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw128, "__builtin_ia32_pmaddubsw128", IX86_BUILTIN_PMADDUBSW128, UNKNOWN, (int) V8HI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmaddubsw, "__builtin_ia32_pmaddubsw", IX86_BUILTIN_PMADDUBSW, UNKNOWN, (int) V4HI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv8hi3, "__builtin_ia32_pmulhrsw128", IX86_BUILTIN_PMULHRSW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pmulhrswv4hi3, "__builtin_ia32_pmulhrsw", IX86_BUILTIN_PMULHRSW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv16qi3, "__builtin_ia32_pshufb128", IX86_BUILTIN_PSHUFB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_pshufbv8qi3, "__builtin_ia32_pshufb", IX86_BUILTIN_PSHUFB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv16qi3, "__builtin_ia32_psignb128", IX86_BUILTIN_PSIGNB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8qi3, "__builtin_ia32_psignb", IX86_BUILTIN_PSIGNB, UNKNOWN, (int) V8QI_FTYPE_V8QI_V8QI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv8hi3, "__builtin_ia32_psignw128", IX86_BUILTIN_PSIGNW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4hi3, "__builtin_ia32_psignw", IX86_BUILTIN_PSIGNW, UNKNOWN, (int) V4HI_FTYPE_V4HI_V4HI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv4si3, "__builtin_ia32_psignd128", IX86_BUILTIN_PSIGND128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_psignv2si3, "__builtin_ia32_psignd", IX86_BUILTIN_PSIGND, UNKNOWN, (int) V2SI_FTYPE_V2SI_V2SI }, /* SSSE3. */ { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrti, "__builtin_ia32_palignr128", IX86_BUILTIN_PALIGNR128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT_CONVERT }, { OPTION_MASK_ISA_SSSE3, CODE_FOR_ssse3_palignrdi, "__builtin_ia32_palignr", IX86_BUILTIN_PALIGNR, UNKNOWN, (int) V1DI_FTYPE_V1DI_V1DI_INT_CONVERT }, /* SSE4.1 */ { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendpd, "__builtin_ia32_blendpd", IX86_BUILTIN_BLENDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendps, "__builtin_ia32_blendps", IX86_BUILTIN_BLENDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvpd, "__builtin_ia32_blendvpd", IX86_BUILTIN_BLENDVPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_V2DF }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_blendvps, "__builtin_ia32_blendvps", IX86_BUILTIN_BLENDVPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_V4SF }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dppd, "__builtin_ia32_dppd", IX86_BUILTIN_DPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_dpps, "__builtin_ia32_dpps", IX86_BUILTIN_DPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_insertps, "__builtin_ia32_insertps128", IX86_BUILTIN_INSERTPS128, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mpsadbw, "__builtin_ia32_mpsadbw128", IX86_BUILTIN_MPSADBW128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendvb, "__builtin_ia32_pblendvb128", IX86_BUILTIN_PBLENDVB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_pblendw, "__builtin_ia32_pblendw128", IX86_BUILTIN_PBLENDW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI_INT }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_extendv8qiv8hi2, "__builtin_ia32_pmovsxbw128", IX86_BUILTIN_PMOVSXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_extendv4qiv4si2, "__builtin_ia32_pmovsxbd128", IX86_BUILTIN_PMOVSXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_extendv2qiv2di2, "__builtin_ia32_pmovsxbq128", IX86_BUILTIN_PMOVSXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_extendv4hiv4si2, "__builtin_ia32_pmovsxwd128", IX86_BUILTIN_PMOVSXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_extendv2hiv2di2, "__builtin_ia32_pmovsxwq128", IX86_BUILTIN_PMOVSXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_extendv2siv2di2, "__builtin_ia32_pmovsxdq128", IX86_BUILTIN_PMOVSXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv8qiv8hi2, "__builtin_ia32_pmovzxbw128", IX86_BUILTIN_PMOVZXBW128, UNKNOWN, (int) V8HI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4qiv4si2, "__builtin_ia32_pmovzxbd128", IX86_BUILTIN_PMOVZXBD128, UNKNOWN, (int) V4SI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2qiv2di2, "__builtin_ia32_pmovzxbq128", IX86_BUILTIN_PMOVZXBQ128, UNKNOWN, (int) V2DI_FTYPE_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv4hiv4si2, "__builtin_ia32_pmovzxwd128", IX86_BUILTIN_PMOVZXWD128, UNKNOWN, (int) V4SI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2hiv2di2, "__builtin_ia32_pmovzxwq128", IX86_BUILTIN_PMOVZXWQ128, UNKNOWN, (int) V2DI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_zero_extendv2siv2di2, "__builtin_ia32_pmovzxdq128", IX86_BUILTIN_PMOVZXDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_phminposuw, "__builtin_ia32_phminposuw128", IX86_BUILTIN_PHMINPOSUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_packusdw, "__builtin_ia32_packusdw128", IX86_BUILTIN_PACKUSDW128, UNKNOWN, (int) V8HI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_eqv2di3, "__builtin_ia32_pcmpeqq", IX86_BUILTIN_PCMPEQQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv16qi3, "__builtin_ia32_pmaxsb128", IX86_BUILTIN_PMAXSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_smaxv4si3, "__builtin_ia32_pmaxsd128", IX86_BUILTIN_PMAXSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv4si3, "__builtin_ia32_pmaxud128", IX86_BUILTIN_PMAXUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_umaxv8hi3, "__builtin_ia32_pmaxuw128", IX86_BUILTIN_PMAXUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv16qi3, "__builtin_ia32_pminsb128", IX86_BUILTIN_PMINSB128, UNKNOWN, (int) V16QI_FTYPE_V16QI_V16QI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sminv4si3, "__builtin_ia32_pminsd128", IX86_BUILTIN_PMINSD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv4si3, "__builtin_ia32_pminud128", IX86_BUILTIN_PMINUD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_uminv8hi3, "__builtin_ia32_pminuw128", IX86_BUILTIN_PMINUW128, UNKNOWN, (int) V8HI_FTYPE_V8HI_V8HI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_sse4_1_mulv2siv2di3, "__builtin_ia32_pmuldq128", IX86_BUILTIN_PMULDQ128, UNKNOWN, (int) V2DI_FTYPE_V4SI_V4SI }, { OPTION_MASK_ISA_SSE4_1, CODE_FOR_mulv4si3, "__builtin_ia32_pmulld128", IX86_BUILTIN_PMULLD128, UNKNOWN, (int) V4SI_FTYPE_V4SI_V4SI }, /* SSE4.1 */ { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundpd, "__builtin_ia32_roundpd", IX86_BUILTIN_ROUNDPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundps, "__builtin_ia32_roundps", IX86_BUILTIN_ROUNDPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundsd, "__builtin_ia32_roundsd", IX86_BUILTIN_ROUNDSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_roundss, "__builtin_ia32_roundss", IX86_BUILTIN_ROUNDSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestz128", IX86_BUILTIN_PTESTZ, EQ, (int) INT_FTYPE_V2DI_V2DI_PTEST }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestc128", IX86_BUILTIN_PTESTC, LTU, (int) INT_FTYPE_V2DI_V2DI_PTEST }, { OPTION_MASK_ISA_ROUND, CODE_FOR_sse4_1_ptest, "__builtin_ia32_ptestnzc128", IX86_BUILTIN_PTESTNZC, GTU, (int) INT_FTYPE_V2DI_V2DI_PTEST }, /* SSE4.2 */ { OPTION_MASK_ISA_SSE4_2, CODE_FOR_sse4_2_gtv2di3, "__builtin_ia32_pcmpgtq", IX86_BUILTIN_PCMPGTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32qi, "__builtin_ia32_crc32qi", IX86_BUILTIN_CRC32QI, UNKNOWN, (int) UINT_FTYPE_UINT_UCHAR }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32hi, "__builtin_ia32_crc32hi", IX86_BUILTIN_CRC32HI, UNKNOWN, (int) UINT_FTYPE_UINT_USHORT }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32, CODE_FOR_sse4_2_crc32si, "__builtin_ia32_crc32si", IX86_BUILTIN_CRC32SI, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, { OPTION_MASK_ISA_SSE4_2 | OPTION_MASK_ISA_CRC32 | OPTION_MASK_ISA_64BIT, CODE_FOR_sse4_2_crc32di, "__builtin_ia32_crc32di", IX86_BUILTIN_CRC32DI, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, /* SSE4A */ { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrqi, "__builtin_ia32_extrqi", IX86_BUILTIN_EXTRQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_UINT_UINT }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_extrq, "__builtin_ia32_extrq", IX86_BUILTIN_EXTRQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V16QI }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertqi, "__builtin_ia32_insertqi", IX86_BUILTIN_INSERTQI, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_UINT_UINT }, { OPTION_MASK_ISA_SSE4A, CODE_FOR_sse4a_insertq, "__builtin_ia32_insertq", IX86_BUILTIN_INSERTQ, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, /* AES */ { OPTION_MASK_ISA_SSE2, CODE_FOR_aeskeygenassist, 0, IX86_BUILTIN_AESKEYGENASSIST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_INT }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesimc, 0, IX86_BUILTIN_AESIMC128, UNKNOWN, (int) V2DI_FTYPE_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenc, 0, IX86_BUILTIN_AESENC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesenclast, 0, IX86_BUILTIN_AESENCLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdec, 0, IX86_BUILTIN_AESDEC128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, { OPTION_MASK_ISA_SSE2, CODE_FOR_aesdeclast, 0, IX86_BUILTIN_AESDECLAST128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI }, /* PCLMUL */ { OPTION_MASK_ISA_SSE2, CODE_FOR_pclmulqdq, 0, IX86_BUILTIN_PCLMULQDQ128, UNKNOWN, (int) V2DI_FTYPE_V2DI_V2DI_INT }, /* AVX */ { OPTION_MASK_ISA_AVX, CODE_FOR_addv4df3, "__builtin_ia32_addpd256", IX86_BUILTIN_ADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_addv8sf3, "__builtin_ia32_addps256", IX86_BUILTIN_ADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv4df3, "__builtin_ia32_addsubpd256", IX86_BUILTIN_ADDSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_addsubv8sf3, "__builtin_ia32_addsubps256", IX86_BUILTIN_ADDSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_andv4df3, "__builtin_ia32_andpd256", IX86_BUILTIN_ANDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_andv8sf3, "__builtin_ia32_andps256", IX86_BUILTIN_ANDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv4df3, "__builtin_ia32_andnpd256", IX86_BUILTIN_ANDNPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_andnotv8sf3, "__builtin_ia32_andnps256", IX86_BUILTIN_ANDNPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_divv4df3, "__builtin_ia32_divpd256", IX86_BUILTIN_DIVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_divv8sf3, "__builtin_ia32_divps256", IX86_BUILTIN_DIVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv4df3, "__builtin_ia32_haddpd256", IX86_BUILTIN_HADDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv8sf3, "__builtin_ia32_hsubps256", IX86_BUILTIN_HSUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_hsubv4df3, "__builtin_ia32_hsubpd256", IX86_BUILTIN_HSUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_haddv8sf3, "__builtin_ia32_haddps256", IX86_BUILTIN_HADDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv4df3, "__builtin_ia32_maxpd256", IX86_BUILTIN_MAXPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_smaxv8sf3, "__builtin_ia32_maxps256", IX86_BUILTIN_MAXPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sminv4df3, "__builtin_ia32_minpd256", IX86_BUILTIN_MINPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sminv8sf3, "__builtin_ia32_minps256", IX86_BUILTIN_MINPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_mulv4df3, "__builtin_ia32_mulpd256", IX86_BUILTIN_MULPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_mulv8sf3, "__builtin_ia32_mulps256", IX86_BUILTIN_MULPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_iorv4df3, "__builtin_ia32_orpd256", IX86_BUILTIN_ORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_iorv8sf3, "__builtin_ia32_orps256", IX86_BUILTIN_ORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_subv4df3, "__builtin_ia32_subpd256", IX86_BUILTIN_SUBPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_subv8sf3, "__builtin_ia32_subps256", IX86_BUILTIN_SUBPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_xorv4df3, "__builtin_ia32_xorpd256", IX86_BUILTIN_XORPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_xorv8sf3, "__builtin_ia32_xorps256", IX86_BUILTIN_XORPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv2df3, "__builtin_ia32_vpermilvarpd", IX86_BUILTIN_VPERMILVARPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4sf3, "__builtin_ia32_vpermilvarps", IX86_BUILTIN_VPERMILVARPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv4df3, "__builtin_ia32_vpermilvarpd256", IX86_BUILTIN_VPERMILVARPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilvarv8sf3, "__builtin_ia32_vpermilvarps256", IX86_BUILTIN_VPERMILVARPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendpd256, "__builtin_ia32_blendpd256", IX86_BUILTIN_BLENDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendps256, "__builtin_ia32_blendps256", IX86_BUILTIN_BLENDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvpd256, "__builtin_ia32_blendvpd256", IX86_BUILTIN_BLENDVPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_blendvps256, "__builtin_ia32_blendvps256", IX86_BUILTIN_BLENDVPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_dpps256, "__builtin_ia32_dpps256", IX86_BUILTIN_DPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufpd256, "__builtin_ia32_shufpd256", IX86_BUILTIN_SHUFPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_shufps256, "__builtin_ia32_shufps256", IX86_BUILTIN_SHUFPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpsdv2df3, "__builtin_ia32_cmpsd", IX86_BUILTIN_CMPSD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmpssv4sf3, "__builtin_ia32_cmpss", IX86_BUILTIN_CMPSS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppdv2df3, "__builtin_ia32_cmppd", IX86_BUILTIN_CMPPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppsv4sf3, "__builtin_ia32_cmpps", IX86_BUILTIN_CMPPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppdv4df3, "__builtin_ia32_cmppd256", IX86_BUILTIN_CMPPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cmppsv8sf3, "__builtin_ia32_cmpps256", IX86_BUILTIN_CMPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v4df, "__builtin_ia32_vextractf128_pd256", IX86_BUILTIN_EXTRACTF128PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8sf, "__builtin_ia32_vextractf128_ps256", IX86_BUILTIN_EXTRACTF128PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vextractf128v8si, "__builtin_ia32_vextractf128_si256", IX86_BUILTIN_EXTRACTF128SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtdq2pd256, "__builtin_ia32_cvtdq2pd256", IX86_BUILTIN_CVTDQ2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtdq2ps256, "__builtin_ia32_cvtdq2ps256", IX86_BUILTIN_CVTDQ2PS256, UNKNOWN, (int) V8SF_FTYPE_V8SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2ps256, "__builtin_ia32_cvtpd2ps256", IX86_BUILTIN_CVTPD2PS256, UNKNOWN, (int) V4SF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtps2dq256, "__builtin_ia32_cvtps2dq256", IX86_BUILTIN_CVTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtps2pd256, "__builtin_ia32_cvtps2pd256", IX86_BUILTIN_CVTPS2PD256, UNKNOWN, (int) V4DF_FTYPE_V4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvttpd2dq256, "__builtin_ia32_cvttpd2dq256", IX86_BUILTIN_CVTTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvtpd2dq256, "__builtin_ia32_cvtpd2dq256", IX86_BUILTIN_CVTPD2DQ256, UNKNOWN, (int) V4SI_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_cvttps2dq256, "__builtin_ia32_cvttps2dq256", IX86_BUILTIN_CVTTPS2DQ256, UNKNOWN, (int) V8SI_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v4df3, "__builtin_ia32_vperm2f128_pd256", IX86_BUILTIN_VPERM2F128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8sf3, "__builtin_ia32_vperm2f128_ps256", IX86_BUILTIN_VPERM2F128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vperm2f128v8si3, "__builtin_ia32_vperm2f128_si256", IX86_BUILTIN_VPERM2F128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V8SI_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv2df, "__builtin_ia32_vpermilpd", IX86_BUILTIN_VPERMILPD, UNKNOWN, (int) V2DF_FTYPE_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4sf, "__builtin_ia32_vpermilps", IX86_BUILTIN_VPERMILPS, UNKNOWN, (int) V4SF_FTYPE_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv4df, "__builtin_ia32_vpermilpd256", IX86_BUILTIN_VPERMILPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vpermilv8sf, "__builtin_ia32_vpermilps256", IX86_BUILTIN_VPERMILPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v4df, "__builtin_ia32_vinsertf128_pd256", IX86_BUILTIN_VINSERTF128PD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V2DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8sf, "__builtin_ia32_vinsertf128_ps256", IX86_BUILTIN_VINSERTF128PS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V4SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vinsertf128v8si, "__builtin_ia32_vinsertf128_si256", IX86_BUILTIN_VINSERTF128SI256, UNKNOWN, (int) V8SI_FTYPE_V8SI_V4SI_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movshdup256, "__builtin_ia32_movshdup256", IX86_BUILTIN_MOVSHDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movsldup256, "__builtin_ia32_movsldup256", IX86_BUILTIN_MOVSLDUP256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movddup256, "__builtin_ia32_movddup256", IX86_BUILTIN_MOVDDUP256, UNKNOWN, (int) V4DF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv4df2, "__builtin_ia32_sqrtpd256", IX86_BUILTIN_SQRTPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_sqrtv8sf2, "__builtin_ia32_sqrtps256", IX86_BUILTIN_SQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_sqrtv8sf2, "__builtin_ia32_sqrtps_nr256", IX86_BUILTIN_SQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rsqrtv8sf2, "__builtin_ia32_rsqrtps256", IX86_BUILTIN_RSQRTPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_rsqrtv8sf2, "__builtin_ia32_rsqrtps_nr256", IX86_BUILTIN_RSQRTPS_NR256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_rcpv8sf2, "__builtin_ia32_rcpps256", IX86_BUILTIN_RCPPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundpd256, "__builtin_ia32_roundpd256", IX86_BUILTIN_ROUNDPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_roundps256, "__builtin_ia32_roundps256", IX86_BUILTIN_ROUNDPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_INT }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhpd256, "__builtin_ia32_unpckhpd256", IX86_BUILTIN_UNPCKHPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklpd256, "__builtin_ia32_unpcklpd256", IX86_BUILTIN_UNPCKLPD256, UNKNOWN, (int) V4DF_FTYPE_V4DF_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpckhps256, "__builtin_ia32_unpckhps256", IX86_BUILTIN_UNPCKHPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_unpcklps256, "__builtin_ia32_unpcklps256", IX86_BUILTIN_UNPCKLPS256, UNKNOWN, (int) V8SF_FTYPE_V8SF_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_si256_si, "__builtin_ia32_si256_si", IX86_BUILTIN_SI256_SI, UNKNOWN, (int) V8SI_FTYPE_V4SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ps256_ps, "__builtin_ia32_ps256_ps", IX86_BUILTIN_PS256_PS, UNKNOWN, (int) V8SF_FTYPE_V4SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_pd256_pd, "__builtin_ia32_pd256_pd", IX86_BUILTIN_PD256_PD, UNKNOWN, (int) V4DF_FTYPE_V2DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_si_si256, "__builtin_ia32_si_si256", IX86_BUILTIN_SI_SI256, UNKNOWN, (int) V4SI_FTYPE_V8SI }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ps_ps256, "__builtin_ia32_ps_ps256", IX86_BUILTIN_PS_PS256, UNKNOWN, (int) V4SF_FTYPE_V8SF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_pd_pd256, "__builtin_ia32_pd_pd256", IX86_BUILTIN_PD_PD256, UNKNOWN, (int) V2DF_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestzpd", IX86_BUILTIN_VTESTZPD, EQ, (int) INT_FTYPE_V2DF_V2DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestcpd", IX86_BUILTIN_VTESTCPD, LTU, (int) INT_FTYPE_V2DF_V2DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd, "__builtin_ia32_vtestnzcpd", IX86_BUILTIN_VTESTNZCPD, GTU, (int) INT_FTYPE_V2DF_V2DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestzps", IX86_BUILTIN_VTESTZPS, EQ, (int) INT_FTYPE_V4SF_V4SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestcps", IX86_BUILTIN_VTESTCPS, LTU, (int) INT_FTYPE_V4SF_V4SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps, "__builtin_ia32_vtestnzcps", IX86_BUILTIN_VTESTNZCPS, GTU, (int) INT_FTYPE_V4SF_V4SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestzpd256", IX86_BUILTIN_VTESTZPD256, EQ, (int) INT_FTYPE_V4DF_V4DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestcpd256", IX86_BUILTIN_VTESTCPD256, LTU, (int) INT_FTYPE_V4DF_V4DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestpd256, "__builtin_ia32_vtestnzcpd256", IX86_BUILTIN_VTESTNZCPD256, GTU, (int) INT_FTYPE_V4DF_V4DF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestzps256", IX86_BUILTIN_VTESTZPS256, EQ, (int) INT_FTYPE_V8SF_V8SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestcps256", IX86_BUILTIN_VTESTCPS256, LTU, (int) INT_FTYPE_V8SF_V8SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_vtestps256, "__builtin_ia32_vtestnzcps256", IX86_BUILTIN_VTESTNZCPS256, GTU, (int) INT_FTYPE_V8SF_V8SF_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestz256", IX86_BUILTIN_PTESTZ256, EQ, (int) INT_FTYPE_V4DI_V4DI_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestc256", IX86_BUILTIN_PTESTC256, LTU, (int) INT_FTYPE_V4DI_V4DI_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_ptest256, "__builtin_ia32_ptestnzc256", IX86_BUILTIN_PTESTNZC256, GTU, (int) INT_FTYPE_V4DI_V4DI_PTEST }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskpd256, "__builtin_ia32_movmskpd256", IX86_BUILTIN_MOVMSKPD256, UNKNOWN, (int) INT_FTYPE_V4DF }, { OPTION_MASK_ISA_AVX, CODE_FOR_avx_movmskps256, "__builtin_ia32_movmskps256", IX86_BUILTIN_MOVMSKPS256, UNKNOWN, (int) INT_FTYPE_V8SF }, { OPTION_MASK_ISA_ABM, CODE_FOR_clzhi2_abm, "__builtin_clzs", IX86_BUILTIN_CLZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 }, }; /* FMA4 and XOP. */ #define MULTI_ARG_4_DF2_DI_I V2DF_FTYPE_V2DF_V2DF_V2DI_INT #define MULTI_ARG_4_DF2_DI_I1 V4DF_FTYPE_V4DF_V4DF_V4DI_INT #define MULTI_ARG_4_SF2_SI_I V4SF_FTYPE_V4SF_V4SF_V4SI_INT #define MULTI_ARG_4_SF2_SI_I1 V8SF_FTYPE_V8SF_V8SF_V8SI_INT #define MULTI_ARG_3_SF V4SF_FTYPE_V4SF_V4SF_V4SF #define MULTI_ARG_3_DF V2DF_FTYPE_V2DF_V2DF_V2DF #define MULTI_ARG_3_SF2 V8SF_FTYPE_V8SF_V8SF_V8SF #define MULTI_ARG_3_DF2 V4DF_FTYPE_V4DF_V4DF_V4DF #define MULTI_ARG_3_DI V2DI_FTYPE_V2DI_V2DI_V2DI #define MULTI_ARG_3_SI V4SI_FTYPE_V4SI_V4SI_V4SI #define MULTI_ARG_3_SI_DI V4SI_FTYPE_V4SI_V4SI_V2DI #define MULTI_ARG_3_HI V8HI_FTYPE_V8HI_V8HI_V8HI #define MULTI_ARG_3_HI_SI V8HI_FTYPE_V8HI_V8HI_V4SI #define MULTI_ARG_3_QI V16QI_FTYPE_V16QI_V16QI_V16QI #define MULTI_ARG_3_DI2 V4DI_FTYPE_V4DI_V4DI_V4DI #define MULTI_ARG_3_SI2 V8SI_FTYPE_V8SI_V8SI_V8SI #define MULTI_ARG_3_HI2 V16HI_FTYPE_V16HI_V16HI_V16HI #define MULTI_ARG_3_QI2 V32QI_FTYPE_V32QI_V32QI_V32QI #define MULTI_ARG_2_SF V4SF_FTYPE_V4SF_V4SF #define MULTI_ARG_2_DF V2DF_FTYPE_V2DF_V2DF #define MULTI_ARG_2_DI V2DI_FTYPE_V2DI_V2DI #define MULTI_ARG_2_SI V4SI_FTYPE_V4SI_V4SI #define MULTI_ARG_2_HI V8HI_FTYPE_V8HI_V8HI #define MULTI_ARG_2_QI V16QI_FTYPE_V16QI_V16QI #define MULTI_ARG_2_DI_IMM V2DI_FTYPE_V2DI_SI #define MULTI_ARG_2_SI_IMM V4SI_FTYPE_V4SI_SI #define MULTI_ARG_2_HI_IMM V8HI_FTYPE_V8HI_SI #define MULTI_ARG_2_QI_IMM V16QI_FTYPE_V16QI_SI #define MULTI_ARG_2_DI_CMP V2DI_FTYPE_V2DI_V2DI_CMP #define MULTI_ARG_2_SI_CMP V4SI_FTYPE_V4SI_V4SI_CMP #define MULTI_ARG_2_HI_CMP V8HI_FTYPE_V8HI_V8HI_CMP #define MULTI_ARG_2_QI_CMP V16QI_FTYPE_V16QI_V16QI_CMP #define MULTI_ARG_2_SF_TF V4SF_FTYPE_V4SF_V4SF_TF #define MULTI_ARG_2_DF_TF V2DF_FTYPE_V2DF_V2DF_TF #define MULTI_ARG_2_DI_TF V2DI_FTYPE_V2DI_V2DI_TF #define MULTI_ARG_2_SI_TF V4SI_FTYPE_V4SI_V4SI_TF #define MULTI_ARG_2_HI_TF V8HI_FTYPE_V8HI_V8HI_TF #define MULTI_ARG_2_QI_TF V16QI_FTYPE_V16QI_V16QI_TF #define MULTI_ARG_1_SF V4SF_FTYPE_V4SF #define MULTI_ARG_1_DF V2DF_FTYPE_V2DF #define MULTI_ARG_1_SF2 V8SF_FTYPE_V8SF #define MULTI_ARG_1_DF2 V4DF_FTYPE_V4DF #define MULTI_ARG_1_DI V2DI_FTYPE_V2DI #define MULTI_ARG_1_SI V4SI_FTYPE_V4SI #define MULTI_ARG_1_HI V8HI_FTYPE_V8HI #define MULTI_ARG_1_QI V16QI_FTYPE_V16QI #define MULTI_ARG_1_SI_DI V2DI_FTYPE_V4SI #define MULTI_ARG_1_HI_DI V2DI_FTYPE_V8HI #define MULTI_ARG_1_HI_SI V4SI_FTYPE_V8HI #define MULTI_ARG_1_QI_DI V2DI_FTYPE_V16QI #define MULTI_ARG_1_QI_SI V4SI_FTYPE_V16QI #define MULTI_ARG_1_QI_HI V8HI_FTYPE_V16QI static const struct builtin_description bdesc_multi_arg[] = { { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmaddv4sf4, "__builtin_ia32_vfmaddss", IX86_BUILTIN_VFMADDSS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmaddv2df4, "__builtin_ia32_vfmaddsd", IX86_BUILTIN_VFMADDSD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddv4sf4, "__builtin_ia32_vfmaddps", IX86_BUILTIN_VFMADDPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddv2df4, "__builtin_ia32_vfmaddpd", IX86_BUILTIN_VFMADDPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmsubv4sf4, "__builtin_ia32_vfmsubss", IX86_BUILTIN_VFMSUBSS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfmsubv2df4, "__builtin_ia32_vfmsubsd", IX86_BUILTIN_VFMSUBSD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubv4sf4, "__builtin_ia32_vfmsubps", IX86_BUILTIN_VFMSUBPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubv2df4, "__builtin_ia32_vfmsubpd", IX86_BUILTIN_VFMSUBPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfnmaddv4sf4, "__builtin_ia32_vfnmaddss", IX86_BUILTIN_VFNMADDSS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfnmaddv2df4, "__builtin_ia32_vfnmaddsd", IX86_BUILTIN_VFNMADDSD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmaddv4sf4, "__builtin_ia32_vfnmaddps", IX86_BUILTIN_VFNMADDPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmaddv2df4, "__builtin_ia32_vfnmaddpd", IX86_BUILTIN_VFNMADDPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfnmsubv4sf4, "__builtin_ia32_vfnmsubss", IX86_BUILTIN_VFNMSUBSS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_vmfnmsubv2df4, "__builtin_ia32_vfnmsubsd", IX86_BUILTIN_VFNMSUBSD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmsubv4sf4, "__builtin_ia32_vfnmsubps", IX86_BUILTIN_VFNMSUBPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmsubv2df4, "__builtin_ia32_vfnmsubpd", IX86_BUILTIN_VFNMSUBPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddsubv4sf4, "__builtin_ia32_vfmaddsubps", IX86_BUILTIN_VFMADDSUBPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddsubv2df4, "__builtin_ia32_vfmaddsubpd", IX86_BUILTIN_VFMADDSUBPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubaddv4sf4, "__builtin_ia32_vfmsubaddps", IX86_BUILTIN_VFMSUBADDPS, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubaddv2df4, "__builtin_ia32_vfmsubaddpd", IX86_BUILTIN_VFMSUBADDPD, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddv8sf4256, "__builtin_ia32_vfmaddps256", IX86_BUILTIN_VFMADDPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddv4df4256, "__builtin_ia32_vfmaddpd256", IX86_BUILTIN_VFMADDPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubv8sf4256, "__builtin_ia32_vfmsubps256", IX86_BUILTIN_VFMSUBPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubv4df4256, "__builtin_ia32_vfmsubpd256", IX86_BUILTIN_VFMSUBPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmaddv8sf4256, "__builtin_ia32_vfnmaddps256", IX86_BUILTIN_VFNMADDPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmaddv4df4256, "__builtin_ia32_vfnmaddpd256", IX86_BUILTIN_VFNMADDPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmsubv8sf4256, "__builtin_ia32_vfnmsubps256", IX86_BUILTIN_VFNMSUBPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fnmsubv4df4256, "__builtin_ia32_vfnmsubpd256", IX86_BUILTIN_VFNMSUBPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddsubv8sf4, "__builtin_ia32_vfmaddsubps256", IX86_BUILTIN_VFMADDSUBPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmaddsubv4df4, "__builtin_ia32_vfmaddsubpd256", IX86_BUILTIN_VFMADDSUBPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubaddv8sf4, "__builtin_ia32_vfmsubaddps256", IX86_BUILTIN_VFMSUBADDPS256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_FMA4, CODE_FOR_fma4i_fmsubaddv4df4, "__builtin_ia32_vfmsubaddpd256", IX86_BUILTIN_VFMSUBADDPD256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov", IX86_BUILTIN_VPCMOV, UNKNOWN, (int)MULTI_ARG_3_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2di, "__builtin_ia32_vpcmov_v2di", IX86_BUILTIN_VPCMOV_V2DI, UNKNOWN, (int)MULTI_ARG_3_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4si, "__builtin_ia32_vpcmov_v4si", IX86_BUILTIN_VPCMOV_V4SI, UNKNOWN, (int)MULTI_ARG_3_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8hi, "__builtin_ia32_vpcmov_v8hi", IX86_BUILTIN_VPCMOV_V8HI, UNKNOWN, (int)MULTI_ARG_3_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16qi, "__builtin_ia32_vpcmov_v16qi",IX86_BUILTIN_VPCMOV_V16QI,UNKNOWN, (int)MULTI_ARG_3_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v2df, "__builtin_ia32_vpcmov_v2df", IX86_BUILTIN_VPCMOV_V2DF, UNKNOWN, (int)MULTI_ARG_3_DF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4sf, "__builtin_ia32_vpcmov_v4sf", IX86_BUILTIN_VPCMOV_V4SF, UNKNOWN, (int)MULTI_ARG_3_SF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov256", IX86_BUILTIN_VPCMOV256, UNKNOWN, (int)MULTI_ARG_3_DI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4di256, "__builtin_ia32_vpcmov_v4di256", IX86_BUILTIN_VPCMOV_V4DI256, UNKNOWN, (int)MULTI_ARG_3_DI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8si256, "__builtin_ia32_vpcmov_v8si256", IX86_BUILTIN_VPCMOV_V8SI256, UNKNOWN, (int)MULTI_ARG_3_SI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v16hi256, "__builtin_ia32_vpcmov_v16hi256", IX86_BUILTIN_VPCMOV_V16HI256, UNKNOWN, (int)MULTI_ARG_3_HI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v32qi256, "__builtin_ia32_vpcmov_v32qi256", IX86_BUILTIN_VPCMOV_V32QI256, UNKNOWN, (int)MULTI_ARG_3_QI2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v4df256, "__builtin_ia32_vpcmov_v4df256", IX86_BUILTIN_VPCMOV_V4DF256, UNKNOWN, (int)MULTI_ARG_3_DF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcmov_v8sf256, "__builtin_ia32_vpcmov_v8sf256", IX86_BUILTIN_VPCMOV_V8SF256, UNKNOWN, (int)MULTI_ARG_3_SF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pperm, "__builtin_ia32_vpperm", IX86_BUILTIN_VPPERM, UNKNOWN, (int)MULTI_ARG_3_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssww, "__builtin_ia32_vpmacssww", IX86_BUILTIN_VPMACSSWW, UNKNOWN, (int)MULTI_ARG_3_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsww, "__builtin_ia32_vpmacsww", IX86_BUILTIN_VPMACSWW, UNKNOWN, (int)MULTI_ARG_3_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsswd, "__builtin_ia32_vpmacsswd", IX86_BUILTIN_VPMACSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacswd, "__builtin_ia32_vpmacswd", IX86_BUILTIN_VPMACSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdd, "__builtin_ia32_vpmacssdd", IX86_BUILTIN_VPMACSSDD, UNKNOWN, (int)MULTI_ARG_3_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdd, "__builtin_ia32_vpmacsdd", IX86_BUILTIN_VPMACSDD, UNKNOWN, (int)MULTI_ARG_3_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdql, "__builtin_ia32_vpmacssdql", IX86_BUILTIN_VPMACSSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacssdqh, "__builtin_ia32_vpmacssdqh", IX86_BUILTIN_VPMACSSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdql, "__builtin_ia32_vpmacsdql", IX86_BUILTIN_VPMACSDQL, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmacsdqh, "__builtin_ia32_vpmacsdqh", IX86_BUILTIN_VPMACSDQH, UNKNOWN, (int)MULTI_ARG_3_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcsswd, "__builtin_ia32_vpmadcsswd", IX86_BUILTIN_VPMADCSSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pmadcswd, "__builtin_ia32_vpmadcswd", IX86_BUILTIN_VPMADCSWD, UNKNOWN, (int)MULTI_ARG_3_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv2di3, "__builtin_ia32_vprotq", IX86_BUILTIN_VPROTQ, UNKNOWN, (int)MULTI_ARG_2_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv4si3, "__builtin_ia32_vprotd", IX86_BUILTIN_VPROTD, UNKNOWN, (int)MULTI_ARG_2_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv8hi3, "__builtin_ia32_vprotw", IX86_BUILTIN_VPROTW, UNKNOWN, (int)MULTI_ARG_2_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vrotlv16qi3, "__builtin_ia32_vprotb", IX86_BUILTIN_VPROTB, UNKNOWN, (int)MULTI_ARG_2_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv2di3, "__builtin_ia32_vprotqi", IX86_BUILTIN_VPROTQ_IMM, UNKNOWN, (int)MULTI_ARG_2_DI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv4si3, "__builtin_ia32_vprotdi", IX86_BUILTIN_VPROTD_IMM, UNKNOWN, (int)MULTI_ARG_2_SI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv8hi3, "__builtin_ia32_vprotwi", IX86_BUILTIN_VPROTW_IMM, UNKNOWN, (int)MULTI_ARG_2_HI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_rotlv16qi3, "__builtin_ia32_vprotbi", IX86_BUILTIN_VPROTB_IMM, UNKNOWN, (int)MULTI_ARG_2_QI_IMM }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv2di3, "__builtin_ia32_vpshaq", IX86_BUILTIN_VPSHAQ, UNKNOWN, (int)MULTI_ARG_2_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv4si3, "__builtin_ia32_vpshad", IX86_BUILTIN_VPSHAD, UNKNOWN, (int)MULTI_ARG_2_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv8hi3, "__builtin_ia32_vpshaw", IX86_BUILTIN_VPSHAW, UNKNOWN, (int)MULTI_ARG_2_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_ashlv16qi3, "__builtin_ia32_vpshab", IX86_BUILTIN_VPSHAB, UNKNOWN, (int)MULTI_ARG_2_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv2di3, "__builtin_ia32_vpshlq", IX86_BUILTIN_VPSHLQ, UNKNOWN, (int)MULTI_ARG_2_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv4si3, "__builtin_ia32_vpshld", IX86_BUILTIN_VPSHLD, UNKNOWN, (int)MULTI_ARG_2_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv8hi3, "__builtin_ia32_vpshlw", IX86_BUILTIN_VPSHLW, UNKNOWN, (int)MULTI_ARG_2_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_lshlv16qi3, "__builtin_ia32_vpshlb", IX86_BUILTIN_VPSHLB, UNKNOWN, (int)MULTI_ARG_2_QI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv4sf2, "__builtin_ia32_vfrczss", IX86_BUILTIN_VFRCZSS, UNKNOWN, (int)MULTI_ARG_2_SF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vmfrczv2df2, "__builtin_ia32_vfrczsd", IX86_BUILTIN_VFRCZSD, UNKNOWN, (int)MULTI_ARG_2_DF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4sf2, "__builtin_ia32_vfrczps", IX86_BUILTIN_VFRCZPS, UNKNOWN, (int)MULTI_ARG_1_SF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv2df2, "__builtin_ia32_vfrczpd", IX86_BUILTIN_VFRCZPD, UNKNOWN, (int)MULTI_ARG_1_DF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv8sf2256, "__builtin_ia32_vfrczps256", IX86_BUILTIN_VFRCZPS256, UNKNOWN, (int)MULTI_ARG_1_SF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_frczv4df2256, "__builtin_ia32_vfrczpd256", IX86_BUILTIN_VFRCZPD256, UNKNOWN, (int)MULTI_ARG_1_DF2 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbw, "__builtin_ia32_vphaddbw", IX86_BUILTIN_VPHADDBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbd, "__builtin_ia32_vphaddbd", IX86_BUILTIN_VPHADDBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddbq, "__builtin_ia32_vphaddbq", IX86_BUILTIN_VPHADDBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwd, "__builtin_ia32_vphaddwd", IX86_BUILTIN_VPHADDWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddwq, "__builtin_ia32_vphaddwq", IX86_BUILTIN_VPHADDWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadddq, "__builtin_ia32_vphadddq", IX86_BUILTIN_VPHADDDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubw, "__builtin_ia32_vphaddubw", IX86_BUILTIN_VPHADDUBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubd, "__builtin_ia32_vphaddubd", IX86_BUILTIN_VPHADDUBD, UNKNOWN, (int)MULTI_ARG_1_QI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddubq, "__builtin_ia32_vphaddubq", IX86_BUILTIN_VPHADDUBQ, UNKNOWN, (int)MULTI_ARG_1_QI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwd, "__builtin_ia32_vphadduwd", IX86_BUILTIN_VPHADDUWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phadduwq, "__builtin_ia32_vphadduwq", IX86_BUILTIN_VPHADDUWQ, UNKNOWN, (int)MULTI_ARG_1_HI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phaddudq, "__builtin_ia32_vphaddudq", IX86_BUILTIN_VPHADDUDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubbw, "__builtin_ia32_vphsubbw", IX86_BUILTIN_VPHSUBBW, UNKNOWN, (int)MULTI_ARG_1_QI_HI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubwd, "__builtin_ia32_vphsubwd", IX86_BUILTIN_VPHSUBWD, UNKNOWN, (int)MULTI_ARG_1_HI_SI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_phsubdq, "__builtin_ia32_vphsubdq", IX86_BUILTIN_VPHSUBDQ, UNKNOWN, (int)MULTI_ARG_1_SI_DI }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomeqb", IX86_BUILTIN_VPCOMEQB, EQ, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomneqb", IX86_BUILTIN_VPCOMNEB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomltb", IX86_BUILTIN_VPCOMLTB, LT, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomleb", IX86_BUILTIN_VPCOMLEB, LE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgtb", IX86_BUILTIN_VPCOMGTB, GT, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv16qi3, "__builtin_ia32_vpcomgeb", IX86_BUILTIN_VPCOMGEB, GE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomeqw", IX86_BUILTIN_VPCOMEQW, EQ, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomnew", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomneqw", IX86_BUILTIN_VPCOMNEW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomltw", IX86_BUILTIN_VPCOMLTW, LT, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomlew", IX86_BUILTIN_VPCOMLEW, LE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgtw", IX86_BUILTIN_VPCOMGTW, GT, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv8hi3, "__builtin_ia32_vpcomgew", IX86_BUILTIN_VPCOMGEW, GE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomeqd", IX86_BUILTIN_VPCOMEQD, EQ, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomned", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomneqd", IX86_BUILTIN_VPCOMNED, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomltd", IX86_BUILTIN_VPCOMLTD, LT, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomled", IX86_BUILTIN_VPCOMLED, LE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomgtd", IX86_BUILTIN_VPCOMGTD, GT, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv4si3, "__builtin_ia32_vpcomged", IX86_BUILTIN_VPCOMGED, GE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomeqq", IX86_BUILTIN_VPCOMEQQ, EQ, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomneqq", IX86_BUILTIN_VPCOMNEQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomltq", IX86_BUILTIN_VPCOMLTQ, LT, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomleq", IX86_BUILTIN_VPCOMLEQ, LE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgtq", IX86_BUILTIN_VPCOMGTQ, GT, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmpv2di3, "__builtin_ia32_vpcomgeq", IX86_BUILTIN_VPCOMGEQ, GE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomequb", IX86_BUILTIN_VPCOMEQUB, EQ, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomneub", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v16qi3,"__builtin_ia32_vpcomnequb", IX86_BUILTIN_VPCOMNEUB, NE, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomltub", IX86_BUILTIN_VPCOMLTUB, LTU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomleub", IX86_BUILTIN_VPCOMLEUB, LEU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgtub", IX86_BUILTIN_VPCOMGTUB, GTU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv16qi3, "__builtin_ia32_vpcomgeub", IX86_BUILTIN_VPCOMGEUB, GEU, (int)MULTI_ARG_2_QI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomequw", IX86_BUILTIN_VPCOMEQUW, EQ, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomneuw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v8hi3, "__builtin_ia32_vpcomnequw", IX86_BUILTIN_VPCOMNEUW, NE, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomltuw", IX86_BUILTIN_VPCOMLTUW, LTU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomleuw", IX86_BUILTIN_VPCOMLEUW, LEU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgtuw", IX86_BUILTIN_VPCOMGTUW, GTU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv8hi3, "__builtin_ia32_vpcomgeuw", IX86_BUILTIN_VPCOMGEUW, GEU, (int)MULTI_ARG_2_HI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomequd", IX86_BUILTIN_VPCOMEQUD, EQ, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomneud", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v4si3, "__builtin_ia32_vpcomnequd", IX86_BUILTIN_VPCOMNEUD, NE, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomltud", IX86_BUILTIN_VPCOMLTUD, LTU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomleud", IX86_BUILTIN_VPCOMLEUD, LEU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgtud", IX86_BUILTIN_VPCOMGTUD, GTU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv4si3, "__builtin_ia32_vpcomgeud", IX86_BUILTIN_VPCOMGEUD, GEU, (int)MULTI_ARG_2_SI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomequq", IX86_BUILTIN_VPCOMEQUQ, EQ, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomneuq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_uns2v2di3, "__builtin_ia32_vpcomnequq", IX86_BUILTIN_VPCOMNEUQ, NE, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomltuq", IX86_BUILTIN_VPCOMLTUQ, LTU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomleuq", IX86_BUILTIN_VPCOMLEUQ, LEU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgtuq", IX86_BUILTIN_VPCOMGTUQ, GTU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_maskcmp_unsv2di3, "__builtin_ia32_vpcomgeuq", IX86_BUILTIN_VPCOMGEUQ, GEU, (int)MULTI_ARG_2_DI_CMP }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseb", IX86_BUILTIN_VPCOMFALSEB, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalsew", IX86_BUILTIN_VPCOMFALSEW, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalsed", IX86_BUILTIN_VPCOMFALSED, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseq", IX86_BUILTIN_VPCOMFALSEQ, (enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomfalseub",IX86_BUILTIN_VPCOMFALSEUB,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomfalseuw",IX86_BUILTIN_VPCOMFALSEUW,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomfalseud",IX86_BUILTIN_VPCOMFALSEUD,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomfalseuq",IX86_BUILTIN_VPCOMFALSEUQ,(enum rtx_code) PCOM_FALSE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueb", IX86_BUILTIN_VPCOMTRUEB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtruew", IX86_BUILTIN_VPCOMTRUEW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrued", IX86_BUILTIN_VPCOMTRUED, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueq", IX86_BUILTIN_VPCOMTRUEQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv16qi3, "__builtin_ia32_vpcomtrueub", IX86_BUILTIN_VPCOMTRUEUB, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_QI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv8hi3, "__builtin_ia32_vpcomtrueuw", IX86_BUILTIN_VPCOMTRUEUW, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_HI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv4si3, "__builtin_ia32_vpcomtrueud", IX86_BUILTIN_VPCOMTRUEUD, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_SI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_pcom_tfv2di3, "__builtin_ia32_vpcomtrueuq", IX86_BUILTIN_VPCOMTRUEUQ, (enum rtx_code) PCOM_TRUE, (int)MULTI_ARG_2_DI_TF }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v2df3, "__builtin_ia32_vpermil2pd", IX86_BUILTIN_VPERMIL2PD, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4sf3, "__builtin_ia32_vpermil2ps", IX86_BUILTIN_VPERMIL2PS, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v4df3, "__builtin_ia32_vpermil2pd256", IX86_BUILTIN_VPERMIL2PD256, UNKNOWN, (int)MULTI_ARG_4_DF2_DI_I1 }, { OPTION_MASK_ISA_XOP, CODE_FOR_xop_vpermil2v8sf3, "__builtin_ia32_vpermil2ps256", IX86_BUILTIN_VPERMIL2PS256, UNKNOWN, (int)MULTI_ARG_4_SF2_SI_I1 }, }; /* Set up all the MMX/SSE builtins, even builtins for instructions that are not in the current target ISA to allow the user to compile particular modules with different target specific options that differ from the command line options. */ static void ix86_init_mmx_sse_builtins (void) { const struct builtin_description * d; enum ix86_builtin_func_type ftype; size_t i; /* Add all special builtins with variable number of operands. */ for (i = 0, d = bdesc_special_args; i < ARRAY_SIZE (bdesc_special_args); i++, d++) { if (d->name == 0) continue; ftype = (enum ix86_builtin_func_type) d->flag; def_builtin (d->mask, d->name, ftype, d->code); } /* Add all builtins with variable number of operands. */ for (i = 0, d = bdesc_args; i < ARRAY_SIZE (bdesc_args); i++, d++) { if (d->name == 0) continue; ftype = (enum ix86_builtin_func_type) d->flag; def_builtin_const (d->mask, d->name, ftype, d->code); } /* pcmpestr[im] insns. */ for (i = 0, d = bdesc_pcmpestr; i < ARRAY_SIZE (bdesc_pcmpestr); i++, d++) { if (d->code == IX86_BUILTIN_PCMPESTRM128) ftype = V16QI_FTYPE_V16QI_INT_V16QI_INT_INT; else ftype = INT_FTYPE_V16QI_INT_V16QI_INT_INT; def_builtin_const (d->mask, d->name, ftype, d->code); } /* pcmpistr[im] insns. */ for (i = 0, d = bdesc_pcmpistr; i < ARRAY_SIZE (bdesc_pcmpistr); i++, d++) { if (d->code == IX86_BUILTIN_PCMPISTRM128) ftype = V16QI_FTYPE_V16QI_V16QI_INT; else ftype = INT_FTYPE_V16QI_V16QI_INT; def_builtin_const (d->mask, d->name, ftype, d->code); } /* comi/ucomi insns. */ for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) { if (d->mask == OPTION_MASK_ISA_SSE2) ftype = INT_FTYPE_V2DF_V2DF; else ftype = INT_FTYPE_V4SF_V4SF; def_builtin_const (d->mask, d->name, ftype, d->code); } /* SSE */ def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_ldmxcsr", VOID_FTYPE_UNSIGNED, IX86_BUILTIN_LDMXCSR); def_builtin (OPTION_MASK_ISA_SSE, "__builtin_ia32_stmxcsr", UNSIGNED_FTYPE_VOID, IX86_BUILTIN_STMXCSR); /* SSE or 3DNow!A */ def_builtin (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, "__builtin_ia32_maskmovq", VOID_FTYPE_V8QI_V8QI_PCHAR, IX86_BUILTIN_MASKMOVQ); /* SSE2 */ def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_maskmovdqu", VOID_FTYPE_V16QI_V16QI_PCHAR, IX86_BUILTIN_MASKMOVDQU); def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_clflush", VOID_FTYPE_PCVOID, IX86_BUILTIN_CLFLUSH); x86_mfence = def_builtin (OPTION_MASK_ISA_SSE2, "__builtin_ia32_mfence", VOID_FTYPE_VOID, IX86_BUILTIN_MFENCE); /* SSE3. */ def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_monitor", VOID_FTYPE_PCVOID_UNSIGNED_UNSIGNED, IX86_BUILTIN_MONITOR); def_builtin (OPTION_MASK_ISA_SSE3, "__builtin_ia32_mwait", VOID_FTYPE_UNSIGNED_UNSIGNED, IX86_BUILTIN_MWAIT); /* AES */ def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenc128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENC128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesenclast128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESENCLAST128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdec128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDEC128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesdeclast128", V2DI_FTYPE_V2DI_V2DI, IX86_BUILTIN_AESDECLAST128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aesimc128", V2DI_FTYPE_V2DI, IX86_BUILTIN_AESIMC128); def_builtin_const (OPTION_MASK_ISA_AES, "__builtin_ia32_aeskeygenassist128", V2DI_FTYPE_V2DI_INT, IX86_BUILTIN_AESKEYGENASSIST128); /* PCLMUL */ def_builtin_const (OPTION_MASK_ISA_PCLMUL, "__builtin_ia32_pclmulqdq128", V2DI_FTYPE_V2DI_V2DI_INT, IX86_BUILTIN_PCLMULQDQ128); /* MMX access to the vec_init patterns. */ def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v2si", V2SI_FTYPE_INT_INT, IX86_BUILTIN_VEC_INIT_V2SI); def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v4hi", V4HI_FTYPE_HI_HI_HI_HI, IX86_BUILTIN_VEC_INIT_V4HI); def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_init_v8qi", V8QI_FTYPE_QI_QI_QI_QI_QI_QI_QI_QI, IX86_BUILTIN_VEC_INIT_V8QI); /* Access to the vec_extract patterns. */ def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2df", DOUBLE_FTYPE_V2DF_INT, IX86_BUILTIN_VEC_EXT_V2DF); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v2di", DI_FTYPE_V2DI_INT, IX86_BUILTIN_VEC_EXT_V2DI); def_builtin_const (OPTION_MASK_ISA_SSE, "__builtin_ia32_vec_ext_v4sf", FLOAT_FTYPE_V4SF_INT, IX86_BUILTIN_VEC_EXT_V4SF); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v4si", SI_FTYPE_V4SI_INT, IX86_BUILTIN_VEC_EXT_V4SI); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v8hi", HI_FTYPE_V8HI_INT, IX86_BUILTIN_VEC_EXT_V8HI); def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, "__builtin_ia32_vec_ext_v4hi", HI_FTYPE_V4HI_INT, IX86_BUILTIN_VEC_EXT_V4HI); def_builtin_const (OPTION_MASK_ISA_MMX, "__builtin_ia32_vec_ext_v2si", SI_FTYPE_V2SI_INT, IX86_BUILTIN_VEC_EXT_V2SI); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_ext_v16qi", QI_FTYPE_V16QI_INT, IX86_BUILTIN_VEC_EXT_V16QI); /* Access to the vec_set patterns. */ def_builtin_const (OPTION_MASK_ISA_SSE4_1 | OPTION_MASK_ISA_64BIT, "__builtin_ia32_vec_set_v2di", V2DI_FTYPE_V2DI_DI_INT, IX86_BUILTIN_VEC_SET_V2DI); def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4sf", V4SF_FTYPE_V4SF_FLOAT_INT, IX86_BUILTIN_VEC_SET_V4SF); def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v4si", V4SI_FTYPE_V4SI_SI_INT, IX86_BUILTIN_VEC_SET_V4SI); def_builtin_const (OPTION_MASK_ISA_SSE2, "__builtin_ia32_vec_set_v8hi", V8HI_FTYPE_V8HI_HI_INT, IX86_BUILTIN_VEC_SET_V8HI); def_builtin_const (OPTION_MASK_ISA_SSE | OPTION_MASK_ISA_3DNOW_A, "__builtin_ia32_vec_set_v4hi", V4HI_FTYPE_V4HI_HI_INT, IX86_BUILTIN_VEC_SET_V4HI); def_builtin_const (OPTION_MASK_ISA_SSE4_1, "__builtin_ia32_vec_set_v16qi", V16QI_FTYPE_V16QI_QI_INT, IX86_BUILTIN_VEC_SET_V16QI); /* Add FMA4 multi-arg argument instructions */ for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++) { if (d->name == 0) continue; ftype = (enum ix86_builtin_func_type) d->flag; def_builtin_const (d->mask, d->name, ftype, d->code); } } /* Internal method for ix86_init_builtins. */ static void ix86_init_builtins_va_builtins_abi (void) { tree ms_va_ref, sysv_va_ref; tree fnvoid_va_end_ms, fnvoid_va_end_sysv; tree fnvoid_va_start_ms, fnvoid_va_start_sysv; tree fnvoid_va_copy_ms, fnvoid_va_copy_sysv; tree fnattr_ms = NULL_TREE, fnattr_sysv = NULL_TREE; if (!TARGET_64BIT) return; fnattr_ms = build_tree_list (get_identifier ("ms_abi"), NULL_TREE); fnattr_sysv = build_tree_list (get_identifier ("sysv_abi"), NULL_TREE); ms_va_ref = build_reference_type (ms_va_list_type_node); sysv_va_ref = build_pointer_type (TREE_TYPE (sysv_va_list_type_node)); fnvoid_va_end_ms = build_function_type_list (void_type_node, ms_va_ref, NULL_TREE); fnvoid_va_start_ms = build_varargs_function_type_list (void_type_node, ms_va_ref, NULL_TREE); fnvoid_va_end_sysv = build_function_type_list (void_type_node, sysv_va_ref, NULL_TREE); fnvoid_va_start_sysv = build_varargs_function_type_list (void_type_node, sysv_va_ref, NULL_TREE); fnvoid_va_copy_ms = build_function_type_list (void_type_node, ms_va_ref, ms_va_list_type_node, NULL_TREE); fnvoid_va_copy_sysv = build_function_type_list (void_type_node, sysv_va_ref, sysv_va_ref, NULL_TREE); add_builtin_function ("__builtin_ms_va_start", fnvoid_va_start_ms, BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_ms); add_builtin_function ("__builtin_ms_va_end", fnvoid_va_end_ms, BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_ms); add_builtin_function ("__builtin_ms_va_copy", fnvoid_va_copy_ms, BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_ms); add_builtin_function ("__builtin_sysv_va_start", fnvoid_va_start_sysv, BUILT_IN_VA_START, BUILT_IN_NORMAL, NULL, fnattr_sysv); add_builtin_function ("__builtin_sysv_va_end", fnvoid_va_end_sysv, BUILT_IN_VA_END, BUILT_IN_NORMAL, NULL, fnattr_sysv); add_builtin_function ("__builtin_sysv_va_copy", fnvoid_va_copy_sysv, BUILT_IN_VA_COPY, BUILT_IN_NORMAL, NULL, fnattr_sysv); } static void ix86_init_builtin_types (void) { tree float128_type_node, float80_type_node; /* The __float80 type. */ float80_type_node = long_double_type_node; if (TYPE_MODE (float80_type_node) != XFmode) { /* The __float80 type. */ float80_type_node = make_node (REAL_TYPE); TYPE_PRECISION (float80_type_node) = 80; layout_type (float80_type_node); } (*lang_hooks.types.register_builtin_type) (float80_type_node, "__float80"); /* The __float128 type. */ float128_type_node = make_node (REAL_TYPE); TYPE_PRECISION (float128_type_node) = 128; layout_type (float128_type_node); (*lang_hooks.types.register_builtin_type) (float128_type_node, "__float128"); /* This macro is built by i386-builtin-types.awk. */ DEFINE_BUILTIN_PRIMITIVE_TYPES; } static void ix86_init_builtins (void) { tree t; ix86_init_builtin_types (); /* TFmode support builtins. */ def_builtin_const (0, "__builtin_infq", FLOAT128_FTYPE_VOID, IX86_BUILTIN_INFQ); def_builtin_const (0, "__builtin_huge_valq", FLOAT128_FTYPE_VOID, IX86_BUILTIN_HUGE_VALQ); /* We will expand them to normal call if SSE2 isn't available since they are used by libgcc. */ t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128); t = add_builtin_function ("__builtin_fabsq", t, IX86_BUILTIN_FABSQ, BUILT_IN_MD, "__fabstf2", NULL_TREE); TREE_READONLY (t) = 1; ix86_builtins[(int) IX86_BUILTIN_FABSQ] = t; t = ix86_get_builtin_func_type (FLOAT128_FTYPE_FLOAT128_FLOAT128); t = add_builtin_function ("__builtin_copysignq", t, IX86_BUILTIN_COPYSIGNQ, BUILT_IN_MD, "__copysigntf3", NULL_TREE); TREE_READONLY (t) = 1; ix86_builtins[(int) IX86_BUILTIN_COPYSIGNQ] = t; ix86_init_mmx_sse_builtins (); if (TARGET_64BIT) ix86_init_builtins_va_builtins_abi (); } /* Return the ix86 builtin for CODE. */ static tree ix86_builtin_decl (unsigned code, bool initialize_p ATTRIBUTE_UNUSED) { if (code >= IX86_BUILTIN_MAX) return error_mark_node; return ix86_builtins[code]; } /* Errors in the source file can cause expand_expr to return const0_rtx where we expect a vector. To avoid crashing, use one of the vector clear instructions. */ static rtx safe_vector_operand (rtx x, enum machine_mode mode) { if (x == const0_rtx) x = CONST0_RTX (mode); return x; } /* Subroutine of ix86_expand_builtin to take care of binop insns. */ static rtx ix86_expand_binop_builtin (enum insn_code icode, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; enum machine_mode mode1 = insn_data[icode].operand[2].mode; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (GET_MODE (op1) == SImode && mode1 == TImode) { rtx x = gen_reg_rtx (V4SImode); emit_insn (gen_sse2_loadd (x, op1)); op1 = gen_lowpart (TImode, x); } if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of 2-4 argument insns. */ static rtx ix86_expand_multi_arg_builtin (enum insn_code icode, tree exp, rtx target, enum ix86_builtin_func_type m_type, enum rtx_code sub_code) { rtx pat; int i; int nargs; bool comparison_p = false; bool tf_p = false; bool last_arg_constant = false; int num_memory = 0; struct { rtx op; enum machine_mode mode; } args[4]; enum machine_mode tmode = insn_data[icode].operand[0].mode; switch (m_type) { case MULTI_ARG_4_DF2_DI_I: case MULTI_ARG_4_DF2_DI_I1: case MULTI_ARG_4_SF2_SI_I: case MULTI_ARG_4_SF2_SI_I1: nargs = 4; last_arg_constant = true; break; case MULTI_ARG_3_SF: case MULTI_ARG_3_DF: case MULTI_ARG_3_SF2: case MULTI_ARG_3_DF2: case MULTI_ARG_3_DI: case MULTI_ARG_3_SI: case MULTI_ARG_3_SI_DI: case MULTI_ARG_3_HI: case MULTI_ARG_3_HI_SI: case MULTI_ARG_3_QI: case MULTI_ARG_3_DI2: case MULTI_ARG_3_SI2: case MULTI_ARG_3_HI2: case MULTI_ARG_3_QI2: nargs = 3; break; case MULTI_ARG_2_SF: case MULTI_ARG_2_DF: case MULTI_ARG_2_DI: case MULTI_ARG_2_SI: case MULTI_ARG_2_HI: case MULTI_ARG_2_QI: nargs = 2; break; case MULTI_ARG_2_DI_IMM: case MULTI_ARG_2_SI_IMM: case MULTI_ARG_2_HI_IMM: case MULTI_ARG_2_QI_IMM: nargs = 2; last_arg_constant = true; break; case MULTI_ARG_1_SF: case MULTI_ARG_1_DF: case MULTI_ARG_1_SF2: case MULTI_ARG_1_DF2: case MULTI_ARG_1_DI: case MULTI_ARG_1_SI: case MULTI_ARG_1_HI: case MULTI_ARG_1_QI: case MULTI_ARG_1_SI_DI: case MULTI_ARG_1_HI_DI: case MULTI_ARG_1_HI_SI: case MULTI_ARG_1_QI_DI: case MULTI_ARG_1_QI_SI: case MULTI_ARG_1_QI_HI: nargs = 1; break; case MULTI_ARG_2_DI_CMP: case MULTI_ARG_2_SI_CMP: case MULTI_ARG_2_HI_CMP: case MULTI_ARG_2_QI_CMP: nargs = 2; comparison_p = true; break; case MULTI_ARG_2_SF_TF: case MULTI_ARG_2_DF_TF: case MULTI_ARG_2_DI_TF: case MULTI_ARG_2_SI_TF: case MULTI_ARG_2_HI_TF: case MULTI_ARG_2_QI_TF: nargs = 2; tf_p = true; break; default: gcc_unreachable (); } if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); gcc_assert (nargs <= 4); for (i = 0; i < nargs; i++) { tree arg = CALL_EXPR_ARG (exp, i); rtx op = expand_normal (arg); int adjust = (comparison_p) ? 1 : 0; enum machine_mode mode = insn_data[icode].operand[i+adjust+1].mode; if (last_arg_constant && i == nargs-1) { if (!CONST_INT_P (op)) { error ("last argument must be an immediate"); return gen_reg_rtx (tmode); } } else { if (VECTOR_MODE_P (mode)) op = safe_vector_operand (op, mode); /* If we aren't optimizing, only allow one memory operand to be generated. */ if (memory_operand (op, mode)) num_memory++; gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode); if (optimize || ! (*insn_data[icode].operand[i+adjust+1].predicate) (op, mode) || num_memory > 1) op = force_reg (mode, op); } args[i].op = op; args[i].mode = mode; } switch (nargs) { case 1: pat = GEN_FCN (icode) (target, args[0].op); break; case 2: if (tf_p) pat = GEN_FCN (icode) (target, args[0].op, args[1].op, GEN_INT ((int)sub_code)); else if (! comparison_p) pat = GEN_FCN (icode) (target, args[0].op, args[1].op); else { rtx cmp_op = gen_rtx_fmt_ee (sub_code, GET_MODE (target), args[0].op, args[1].op); pat = GEN_FCN (icode) (target, cmp_op, args[0].op, args[1].op); } break; case 3: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op); break; case 4: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op, args[3].op); break; default: gcc_unreachable (); } if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_args_builtin to take care of scalar unop insns with vec_merge. */ static rtx ix86_expand_unop_vec_merge_builtin (enum insn_code icode, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); rtx op1, op0 = expand_normal (arg0); enum machine_mode tmode = insn_data[icode].operand[0].mode; enum machine_mode mode0 = insn_data[icode].operand[1].mode; if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if ((optimize && !register_operand (op0, mode0)) || ! (*insn_data[icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); op1 = op0; if (! (*insn_data[icode].operand[2].predicate) (op1, mode0)) op1 = copy_to_mode_reg (mode0, op1); pat = GEN_FCN (icode) (target, op0, op1); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of comparison insns. */ static rtx ix86_expand_sse_compare (const struct builtin_description *d, tree exp, rtx target, bool swap) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx op2; enum machine_mode tmode = insn_data[d->icode].operand[0].mode; enum machine_mode mode0 = insn_data[d->icode].operand[1].mode; enum machine_mode mode1 = insn_data[d->icode].operand[2].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); /* Swap operands if we have a comparison that isn't available in hardware. */ if (swap) { rtx tmp = gen_reg_rtx (mode1); emit_move_insn (tmp, op1); op1 = op0; op0 = tmp; } if (optimize || !target || GET_MODE (target) != tmode || ! (*insn_data[d->icode].operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); if ((optimize && !register_operand (op0, mode0)) || ! (*insn_data[d->icode].operand[1].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || ! (*insn_data[d->icode].operand[2].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1); pat = GEN_FCN (d->icode) (target, op0, op1, op2); if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of comi insns. */ static rtx ix86_expand_sse_comi (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); enum machine_mode mode0 = insn_data[d->icode].operand[0].mode; enum machine_mode mode1 = insn_data[d->icode].operand[1].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); /* Swap operands if we have a comparison that isn't available in hardware. */ if (d->flag & BUILTIN_DESC_SWAP_OPERANDS) { rtx tmp = op1; op1 = op0; op0 = tmp; } target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); if ((optimize && !register_operand (op0, mode0)) || !(*insn_data[d->icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !(*insn_data[d->icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (d->icode) (op0, op1); if (! pat) return 0; emit_insn (pat); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (comparison, QImode, SET_DEST (pat), const0_rtx))); return SUBREG_REG (target); } /* Subroutine of ix86_expand_builtin to take care of ptest insns. */ static rtx ix86_expand_sse_ptest (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); enum machine_mode mode0 = insn_data[d->icode].operand[0].mode; enum machine_mode mode1 = insn_data[d->icode].operand[1].mode; enum rtx_code comparison = d->comparison; if (VECTOR_MODE_P (mode0)) op0 = safe_vector_operand (op0, mode0); if (VECTOR_MODE_P (mode1)) op1 = safe_vector_operand (op1, mode1); target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); if ((optimize && !register_operand (op0, mode0)) || !(*insn_data[d->icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if ((optimize && !register_operand (op1, mode1)) || !(*insn_data[d->icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); pat = GEN_FCN (d->icode) (op0, op1); if (! pat) return 0; emit_insn (pat); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (comparison, QImode, SET_DEST (pat), const0_rtx))); return SUBREG_REG (target); } /* Subroutine of ix86_expand_builtin to take care of pcmpestr[im] insns. */ static rtx ix86_expand_sse_pcmpestr (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); tree arg2 = CALL_EXPR_ARG (exp, 2); tree arg3 = CALL_EXPR_ARG (exp, 3); tree arg4 = CALL_EXPR_ARG (exp, 4); rtx scratch0, scratch1; rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx op2 = expand_normal (arg2); rtx op3 = expand_normal (arg3); rtx op4 = expand_normal (arg4); enum machine_mode tmode0, tmode1, modev2, modei3, modev4, modei5, modeimm; tmode0 = insn_data[d->icode].operand[0].mode; tmode1 = insn_data[d->icode].operand[1].mode; modev2 = insn_data[d->icode].operand[2].mode; modei3 = insn_data[d->icode].operand[3].mode; modev4 = insn_data[d->icode].operand[4].mode; modei5 = insn_data[d->icode].operand[5].mode; modeimm = insn_data[d->icode].operand[6].mode; if (VECTOR_MODE_P (modev2)) op0 = safe_vector_operand (op0, modev2); if (VECTOR_MODE_P (modev4)) op2 = safe_vector_operand (op2, modev4); if (! (*insn_data[d->icode].operand[2].predicate) (op0, modev2)) op0 = copy_to_mode_reg (modev2, op0); if (! (*insn_data[d->icode].operand[3].predicate) (op1, modei3)) op1 = copy_to_mode_reg (modei3, op1); if ((optimize && !register_operand (op2, modev4)) || !(*insn_data[d->icode].operand[4].predicate) (op2, modev4)) op2 = copy_to_mode_reg (modev4, op2); if (! (*insn_data[d->icode].operand[5].predicate) (op3, modei5)) op3 = copy_to_mode_reg (modei5, op3); if (! (*insn_data[d->icode].operand[6].predicate) (op4, modeimm)) { error ("the fifth argument must be a 8-bit immediate"); return const0_rtx; } if (d->code == IX86_BUILTIN_PCMPESTRI128) { if (optimize || !target || GET_MODE (target) != tmode0 || ! (*insn_data[d->icode].operand[0].predicate) (target, tmode0)) target = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2, op3, op4); } else if (d->code == IX86_BUILTIN_PCMPESTRM128) { if (optimize || !target || GET_MODE (target) != tmode1 || ! (*insn_data[d->icode].operand[1].predicate) (target, tmode1)) target = gen_reg_rtx (tmode1); scratch0 = gen_reg_rtx (tmode0); pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2, op3, op4); } else { gcc_assert (d->flag); scratch0 = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2, op3, op4); } if (! pat) return 0; emit_insn (pat); if (d->flag) { target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (EQ, QImode, gen_rtx_REG ((enum machine_mode) d->flag, FLAGS_REG), const0_rtx))); return SUBREG_REG (target); } else return target; } /* Subroutine of ix86_expand_builtin to take care of pcmpistr[im] insns. */ static rtx ix86_expand_sse_pcmpistr (const struct builtin_description *d, tree exp, rtx target) { rtx pat; tree arg0 = CALL_EXPR_ARG (exp, 0); tree arg1 = CALL_EXPR_ARG (exp, 1); tree arg2 = CALL_EXPR_ARG (exp, 2); rtx scratch0, scratch1; rtx op0 = expand_normal (arg0); rtx op1 = expand_normal (arg1); rtx op2 = expand_normal (arg2); enum machine_mode tmode0, tmode1, modev2, modev3, modeimm; tmode0 = insn_data[d->icode].operand[0].mode; tmode1 = insn_data[d->icode].operand[1].mode; modev2 = insn_data[d->icode].operand[2].mode; modev3 = insn_data[d->icode].operand[3].mode; modeimm = insn_data[d->icode].operand[4].mode; if (VECTOR_MODE_P (modev2)) op0 = safe_vector_operand (op0, modev2); if (VECTOR_MODE_P (modev3)) op1 = safe_vector_operand (op1, modev3); if (! (*insn_data[d->icode].operand[2].predicate) (op0, modev2)) op0 = copy_to_mode_reg (modev2, op0); if ((optimize && !register_operand (op1, modev3)) || !(*insn_data[d->icode].operand[3].predicate) (op1, modev3)) op1 = copy_to_mode_reg (modev3, op1); if (! (*insn_data[d->icode].operand[4].predicate) (op2, modeimm)) { error ("the third argument must be a 8-bit immediate"); return const0_rtx; } if (d->code == IX86_BUILTIN_PCMPISTRI128) { if (optimize || !target || GET_MODE (target) != tmode0 || ! (*insn_data[d->icode].operand[0].predicate) (target, tmode0)) target = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (target, scratch1, op0, op1, op2); } else if (d->code == IX86_BUILTIN_PCMPISTRM128) { if (optimize || !target || GET_MODE (target) != tmode1 || ! (*insn_data[d->icode].operand[1].predicate) (target, tmode1)) target = gen_reg_rtx (tmode1); scratch0 = gen_reg_rtx (tmode0); pat = GEN_FCN (d->icode) (scratch0, target, op0, op1, op2); } else { gcc_assert (d->flag); scratch0 = gen_reg_rtx (tmode0); scratch1 = gen_reg_rtx (tmode1); pat = GEN_FCN (d->icode) (scratch0, scratch1, op0, op1, op2); } if (! pat) return 0; emit_insn (pat); if (d->flag) { target = gen_reg_rtx (SImode); emit_move_insn (target, const0_rtx); target = gen_rtx_SUBREG (QImode, target, 0); emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_STRICT_LOW_PART (VOIDmode, target), gen_rtx_fmt_ee (EQ, QImode, gen_rtx_REG ((enum machine_mode) d->flag, FLAGS_REG), const0_rtx))); return SUBREG_REG (target); } else return target; } /* Subroutine of ix86_expand_builtin to take care of insns with variable number of operands. */ static rtx ix86_expand_args_builtin (const struct builtin_description *d, tree exp, rtx target) { rtx pat, real_target; unsigned int i, nargs; unsigned int nargs_constant = 0; int num_memory = 0; struct { rtx op; enum machine_mode mode; } args[4]; bool last_arg_count = false; enum insn_code icode = d->icode; const struct insn_data *insn_p = &insn_data[icode]; enum machine_mode tmode = insn_p->operand[0].mode; enum machine_mode rmode = VOIDmode; bool swap = false; enum rtx_code comparison = d->comparison; switch ((enum ix86_builtin_func_type) d->flag) { case INT_FTYPE_V8SF_V8SF_PTEST: case INT_FTYPE_V4DI_V4DI_PTEST: case INT_FTYPE_V4DF_V4DF_PTEST: case INT_FTYPE_V4SF_V4SF_PTEST: case INT_FTYPE_V2DI_V2DI_PTEST: case INT_FTYPE_V2DF_V2DF_PTEST: return ix86_expand_sse_ptest (d, exp, target); case FLOAT128_FTYPE_FLOAT128: case FLOAT_FTYPE_FLOAT: case INT_FTYPE_INT: case UINT64_FTYPE_INT: case UINT16_FTYPE_UINT16: case INT64_FTYPE_INT64: case INT64_FTYPE_V4SF: case INT64_FTYPE_V2DF: case INT_FTYPE_V16QI: case INT_FTYPE_V8QI: case INT_FTYPE_V8SF: case INT_FTYPE_V4DF: case INT_FTYPE_V4SF: case INT_FTYPE_V2DF: case V16QI_FTYPE_V16QI: case V8SI_FTYPE_V8SF: case V8SI_FTYPE_V4SI: case V8HI_FTYPE_V8HI: case V8HI_FTYPE_V16QI: case V8QI_FTYPE_V8QI: case V8SF_FTYPE_V8SF: case V8SF_FTYPE_V8SI: case V8SF_FTYPE_V4SF: case V4SI_FTYPE_V4SI: case V4SI_FTYPE_V16QI: case V4SI_FTYPE_V4SF: case V4SI_FTYPE_V8SI: case V4SI_FTYPE_V8HI: case V4SI_FTYPE_V4DF: case V4SI_FTYPE_V2DF: case V4HI_FTYPE_V4HI: case V4DF_FTYPE_V4DF: case V4DF_FTYPE_V4SI: case V4DF_FTYPE_V4SF: case V4DF_FTYPE_V2DF: case V4SF_FTYPE_V4SF: case V4SF_FTYPE_V4SI: case V4SF_FTYPE_V8SF: case V4SF_FTYPE_V4DF: case V4SF_FTYPE_V2DF: case V2DI_FTYPE_V2DI: case V2DI_FTYPE_V16QI: case V2DI_FTYPE_V8HI: case V2DI_FTYPE_V4SI: case V2DF_FTYPE_V2DF: case V2DF_FTYPE_V4SI: case V2DF_FTYPE_V4DF: case V2DF_FTYPE_V4SF: case V2DF_FTYPE_V2SI: case V2SI_FTYPE_V2SI: case V2SI_FTYPE_V4SF: case V2SI_FTYPE_V2SF: case V2SI_FTYPE_V2DF: case V2SF_FTYPE_V2SF: case V2SF_FTYPE_V2SI: nargs = 1; break; case V4SF_FTYPE_V4SF_VEC_MERGE: case V2DF_FTYPE_V2DF_VEC_MERGE: return ix86_expand_unop_vec_merge_builtin (icode, exp, target); case FLOAT128_FTYPE_FLOAT128_FLOAT128: case V16QI_FTYPE_V16QI_V16QI: case V16QI_FTYPE_V8HI_V8HI: case V8QI_FTYPE_V8QI_V8QI: case V8QI_FTYPE_V4HI_V4HI: case V8HI_FTYPE_V8HI_V8HI: case V8HI_FTYPE_V16QI_V16QI: case V8HI_FTYPE_V4SI_V4SI: case V8SF_FTYPE_V8SF_V8SF: case V8SF_FTYPE_V8SF_V8SI: case V4SI_FTYPE_V4SI_V4SI: case V4SI_FTYPE_V8HI_V8HI: case V4SI_FTYPE_V4SF_V4SF: case V4SI_FTYPE_V2DF_V2DF: case V4HI_FTYPE_V4HI_V4HI: case V4HI_FTYPE_V8QI_V8QI: case V4HI_FTYPE_V2SI_V2SI: case V4DF_FTYPE_V4DF_V4DF: case V4DF_FTYPE_V4DF_V4DI: case V4SF_FTYPE_V4SF_V4SF: case V4SF_FTYPE_V4SF_V4SI: case V4SF_FTYPE_V4SF_V2SI: case V4SF_FTYPE_V4SF_V2DF: case V4SF_FTYPE_V4SF_DI: case V4SF_FTYPE_V4SF_SI: case V2DI_FTYPE_V2DI_V2DI: case V2DI_FTYPE_V16QI_V16QI: case V2DI_FTYPE_V4SI_V4SI: case V2DI_FTYPE_V2DI_V16QI: case V2DI_FTYPE_V2DF_V2DF: case V2SI_FTYPE_V2SI_V2SI: case V2SI_FTYPE_V4HI_V4HI: case V2SI_FTYPE_V2SF_V2SF: case V2DF_FTYPE_V2DF_V2DF: case V2DF_FTYPE_V2DF_V4SF: case V2DF_FTYPE_V2DF_V2DI: case V2DF_FTYPE_V2DF_DI: case V2DF_FTYPE_V2DF_SI: case V2SF_FTYPE_V2SF_V2SF: case V1DI_FTYPE_V1DI_V1DI: case V1DI_FTYPE_V8QI_V8QI: case V1DI_FTYPE_V2SI_V2SI: if (comparison == UNKNOWN) return ix86_expand_binop_builtin (icode, exp, target); nargs = 2; break; case V4SF_FTYPE_V4SF_V4SF_SWAP: case V2DF_FTYPE_V2DF_V2DF_SWAP: gcc_assert (comparison != UNKNOWN); nargs = 2; swap = true; break; case V8HI_FTYPE_V8HI_V8HI_COUNT: case V8HI_FTYPE_V8HI_SI_COUNT: case V4SI_FTYPE_V4SI_V4SI_COUNT: case V4SI_FTYPE_V4SI_SI_COUNT: case V4HI_FTYPE_V4HI_V4HI_COUNT: case V4HI_FTYPE_V4HI_SI_COUNT: case V2DI_FTYPE_V2DI_V2DI_COUNT: case V2DI_FTYPE_V2DI_SI_COUNT: case V2SI_FTYPE_V2SI_V2SI_COUNT: case V2SI_FTYPE_V2SI_SI_COUNT: case V1DI_FTYPE_V1DI_V1DI_COUNT: case V1DI_FTYPE_V1DI_SI_COUNT: nargs = 2; last_arg_count = true; break; case UINT64_FTYPE_UINT64_UINT64: case UINT_FTYPE_UINT_UINT: case UINT_FTYPE_UINT_USHORT: case UINT_FTYPE_UINT_UCHAR: case UINT16_FTYPE_UINT16_INT: case UINT8_FTYPE_UINT8_INT: nargs = 2; break; case V2DI_FTYPE_V2DI_INT_CONVERT: nargs = 2; rmode = V1TImode; nargs_constant = 1; break; case V8HI_FTYPE_V8HI_INT: case V8SF_FTYPE_V8SF_INT: case V4SI_FTYPE_V4SI_INT: case V4SI_FTYPE_V8SI_INT: case V4HI_FTYPE_V4HI_INT: case V4DF_FTYPE_V4DF_INT: case V4SF_FTYPE_V4SF_INT: case V4SF_FTYPE_V8SF_INT: case V2DI_FTYPE_V2DI_INT: case V2DF_FTYPE_V2DF_INT: case V2DF_FTYPE_V4DF_INT: nargs = 2; nargs_constant = 1; break; case V16QI_FTYPE_V16QI_V16QI_V16QI: case V8SF_FTYPE_V8SF_V8SF_V8SF: case V4DF_FTYPE_V4DF_V4DF_V4DF: case V4SF_FTYPE_V4SF_V4SF_V4SF: case V2DF_FTYPE_V2DF_V2DF_V2DF: nargs = 3; break; case V16QI_FTYPE_V16QI_V16QI_INT: case V8HI_FTYPE_V8HI_V8HI_INT: case V8SI_FTYPE_V8SI_V8SI_INT: case V8SI_FTYPE_V8SI_V4SI_INT: case V8SF_FTYPE_V8SF_V8SF_INT: case V8SF_FTYPE_V8SF_V4SF_INT: case V4SI_FTYPE_V4SI_V4SI_INT: case V4DF_FTYPE_V4DF_V4DF_INT: case V4DF_FTYPE_V4DF_V2DF_INT: case V4SF_FTYPE_V4SF_V4SF_INT: case V2DI_FTYPE_V2DI_V2DI_INT: case V2DF_FTYPE_V2DF_V2DF_INT: nargs = 3; nargs_constant = 1; break; case V2DI_FTYPE_V2DI_V2DI_INT_CONVERT: nargs = 3; rmode = V2DImode; nargs_constant = 1; break; case V1DI_FTYPE_V1DI_V1DI_INT_CONVERT: nargs = 3; rmode = DImode; nargs_constant = 1; break; case V2DI_FTYPE_V2DI_UINT_UINT: nargs = 3; nargs_constant = 2; break; case V2DF_FTYPE_V2DF_V2DF_V2DI_INT: case V4DF_FTYPE_V4DF_V4DF_V4DI_INT: case V4SF_FTYPE_V4SF_V4SF_V4SI_INT: case V8SF_FTYPE_V8SF_V8SF_V8SI_INT: nargs = 4; nargs_constant = 1; break; case V2DI_FTYPE_V2DI_V2DI_UINT_UINT: nargs = 4; nargs_constant = 2; break; default: gcc_unreachable (); } gcc_assert (nargs <= ARRAY_SIZE (args)); if (comparison != UNKNOWN) { gcc_assert (nargs == 2); return ix86_expand_sse_compare (d, exp, target, swap); } if (rmode == VOIDmode || rmode == tmode) { if (optimize || target == 0 || GET_MODE (target) != tmode || ! (*insn_p->operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); real_target = target; } else { target = gen_reg_rtx (rmode); real_target = simplify_gen_subreg (tmode, target, rmode, 0); } for (i = 0; i < nargs; i++) { tree arg = CALL_EXPR_ARG (exp, i); rtx op = expand_normal (arg); enum machine_mode mode = insn_p->operand[i + 1].mode; bool match = (*insn_p->operand[i + 1].predicate) (op, mode); if (last_arg_count && (i + 1) == nargs) { /* SIMD shift insns take either an 8-bit immediate or register as count. But builtin functions take int as count. If count doesn't match, we put it in register. */ if (!match) { op = simplify_gen_subreg (SImode, op, GET_MODE (op), 0); if (!(*insn_p->operand[i + 1].predicate) (op, mode)) op = copy_to_reg (op); } } else if ((nargs - i) <= nargs_constant) { if (!match) switch (icode) { case CODE_FOR_sse4_1_roundpd: case CODE_FOR_sse4_1_roundps: case CODE_FOR_sse4_1_roundsd: case CODE_FOR_sse4_1_roundss: case CODE_FOR_sse4_1_blendps: case CODE_FOR_avx_blendpd256: case CODE_FOR_avx_vpermilv4df: case CODE_FOR_avx_roundpd256: case CODE_FOR_avx_roundps256: error ("the last argument must be a 4-bit immediate"); return const0_rtx; case CODE_FOR_sse4_1_blendpd: case CODE_FOR_avx_vpermilv2df: case CODE_FOR_xop_vpermil2v2df3: case CODE_FOR_xop_vpermil2v4sf3: case CODE_FOR_xop_vpermil2v4df3: case CODE_FOR_xop_vpermil2v8sf3: error ("the last argument must be a 2-bit immediate"); return const0_rtx; case CODE_FOR_avx_vextractf128v4df: case CODE_FOR_avx_vextractf128v8sf: case CODE_FOR_avx_vextractf128v8si: case CODE_FOR_avx_vinsertf128v4df: case CODE_FOR_avx_vinsertf128v8sf: case CODE_FOR_avx_vinsertf128v8si: error ("the last argument must be a 1-bit immediate"); return const0_rtx; case CODE_FOR_avx_cmpsdv2df3: case CODE_FOR_avx_cmpssv4sf3: case CODE_FOR_avx_cmppdv2df3: case CODE_FOR_avx_cmppsv4sf3: case CODE_FOR_avx_cmppdv4df3: case CODE_FOR_avx_cmppsv8sf3: error ("the last argument must be a 5-bit immediate"); return const0_rtx; default: switch (nargs_constant) { case 2: if ((nargs - i) == nargs_constant) { error ("the next to last argument must be an 8-bit immediate"); break; } case 1: error ("the last argument must be an 8-bit immediate"); break; default: gcc_unreachable (); } return const0_rtx; } } else { if (VECTOR_MODE_P (mode)) op = safe_vector_operand (op, mode); /* If we aren't optimizing, only allow one memory operand to be generated. */ if (memory_operand (op, mode)) num_memory++; if (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) { if (optimize || !match || num_memory > 1) op = copy_to_mode_reg (mode, op); } else { op = copy_to_reg (op); op = simplify_gen_subreg (mode, op, GET_MODE (op), 0); } } args[i].op = op; args[i].mode = mode; } switch (nargs) { case 1: pat = GEN_FCN (icode) (real_target, args[0].op); break; case 2: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op); break; case 3: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, args[2].op); break; case 4: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, args[2].op, args[3].op); break; default: gcc_unreachable (); } if (! pat) return 0; emit_insn (pat); return target; } /* Subroutine of ix86_expand_builtin to take care of special insns with variable number of operands. */ static rtx ix86_expand_special_args_builtin (const struct builtin_description *d, tree exp, rtx target) { tree arg; rtx pat, op; unsigned int i, nargs, arg_adjust, memory; struct { rtx op; enum machine_mode mode; } args[3]; enum insn_code icode = d->icode; bool last_arg_constant = false; const struct insn_data *insn_p = &insn_data[icode]; enum machine_mode tmode = insn_p->operand[0].mode; enum { load, store } klass; switch ((enum ix86_builtin_func_type) d->flag) { case VOID_FTYPE_VOID: emit_insn (GEN_FCN (icode) (target)); return 0; case UINT64_FTYPE_VOID: nargs = 0; klass = load; memory = 0; break; case UINT64_FTYPE_PUNSIGNED: case V2DI_FTYPE_PV2DI: case V32QI_FTYPE_PCCHAR: case V16QI_FTYPE_PCCHAR: case V8SF_FTYPE_PCV4SF: case V8SF_FTYPE_PCFLOAT: case V4SF_FTYPE_PCFLOAT: case V4DF_FTYPE_PCV2DF: case V4DF_FTYPE_PCDOUBLE: case V2DF_FTYPE_PCDOUBLE: case VOID_FTYPE_PVOID: nargs = 1; klass = load; memory = 0; break; case VOID_FTYPE_PV2SF_V4SF: case VOID_FTYPE_PV4DI_V4DI: case VOID_FTYPE_PV2DI_V2DI: case VOID_FTYPE_PCHAR_V32QI: case VOID_FTYPE_PCHAR_V16QI: case VOID_FTYPE_PFLOAT_V8SF: case VOID_FTYPE_PFLOAT_V4SF: case VOID_FTYPE_PDOUBLE_V4DF: case VOID_FTYPE_PDOUBLE_V2DF: case VOID_FTYPE_PULONGLONG_ULONGLONG: case VOID_FTYPE_PINT_INT: nargs = 1; klass = store; /* Reserve memory operand for target. */ memory = ARRAY_SIZE (args); break; case V4SF_FTYPE_V4SF_PCV2SF: case V2DF_FTYPE_V2DF_PCDOUBLE: nargs = 2; klass = load; memory = 1; break; case V8SF_FTYPE_PCV8SF_V8SF: case V4DF_FTYPE_PCV4DF_V4DF: case V4SF_FTYPE_PCV4SF_V4SF: case V2DF_FTYPE_PCV2DF_V2DF: nargs = 2; klass = load; memory = 0; break; case VOID_FTYPE_PV8SF_V8SF_V8SF: case VOID_FTYPE_PV4DF_V4DF_V4DF: case VOID_FTYPE_PV4SF_V4SF_V4SF: case VOID_FTYPE_PV2DF_V2DF_V2DF: nargs = 2; klass = store; /* Reserve memory operand for target. */ memory = ARRAY_SIZE (args); break; case VOID_FTYPE_UINT_UINT_UINT: case VOID_FTYPE_UINT64_UINT_UINT: case UCHAR_FTYPE_UINT_UINT_UINT: case UCHAR_FTYPE_UINT64_UINT_UINT: nargs = 3; klass = load; memory = ARRAY_SIZE (args); last_arg_constant = true; break; default: gcc_unreachable (); } gcc_assert (nargs <= ARRAY_SIZE (args)); if (klass == store) { arg = CALL_EXPR_ARG (exp, 0); op = expand_normal (arg); gcc_assert (target == 0); target = gen_rtx_MEM (tmode, copy_to_mode_reg (Pmode, op)); arg_adjust = 1; } else { arg_adjust = 0; if (optimize || target == 0 || GET_MODE (target) != tmode || ! (*insn_p->operand[0].predicate) (target, tmode)) target = gen_reg_rtx (tmode); } for (i = 0; i < nargs; i++) { enum machine_mode mode = insn_p->operand[i + 1].mode; bool match; arg = CALL_EXPR_ARG (exp, i + arg_adjust); op = expand_normal (arg); match = (*insn_p->operand[i + 1].predicate) (op, mode); if (last_arg_constant && (i + 1) == nargs) { if (!match) { if (icode == CODE_FOR_lwp_lwpvalsi3 || icode == CODE_FOR_lwp_lwpinssi3 || icode == CODE_FOR_lwp_lwpvaldi3 || icode == CODE_FOR_lwp_lwpinsdi3) error ("the last argument must be a 32-bit immediate"); else error ("the last argument must be an 8-bit immediate"); return const0_rtx; } } else { if (i == memory) { /* This must be the memory operand. */ op = gen_rtx_MEM (mode, copy_to_mode_reg (Pmode, op)); gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode); } else { /* This must be register. */ if (VECTOR_MODE_P (mode)) op = safe_vector_operand (op, mode); gcc_assert (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode); op = copy_to_mode_reg (mode, op); } } args[i].op = op; args[i].mode = mode; } switch (nargs) { case 0: pat = GEN_FCN (icode) (target); break; case 1: pat = GEN_FCN (icode) (target, args[0].op); break; case 2: pat = GEN_FCN (icode) (target, args[0].op, args[1].op); break; case 3: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op); break; default: gcc_unreachable (); } if (! pat) return 0; emit_insn (pat); return klass == store ? 0 : target; } /* Return the integer constant in ARG. Constrain it to be in the range of the subparts of VEC_TYPE; issue an error if not. */ static int get_element_number (tree vec_type, tree arg) { unsigned HOST_WIDE_INT elt, max = TYPE_VECTOR_SUBPARTS (vec_type) - 1; if (!host_integerp (arg, 1) || (elt = tree_low_cst (arg, 1), elt > max)) { error ("selector must be an integer constant in the range 0..%wi", max); return 0; } return elt; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_init. We DO have language-level syntax for this, in the form of (type){ init-list }. Except that since we can't place emms instructions from inside the compiler, we can't allow the use of MMX registers unless the user explicitly asks for it. So we do *not* define vec_set/vec_extract/vec_init patterns for MMX modes in mmx.md. Instead we have builtins invoked by mmintrin.h that gives us license to emit these sorts of instructions. */ static rtx ix86_expand_vec_init_builtin (tree type, tree exp, rtx target) { enum machine_mode tmode = TYPE_MODE (type); enum machine_mode inner_mode = GET_MODE_INNER (tmode); int i, n_elt = GET_MODE_NUNITS (tmode); rtvec v = rtvec_alloc (n_elt); gcc_assert (VECTOR_MODE_P (tmode)); gcc_assert (call_expr_nargs (exp) == n_elt); for (i = 0; i < n_elt; ++i) { rtx x = expand_normal (CALL_EXPR_ARG (exp, i)); RTVEC_ELT (v, i) = gen_lowpart (inner_mode, x); } if (!target || !register_operand (target, tmode)) target = gen_reg_rtx (tmode); ix86_expand_vector_init (true, target, gen_rtx_PARALLEL (tmode, v)); return target; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_extract. They would be redundant (for non-MMX) if we had a language-level syntax for referencing vector elements. */ static rtx ix86_expand_vec_ext_builtin (tree exp, rtx target) { enum machine_mode tmode, mode0; tree arg0, arg1; int elt; rtx op0; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); op0 = expand_normal (arg0); elt = get_element_number (TREE_TYPE (arg0), arg1); tmode = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); mode0 = TYPE_MODE (TREE_TYPE (arg0)); gcc_assert (VECTOR_MODE_P (mode0)); op0 = force_reg (mode0, op0); if (optimize || !target || !register_operand (target, tmode)) target = gen_reg_rtx (tmode); ix86_expand_vector_extract (true, target, op0, elt); return target; } /* A subroutine of ix86_expand_builtin. These builtins are a wrapper around ix86_expand_vector_set. They would be redundant (for non-MMX) if we had a language-level syntax for referencing vector elements. */ static rtx ix86_expand_vec_set_builtin (tree exp) { enum machine_mode tmode, mode1; tree arg0, arg1, arg2; int elt; rtx op0, op1, target; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); arg2 = CALL_EXPR_ARG (exp, 2); tmode = TYPE_MODE (TREE_TYPE (arg0)); mode1 = TYPE_MODE (TREE_TYPE (TREE_TYPE (arg0))); gcc_assert (VECTOR_MODE_P (tmode)); op0 = expand_expr (arg0, NULL_RTX, tmode, EXPAND_NORMAL); op1 = expand_expr (arg1, NULL_RTX, mode1, EXPAND_NORMAL); elt = get_element_number (TREE_TYPE (arg0), arg2); if (GET_MODE (op1) != mode1 && GET_MODE (op1) != VOIDmode) op1 = convert_modes (mode1, GET_MODE (op1), op1, true); op0 = force_reg (tmode, op0); op1 = force_reg (mode1, op1); /* OP0 is the source of these builtin functions and shouldn't be modified. Create a copy, use it and return it as target. */ target = gen_reg_rtx (tmode); emit_move_insn (target, op0); ix86_expand_vector_set (true, target, op1, elt); return target; } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ static rtx ix86_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED, enum machine_mode mode ATTRIBUTE_UNUSED, int ignore ATTRIBUTE_UNUSED) { const struct builtin_description *d; size_t i; enum insn_code icode; tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); tree arg0, arg1, arg2; rtx op0, op1, op2, pat; enum machine_mode mode0, mode1, mode2; unsigned int fcode = DECL_FUNCTION_CODE (fndecl); /* Determine whether the builtin function is available under the current ISA. Originally the builtin was not created if it wasn't applicable to the current ISA based on the command line switches. With function specific options, we need to check in the context of the function making the call whether it is supported. */ if (ix86_builtins_isa[fcode].isa && !(ix86_builtins_isa[fcode].isa & ix86_isa_flags)) { char *opts = ix86_target_string (ix86_builtins_isa[fcode].isa, 0, NULL, NULL, NULL, false); if (!opts) error ("%qE needs unknown isa option", fndecl); else { gcc_assert (opts != NULL); error ("%qE needs isa option %s", fndecl, opts); free (opts); } return const0_rtx; } switch (fcode) { case IX86_BUILTIN_MASKMOVQ: case IX86_BUILTIN_MASKMOVDQU: icode = (fcode == IX86_BUILTIN_MASKMOVQ ? CODE_FOR_mmx_maskmovq : CODE_FOR_sse2_maskmovdqu); /* Note the arg order is different from the operand order. */ arg1 = CALL_EXPR_ARG (exp, 0); arg2 = CALL_EXPR_ARG (exp, 1); arg0 = CALL_EXPR_ARG (exp, 2); op0 = expand_normal (arg0); op1 = expand_normal (arg1); op2 = expand_normal (arg2); mode0 = insn_data[icode].operand[0].mode; mode1 = insn_data[icode].operand[1].mode; mode2 = insn_data[icode].operand[2].mode; op0 = force_reg (Pmode, op0); op0 = gen_rtx_MEM (mode1, op0); if (! (*insn_data[icode].operand[0].predicate) (op0, mode0)) op0 = copy_to_mode_reg (mode0, op0); if (! (*insn_data[icode].operand[1].predicate) (op1, mode1)) op1 = copy_to_mode_reg (mode1, op1); if (! (*insn_data[icode].operand[2].predicate) (op2, mode2)) op2 = copy_to_mode_reg (mode2, op2); pat = GEN_FCN (icode) (op0, op1, op2); if (! pat) return 0; emit_insn (pat); return 0; case IX86_BUILTIN_LDMXCSR: op0 = expand_normal (CALL_EXPR_ARG (exp, 0)); target = assign_386_stack_local (SImode, SLOT_VIRTUAL); emit_move_insn (target, op0); emit_insn (gen_sse_ldmxcsr (target)); return 0; case IX86_BUILTIN_STMXCSR: target = assign_386_stack_local (SImode, SLOT_VIRTUAL); emit_insn (gen_sse_stmxcsr (target)); return copy_to_mode_reg (SImode, target); case IX86_BUILTIN_CLFLUSH: arg0 = CALL_EXPR_ARG (exp, 0); op0 = expand_normal (arg0); icode = CODE_FOR_sse2_clflush; if (! (*insn_data[icode].operand[0].predicate) (op0, Pmode)) op0 = copy_to_mode_reg (Pmode, op0); emit_insn (gen_sse2_clflush (op0)); return 0; case IX86_BUILTIN_MONITOR: arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); arg2 = CALL_EXPR_ARG (exp, 2); op0 = expand_normal (arg0); op1 = expand_normal (arg1); op2 = expand_normal (arg2); if (!REG_P (op0)) op0 = copy_to_mode_reg (Pmode, op0); if (!REG_P (op1)) op1 = copy_to_mode_reg (SImode, op1); if (!REG_P (op2)) op2 = copy_to_mode_reg (SImode, op2); emit_insn ((*ix86_gen_monitor) (op0, op1, op2)); return 0; case IX86_BUILTIN_MWAIT: arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); op0 = expand_normal (arg0); op1 = expand_normal (arg1); if (!REG_P (op0)) op0 = copy_to_mode_reg (SImode, op0); if (!REG_P (op1)) op1 = copy_to_mode_reg (SImode, op1); emit_insn (gen_sse3_mwait (op0, op1)); return 0; case IX86_BUILTIN_VEC_INIT_V2SI: case IX86_BUILTIN_VEC_INIT_V4HI: case IX86_BUILTIN_VEC_INIT_V8QI: return ix86_expand_vec_init_builtin (TREE_TYPE (exp), exp, target); case IX86_BUILTIN_VEC_EXT_V2DF: case IX86_BUILTIN_VEC_EXT_V2DI: case IX86_BUILTIN_VEC_EXT_V4SF: case IX86_BUILTIN_VEC_EXT_V4SI: case IX86_BUILTIN_VEC_EXT_V8HI: case IX86_BUILTIN_VEC_EXT_V2SI: case IX86_BUILTIN_VEC_EXT_V4HI: case IX86_BUILTIN_VEC_EXT_V16QI: return ix86_expand_vec_ext_builtin (exp, target); case IX86_BUILTIN_VEC_SET_V2DI: case IX86_BUILTIN_VEC_SET_V4SF: case IX86_BUILTIN_VEC_SET_V4SI: case IX86_BUILTIN_VEC_SET_V8HI: case IX86_BUILTIN_VEC_SET_V4HI: case IX86_BUILTIN_VEC_SET_V16QI: return ix86_expand_vec_set_builtin (exp); case IX86_BUILTIN_VEC_PERM_V2DF: case IX86_BUILTIN_VEC_PERM_V4SF: case IX86_BUILTIN_VEC_PERM_V2DI: case IX86_BUILTIN_VEC_PERM_V4SI: case IX86_BUILTIN_VEC_PERM_V8HI: case IX86_BUILTIN_VEC_PERM_V16QI: case IX86_BUILTIN_VEC_PERM_V2DI_U: case IX86_BUILTIN_VEC_PERM_V4SI_U: case IX86_BUILTIN_VEC_PERM_V8HI_U: case IX86_BUILTIN_VEC_PERM_V16QI_U: case IX86_BUILTIN_VEC_PERM_V4DF: case IX86_BUILTIN_VEC_PERM_V8SF: return ix86_expand_vec_perm_builtin (exp); case IX86_BUILTIN_INFQ: case IX86_BUILTIN_HUGE_VALQ: { REAL_VALUE_TYPE inf; rtx tmp; real_inf (&inf); tmp = CONST_DOUBLE_FROM_REAL_VALUE (inf, mode); tmp = validize_mem (force_const_mem (mode, tmp)); if (target == 0) target = gen_reg_rtx (mode); emit_move_insn (target, tmp); return target; } case IX86_BUILTIN_LLWPCB: arg0 = CALL_EXPR_ARG (exp, 0); op0 = expand_normal (arg0); icode = CODE_FOR_lwp_llwpcb; if (! (*insn_data[icode].operand[0].predicate) (op0, Pmode)) op0 = copy_to_mode_reg (Pmode, op0); emit_insn (gen_lwp_llwpcb (op0)); return 0; case IX86_BUILTIN_SLWPCB: icode = CODE_FOR_lwp_slwpcb; if (!target || ! (*insn_data[icode].operand[0].predicate) (target, Pmode)) target = gen_reg_rtx (Pmode); emit_insn (gen_lwp_slwpcb (target)); return target; default: break; } for (i = 0, d = bdesc_special_args; i < ARRAY_SIZE (bdesc_special_args); i++, d++) if (d->code == fcode) return ix86_expand_special_args_builtin (d, exp, target); for (i = 0, d = bdesc_args; i < ARRAY_SIZE (bdesc_args); i++, d++) if (d->code == fcode) switch (fcode) { case IX86_BUILTIN_FABSQ: case IX86_BUILTIN_COPYSIGNQ: if (!TARGET_SSE2) /* Emit a normal call if SSE2 isn't available. */ return expand_call (exp, target, ignore); default: return ix86_expand_args_builtin (d, exp, target); } for (i = 0, d = bdesc_comi; i < ARRAY_SIZE (bdesc_comi); i++, d++) if (d->code == fcode) return ix86_expand_sse_comi (d, exp, target); for (i = 0, d = bdesc_pcmpestr; i < ARRAY_SIZE (bdesc_pcmpestr); i++, d++) if (d->code == fcode) return ix86_expand_sse_pcmpestr (d, exp, target); for (i = 0, d = bdesc_pcmpistr; i < ARRAY_SIZE (bdesc_pcmpistr); i++, d++) if (d->code == fcode) return ix86_expand_sse_pcmpistr (d, exp, target); for (i = 0, d = bdesc_multi_arg; i < ARRAY_SIZE (bdesc_multi_arg); i++, d++) if (d->code == fcode) return ix86_expand_multi_arg_builtin (d->icode, exp, target, (enum ix86_builtin_func_type) d->flag, d->comparison); gcc_unreachable (); } /* Returns a function decl for a vectorized version of the builtin function with builtin function code FN and the result vector type TYPE, or NULL_TREE if it is not available. */ static tree ix86_builtin_vectorized_function (tree fndecl, tree type_out, tree type_in) { enum machine_mode in_mode, out_mode; int in_n, out_n; enum built_in_function fn = DECL_FUNCTION_CODE (fndecl); if (TREE_CODE (type_out) != VECTOR_TYPE || TREE_CODE (type_in) != VECTOR_TYPE || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL) return NULL_TREE; out_mode = TYPE_MODE (TREE_TYPE (type_out)); out_n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); switch (fn) { case BUILT_IN_SQRT: if (out_mode == DFmode && out_n == 2 && in_mode == DFmode && in_n == 2) return ix86_builtins[IX86_BUILTIN_SQRTPD]; break; case BUILT_IN_SQRTF: if (out_mode == SFmode && out_n == 4 && in_mode == SFmode && in_n == 4) return ix86_builtins[IX86_BUILTIN_SQRTPS_NR]; break; case BUILT_IN_LRINT: if (out_mode == SImode && out_n == 4 && in_mode == DFmode && in_n == 2) return ix86_builtins[IX86_BUILTIN_VEC_PACK_SFIX]; break; case BUILT_IN_LRINTF: if (out_mode == SImode && out_n == 4 && in_mode == SFmode && in_n == 4) return ix86_builtins[IX86_BUILTIN_CVTPS2DQ]; break; case BUILT_IN_COPYSIGN: if (out_mode == DFmode && out_n == 2 && in_mode == DFmode && in_n == 2) return ix86_builtins[IX86_BUILTIN_CPYSGNPD]; break; case BUILT_IN_COPYSIGNF: if (out_mode == SFmode && out_n == 4 && in_mode == SFmode && in_n == 4) return ix86_builtins[IX86_BUILTIN_CPYSGNPS]; break; default: ; } /* Dispatch to a handler for a vectorization library. */ if (ix86_veclib_handler) return (*ix86_veclib_handler) ((enum built_in_function) fn, type_out, type_in); return NULL_TREE; } /* Handler for an SVML-style interface to a library with vectorized intrinsics. */ static tree ix86_veclibabi_svml (enum built_in_function fn, tree type_out, tree type_in) { char name[20]; tree fntype, new_fndecl, args; unsigned arity; const char *bname; enum machine_mode el_mode, in_mode; int n, in_n; /* The SVML is suitable for unsafe math only. */ if (!flag_unsafe_math_optimizations) return NULL_TREE; el_mode = TYPE_MODE (TREE_TYPE (type_out)); n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); if (el_mode != in_mode || n != in_n) return NULL_TREE; switch (fn) { case BUILT_IN_EXP: case BUILT_IN_LOG: case BUILT_IN_LOG10: case BUILT_IN_POW: case BUILT_IN_TANH: case BUILT_IN_TAN: case BUILT_IN_ATAN: case BUILT_IN_ATAN2: case BUILT_IN_ATANH: case BUILT_IN_CBRT: case BUILT_IN_SINH: case BUILT_IN_SIN: case BUILT_IN_ASINH: case BUILT_IN_ASIN: case BUILT_IN_COSH: case BUILT_IN_COS: case BUILT_IN_ACOSH: case BUILT_IN_ACOS: if (el_mode != DFmode || n != 2) return NULL_TREE; break; case BUILT_IN_EXPF: case BUILT_IN_LOGF: case BUILT_IN_LOG10F: case BUILT_IN_POWF: case BUILT_IN_TANHF: case BUILT_IN_TANF: case BUILT_IN_ATANF: case BUILT_IN_ATAN2F: case BUILT_IN_ATANHF: case BUILT_IN_CBRTF: case BUILT_IN_SINHF: case BUILT_IN_SINF: case BUILT_IN_ASINHF: case BUILT_IN_ASINF: case BUILT_IN_COSHF: case BUILT_IN_COSF: case BUILT_IN_ACOSHF: case BUILT_IN_ACOSF: if (el_mode != SFmode || n != 4) return NULL_TREE; break; default: return NULL_TREE; } bname = IDENTIFIER_POINTER (DECL_NAME (implicit_built_in_decls[fn])); if (fn == BUILT_IN_LOGF) strcpy (name, "vmlsLn4"); else if (fn == BUILT_IN_LOG) strcpy (name, "vmldLn2"); else if (n == 4) { sprintf (name, "vmls%s", bname+10); name[strlen (name)-1] = '4'; } else sprintf (name, "vmld%s2", bname+10); /* Convert to uppercase. */ name[4] &= ~0x20; arity = 0; for (args = DECL_ARGUMENTS (implicit_built_in_decls[fn]); args; args = TREE_CHAIN (args)) arity++; if (arity == 1) fntype = build_function_type_list (type_out, type_in, NULL); else fntype = build_function_type_list (type_out, type_in, type_in, NULL); /* Build a function declaration for the vectorized function. */ new_fndecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), fntype); TREE_PUBLIC (new_fndecl) = 1; DECL_EXTERNAL (new_fndecl) = 1; DECL_IS_NOVOPS (new_fndecl) = 1; TREE_READONLY (new_fndecl) = 1; return new_fndecl; } /* Handler for an ACML-style interface to a library with vectorized intrinsics. */ static tree ix86_veclibabi_acml (enum built_in_function fn, tree type_out, tree type_in) { char name[20] = "__vr.._"; tree fntype, new_fndecl, args; unsigned arity; const char *bname; enum machine_mode el_mode, in_mode; int n, in_n; /* The ACML is 64bits only and suitable for unsafe math only as it does not correctly support parts of IEEE with the required precision such as denormals. */ if (!TARGET_64BIT || !flag_unsafe_math_optimizations) return NULL_TREE; el_mode = TYPE_MODE (TREE_TYPE (type_out)); n = TYPE_VECTOR_SUBPARTS (type_out); in_mode = TYPE_MODE (TREE_TYPE (type_in)); in_n = TYPE_VECTOR_SUBPARTS (type_in); if (el_mode != in_mode || n != in_n) return NULL_TREE; switch (fn) { case BUILT_IN_SIN: case BUILT_IN_COS: case BUILT_IN_EXP: case BUILT_IN_LOG: case BUILT_IN_LOG2: case BUILT_IN_LOG10: name[4] = 'd'; name[5] = '2'; if (el_mode != DFmode || n != 2) return NULL_TREE; break; case BUILT_IN_SINF: case BUILT_IN_COSF: case BUILT_IN_EXPF: case BUILT_IN_POWF: case BUILT_IN_LOGF: case BUILT_IN_LOG2F: case BUILT_IN_LOG10F: name[4] = 's'; name[5] = '4'; if (el_mode != SFmode || n != 4) return NULL_TREE; break; default: return NULL_TREE; } bname = IDENTIFIER_POINTER (DECL_NAME (implicit_built_in_decls[fn])); sprintf (name + 7, "%s", bname+10); arity = 0; for (args = DECL_ARGUMENTS (implicit_built_in_decls[fn]); args; args = TREE_CHAIN (args)) arity++; if (arity == 1) fntype = build_function_type_list (type_out, type_in, NULL); else fntype = build_function_type_list (type_out, type_in, type_in, NULL); /* Build a function declaration for the vectorized function. */ new_fndecl = build_decl (BUILTINS_LOCATION, FUNCTION_DECL, get_identifier (name), fntype); TREE_PUBLIC (new_fndecl) = 1; DECL_EXTERNAL (new_fndecl) = 1; DECL_IS_NOVOPS (new_fndecl) = 1; TREE_READONLY (new_fndecl) = 1; return new_fndecl; } /* Returns a decl of a function that implements conversion of an integer vector into a floating-point vector, or vice-versa. TYPE is the type of the integer side of the conversion. Return NULL_TREE if it is not available. */ static tree ix86_vectorize_builtin_conversion (unsigned int code, tree type) { if (! (TARGET_SSE2 && TREE_CODE (type) == VECTOR_TYPE)) return NULL_TREE; switch (code) { case FLOAT_EXPR: switch (TYPE_MODE (type)) { case V4SImode: return TYPE_UNSIGNED (type) ? ix86_builtins[IX86_BUILTIN_CVTUDQ2PS] : ix86_builtins[IX86_BUILTIN_CVTDQ2PS]; default: return NULL_TREE; } case FIX_TRUNC_EXPR: switch (TYPE_MODE (type)) { case V4SImode: return TYPE_UNSIGNED (type) ? NULL_TREE : ix86_builtins[IX86_BUILTIN_CVTTPS2DQ]; default: return NULL_TREE; } default: return NULL_TREE; } } /* Returns a code for a target-specific builtin that implements reciprocal of the function, or NULL_TREE if not available. */ static tree ix86_builtin_reciprocal (unsigned int fn, bool md_fn, bool sqrt ATTRIBUTE_UNUSED) { if (! (TARGET_SSE_MATH && !optimize_insn_for_size_p () && flag_finite_math_only && !flag_trapping_math && flag_unsafe_math_optimizations)) return NULL_TREE; if (md_fn) /* Machine dependent builtins. */ switch (fn) { /* Vectorized version of sqrt to rsqrt conversion. */ case IX86_BUILTIN_SQRTPS_NR: return ix86_builtins[IX86_BUILTIN_RSQRTPS_NR]; default: return NULL_TREE; } else /* Normal builtins. */ switch (fn) { /* Sqrt to rsqrt conversion. */ case BUILT_IN_SQRTF: return ix86_builtins[IX86_BUILTIN_RSQRTF]; default: return NULL_TREE; } } /* Helper for avx_vpermilps256_operand et al. This is also used by the expansion functions to turn the parallel back into a mask. The return value is 0 for no match and the imm8+1 for a match. */ int avx_vpermilp_parallel (rtx par, enum machine_mode mode) { unsigned i, nelt = GET_MODE_NUNITS (mode); unsigned mask = 0; unsigned char ipar[8]; if (XVECLEN (par, 0) != (int) nelt) return 0; /* Validate that all of the elements are constants, and not totally out of range. Copy the data into an integral array to make the subsequent checks easier. */ for (i = 0; i < nelt; ++i) { rtx er = XVECEXP (par, 0, i); unsigned HOST_WIDE_INT ei; if (!CONST_INT_P (er)) return 0; ei = INTVAL (er); if (ei >= nelt) return 0; ipar[i] = ei; } switch (mode) { case V4DFmode: /* In the 256-bit DFmode case, we can only move elements within a 128-bit lane. */ for (i = 0; i < 2; ++i) { if (ipar[i] >= 2) return 0; mask |= ipar[i] << i; } for (i = 2; i < 4; ++i) { if (ipar[i] < 2) return 0; mask |= (ipar[i] - 2) << i; } break; case V8SFmode: /* In the 256-bit SFmode case, we have full freedom of movement within the low 128-bit lane, but the high 128-bit lane must mirror the exact same pattern. */ for (i = 0; i < 4; ++i) if (ipar[i] + 4 != ipar[i + 4]) return 0; nelt = 4; /* FALLTHRU */ case V2DFmode: case V4SFmode: /* In the 128-bit case, we've full freedom in the placement of the elements from the source operand. */ for (i = 0; i < nelt; ++i) mask |= ipar[i] << (i * (nelt / 2)); break; default: gcc_unreachable (); } /* Make sure success has a non-zero value by adding one. */ return mask + 1; } /* Helper for avx_vperm2f128_v4df_operand et al. This is also used by the expansion functions to turn the parallel back into a mask. The return value is 0 for no match and the imm8+1 for a match. */ int avx_vperm2f128_parallel (rtx par, enum machine_mode mode) { unsigned i, nelt = GET_MODE_NUNITS (mode), nelt2 = nelt / 2; unsigned mask = 0; unsigned char ipar[8]; if (XVECLEN (par, 0) != (int) nelt) return 0; /* Validate that all of the elements are constants, and not totally out of range. Copy the data into an integral array to make the subsequent checks easier. */ for (i = 0; i < nelt; ++i) { rtx er = XVECEXP (par, 0, i); unsigned HOST_WIDE_INT ei; if (!CONST_INT_P (er)) return 0; ei = INTVAL (er); if (ei >= 2 * nelt) return 0; ipar[i] = ei; } /* Validate that the halves of the permute are halves. */ for (i = 0; i < nelt2 - 1; ++i) if (ipar[i] + 1 != ipar[i + 1]) return 0; for (i = nelt2; i < nelt - 1; ++i) if (ipar[i] + 1 != ipar[i + 1]) return 0; /* Reconstruct the mask. */ for (i = 0; i < 2; ++i) { unsigned e = ipar[i * nelt2]; if (e % nelt2) return 0; e /= nelt2; mask |= e << (i * 4); } /* Make sure success has a non-zero value by adding one. */ return mask + 1; } /* Store OPERAND to the memory after reload is completed. This means that we can't easily use assign_stack_local. */ rtx ix86_force_to_memory (enum machine_mode mode, rtx operand) { rtx result; gcc_assert (reload_completed); if (!TARGET_64BIT_MS_ABI && TARGET_RED_ZONE) { result = gen_rtx_MEM (mode, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-RED_ZONE_SIZE))); emit_move_insn (result, operand); } else if ((TARGET_64BIT_MS_ABI || !TARGET_RED_ZONE) && TARGET_64BIT) { switch (mode) { case HImode: case SImode: operand = gen_lowpart (DImode, operand); /* FALLTHRU */ case DImode: emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (DImode, gen_rtx_PRE_DEC (DImode, stack_pointer_rtx)), operand)); break; default: gcc_unreachable (); } result = gen_rtx_MEM (mode, stack_pointer_rtx); } else { switch (mode) { case DImode: { rtx operands[2]; split_di (&operand, 1, operands, operands + 1); emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), operands[1])); emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (SImode, gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx)), operands[0])); } break; case HImode: /* Store HImodes as SImodes. */ operand = gen_lowpart (SImode, operand); /* FALLTHRU */ case SImode: emit_insn ( gen_rtx_SET (VOIDmode, gen_rtx_MEM (GET_MODE (operand), gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), operand)); break; default: gcc_unreachable (); } result = gen_rtx_MEM (mode, stack_pointer_rtx); } return result; } /* Free operand from the memory. */ void ix86_free_from_memory (enum machine_mode mode) { if (!TARGET_RED_ZONE || TARGET_64BIT_MS_ABI) { int size; if (mode == DImode || TARGET_64BIT) size = 8; else size = 4; /* Use LEA to deallocate stack space. In peephole2 it will be converted to pop or add instruction if registers are available. */ emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (size)))); } } /* Implement TARGET_IRA_COVER_CLASSES. If -mfpmath=sse, we prefer SSE_REGS to FLOAT_REGS if their costs for a pseudo are the same. */ static const enum reg_class * i386_ira_cover_classes (void) { static const enum reg_class sse_fpmath_classes[] = { GENERAL_REGS, SSE_REGS, MMX_REGS, FLOAT_REGS, LIM_REG_CLASSES }; static const enum reg_class no_sse_fpmath_classes[] = { GENERAL_REGS, FLOAT_REGS, MMX_REGS, SSE_REGS, LIM_REG_CLASSES }; return TARGET_SSE_MATH ? sse_fpmath_classes : no_sse_fpmath_classes; } /* Put float CONST_DOUBLE in the constant pool instead of fp regs. QImode must go into class Q_REGS. Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and movdf to do mem-to-mem moves through integer regs. */ enum reg_class ix86_preferred_reload_class (rtx x, enum reg_class regclass) { enum machine_mode mode = GET_MODE (x); /* We're only allowed to return a subclass of CLASS. Many of the following checks fail for NO_REGS, so eliminate that early. */ if (regclass == NO_REGS) return NO_REGS; /* All classes can load zeros. */ if (x == CONST0_RTX (mode)) return regclass; /* Force constants into memory if we are loading a (nonzero) constant into an MMX or SSE register. This is because there are no MMX/SSE instructions to load from a constant. */ if (CONSTANT_P (x) && (MAYBE_MMX_CLASS_P (regclass) || MAYBE_SSE_CLASS_P (regclass))) return NO_REGS; /* Prefer SSE regs only, if we can use them for math. */ if (TARGET_SSE_MATH && !TARGET_MIX_SSE_I387 && SSE_FLOAT_MODE_P (mode)) return SSE_CLASS_P (regclass) ? regclass : NO_REGS; /* Floating-point constants need more complex checks. */ if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode) { /* General regs can load everything. */ if (reg_class_subset_p (regclass, GENERAL_REGS)) return regclass; /* Floats can load 0 and 1 plus some others. Note that we eliminated zero above. We only want to wind up preferring 80387 registers if we plan on doing computation with them. */ if (TARGET_80387 && standard_80387_constant_p (x)) { /* Limit class to non-sse. */ if (regclass == FLOAT_SSE_REGS) return FLOAT_REGS; if (regclass == FP_TOP_SSE_REGS) return FP_TOP_REG; if (regclass == FP_SECOND_SSE_REGS) return FP_SECOND_REG; if (regclass == FLOAT_INT_REGS || regclass == FLOAT_REGS) return regclass; } return NO_REGS; } /* Generally when we see PLUS here, it's the function invariant (plus soft-fp const_int). Which can only be computed into general regs. */ if (GET_CODE (x) == PLUS) return reg_class_subset_p (regclass, GENERAL_REGS) ? regclass : NO_REGS; /* QImode constants are easy to load, but non-constant QImode data must go into Q_REGS. */ if (GET_MODE (x) == QImode && !CONSTANT_P (x)) { if (reg_class_subset_p (regclass, Q_REGS)) return regclass; if (reg_class_subset_p (Q_REGS, regclass)) return Q_REGS; return NO_REGS; } return regclass; } /* Discourage putting floating-point values in SSE registers unless SSE math is being used, and likewise for the 387 registers. */ enum reg_class ix86_preferred_output_reload_class (rtx x, enum reg_class regclass) { enum machine_mode mode = GET_MODE (x); /* Restrict the output reload class to the register bank that we are doing math on. If we would like not to return a subset of CLASS, reject this alternative: if reload cannot do this, it will still use its choice. */ mode = GET_MODE (x); if (TARGET_SSE_MATH && SSE_FLOAT_MODE_P (mode)) return MAYBE_SSE_CLASS_P (regclass) ? SSE_REGS : NO_REGS; if (X87_FLOAT_MODE_P (mode)) { if (regclass == FP_TOP_SSE_REGS) return FP_TOP_REG; else if (regclass == FP_SECOND_SSE_REGS) return FP_SECOND_REG; else return FLOAT_CLASS_P (regclass) ? regclass : NO_REGS; } return regclass; } static enum reg_class ix86_secondary_reload (bool in_p, rtx x, enum reg_class rclass, enum machine_mode mode, secondary_reload_info *sri ATTRIBUTE_UNUSED) { /* QImode spills from non-QI registers require intermediate register on 32bit targets. */ if (!in_p && mode == QImode && !TARGET_64BIT && (rclass == GENERAL_REGS || rclass == LEGACY_REGS || rclass == INDEX_REGS)) { int regno; if (REG_P (x)) regno = REGNO (x); else regno = -1; if (regno >= FIRST_PSEUDO_REGISTER || GET_CODE (x) == SUBREG) regno = true_regnum (x); /* Return Q_REGS if the operand is in memory. */ if (regno == -1) return Q_REGS; } return NO_REGS; } /* If we are copying between general and FP registers, we need a memory location. The same is true for SSE and MMX registers. To optimize register_move_cost performance, allow inline variant. The macro can't work reliably when one of the CLASSES is class containing registers from multiple units (SSE, MMX, integer). We avoid this by never combining those units in single alternative in the machine description. Ensure that this constraint holds to avoid unexpected surprises. When STRICT is false, we are being called from REGISTER_MOVE_COST, so do not enforce these sanity checks. */ static inline int inline_secondary_memory_needed (enum reg_class class1, enum reg_class class2, enum machine_mode mode, int strict) { if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1) || MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2) || MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1) || MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2) || MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1) || MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2)) { gcc_assert (!strict); return true; } if (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2)) return true; /* ??? This is a lie. We do have moves between mmx/general, and for mmx/sse2. But by saying we need secondary memory we discourage the register allocator from using the mmx registers unless needed. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)) return true; if (SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) { /* SSE1 doesn't have any direct moves from other classes. */ if (!TARGET_SSE2) return true; /* If the target says that inter-unit moves are more expensive than moving through memory, then don't generate them. */ if (!TARGET_INTER_UNIT_MOVES) return true; /* Between SSE and general, we have moves no larger than word size. */ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) return true; } return false; } int ix86_secondary_memory_needed (enum reg_class class1, enum reg_class class2, enum machine_mode mode, int strict) { return inline_secondary_memory_needed (class1, class2, mode, strict); } /* Return true if the registers in CLASS cannot represent the change from modes FROM to TO. */ bool ix86_cannot_change_mode_class (enum machine_mode from, enum machine_mode to, enum reg_class regclass) { if (from == to) return false; /* x87 registers can't do subreg at all, as all values are reformatted to extended precision. */ if (MAYBE_FLOAT_CLASS_P (regclass)) return true; if (MAYBE_SSE_CLASS_P (regclass) || MAYBE_MMX_CLASS_P (regclass)) { /* Vector registers do not support QI or HImode loads. If we don't disallow a change to these modes, reload will assume it's ok to drop the subreg from (subreg:SI (reg:HI 100) 0). This affects the vec_dupv4hi pattern. */ if (GET_MODE_SIZE (from) < 4) return true; /* Vector registers do not support subreg with nonzero offsets, which are otherwise valid for integer registers. Since we can't see whether we have a nonzero offset from here, prohibit all nonparadoxical subregs changing size. */ if (GET_MODE_SIZE (to) < GET_MODE_SIZE (from)) return true; } return false; } /* Return the cost of moving data of mode M between a register and memory. A value of 2 is the default; this cost is relative to those in `REGISTER_MOVE_COST'. This function is used extensively by register_move_cost that is used to build tables at startup. Make it inline in this case. When IN is 2, return maximum of in and out move cost. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. Model also increased moving costs of QImode registers in non Q_REGS classes. */ static inline int inline_memory_move_cost (enum machine_mode mode, enum reg_class regclass, int in) { int cost; if (FLOAT_CLASS_P (regclass)) { int index; switch (mode) { case SFmode: index = 0; break; case DFmode: index = 1; break; case XFmode: index = 2; break; default: return 100; } if (in == 2) return MAX (ix86_cost->fp_load [index], ix86_cost->fp_store [index]); return in ? ix86_cost->fp_load [index] : ix86_cost->fp_store [index]; } if (SSE_CLASS_P (regclass)) { int index; switch (GET_MODE_SIZE (mode)) { case 4: index = 0; break; case 8: index = 1; break; case 16: index = 2; break; default: return 100; } if (in == 2) return MAX (ix86_cost->sse_load [index], ix86_cost->sse_store [index]); return in ? ix86_cost->sse_load [index] : ix86_cost->sse_store [index]; } if (MMX_CLASS_P (regclass)) { int index; switch (GET_MODE_SIZE (mode)) { case 4: index = 0; break; case 8: index = 1; break; default: return 100; } if (in) return MAX (ix86_cost->mmx_load [index], ix86_cost->mmx_store [index]); return in ? ix86_cost->mmx_load [index] : ix86_cost->mmx_store [index]; } switch (GET_MODE_SIZE (mode)) { case 1: if (Q_CLASS_P (regclass) || TARGET_64BIT) { if (!in) return ix86_cost->int_store[0]; if (TARGET_PARTIAL_REG_DEPENDENCY && optimize_function_for_speed_p (cfun)) cost = ix86_cost->movzbl_load; else cost = ix86_cost->int_load[0]; if (in == 2) return MAX (cost, ix86_cost->int_store[0]); return cost; } else { if (in == 2) return MAX (ix86_cost->movzbl_load, ix86_cost->int_store[0] + 4); if (in) return ix86_cost->movzbl_load; else return ix86_cost->int_store[0] + 4; } break; case 2: if (in == 2) return MAX (ix86_cost->int_load[1], ix86_cost->int_store[1]); return in ? ix86_cost->int_load[1] : ix86_cost->int_store[1]; default: /* Compute number of 32bit moves needed. TFmode is moved as XFmode. */ if (mode == TFmode) mode = XFmode; if (in == 2) cost = MAX (ix86_cost->int_load[2] , ix86_cost->int_store[2]); else if (in) cost = ix86_cost->int_load[2]; else cost = ix86_cost->int_store[2]; return (cost * (((int) GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)); } } int ix86_memory_move_cost (enum machine_mode mode, enum reg_class regclass, int in) { return inline_memory_move_cost (mode, regclass, in); } /* Return the cost of moving data from a register in class CLASS1 to one in class CLASS2. It is not required that the cost always equal 2 when FROM is the same as TO; on some machines it is expensive to move between registers if they are not general registers. */ int ix86_register_move_cost (enum machine_mode mode, enum reg_class class1, enum reg_class class2) { /* In case we require secondary memory, compute cost of the store followed by load. In order to avoid bad register allocation choices, we need for this to be *at least* as high as the symmetric MEMORY_MOVE_COST. */ if (inline_secondary_memory_needed (class1, class2, mode, 0)) { int cost = 1; cost += inline_memory_move_cost (mode, class1, 2); cost += inline_memory_move_cost (mode, class2, 2); /* In case of copying from general_purpose_register we may emit multiple stores followed by single load causing memory size mismatch stall. Count this as arbitrarily high cost of 20. */ if (CLASS_MAX_NREGS (class1, mode) > CLASS_MAX_NREGS (class2, mode)) cost += 20; /* In the case of FP/MMX moves, the registers actually overlap, and we have to switch modes in order to treat them differently. */ if ((MMX_CLASS_P (class1) && MAYBE_FLOAT_CLASS_P (class2)) || (MMX_CLASS_P (class2) && MAYBE_FLOAT_CLASS_P (class1))) cost += 20; return cost; } /* Moves between SSE/MMX and integer unit are expensive. */ if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2) || SSE_CLASS_P (class1) != SSE_CLASS_P (class2)) /* ??? By keeping returned value relatively high, we limit the number of moves between integer and MMX/SSE registers for all targets. Additionally, high value prevents problem with x86_modes_tieable_p(), where integer modes in MMX/SSE registers are not tieable because of missing QImode and HImode moves to, from or between MMX/SSE registers. */ return MAX (8, ix86_cost->mmxsse_to_integer); if (MAYBE_FLOAT_CLASS_P (class1)) return ix86_cost->fp_move; if (MAYBE_SSE_CLASS_P (class1)) return ix86_cost->sse_move; if (MAYBE_MMX_CLASS_P (class1)) return ix86_cost->mmx_move; return 2; } /* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */ bool ix86_hard_regno_mode_ok (int regno, enum machine_mode mode) { /* Flags and only flags can only hold CCmode values. */ if (CC_REGNO_P (regno)) return GET_MODE_CLASS (mode) == MODE_CC; if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (mode) == MODE_RANDOM || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT) return 0; if (FP_REGNO_P (regno)) return VALID_FP_MODE_P (mode); if (SSE_REGNO_P (regno)) { /* We implement the move patterns for all vector modes into and out of SSE registers, even when no operation instructions are available. OImode move is available only when AVX is enabled. */ return ((TARGET_AVX && mode == OImode) || VALID_AVX256_REG_MODE (mode) || VALID_SSE_REG_MODE (mode) || VALID_SSE2_REG_MODE (mode) || VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (MMX_REGNO_P (regno)) { /* We implement the move patterns for 3DNOW modes even in MMX mode, so if the register is available at all, then we can move data of the given mode into or out of it. */ return (VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode)); } if (mode == QImode) { /* Take care for QImode values - they can be in non-QI regs, but then they do cause partial register stalls. */ if (regno <= BX_REG || TARGET_64BIT) return 1; if (!TARGET_PARTIAL_REG_STALL) return 1; return reload_in_progress || reload_completed; } /* We handle both integer and floats in the general purpose registers. */ else if (VALID_INT_MODE_P (mode)) return 1; else if (VALID_FP_MODE_P (mode)) return 1; else if (VALID_DFP_MODE_P (mode)) return 1; /* Lots of MMX code casts 8 byte vector modes to DImode. If we then go on to use that value in smaller contexts, this can easily force a pseudo to be allocated to GENERAL_REGS. Since this is no worse than supporting DImode, allow it. */ else if (VALID_MMX_REG_MODE_3DNOW (mode) || VALID_MMX_REG_MODE (mode)) return 1; return 0; } /* A subroutine of ix86_modes_tieable_p. Return true if MODE is a tieable integer mode. */ static bool ix86_tieable_integer_mode_p (enum machine_mode mode) { switch (mode) { case HImode: case SImode: return true; case QImode: return TARGET_64BIT || !TARGET_PARTIAL_REG_STALL; case DImode: return TARGET_64BIT; default: return false; } } /* Return true if MODE1 is accessible in a register that can hold MODE2 without copying. That is, all register classes that can hold MODE2 can also hold MODE1. */ bool ix86_modes_tieable_p (enum machine_mode mode1, enum machine_mode mode2) { if (mode1 == mode2) return true; if (ix86_tieable_integer_mode_p (mode1) && ix86_tieable_integer_mode_p (mode2)) return true; /* MODE2 being XFmode implies fp stack or general regs, which means we can tie any smaller floating point modes to it. Note that we do not tie this with TFmode. */ if (mode2 == XFmode) return mode1 == SFmode || mode1 == DFmode; /* MODE2 being DFmode implies fp stack, general or sse regs, which means that we can tie it with SFmode. */ if (mode2 == DFmode) return mode1 == SFmode; /* If MODE2 is only appropriate for an SSE register, then tie with any other mode acceptable to SSE registers. */ if (GET_MODE_SIZE (mode2) == 16 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode2)) return (GET_MODE_SIZE (mode1) == 16 && ix86_hard_regno_mode_ok (FIRST_SSE_REG, mode1)); /* If MODE2 is appropriate for an MMX register, then tie with any other mode acceptable to MMX registers. */ if (GET_MODE_SIZE (mode2) == 8 && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode2)) return (GET_MODE_SIZE (mode1) == 8 && ix86_hard_regno_mode_ok (FIRST_MMX_REG, mode1)); return false; } /* Compute a (partial) cost for rtx X. Return true if the complete cost has been computed, and false if subexpressions should be scanned. In either case, *TOTAL contains the cost result. */ static bool ix86_rtx_costs (rtx x, int code, int outer_code_i, int *total, bool speed) { enum rtx_code outer_code = (enum rtx_code) outer_code_i; enum machine_mode mode = GET_MODE (x); const struct processor_costs *cost = speed ? ix86_cost : &ix86_size_cost; switch (code) { case CONST_INT: case CONST: case LABEL_REF: case SYMBOL_REF: if (TARGET_64BIT && !x86_64_immediate_operand (x, VOIDmode)) *total = 3; else if (TARGET_64BIT && !x86_64_zext_immediate_operand (x, VOIDmode)) *total = 2; else if (flag_pic && SYMBOLIC_CONST (x) && (!TARGET_64BIT || (!GET_CODE (x) != LABEL_REF && (GET_CODE (x) != SYMBOL_REF || !SYMBOL_REF_LOCAL_P (x))))) *total = 1; else *total = 0; return true; case CONST_DOUBLE: if (mode == VOIDmode) *total = 0; else switch (standard_80387_constant_p (x)) { case 1: /* 0.0 */ *total = 1; break; default: /* Other constants */ *total = 2; break; case 0: case -1: /* Start with (MEM (SYMBOL_REF)), since that's where it'll probably end up. Add a penalty for size. */ *total = (COSTS_N_INSNS (1) + (flag_pic != 0 && !TARGET_64BIT) + (mode == SFmode ? 0 : mode == DFmode ? 1 : 2)); break; } return true; case ZERO_EXTEND: /* The zero extensions is often completely free on x86_64, so make it as cheap as possible. */ if (TARGET_64BIT && mode == DImode && GET_MODE (XEXP (x, 0)) == SImode) *total = 1; else if (TARGET_ZERO_EXTEND_WITH_AND) *total = cost->add; else *total = cost->movzx; return false; case SIGN_EXTEND: *total = cost->movsx; return false; case ASHIFT: if (CONST_INT_P (XEXP (x, 1)) && (GET_MODE (XEXP (x, 0)) != DImode || TARGET_64BIT)) { HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); if (value == 1) { *total = cost->add; return false; } if ((value == 2 || value == 3) && cost->lea <= cost->shift_const) { *total = cost->lea; return false; } } /* FALLTHRU */ case ROTATE: case ASHIFTRT: case LSHIFTRT: case ROTATERT: if (!TARGET_64BIT && GET_MODE (XEXP (x, 0)) == DImode) { if (CONST_INT_P (XEXP (x, 1))) { if (INTVAL (XEXP (x, 1)) > 32) *total = cost->shift_const + COSTS_N_INSNS (2); else *total = cost->shift_const * 2; } else { if (GET_CODE (XEXP (x, 1)) == AND) *total = cost->shift_var * 2; else *total = cost->shift_var * 6 + COSTS_N_INSNS (2); } } else { if (CONST_INT_P (XEXP (x, 1))) *total = cost->shift_const; else *total = cost->shift_var; } return false; case MULT: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { /* ??? SSE scalar cost should be used here. */ *total = cost->fmul; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fmul; return false; } else if (FLOAT_MODE_P (mode)) { /* ??? SSE vector cost should be used here. */ *total = cost->fmul; return false; } else { rtx op0 = XEXP (x, 0); rtx op1 = XEXP (x, 1); int nbits; if (CONST_INT_P (XEXP (x, 1))) { unsigned HOST_WIDE_INT value = INTVAL (XEXP (x, 1)); for (nbits = 0; value != 0; value &= value - 1) nbits++; } else /* This is arbitrary. */ nbits = 7; /* Compute costs correctly for widening multiplication. */ if ((GET_CODE (op0) == SIGN_EXTEND || GET_CODE (op0) == ZERO_EXTEND) && GET_MODE_SIZE (GET_MODE (XEXP (op0, 0))) * 2 == GET_MODE_SIZE (mode)) { int is_mulwiden = 0; enum machine_mode inner_mode = GET_MODE (op0); if (GET_CODE (op0) == GET_CODE (op1)) is_mulwiden = 1, op1 = XEXP (op1, 0); else if (CONST_INT_P (op1)) { if (GET_CODE (op0) == SIGN_EXTEND) is_mulwiden = trunc_int_for_mode (INTVAL (op1), inner_mode) == INTVAL (op1); else is_mulwiden = !(INTVAL (op1) & ~GET_MODE_MASK (inner_mode)); } if (is_mulwiden) op0 = XEXP (op0, 0), mode = GET_MODE (op0); } *total = (cost->mult_init[MODE_INDEX (mode)] + nbits * cost->mult_bit + rtx_cost (op0, outer_code, speed) + rtx_cost (op1, outer_code, speed)); return true; } case DIV: case UDIV: case MOD: case UMOD: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) /* ??? SSE cost should be used here. */ *total = cost->fdiv; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fdiv; else if (FLOAT_MODE_P (mode)) /* ??? SSE vector cost should be used here. */ *total = cost->fdiv; else *total = cost->divide[MODE_INDEX (mode)]; return false; case PLUS: if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_BITSIZE (mode) <= GET_MODE_BITSIZE (Pmode)) { if (GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1)) && CONSTANT_P (XEXP (x, 1))) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code, speed); *total += rtx_cost (XEXP (XEXP (XEXP (x, 0), 0), 0), outer_code, speed); *total += rtx_cost (XEXP (x, 1), outer_code, speed); return true; } } else if (GET_CODE (XEXP (x, 0)) == MULT && CONST_INT_P (XEXP (XEXP (x, 0), 1))) { HOST_WIDE_INT val = INTVAL (XEXP (XEXP (x, 0), 1)); if (val == 2 || val == 4 || val == 8) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, speed); *total += rtx_cost (XEXP (x, 1), outer_code, speed); return true; } } else if (GET_CODE (XEXP (x, 0)) == PLUS) { *total = cost->lea; *total += rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, speed); *total += rtx_cost (XEXP (XEXP (x, 0), 1), outer_code, speed); *total += rtx_cost (XEXP (x, 1), outer_code, speed); return true; } } /* FALLTHRU */ case MINUS: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { /* ??? SSE cost should be used here. */ *total = cost->fadd; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fadd; return false; } else if (FLOAT_MODE_P (mode)) { /* ??? SSE vector cost should be used here. */ *total = cost->fadd; return false; } /* FALLTHRU */ case AND: case IOR: case XOR: if (!TARGET_64BIT && mode == DImode) { *total = (cost->add * 2 + (rtx_cost (XEXP (x, 0), outer_code, speed) << (GET_MODE (XEXP (x, 0)) != DImode)) + (rtx_cost (XEXP (x, 1), outer_code, speed) << (GET_MODE (XEXP (x, 1)) != DImode))); return true; } /* FALLTHRU */ case NEG: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) { /* ??? SSE cost should be used here. */ *total = cost->fchs; return false; } else if (X87_FLOAT_MODE_P (mode)) { *total = cost->fchs; return false; } else if (FLOAT_MODE_P (mode)) { /* ??? SSE vector cost should be used here. */ *total = cost->fchs; return false; } /* FALLTHRU */ case NOT: if (!TARGET_64BIT && mode == DImode) *total = cost->add * 2; else *total = cost->add; return false; case COMPARE: if (GET_CODE (XEXP (x, 0)) == ZERO_EXTRACT && XEXP (XEXP (x, 0), 1) == const1_rtx && CONST_INT_P (XEXP (XEXP (x, 0), 2)) && XEXP (x, 1) == const0_rtx) { /* This kind of construct is implemented using test[bwl]. Treat it as if we had an AND. */ *total = (cost->add + rtx_cost (XEXP (XEXP (x, 0), 0), outer_code, speed) + rtx_cost (const1_rtx, outer_code, speed)); return true; } return false; case FLOAT_EXTEND: if (!(SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH)) *total = 0; return false; case ABS: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) /* ??? SSE cost should be used here. */ *total = cost->fabs; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fabs; else if (FLOAT_MODE_P (mode)) /* ??? SSE vector cost should be used here. */ *total = cost->fabs; return false; case SQRT: if (SSE_FLOAT_MODE_P (mode) && TARGET_SSE_MATH) /* ??? SSE cost should be used here. */ *total = cost->fsqrt; else if (X87_FLOAT_MODE_P (mode)) *total = cost->fsqrt; else if (FLOAT_MODE_P (mode)) /* ??? SSE vector cost should be used here. */ *total = cost->fsqrt; return false; case UNSPEC: if (XINT (x, 1) == UNSPEC_TP) *total = 0; return false; case VEC_SELECT: case VEC_CONCAT: case VEC_MERGE: case VEC_DUPLICATE: /* ??? Assume all of these vector manipulation patterns are recognizable. In which case they all pretty much have the same cost. */ *total = COSTS_N_INSNS (1); return true; default: return false; } } #if TARGET_MACHO static int current_machopic_label_num; /* Given a symbol name and its associated stub, write out the definition of the stub. */ void machopic_output_stub (FILE *file, const char *symb, const char *stub) { unsigned int length; char *binder_name, *symbol_name, lazy_ptr_name[32]; int label = ++current_machopic_label_num; /* For 64-bit we shouldn't get here. */ gcc_assert (!TARGET_64BIT); /* Lose our funky encoding stuff so it doesn't contaminate the stub. */ symb = (*targetm.strip_name_encoding) (symb); length = strlen (stub); binder_name = XALLOCAVEC (char, length + 32); GEN_BINDER_NAME_FOR_STUB (binder_name, stub, length); length = strlen (symb); symbol_name = XALLOCAVEC (char, length + 32); GEN_SYMBOL_NAME_FOR_SYMBOL (symbol_name, symb, length); sprintf (lazy_ptr_name, "L%d$lz", label); if (MACHOPIC_PURE) switch_to_section (darwin_sections[machopic_picsymbol_stub_section]); else switch_to_section (darwin_sections[machopic_symbol_stub_section]); fprintf (file, "%s:\n", stub); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); if (MACHOPIC_PURE) { fprintf (file, "\tcall\tLPC$%d\nLPC$%d:\tpopl\t%%eax\n", label, label); fprintf (file, "\tmovl\t%s-LPC$%d(%%eax),%%edx\n", lazy_ptr_name, label); fprintf (file, "\tjmp\t*%%edx\n"); } else fprintf (file, "\tjmp\t*%s\n", lazy_ptr_name); fprintf (file, "%s:\n", binder_name); if (MACHOPIC_PURE) { fprintf (file, "\tlea\t%s-LPC$%d(%%eax),%%eax\n", lazy_ptr_name, label); fputs ("\tpushl\t%eax\n", file); } else fprintf (file, "\tpushl\t$%s\n", lazy_ptr_name); fputs ("\tjmp\tdyld_stub_binding_helper\n", file); switch_to_section (darwin_sections[machopic_lazy_symbol_ptr_section]); fprintf (file, "%s:\n", lazy_ptr_name); fprintf (file, "\t.indirect_symbol %s\n", symbol_name); fprintf (file, ASM_LONG "%s\n", binder_name); } #endif /* TARGET_MACHO */ /* Order the registers for register allocator. */ void x86_order_regs_for_local_alloc (void) { int pos = 0; int i; /* First allocate the local general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && call_used_regs[i]) reg_alloc_order [pos++] = i; /* Global general purpose registers. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) if (GENERAL_REGNO_P (i) && !call_used_regs[i]) reg_alloc_order [pos++] = i; /* x87 registers come first in case we are doing FP math using them. */ if (!TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; /* SSE registers. */ for (i = FIRST_SSE_REG; i <= LAST_SSE_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_REX_SSE_REG; i <= LAST_REX_SSE_REG; i++) reg_alloc_order [pos++] = i; /* x87 registers. */ if (TARGET_SSE_MATH) for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) reg_alloc_order [pos++] = i; for (i = FIRST_MMX_REG; i <= LAST_MMX_REG; i++) reg_alloc_order [pos++] = i; /* Initialize the rest of array as we do not allocate some registers at all. */ while (pos < FIRST_PSEUDO_REGISTER) reg_alloc_order [pos++] = 0; } /* Handle a "ms_abi" or "sysv" attribute; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_abi_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_TYPE && TREE_CODE (*node) != METHOD_TYPE && TREE_CODE (*node) != FIELD_DECL && TREE_CODE (*node) != TYPE_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; return NULL_TREE; } if (!TARGET_64BIT) { warning (OPT_Wattributes, "%qE attribute only available for 64-bit", name); *no_add_attrs = true; return NULL_TREE; } /* Can combine regparm with all attributes but fastcall. */ if (is_attribute_p ("ms_abi", name)) { if (lookup_attribute ("sysv_abi", TYPE_ATTRIBUTES (*node))) { error ("ms_abi and sysv_abi attributes are not compatible"); } return NULL_TREE; } else if (is_attribute_p ("sysv_abi", name)) { if (lookup_attribute ("ms_abi", TYPE_ATTRIBUTES (*node))) { error ("ms_abi and sysv_abi attributes are not compatible"); } return NULL_TREE; } return NULL_TREE; } /* Handle a "ms_struct" or "gcc_struct" attribute; arguments as in struct attribute_spec.handler. */ static tree ix86_handle_struct_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { tree *type = NULL; if (DECL_P (*node)) { if (TREE_CODE (*node) == TYPE_DECL) type = &TREE_TYPE (*node); } else type = node; if (!(type && (TREE_CODE (*type) == RECORD_TYPE || TREE_CODE (*type) == UNION_TYPE))) { warning (OPT_Wattributes, "%qE attribute ignored", name); *no_add_attrs = true; } else if ((is_attribute_p ("ms_struct", name) && lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (*type))) || ((is_attribute_p ("gcc_struct", name) && lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (*type))))) { warning (OPT_Wattributes, "%qE incompatible attribute ignored", name); *no_add_attrs = true; } return NULL_TREE; } static tree ix86_handle_fndecl_attribute (tree *node, tree name, tree args ATTRIBUTE_UNUSED, int flags ATTRIBUTE_UNUSED, bool *no_add_attrs) { if (TREE_CODE (*node) != FUNCTION_DECL) { warning (OPT_Wattributes, "%qE attribute only applies to functions", name); *no_add_attrs = true; return NULL_TREE; } if (TARGET_64BIT) { warning (OPT_Wattributes, "%qE attribute only available for 32-bit", name); return NULL_TREE; } #ifndef HAVE_AS_IX86_SWAP sorry ("ms_hook_prologue attribute needs assembler swap suffix support"); #endif return NULL_TREE; } static bool ix86_ms_bitfield_layout_p (const_tree record_type) { return (TARGET_MS_BITFIELD_LAYOUT && !lookup_attribute ("gcc_struct", TYPE_ATTRIBUTES (record_type))) || lookup_attribute ("ms_struct", TYPE_ATTRIBUTES (record_type)); } /* Returns an expression indicating where the this parameter is located on entry to the FUNCTION. */ static rtx x86_this_parameter (tree function) { tree type = TREE_TYPE (function); bool aggr = aggregate_value_p (TREE_TYPE (type), type) != 0; int nregs; if (TARGET_64BIT) { const int *parm_regs; if (ix86_function_type_abi (type) == MS_ABI) parm_regs = x86_64_ms_abi_int_parameter_registers; else parm_regs = x86_64_int_parameter_registers; return gen_rtx_REG (DImode, parm_regs[aggr]); } nregs = ix86_function_regparm (type, function); if (nregs > 0 && !stdarg_p (type)) { int regno; if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (type))) regno = aggr ? DX_REG : CX_REG; else { regno = AX_REG; if (aggr) { regno = DX_REG; if (nregs == 1) return gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx, 4)); } } return gen_rtx_REG (SImode, regno); } return gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx, aggr ? 8 : 4)); } /* Determine whether x86_output_mi_thunk can succeed. */ static bool x86_can_output_mi_thunk (const_tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta ATTRIBUTE_UNUSED, HOST_WIDE_INT vcall_offset, const_tree function) { /* 64-bit can handle anything. */ if (TARGET_64BIT) return true; /* For 32-bit, everything's fine if we have one free register. */ if (ix86_function_regparm (TREE_TYPE (function), function) < 3) return true; /* Need a free register for vcall_offset. */ if (vcall_offset) return false; /* Need a free register for GOT references. */ if (flag_pic && !(*targetm.binds_local_p) (function)) return false; /* Otherwise ok. */ return true; } /* Output the assembler code for a thunk function. THUNK_DECL is the declaration for the thunk function itself, FUNCTION is the decl for the target function. DELTA is an immediate constant offset to be added to THIS. If VCALL_OFFSET is nonzero, the word at *(*this + vcall_offset) should be added to THIS. */ static void x86_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED, HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset, tree function) { rtx xops[3]; rtx this_param = x86_this_parameter (function); rtx this_reg, tmp; /* Make sure unwind info is emitted for the thunk if needed. */ final_start_function (emit_barrier (), file, 1); /* If VCALL_OFFSET, we'll need THIS in a register. Might as well pull it in now and let DELTA benefit. */ if (REG_P (this_param)) this_reg = this_param; else if (vcall_offset) { /* Put the this parameter into %eax. */ xops[0] = this_param; xops[1] = this_reg = gen_rtx_REG (Pmode, AX_REG); output_asm_insn ("mov%z1\t{%0, %1|%1, %0}", xops); } else this_reg = NULL_RTX; /* Adjust the this parameter by a fixed constant. */ if (delta) { /* Make things pretty and `subl $4,%eax' rather than `addl $-4,%eax'. Exceptions: -128 encodes smaller than 128, so swap sign and op. */ bool sub = delta < 0 || delta == 128; xops[0] = GEN_INT (sub ? -delta : delta); xops[1] = this_reg ? this_reg : this_param; if (TARGET_64BIT) { if (!x86_64_general_operand (xops[0], DImode)) { tmp = gen_rtx_REG (DImode, R10_REG); xops[1] = tmp; output_asm_insn ("mov{q}\t{%1, %0|%0, %1}", xops); xops[0] = tmp; xops[1] = this_param; } if (sub) output_asm_insn ("sub{q}\t{%0, %1|%1, %0}", xops); else output_asm_insn ("add{q}\t{%0, %1|%1, %0}", xops); } else if (sub) output_asm_insn ("sub{l}\t{%0, %1|%1, %0}", xops); else output_asm_insn ("add{l}\t{%0, %1|%1, %0}", xops); } /* Adjust the this parameter by a value stored in the vtable. */ if (vcall_offset) { if (TARGET_64BIT) tmp = gen_rtx_REG (DImode, R10_REG); else { int tmp_regno = CX_REG; if (lookup_attribute ("fastcall", TYPE_ATTRIBUTES (TREE_TYPE (function)))) tmp_regno = AX_REG; tmp = gen_rtx_REG (SImode, tmp_regno); } xops[0] = gen_rtx_MEM (Pmode, this_reg); xops[1] = tmp; output_asm_insn ("mov%z1\t{%0, %1|%1, %0}", xops); /* Adjust the this parameter. */ xops[0] = gen_rtx_MEM (Pmode, plus_constant (tmp, vcall_offset)); if (TARGET_64BIT && !memory_operand (xops[0], Pmode)) { rtx tmp2 = gen_rtx_REG (DImode, R11_REG); xops[0] = GEN_INT (vcall_offset); xops[1] = tmp2; output_asm_insn ("mov{q}\t{%0, %1|%1, %0}", xops); xops[0] = gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, tmp, tmp2)); } xops[1] = this_reg; output_asm_insn ("add%z1\t{%0, %1|%1, %0}", xops); } /* If necessary, drop THIS back to its stack slot. */ if (this_reg && this_reg != this_param) { xops[0] = this_reg; xops[1] = this_param; output_asm_insn ("mov%z1\t{%0, %1|%1, %0}", xops); } xops[0] = XEXP (DECL_RTL (function), 0); if (TARGET_64BIT) { if (!flag_pic || (*targetm.binds_local_p) (function)) output_asm_insn ("jmp\t%P0", xops); /* All thunks should be in the same object as their target, and thus binds_local_p should be true. */ else if (TARGET_64BIT && cfun->machine->call_abi == MS_ABI) gcc_unreachable (); else { tmp = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, xops[0]), UNSPEC_GOTPCREL); tmp = gen_rtx_CONST (Pmode, tmp); tmp = gen_rtx_MEM (QImode, tmp); xops[0] = tmp; output_asm_insn ("jmp\t%A0", xops); } } else { if (!flag_pic || (*targetm.binds_local_p) (function)) output_asm_insn ("jmp\t%P0", xops); else #if TARGET_MACHO if (TARGET_MACHO) { rtx sym_ref = XEXP (DECL_RTL (function), 0); tmp = (gen_rtx_SYMBOL_REF (Pmode, machopic_indirection_name (sym_ref, /*stub_p=*/true))); tmp = gen_rtx_MEM (QImode, tmp); xops[0] = tmp; output_asm_insn ("jmp\t%0", xops); } else #endif /* TARGET_MACHO */ { tmp = gen_rtx_REG (SImode, CX_REG); output_set_got (tmp, NULL_RTX); xops[1] = tmp; output_asm_insn ("mov{l}\t{%0@GOT(%1), %1|%1, %0@GOT[%1]}", xops); output_asm_insn ("jmp\t{*}%1", xops); } } final_end_function (); } static void x86_file_start (void) { default_file_start (); #if TARGET_MACHO darwin_file_start (); #endif if (X86_FILE_START_VERSION_DIRECTIVE) fputs ("\t.version\t\"01.01\"\n", asm_out_file); if (X86_FILE_START_FLTUSED) fputs ("\t.global\t__fltused\n", asm_out_file); if (ix86_asm_dialect == ASM_INTEL) fputs ("\t.intel_syntax noprefix\n", asm_out_file); } int x86_field_alignment (tree field, int computed) { enum machine_mode mode; tree type = TREE_TYPE (field); if (TARGET_64BIT || TARGET_ALIGN_DOUBLE) return computed; mode = TYPE_MODE (strip_array_types (type)); if (mode == DFmode || mode == DCmode || GET_MODE_CLASS (mode) == MODE_INT || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) return MIN (32, computed); return computed; } /* Output assembler code to FILE to increment profiler label # LABELNO for profiling a function entry. */ void x86_function_profiler (FILE *file, int labelno ATTRIBUTE_UNUSED) { if (TARGET_64BIT) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleaq\t%sP%d(%%rip),%%r11\n", LPREFIX, labelno); #endif if (DEFAULT_ABI == SYSV_ABI && flag_pic) fputs ("\tcall\t*" MCOUNT_NAME "@GOTPCREL(%rip)\n", file); else fputs ("\tcall\t" MCOUNT_NAME "\n", file); } else if (flag_pic) { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tleal\t%sP%d@GOTOFF(%%ebx),%%" PROFILE_COUNT_REGISTER "\n", LPREFIX, labelno); #endif fputs ("\tcall\t*" MCOUNT_NAME "@GOT(%ebx)\n", file); } else { #ifndef NO_PROFILE_COUNTERS fprintf (file, "\tmovl\t$%sP%d,%%" PROFILE_COUNT_REGISTER "\n", LPREFIX, labelno); #endif fputs ("\tcall\t" MCOUNT_NAME "\n", file); } } #ifdef ASM_OUTPUT_MAX_SKIP_PAD /* We don't have exact information about the insn sizes, but we may assume quite safely that we are informed about all 1 byte insns and memory address sizes. This is enough to eliminate unnecessary padding in 99% of cases. */ static int min_insn_size (rtx insn) { int l = 0, len; if (!INSN_P (insn) || !active_insn_p (insn)) return 0; /* Discard alignments we've emit and jump instructions. */ if (GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == UNSPECV_ALIGN) return 0; if (JUMP_TABLE_DATA_P (insn)) return 0; /* Important case - calls are always 5 bytes. It is common to have many calls in the row. */ if (CALL_P (insn) && symbolic_reference_mentioned_p (PATTERN (insn)) && !SIBLING_CALL_P (insn)) return 5; len = get_attr_length (insn); if (len <= 1) return 1; /* For normal instructions we rely on get_attr_length being exact, with a few exceptions. */ if (!JUMP_P (insn)) { enum attr_type type = get_attr_type (insn); switch (type) { case TYPE_MULTI: if (GET_CODE (PATTERN (insn)) == ASM_INPUT || asm_noperands (PATTERN (insn)) >= 0) return 0; break; case TYPE_OTHER: case TYPE_FCMP: break; default: /* Otherwise trust get_attr_length. */ return len; } l = get_attr_length_address (insn); if (l < 4 && symbolic_reference_mentioned_p (PATTERN (insn))) l = 4; } if (l) return 1+l; else return 2; } /* AMD K8 core mispredicts jumps when there are more than 3 jumps in 16 byte window. */ static void ix86_avoid_jump_mispredicts (void) { rtx insn, start = get_insns (); int nbytes = 0, njumps = 0; int isjump = 0; /* Look for all minimal intervals of instructions containing 4 jumps. The intervals are bounded by START and INSN. NBYTES is the total size of instructions in the interval including INSN and not including START. When the NBYTES is smaller than 16 bytes, it is possible that the end of START and INSN ends up in the same 16byte page. The smallest offset in the page INSN can start is the case where START ends on the offset 0. Offset of INSN is then NBYTES - sizeof (INSN). We add p2align to 16byte window with maxskip 15 - NBYTES + sizeof (INSN). */ for (insn = start; insn; insn = NEXT_INSN (insn)) { int min_size; if (LABEL_P (insn)) { int align = label_to_alignment (insn); int max_skip = label_to_max_skip (insn); if (max_skip > 15) max_skip = 15; /* If align > 3, only up to 16 - max_skip - 1 bytes can be already in the current 16 byte page, because otherwise ASM_OUTPUT_MAX_SKIP_ALIGN could skip max_skip or fewer bytes to reach 16 byte boundary. */ if (align <= 0 || (align <= 3 && max_skip != (1 << align) - 1)) max_skip = 0; if (dump_file) fprintf (dump_file, "Label %i with max_skip %i\n", INSN_UID (insn), max_skip); if (max_skip) { while (nbytes + max_skip >= 16) { start = NEXT_INSN (start); if ((JUMP_P (start) && GET_CODE (PATTERN (start)) != ADDR_VEC && GET_CODE (PATTERN (start)) != ADDR_DIFF_VEC) || CALL_P (start)) njumps--, isjump = 1; else isjump = 0; nbytes -= min_insn_size (start); } } continue; } min_size = min_insn_size (insn); nbytes += min_size; if (dump_file) fprintf (dump_file, "Insn %i estimated to %i bytes\n", INSN_UID (insn), min_size); if ((JUMP_P (insn) && GET_CODE (PATTERN (insn)) != ADDR_VEC && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) || CALL_P (insn)) njumps++; else continue; while (njumps > 3) { start = NEXT_INSN (start); if ((JUMP_P (start) && GET_CODE (PATTERN (start)) != ADDR_VEC && GET_CODE (PATTERN (start)) != ADDR_DIFF_VEC) || CALL_P (start)) njumps--, isjump = 1; else isjump = 0; nbytes -= min_insn_size (start); } gcc_assert (njumps >= 0); if (dump_file) fprintf (dump_file, "Interval %i to %i has %i bytes\n", INSN_UID (start), INSN_UID (insn), nbytes); if (njumps == 3 && isjump && nbytes < 16) { int padsize = 15 - nbytes + min_insn_size (insn); if (dump_file) fprintf (dump_file, "Padding insn %i by %i bytes!\n", INSN_UID (insn), padsize); emit_insn_before (gen_pad (GEN_INT (padsize)), insn); } } } #endif /* AMD Athlon works faster when RET is not destination of conditional jump or directly preceded by other jump instruction. We avoid the penalty by inserting NOP just before the RET instructions in such cases. */ static void ix86_pad_returns (void) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) { basic_block bb = e->src; rtx ret = BB_END (bb); rtx prev; bool replace = false; if (!JUMP_P (ret) || GET_CODE (PATTERN (ret)) != RETURN || optimize_bb_for_size_p (bb)) continue; for (prev = PREV_INSN (ret); prev; prev = PREV_INSN (prev)) if (active_insn_p (prev) || LABEL_P (prev)) break; if (prev && LABEL_P (prev)) { edge e; edge_iterator ei; FOR_EACH_EDGE (e, ei, bb->preds) if (EDGE_FREQUENCY (e) && e->src->index >= 0 && !(e->flags & EDGE_FALLTHRU)) replace = true; } if (!replace) { prev = prev_active_insn (ret); if (prev && ((JUMP_P (prev) && any_condjump_p (prev)) || CALL_P (prev))) replace = true; /* Empty functions get branch mispredict even when the jump destination is not visible to us. */ if (!prev && cfun->function_frequency > FUNCTION_FREQUENCY_UNLIKELY_EXECUTED) replace = true; } if (replace) { emit_jump_insn_before (gen_return_internal_long (), ret); delete_insn (ret); } } } /* Implement machine specific optimizations. We implement padding of returns for K8 CPUs and pass to avoid 4 jumps in the single 16 byte window. */ static void ix86_reorg (void) { if (optimize && optimize_function_for_speed_p (cfun)) { if (TARGET_PAD_RETURNS) ix86_pad_returns (); #ifdef ASM_OUTPUT_MAX_SKIP_PAD if (TARGET_FOUR_JUMP_LIMIT) ix86_avoid_jump_mispredicts (); #endif } } /* Return nonzero when QImode register that must be represented via REX prefix is used. */ bool x86_extended_QIreg_mentioned_p (rtx insn) { int i; extract_insn_cached (insn); for (i = 0; i < recog_data.n_operands; i++) if (REG_P (recog_data.operand[i]) && REGNO (recog_data.operand[i]) > BX_REG) return true; return false; } /* Return nonzero when P points to register encoded via REX prefix. Called via for_each_rtx. */ static int extended_reg_mentioned_1 (rtx *p, void *data ATTRIBUTE_UNUSED) { unsigned int regno; if (!REG_P (*p)) return 0; regno = REGNO (*p); return REX_INT_REGNO_P (regno) || REX_SSE_REGNO_P (regno); } /* Return true when INSN mentions register that must be encoded using REX prefix. */ bool x86_extended_reg_mentioned_p (rtx insn) { return for_each_rtx (INSN_P (insn) ? &PATTERN (insn) : &insn, extended_reg_mentioned_1, NULL); } /* Generate an unsigned DImode/SImode to FP conversion. This is the same code optabs would emit if we didn't have TFmode patterns. */ void x86_emit_floatuns (rtx operands[2]) { rtx neglab, donelab, i0, i1, f0, in, out; enum machine_mode mode, inmode; inmode = GET_MODE (operands[1]); gcc_assert (inmode == SImode || inmode == DImode); out = operands[0]; in = force_reg (inmode, operands[1]); mode = GET_MODE (out); neglab = gen_label_rtx (); donelab = gen_label_rtx (); f0 = gen_reg_rtx (mode); emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, inmode, 0, neglab); expand_float (out, in, 0); emit_jump_insn (gen_jump (donelab)); emit_barrier (); emit_label (neglab); i0 = expand_simple_binop (inmode, LSHIFTRT, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i1 = expand_simple_binop (inmode, AND, in, const1_rtx, NULL, 1, OPTAB_DIRECT); i0 = expand_simple_binop (inmode, IOR, i0, i1, i0, 1, OPTAB_DIRECT); expand_float (f0, i0, 0); emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0))); emit_label (donelab); } /* AVX does not support 32-byte integer vector operations, thus the longest vector we are faced with is V16QImode. */ #define MAX_VECT_LEN 16 struct expand_vec_perm_d { rtx target, op0, op1; unsigned char perm[MAX_VECT_LEN]; enum machine_mode vmode; unsigned char nelt; bool testing_p; }; static bool expand_vec_perm_1 (struct expand_vec_perm_d *d); static bool expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d); /* Get a vector mode of the same size as the original but with elements twice as wide. This is only guaranteed to apply to integral vectors. */ static inline enum machine_mode get_mode_wider_vector (enum machine_mode o) { /* ??? Rely on the ordering that genmodes.c gives to vectors. */ enum machine_mode n = GET_MODE_WIDER_MODE (o); gcc_assert (GET_MODE_NUNITS (o) == GET_MODE_NUNITS (n) * 2); gcc_assert (GET_MODE_SIZE (o) == GET_MODE_SIZE (n)); return n; } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector with all elements equal to VAR. Return true if successful. */ static bool ix86_expand_vector_init_duplicate (bool mmx_ok, enum machine_mode mode, rtx target, rtx val) { bool ok; switch (mode) { case V2SImode: case V2SFmode: if (!mmx_ok) return false; /* FALLTHRU */ case V4DFmode: case V4DImode: case V8SFmode: case V8SImode: case V2DFmode: case V2DImode: case V4SFmode: case V4SImode: { rtx insn, dup; /* First attempt to recognize VAL as-is. */ dup = gen_rtx_VEC_DUPLICATE (mode, val); insn = emit_insn (gen_rtx_SET (VOIDmode, target, dup)); if (recog_memoized (insn) < 0) { rtx seq; /* If that fails, force VAL into a register. */ start_sequence (); XEXP (dup, 0) = force_reg (GET_MODE_INNER (mode), val); seq = get_insns (); end_sequence (); if (seq) emit_insn_before (seq, insn); ok = recog_memoized (insn) >= 0; gcc_assert (ok); } } return true; case V4HImode: if (!mmx_ok) return false; if (TARGET_SSE || TARGET_3DNOW_A) { rtx x; val = gen_lowpart (SImode, val); x = gen_rtx_TRUNCATE (HImode, val); x = gen_rtx_VEC_DUPLICATE (mode, x); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; } goto widen; case V8QImode: if (!mmx_ok) return false; goto widen; case V8HImode: if (TARGET_SSE2) { struct expand_vec_perm_d dperm; rtx tmp1, tmp2; permute: memset (&dperm, 0, sizeof (dperm)); dperm.target = target; dperm.vmode = mode; dperm.nelt = GET_MODE_NUNITS (mode); dperm.op0 = dperm.op1 = gen_reg_rtx (mode); /* Extend to SImode using a paradoxical SUBREG. */ tmp1 = gen_reg_rtx (SImode); emit_move_insn (tmp1, gen_lowpart (SImode, val)); /* Insert the SImode value as low element of a V4SImode vector. */ tmp2 = gen_lowpart (V4SImode, dperm.op0); emit_insn (gen_vec_setv4si_0 (tmp2, CONST0_RTX (V4SImode), tmp1)); ok = (expand_vec_perm_1 (&dperm) || expand_vec_perm_broadcast_1 (&dperm)); gcc_assert (ok); return ok; } goto widen; case V16QImode: if (TARGET_SSE2) goto permute; goto widen; widen: /* Replicate the value once into the next wider mode and recurse. */ { enum machine_mode smode, wsmode, wvmode; rtx x; smode = GET_MODE_INNER (mode); wvmode = get_mode_wider_vector (mode); wsmode = GET_MODE_INNER (wvmode); val = convert_modes (wsmode, smode, val, true); x = expand_simple_binop (wsmode, ASHIFT, val, GEN_INT (GET_MODE_BITSIZE (smode)), NULL_RTX, 1, OPTAB_LIB_WIDEN); val = expand_simple_binop (wsmode, IOR, val, x, x, 1, OPTAB_LIB_WIDEN); x = gen_lowpart (wvmode, target); ok = ix86_expand_vector_init_duplicate (mmx_ok, wvmode, x, val); gcc_assert (ok); return ok; } case V16HImode: case V32QImode: { enum machine_mode hvmode = (mode == V16HImode ? V8HImode : V16QImode); rtx x = gen_reg_rtx (hvmode); ok = ix86_expand_vector_init_duplicate (false, hvmode, x, val); gcc_assert (ok); x = gen_rtx_VEC_CONCAT (mode, x, x); emit_insn (gen_rtx_SET (VOIDmode, target, x)); } return true; default: return false; } } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector whose ONE_VAR element is VAR, and other elements are zero. Return true if successful. */ static bool ix86_expand_vector_init_one_nonzero (bool mmx_ok, enum machine_mode mode, rtx target, rtx var, int one_var) { enum machine_mode vsimode; rtx new_target; rtx x, tmp; bool use_vector_set = false; switch (mode) { case V2DImode: /* For SSE4.1, we normally use vector set. But if the second element is zero and inter-unit moves are OK, we use movq instead. */ use_vector_set = (TARGET_64BIT && TARGET_SSE4_1 && !(TARGET_INTER_UNIT_MOVES && one_var == 0)); break; case V16QImode: case V4SImode: case V4SFmode: use_vector_set = TARGET_SSE4_1; break; case V8HImode: use_vector_set = TARGET_SSE2; break; case V4HImode: use_vector_set = TARGET_SSE || TARGET_3DNOW_A; break; case V32QImode: case V16HImode: case V8SImode: case V8SFmode: case V4DFmode: use_vector_set = TARGET_AVX; break; case V4DImode: /* Use ix86_expand_vector_set in 64bit mode only. */ use_vector_set = TARGET_AVX && TARGET_64BIT; break; default: break; } if (use_vector_set) { emit_insn (gen_rtx_SET (VOIDmode, target, CONST0_RTX (mode))); var = force_reg (GET_MODE_INNER (mode), var); ix86_expand_vector_set (mmx_ok, target, var, one_var); return true; } switch (mode) { case V2SFmode: case V2SImode: if (!mmx_ok) return false; /* FALLTHRU */ case V2DFmode: case V2DImode: if (one_var != 0) return false; var = force_reg (GET_MODE_INNER (mode), var); x = gen_rtx_VEC_CONCAT (mode, var, CONST0_RTX (GET_MODE_INNER (mode))); emit_insn (gen_rtx_SET (VOIDmode, target, x)); return true; case V4SFmode: case V4SImode: if (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER) new_target = gen_reg_rtx (mode); else new_target = target; var = force_reg (GET_MODE_INNER (mode), var); x = gen_rtx_VEC_DUPLICATE (mode, var); x = gen_rtx_VEC_MERGE (mode, x, CONST0_RTX (mode), const1_rtx); emit_insn (gen_rtx_SET (VOIDmode, new_target, x)); if (one_var != 0) { /* We need to shuffle the value to the correct position, so create a new pseudo to store the intermediate result. */ /* With SSE2, we can use the integer shuffle insns. */ if (mode != V4SFmode && TARGET_SSE2) { emit_insn (gen_sse2_pshufd_1 (new_target, new_target, const1_rtx, GEN_INT (one_var == 1 ? 0 : 1), GEN_INT (one_var == 2 ? 0 : 1), GEN_INT (one_var == 3 ? 0 : 1))); if (target != new_target) emit_move_insn (target, new_target); return true; } /* Otherwise convert the intermediate result to V4SFmode and use the SSE1 shuffle instructions. */ if (mode != V4SFmode) { tmp = gen_reg_rtx (V4SFmode); emit_move_insn (tmp, gen_lowpart (V4SFmode, new_target)); } else tmp = new_target; emit_insn (gen_sse_shufps_v4sf (tmp, tmp, tmp, const1_rtx, GEN_INT (one_var == 1 ? 0 : 1), GEN_INT (one_var == 2 ? 0+4 : 1+4), GEN_INT (one_var == 3 ? 0+4 : 1+4))); if (mode != V4SFmode) emit_move_insn (target, gen_lowpart (V4SImode, tmp)); else if (tmp != target) emit_move_insn (target, tmp); } else if (target != new_target) emit_move_insn (target, new_target); return true; case V8HImode: case V16QImode: vsimode = V4SImode; goto widen; case V4HImode: case V8QImode: if (!mmx_ok) return false; vsimode = V2SImode; goto widen; widen: if (one_var != 0) return false; /* Zero extend the variable element to SImode and recurse. */ var = convert_modes (SImode, GET_MODE_INNER (mode), var, true); x = gen_reg_rtx (vsimode); if (!ix86_expand_vector_init_one_nonzero (mmx_ok, vsimode, x, var, one_var)) gcc_unreachable (); emit_move_insn (target, gen_lowpart (mode, x)); return true; default: return false; } } /* A subroutine of ix86_expand_vector_init. Store into TARGET a vector consisting of the values in VALS. It is known that all elements except ONE_VAR are constants. Return true if successful. */ static bool ix86_expand_vector_init_one_var (bool mmx_ok, enum machine_mode mode, rtx target, rtx vals, int one_var) { rtx var = XVECEXP (vals, 0, one_var); enum machine_mode wmode; rtx const_vec, x; const_vec = copy_rtx (vals); XVECEXP (const_vec, 0, one_var) = CONST0_RTX (GET_MODE_INNER (mode)); const_vec = gen_rtx_CONST_VECTOR (mode, XVEC (const_vec, 0)); switch (mode) { case V2DFmode: case V2DImode: case V2SFmode: case V2SImode: /* For the two element vectors, it's just as easy to use the general case. */ return false; case V4DImode: /* Use ix86_expand_vector_set in 64bit mode only. */ if (!TARGET_64BIT) return false; case V4DFmode: case V8SFmode: case V8SImode: case V16HImode: case V32QImode: case V4SFmode: case V4SImode: case V8HImode: case V4HImode: break; case V16QImode: if (TARGET_SSE4_1) break; wmode = V8HImode; goto widen; case V8QImode: wmode = V4HImode; goto widen; widen: /* There's no way to set one QImode entry easily. Combine the variable value with its adjacent constant value, and promote to an HImode set. */ x = XVECEXP (vals, 0, one_var ^ 1); if (one_var & 1) { var = convert_modes (HImode, QImode, var, true); var = expand_simple_binop (HImode, ASHIFT, var, GEN_INT (8), NULL_RTX, 1, OPTAB_LIB_WIDEN); x = GEN_INT (INTVAL (x) & 0xff); } else { var = convert_modes (HImode, QImode, var, true); x = gen_int_mode (INTVAL (x) << 8, HImode); } if (x != const0_rtx) var = expand_simple_binop (HImode, IOR, var, x, var, 1, OPTAB_LIB_WIDEN); x = gen_reg_rtx (wmode); emit_move_insn (x, gen_lowpart (wmode, const_vec)); ix86_expand_vector_set (mmx_ok, x, var, one_var >> 1); emit_move_insn (target, gen_lowpart (mode, x)); return true; default: return false; } emit_move_insn (target, const_vec); ix86_expand_vector_set (mmx_ok, target, var, one_var); return true; } /* A subroutine of ix86_expand_vector_init_general. Use vector concatenate to handle the most general case: all values variable, and none identical. */ static void ix86_expand_vector_init_concat (enum machine_mode mode, rtx target, rtx *ops, int n) { enum machine_mode cmode, hmode = VOIDmode; rtx first[8], second[4]; rtvec v; int i, j; switch (n) { case 2: switch (mode) { case V8SImode: cmode = V4SImode; break; case V8SFmode: cmode = V4SFmode; break; case V4DImode: cmode = V2DImode; break; case V4DFmode: cmode = V2DFmode; break; case V4SImode: cmode = V2SImode; break; case V4SFmode: cmode = V2SFmode; break; case V2DImode: cmode = DImode; break; case V2SImode: cmode = SImode; break; case V2DFmode: cmode = DFmode; break; case V2SFmode: cmode = SFmode; break; default: gcc_unreachable (); } if (!register_operand (ops[1], cmode)) ops[1] = force_reg (cmode, ops[1]); if (!register_operand (ops[0], cmode)) ops[0] = force_reg (cmode, ops[0]); emit_insn (gen_rtx_SET (VOIDmode, target, gen_rtx_VEC_CONCAT (mode, ops[0], ops[1]))); break; case 4: switch (mode) { case V4DImode: cmode = V2DImode; break; case V4DFmode: cmode = V2DFmode; break; case V4SImode: cmode = V2SImode; break; case V4SFmode: cmode = V2SFmode; break; default: gcc_unreachable (); } goto half; case 8: switch (mode) { case V8SImode: cmode = V2SImode; hmode = V4SImode; break; case V8SFmode: cmode = V2SFmode; hmode = V4SFmode; break; default: gcc_unreachable (); } goto half; half: /* FIXME: We process inputs backward to help RA. PR 36222. */ i = n - 1; j = (n >> 1) - 1; for (; i > 0; i -= 2, j--) { first[j] = gen_reg_rtx (cmode); v = gen_rtvec (2, ops[i - 1], ops[i]); ix86_expand_vector_init (false, first[j], gen_rtx_PARALLEL (cmode, v)); } n >>= 1; if (n > 2) { gcc_assert (hmode != VOIDmode); for (i = j = 0; i < n; i += 2, j++) { second[j] = gen_reg_rtx (hmode); ix86_expand_vector_init_concat (hmode, second [j], &first [i], 2); } n >>= 1; ix86_expand_vector_init_concat (mode, target, second, n); } else ix86_expand_vector_init_concat (mode, target, first, n); break; default: gcc_unreachable (); } } /* A subroutine of ix86_expand_vector_init_general. Use vector interleave to handle the most general case: all values variable, and none identical. */ static void ix86_expand_vector_init_interleave (enum machine_mode mode, rtx target, rtx *ops, int n) { enum machine_mode first_imode, second_imode, third_imode, inner_mode; int i, j; rtx op0, op1; rtx (*gen_load_even) (rtx, rtx, rtx); rtx (*gen_interleave_first_low) (rtx, rtx, rtx); rtx (*gen_interleave_second_low) (rtx, rtx, rtx); switch (mode) { case V8HImode: gen_load_even = gen_vec_setv8hi; gen_interleave_first_low = gen_vec_interleave_lowv4si; gen_interleave_second_low = gen_vec_interleave_lowv2di; inner_mode = HImode; first_imode = V4SImode; second_imode = V2DImode; third_imode = VOIDmode; break; case V16QImode: gen_load_even = gen_vec_setv16qi; gen_interleave_first_low = gen_vec_interleave_lowv8hi; gen_interleave_second_low = gen_vec_interleave_lowv4si; inner_mode = QImode; first_imode = V8HImode; second_imode = V4SImode; third_imode = V2DImode; break; default: gcc_unreachable (); } for (i = 0; i < n; i++) { /* Extend the odd elment to SImode using a paradoxical SUBREG. */ op0 = gen_reg_rtx (SImode); emit_move_insn (op0, gen_lowpart (SImode, ops [i + i])); /* Insert the SImode value as low element of V4SImode vector. */ op1 = gen_reg_rtx (V4SImode); op0 = gen_rtx_VEC_MERGE (V4SImode, gen_rtx_VEC_DUPLICATE (V4SImode, op0), CONST0_RTX (V4SImode), const1_rtx); emit_insn (gen_rtx_SET (VOIDmode, op1, op0)); /* Cast the V4SImode vector back to a vector in orignal mode. */ op0 = gen_reg_rtx (mode); emit_move_insn (op0, gen_lowpart (mode, op1)); /* Load even elements into the second positon. */ emit_insn ((*gen_load_even) (op0, force_reg (inner_mode, ops [i + i + 1]), const1_rtx)); /* Cast vector to FIRST_IMODE vector. */ ops[i] = gen_reg_rtx (first_imode); emit_move_insn (ops[i], gen_lowpart (first_imode, op0)); } /* Interleave low FIRST_IMODE vectors. */ for (i = j = 0; i < n; i += 2, j++) { op0 = gen_reg_rtx (first_imode); emit_insn ((*gen_interleave_first_low) (op0, ops[i], ops[i + 1])); /* Cast FIRST_IMODE vector to SECOND_IMODE vector. */ ops[j] = gen_reg_rtx (second_imode); emit_move_insn (ops[j], gen_lowpart (second_imode, op0)); } /* Interleave low SECOND_IMODE vectors. */ switch (second_imode) { case V4SImode: for (i = j = 0; i < n / 2; i += 2, j++) { op0 = gen_reg_rtx (second_imode); emit_insn ((*gen_interleave_second_low) (op0, ops[i], ops[i + 1])); /* Cast the SECOND_IMODE vector to the THIRD_IMODE vector. */ ops[j] = gen_reg_rtx (third_imode); emit_move_insn (ops[j], gen_lowpart (third_imode, op0)); } second_imode = V2DImode; gen_interleave_second_low = gen_vec_interleave_lowv2di; /* FALLTHRU */ case V2DImode: op0 = gen_reg_rtx (second_imode); emit_insn ((*gen_interleave_second_low) (op0, ops[0], ops[1])); /* Cast the SECOND_IMODE vector back to a vector on original mode. */ emit_insn (gen_rtx_SET (VOIDmode, target, gen_lowpart (mode, op0))); break; default: gcc_unreachable (); } } /* A subroutine of ix86_expand_vector_init. Handle the most general case: all values variable, and none identical. */ static void ix86_expand_vector_init_general (bool mmx_ok, enum machine_mode mode, rtx target, rtx vals) { rtx ops[32], op0, op1; enum machine_mode half_mode = VOIDmode; int n, i; switch (mode) { case V2SFmode: case V2SImode: if (!mmx_ok && !TARGET_SSE) break; /* FALLTHRU */ case V8SFmode: case V8SImode: case V4DFmode: case V4DImode: case V4SFmode: case V4SImode: case V2DFmode: case V2DImode: n = GET_MODE_NUNITS (mode); for (i = 0; i < n; i++) ops[i] = XVECEXP (vals, 0, i); ix86_expand_vector_init_concat (mode, target, ops, n); return; case V32QImode: half_mode = V16QImode; goto half; case V16HImode: half_mode = V8HImode; goto half; half: n = GET_MODE_NUNITS (mode); for (i = 0; i < n; i++) ops[i] = XVECEXP (vals, 0, i); op0 = gen_reg_rtx (half_mode); op1 = gen_reg_rtx (half_mode); ix86_expand_vector_init_interleave (half_mode, op0, ops, n >> 2); ix86_expand_vector_init_interleave (half_mode, op1, &ops [n >> 1], n >> 2); emit_insn (gen_rtx_SET (VOIDmode, target, gen_rtx_VEC_CONCAT (mode, op0, op1))); return; case V16QImode: if (!TARGET_SSE4_1) break; /* FALLTHRU */ case V8HImode: if (!TARGET_SSE2) break; /* Don't use ix86_expand_vector_init_interleave if we can't move from GPR to SSE register directly. */ if (!TARGET_INTER_UNIT_MOVES) break; n = GET_MODE_NUNITS (mode); for (i = 0; i < n; i++) ops[i] = XVECEXP (vals, 0, i); ix86_expand_vector_init_interleave (mode, target, ops, n >> 1); return; case V4HImode: case V8QImode: break; default: gcc_unreachable (); } { int i, j, n_elts, n_words, n_elt_per_word; enum machine_mode inner_mode; rtx words[4], shift; inner_mode = GET_MODE_INNER (mode); n_elts = GET_MODE_NUNITS (mode); n_words = GET_MODE_SIZE (mode) / UNITS_PER_WORD; n_elt_per_word = n_elts / n_words; shift = GEN_INT (GET_MODE_BITSIZE (inner_mode)); for (i = 0; i < n_words; ++i) { rtx word = NULL_RTX; for (j = 0; j < n_elt_per_word; ++j) { rtx elt = XVECEXP (vals, 0, (i+1)*n_elt_per_word - j - 1); elt = convert_modes (word_mode, inner_mode, elt, true); if (j == 0) word = elt; else { word = expand_simple_binop (word_mode, ASHIFT, word, shift, word, 1, OPTAB_LIB_WIDEN); word = expand_simple_binop (word_mode, IOR, word, elt, word, 1, OPTAB_LIB_WIDEN); } } words[i] = word; } if (n_words == 1) emit_move_insn (target, gen_lowpart (mode, words[0])); else if (n_words == 2) { rtx tmp = gen_reg_rtx (mode); emit_clobber (tmp); emit_move_insn (gen_lowpart (word_mode, tmp), words[0]); emit_move_insn (gen_highpart (word_mode, tmp), words[1]); emit_move_insn (target, tmp); } else if (n_words == 4) { rtx tmp = gen_reg_rtx (V4SImode); gcc_assert (word_mode == SImode); vals = gen_rtx_PARALLEL (V4SImode, gen_rtvec_v (4, words)); ix86_expand_vector_init_general (false, V4SImode, tmp, vals); emit_move_insn (target, gen_lowpart (mode, tmp)); } else gcc_unreachable (); } } /* Initialize vector TARGET via VALS. Suppress the use of MMX instructions unless MMX_OK is true. */ void ix86_expand_vector_init (bool mmx_ok, rtx target, rtx vals) { enum machine_mode mode = GET_MODE (target); enum machine_mode inner_mode = GET_MODE_INNER (mode); int n_elts = GET_MODE_NUNITS (mode); int n_var = 0, one_var = -1; bool all_same = true, all_const_zero = true; int i; rtx x; for (i = 0; i < n_elts; ++i) { x = XVECEXP (vals, 0, i); if (!(CONST_INT_P (x) || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_FIXED)) n_var++, one_var = i; else if (x != CONST0_RTX (inner_mode)) all_const_zero = false; if (i > 0 && !rtx_equal_p (x, XVECEXP (vals, 0, 0))) all_same = false; } /* Constants are best loaded from the constant pool. */ if (n_var == 0) { emit_move_insn (target, gen_rtx_CONST_VECTOR (mode, XVEC (vals, 0))); return; } /* If all values are identical, broadcast the value. */ if (all_same && ix86_expand_vector_init_duplicate (mmx_ok, mode, target, XVECEXP (vals, 0, 0))) return; /* Values where only one field is non-constant are best loaded from the pool and overwritten via move later. */ if (n_var == 1) { if (all_const_zero && ix86_expand_vector_init_one_nonzero (mmx_ok, mode, target, XVECEXP (vals, 0, one_var), one_var)) return; if (ix86_expand_vector_init_one_var (mmx_ok, mode, target, vals, one_var)) return; } ix86_expand_vector_init_general (mmx_ok, mode, target, vals); } void ix86_expand_vector_set (bool mmx_ok, rtx target, rtx val, int elt) { enum machine_mode mode = GET_MODE (target); enum machine_mode inner_mode = GET_MODE_INNER (mode); enum machine_mode half_mode; bool use_vec_merge = false; rtx tmp; static rtx (*gen_extract[6][2]) (rtx, rtx) = { { gen_vec_extract_lo_v32qi, gen_vec_extract_hi_v32qi }, { gen_vec_extract_lo_v16hi, gen_vec_extract_hi_v16hi }, { gen_vec_extract_lo_v8si, gen_vec_extract_hi_v8si }, { gen_vec_extract_lo_v4di, gen_vec_extract_hi_v4di }, { gen_vec_extract_lo_v8sf, gen_vec_extract_hi_v8sf }, { gen_vec_extract_lo_v4df, gen_vec_extract_hi_v4df } }; static rtx (*gen_insert[6][2]) (rtx, rtx, rtx) = { { gen_vec_set_lo_v32qi, gen_vec_set_hi_v32qi }, { gen_vec_set_lo_v16hi, gen_vec_set_hi_v16hi }, { gen_vec_set_lo_v8si, gen_vec_set_hi_v8si }, { gen_vec_set_lo_v4di, gen_vec_set_hi_v4di }, { gen_vec_set_lo_v8sf, gen_vec_set_hi_v8sf }, { gen_vec_set_lo_v4df, gen_vec_set_hi_v4df } }; int i, j, n; switch (mode) { case V2SFmode: case V2SImode: if (mmx_ok) { tmp = gen_reg_rtx (GET_MODE_INNER (mode)); ix86_expand_vector_extract (true, tmp, target, 1 - elt); if (elt == 0) tmp = gen_rtx_VEC_CONCAT (mode, tmp, val); else tmp = gen_rtx_VEC_CONCAT (mode, val, tmp); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); return; } break; case V2DImode: use_vec_merge = TARGET_SSE4_1; if (use_vec_merge) break; case V2DFmode: { rtx op0, op1; /* For the two element vectors, we implement a VEC_CONCAT with the extraction of the other element. */ tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (1 - elt))); tmp = gen_rtx_VEC_SELECT (inner_mode, target, tmp); if (elt == 0) op0 = val, op1 = tmp; else op0 = tmp, op1 = val; tmp = gen_rtx_VEC_CONCAT (mode, op0, op1); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } return; case V4SFmode: use_vec_merge = TARGET_SSE4_1; if (use_vec_merge) break; switch (elt) { case 0: use_vec_merge = true; break; case 1: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* target = A A B B */ emit_insn (gen_vec_interleave_lowv4sf (target, target, target)); /* target = X A B B */ ix86_expand_vector_set (false, target, val, 0); /* target = A X C D */ emit_insn (gen_sse_shufps_v4sf (target, target, tmp, const1_rtx, const0_rtx, GEN_INT (2+4), GEN_INT (3+4))); return; case 2: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* tmp = X B C D */ ix86_expand_vector_set (false, tmp, val, 0); /* target = A B X D */ emit_insn (gen_sse_shufps_v4sf (target, target, tmp, const0_rtx, const1_rtx, GEN_INT (0+4), GEN_INT (3+4))); return; case 3: /* tmp = target = A B C D */ tmp = copy_to_reg (target); /* tmp = X B C D */ ix86_expand_vector_set (false, tmp, val, 0); /* target = A B X D */ emit_insn (gen_sse_shufps_v4sf (target, target, tmp, const0_rtx, const1_rtx, GEN_INT (2+4), GEN_INT (0+4))); return; default: gcc_unreachable (); } break; case V4SImode: use_vec_merge = TARGET_SSE4_1; if (use_vec_merge) break; /* Element 0 handled by vec_merge below. */ if (elt == 0) { use_vec_merge = true; break; } if (TARGET_SSE2) { /* With SSE2, use integer shuffles to swap element 0 and ELT, store into element 0, then shuffle them back. */ rtx order[4]; order[0] = GEN_INT (elt); order[1] = const1_rtx; order[2] = const2_rtx; order[3] = GEN_INT (3); order[elt] = const0_rtx; emit_insn (gen_sse2_pshufd_1 (target, target, order[0], order[1], order[2], order[3])); ix86_expand_vector_set (false, target, val, 0); emit_insn (gen_sse2_pshufd_1 (target, target, order[0], order[1], order[2], order[3])); } else { /* For SSE1, we have to reuse the V4SF code. */ ix86_expand_vector_set (false, gen_lowpart (V4SFmode, target), gen_lowpart (SFmode, val), elt); } return; case V8HImode: use_vec_merge = TARGET_SSE2; break; case V4HImode: use_vec_merge = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); break; case V16QImode: use_vec_merge = TARGET_SSE4_1; break; case V8QImode: break; case V32QImode: half_mode = V16QImode; j = 0; n = 16; goto half; case V16HImode: half_mode = V8HImode; j = 1; n = 8; goto half; case V8SImode: half_mode = V4SImode; j = 2; n = 4; goto half; case V4DImode: half_mode = V2DImode; j = 3; n = 2; goto half; case V8SFmode: half_mode = V4SFmode; j = 4; n = 4; goto half; case V4DFmode: half_mode = V2DFmode; j = 5; n = 2; goto half; half: /* Compute offset. */ i = elt / n; elt %= n; gcc_assert (i <= 1); /* Extract the half. */ tmp = gen_reg_rtx (half_mode); emit_insn ((*gen_extract[j][i]) (tmp, target)); /* Put val in tmp at elt. */ ix86_expand_vector_set (false, tmp, val, elt); /* Put it back. */ emit_insn ((*gen_insert[j][i]) (target, target, tmp)); return; default: break; } if (use_vec_merge) { tmp = gen_rtx_VEC_DUPLICATE (mode, val); tmp = gen_rtx_VEC_MERGE (mode, tmp, target, GEN_INT (1 << elt)); emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } else { rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), false); emit_move_insn (mem, target); tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); emit_move_insn (tmp, val); emit_move_insn (target, mem); } } void ix86_expand_vector_extract (bool mmx_ok, rtx target, rtx vec, int elt) { enum machine_mode mode = GET_MODE (vec); enum machine_mode inner_mode = GET_MODE_INNER (mode); bool use_vec_extr = false; rtx tmp; switch (mode) { case V2SImode: case V2SFmode: if (!mmx_ok) break; /* FALLTHRU */ case V2DFmode: case V2DImode: use_vec_extr = true; break; case V4SFmode: use_vec_extr = TARGET_SSE4_1; if (use_vec_extr) break; switch (elt) { case 0: tmp = vec; break; case 1: case 3: tmp = gen_reg_rtx (mode); emit_insn (gen_sse_shufps_v4sf (tmp, vec, vec, GEN_INT (elt), GEN_INT (elt), GEN_INT (elt+4), GEN_INT (elt+4))); break; case 2: tmp = gen_reg_rtx (mode); emit_insn (gen_vec_interleave_highv4sf (tmp, vec, vec)); break; default: gcc_unreachable (); } vec = tmp; use_vec_extr = true; elt = 0; break; case V4SImode: use_vec_extr = TARGET_SSE4_1; if (use_vec_extr) break; if (TARGET_SSE2) { switch (elt) { case 0: tmp = vec; break; case 1: case 3: tmp = gen_reg_rtx (mode); emit_insn (gen_sse2_pshufd_1 (tmp, vec, GEN_INT (elt), GEN_INT (elt), GEN_INT (elt), GEN_INT (elt))); break; case 2: tmp = gen_reg_rtx (mode); emit_insn (gen_vec_interleave_highv4si (tmp, vec, vec)); break; default: gcc_unreachable (); } vec = tmp; use_vec_extr = true; elt = 0; } else { /* For SSE1, we have to reuse the V4SF code. */ ix86_expand_vector_extract (false, gen_lowpart (SFmode, target), gen_lowpart (V4SFmode, vec), elt); return; } break; case V8HImode: use_vec_extr = TARGET_SSE2; break; case V4HImode: use_vec_extr = mmx_ok && (TARGET_SSE || TARGET_3DNOW_A); break; case V16QImode: use_vec_extr = TARGET_SSE4_1; break; case V8QImode: /* ??? Could extract the appropriate HImode element and shift. */ default: break; } if (use_vec_extr) { tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, GEN_INT (elt))); tmp = gen_rtx_VEC_SELECT (inner_mode, vec, tmp); /* Let the rtl optimizers know about the zero extension performed. */ if (inner_mode == QImode || inner_mode == HImode) { tmp = gen_rtx_ZERO_EXTEND (SImode, tmp); target = gen_lowpart (SImode, target); } emit_insn (gen_rtx_SET (VOIDmode, target, tmp)); } else { rtx mem = assign_stack_temp (mode, GET_MODE_SIZE (mode), false); emit_move_insn (mem, vec); tmp = adjust_address (mem, inner_mode, elt*GET_MODE_SIZE (inner_mode)); emit_move_insn (target, tmp); } } /* Expand a vector reduction on V4SFmode for SSE1. FN is the binary pattern to reduce; DEST is the destination; IN is the input vector. */ void ix86_expand_reduc_v4sf (rtx (*fn) (rtx, rtx, rtx), rtx dest, rtx in) { rtx tmp1, tmp2, tmp3; tmp1 = gen_reg_rtx (V4SFmode); tmp2 = gen_reg_rtx (V4SFmode); tmp3 = gen_reg_rtx (V4SFmode); emit_insn (gen_sse_movhlps (tmp1, in, in)); emit_insn (fn (tmp2, tmp1, in)); emit_insn (gen_sse_shufps_v4sf (tmp3, tmp2, tmp2, const1_rtx, const1_rtx, GEN_INT (1+4), GEN_INT (1+4))); emit_insn (fn (dest, tmp2, tmp3)); } /* Target hook for scalar_mode_supported_p. */ static bool ix86_scalar_mode_supported_p (enum machine_mode mode) { if (DECIMAL_FLOAT_MODE_P (mode)) return default_decimal_float_supported_p (); else if (mode == TFmode) return true; else return default_scalar_mode_supported_p (mode); } /* Implements target hook vector_mode_supported_p. */ static bool ix86_vector_mode_supported_p (enum machine_mode mode) { if (TARGET_SSE && VALID_SSE_REG_MODE (mode)) return true; if (TARGET_SSE2 && VALID_SSE2_REG_MODE (mode)) return true; if (TARGET_AVX && VALID_AVX256_REG_MODE (mode)) return true; if (TARGET_MMX && VALID_MMX_REG_MODE (mode)) return true; if (TARGET_3DNOW && VALID_MMX_REG_MODE_3DNOW (mode)) return true; return false; } /* Target hook for c_mode_for_suffix. */ static enum machine_mode ix86_c_mode_for_suffix (char suffix) { if (suffix == 'q') return TFmode; if (suffix == 'w') return XFmode; return VOIDmode; } /* Worker function for TARGET_MD_ASM_CLOBBERS. We do this in the new i386 backend to maintain source compatibility with the old cc0-based compiler. */ static tree ix86_md_asm_clobbers (tree outputs ATTRIBUTE_UNUSED, tree inputs ATTRIBUTE_UNUSED, tree clobbers) { clobbers = tree_cons (NULL_TREE, build_string (5, "flags"), clobbers); clobbers = tree_cons (NULL_TREE, build_string (4, "fpsr"), clobbers); return clobbers; } /* Implements target vector targetm.asm.encode_section_info. This is not used by netware. */ static void ATTRIBUTE_UNUSED ix86_encode_section_info (tree decl, rtx rtl, int first) { default_encode_section_info (decl, rtl, first); if (TREE_CODE (decl) == VAR_DECL && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)) && ix86_in_large_data_p (decl)) SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= SYMBOL_FLAG_FAR_ADDR; } /* Worker function for REVERSE_CONDITION. */ enum rtx_code ix86_reverse_condition (enum rtx_code code, enum machine_mode mode) { return (mode != CCFPmode && mode != CCFPUmode ? reverse_condition (code) : reverse_condition_maybe_unordered (code)); } /* Output code to perform an x87 FP register move, from OPERANDS[1] to OPERANDS[0]. */ const char * output_387_reg_move (rtx insn, rtx *operands) { if (REG_P (operands[0])) { if (REG_P (operands[1]) && find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) { if (REGNO (operands[0]) == FIRST_STACK_REG) return output_387_ffreep (operands, 0); return "fstp\t%y0"; } if (STACK_TOP_P (operands[0])) return "fld%Z1\t%y1"; return "fst\t%y0"; } else if (MEM_P (operands[0])) { gcc_assert (REG_P (operands[1])); if (find_regno_note (insn, REG_DEAD, REGNO (operands[1]))) return "fstp%Z0\t%y0"; else { /* There is no non-popping store to memory for XFmode. So if we need one, follow the store with a load. */ if (GET_MODE (operands[0]) == XFmode) return "fstp%Z0\t%y0\n\tfld%Z0\t%y0"; else return "fst%Z0\t%y0"; } } else gcc_unreachable(); } /* Output code to perform a conditional jump to LABEL, if C2 flag in FP status register is set. */ void ix86_emit_fp_unordered_jump (rtx label) { rtx reg = gen_reg_rtx (HImode); rtx temp; emit_insn (gen_x86_fnstsw_1 (reg)); if (TARGET_SAHF && (TARGET_USE_SAHF || optimize_insn_for_size_p ())) { emit_insn (gen_x86_sahf_1 (reg)); temp = gen_rtx_REG (CCmode, FLAGS_REG); temp = gen_rtx_UNORDERED (VOIDmode, temp, const0_rtx); } else { emit_insn (gen_testqi_ext_ccno_0 (reg, GEN_INT (0x04))); temp = gen_rtx_REG (CCNOmode, FLAGS_REG); temp = gen_rtx_NE (VOIDmode, temp, const0_rtx); } temp = gen_rtx_IF_THEN_ELSE (VOIDmode, temp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); temp = gen_rtx_SET (VOIDmode, pc_rtx, temp); emit_jump_insn (temp); predict_jump (REG_BR_PROB_BASE * 10 / 100); } /* Output code to perform a log1p XFmode calculation. */ void ix86_emit_i387_log1p (rtx op0, rtx op1) { rtx label1 = gen_label_rtx (); rtx label2 = gen_label_rtx (); rtx tmp = gen_reg_rtx (XFmode); rtx tmp2 = gen_reg_rtx (XFmode); rtx test; emit_insn (gen_absxf2 (tmp, op1)); test = gen_rtx_GE (VOIDmode, tmp, CONST_DOUBLE_FROM_REAL_VALUE ( REAL_VALUE_ATOF ("0.29289321881345247561810596348408353", XFmode), XFmode)); emit_jump_insn (gen_cbranchxf4 (test, XEXP (test, 0), XEXP (test, 1), label1)); emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ emit_insn (gen_fyl2xp1xf3_i387 (op0, op1, tmp2)); emit_jump (label2); emit_label (label1); emit_move_insn (tmp, CONST1_RTX (XFmode)); emit_insn (gen_addxf3 (tmp, op1, tmp)); emit_move_insn (tmp2, standard_80387_constant_rtx (4)); /* fldln2 */ emit_insn (gen_fyl2xxf3_i387 (op0, tmp, tmp2)); emit_label (label2); } /* Output code to perform a Newton-Rhapson approximation of a single precision floating point divide [http://en.wikipedia.org/wiki/N-th_root_algorithm]. */ void ix86_emit_swdivsf (rtx res, rtx a, rtx b, enum machine_mode mode) { rtx x0, x1, e0, e1, two; x0 = gen_reg_rtx (mode); e0 = gen_reg_rtx (mode); e1 = gen_reg_rtx (mode); x1 = gen_reg_rtx (mode); two = CONST_DOUBLE_FROM_REAL_VALUE (dconst2, SFmode); if (VECTOR_MODE_P (mode)) two = ix86_build_const_vector (SFmode, true, two); two = force_reg (mode, two); /* a / b = a * rcp(b) * (2.0 - b * rcp(b)) */ /* x0 = rcp(b) estimate */ emit_insn (gen_rtx_SET (VOIDmode, x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, b), UNSPEC_RCP))); /* e0 = x0 * a */ emit_insn (gen_rtx_SET (VOIDmode, e0, gen_rtx_MULT (mode, x0, a))); /* e1 = x0 * b */ emit_insn (gen_rtx_SET (VOIDmode, e1, gen_rtx_MULT (mode, x0, b))); /* x1 = 2. - e1 */ emit_insn (gen_rtx_SET (VOIDmode, x1, gen_rtx_MINUS (mode, two, e1))); /* res = e0 * x1 */ emit_insn (gen_rtx_SET (VOIDmode, res, gen_rtx_MULT (mode, e0, x1))); } /* Output code to perform a Newton-Rhapson approximation of a single precision floating point [reciprocal] square root. */ void ix86_emit_swsqrtsf (rtx res, rtx a, enum machine_mode mode, bool recip) { rtx x0, e0, e1, e2, e3, mthree, mhalf; REAL_VALUE_TYPE r; x0 = gen_reg_rtx (mode); e0 = gen_reg_rtx (mode); e1 = gen_reg_rtx (mode); e2 = gen_reg_rtx (mode); e3 = gen_reg_rtx (mode); real_from_integer (&r, VOIDmode, -3, -1, 0); mthree = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode); real_arithmetic (&r, NEGATE_EXPR, &dconsthalf, NULL); mhalf = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode); if (VECTOR_MODE_P (mode)) { mthree = ix86_build_const_vector (SFmode, true, mthree); mhalf = ix86_build_const_vector (SFmode, true, mhalf); } /* sqrt(a) = -0.5 * a * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0) rsqrt(a) = -0.5 * rsqrtss(a) * (a * rsqrtss(a) * rsqrtss(a) - 3.0) */ /* x0 = rsqrt(a) estimate */ emit_insn (gen_rtx_SET (VOIDmode, x0, gen_rtx_UNSPEC (mode, gen_rtvec (1, a), UNSPEC_RSQRT))); /* If (a == 0.0) Filter out infinity to prevent NaN for sqrt(0.0). */ if (!recip) { rtx zero, mask; zero = gen_reg_rtx (mode); mask = gen_reg_rtx (mode); zero = force_reg (mode, CONST0_RTX(mode)); emit_insn (gen_rtx_SET (VOIDmode, mask, gen_rtx_NE (mode, zero, a))); emit_insn (gen_rtx_SET (VOIDmode, x0, gen_rtx_AND (mode, x0, mask))); } /* e0 = x0 * a */ emit_insn (gen_rtx_SET (VOIDmode, e0, gen_rtx_MULT (mode, x0, a))); /* e1 = e0 * x0 */ emit_insn (gen_rtx_SET (VOIDmode, e1, gen_rtx_MULT (mode, e0, x0))); /* e2 = e1 - 3. */ mthree = force_reg (mode, mthree); emit_insn (gen_rtx_SET (VOIDmode, e2, gen_rtx_PLUS (mode, e1, mthree))); mhalf = force_reg (mode, mhalf); if (recip) /* e3 = -.5 * x0 */ emit_insn (gen_rtx_SET (VOIDmode, e3, gen_rtx_MULT (mode, x0, mhalf))); else /* e3 = -.5 * e0 */ emit_insn (gen_rtx_SET (VOIDmode, e3, gen_rtx_MULT (mode, e0, mhalf))); /* ret = e2 * e3 */ emit_insn (gen_rtx_SET (VOIDmode, res, gen_rtx_MULT (mode, e2, e3))); } /* Solaris implementation of TARGET_ASM_NAMED_SECTION. */ static void ATTRIBUTE_UNUSED i386_solaris_elf_named_section (const char *name, unsigned int flags, tree decl) { /* With Binutils 2.15, the "@unwind" marker must be specified on every occurrence of the ".eh_frame" section, not just the first one. */ if (TARGET_64BIT && strcmp (name, ".eh_frame") == 0) { fprintf (asm_out_file, "\t.section\t%s,\"%s\",@unwind\n", name, flags & SECTION_WRITE ? "aw" : "a"); return; } default_elf_asm_named_section (name, flags, decl); } /* Return the mangling of TYPE if it is an extended fundamental type. */ static const char * ix86_mangle_type (const_tree type) { type = TYPE_MAIN_VARIANT (type); if (TREE_CODE (type) != VOID_TYPE && TREE_CODE (type) != BOOLEAN_TYPE && TREE_CODE (type) != INTEGER_TYPE && TREE_CODE (type) != REAL_TYPE) return NULL; switch (TYPE_MODE (type)) { case TFmode: /* __float128 is "g". */ return "g"; case XFmode: /* "long double" or __float80 is "e". */ return "e"; default: return NULL; } } /* For 32-bit code we can save PIC register setup by using __stack_chk_fail_local hidden function instead of calling __stack_chk_fail directly. 64-bit code doesn't need to setup any PIC register, so it is better to call __stack_chk_fail directly. */ static tree ix86_stack_protect_fail (void) { return TARGET_64BIT ? default_external_stack_protect_fail () : default_hidden_stack_protect_fail (); } /* Select a format to encode pointers in exception handling data. CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. ??? All x86 object file formats are capable of representing this. After all, the relocation needed is the same as for the call insn. Whether or not a particular assembler allows us to enter such, I guess we'll have to see. */ int asm_preferred_eh_data_format (int code, int global) { if (flag_pic) { int type = DW_EH_PE_sdata8; if (!TARGET_64BIT || ix86_cmodel == CM_SMALL_PIC || (ix86_cmodel == CM_MEDIUM_PIC && (global || code))) type = DW_EH_PE_sdata4; return (global ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | type; } if (ix86_cmodel == CM_SMALL || (ix86_cmodel == CM_MEDIUM && code)) return DW_EH_PE_udata4; return DW_EH_PE_absptr; } /* Expand copysign from SIGN to the positive value ABS_VALUE storing in RESULT. If MASK is non-null, it shall be a mask to mask out the sign-bit. */ static void ix86_sse_copysign_to_positive (rtx result, rtx abs_value, rtx sign, rtx mask) { enum machine_mode mode = GET_MODE (sign); rtx sgn = gen_reg_rtx (mode); if (mask == NULL_RTX) { mask = ix86_build_signbit_mask (mode, VECTOR_MODE_P (mode), false); if (!VECTOR_MODE_P (mode)) { /* We need to generate a scalar mode mask in this case. */ rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx)); tmp = gen_rtx_VEC_SELECT (mode, mask, tmp); mask = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, mask, tmp)); } } else mask = gen_rtx_NOT (mode, mask); emit_insn (gen_rtx_SET (VOIDmode, sgn, gen_rtx_AND (mode, mask, sign))); emit_insn (gen_rtx_SET (VOIDmode, result, gen_rtx_IOR (mode, abs_value, sgn))); } /* Expand fabs (OP0) and return a new rtx that holds the result. The mask for masking out the sign-bit is stored in *SMASK, if that is non-null. */ static rtx ix86_expand_sse_fabs (rtx op0, rtx *smask) { enum machine_mode mode = GET_MODE (op0); rtx xa, mask; xa = gen_reg_rtx (mode); mask = ix86_build_signbit_mask (mode, VECTOR_MODE_P (mode), true); if (!VECTOR_MODE_P (mode)) { /* We need to generate a scalar mode mask in this case. */ rtx tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (1, const0_rtx)); tmp = gen_rtx_VEC_SELECT (mode, mask, tmp); mask = gen_reg_rtx (mode); emit_insn (gen_rtx_SET (VOIDmode, mask, tmp)); } emit_insn (gen_rtx_SET (VOIDmode, xa, gen_rtx_AND (mode, op0, mask))); if (smask) *smask = mask; return xa; } /* Expands a comparison of OP0 with OP1 using comparison code CODE, swapping the operands if SWAP_OPERANDS is true. The expanded code is a forward jump to a newly created label in case the comparison is true. The generated label rtx is returned. */ static rtx ix86_expand_sse_compare_and_jump (enum rtx_code code, rtx op0, rtx op1, bool swap_operands) { rtx label, tmp; if (swap_operands) { tmp = op0; op0 = op1; op1 = tmp; } label = gen_label_rtx (); tmp = gen_rtx_REG (CCFPUmode, FLAGS_REG); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_COMPARE (CCFPUmode, op0, op1))); tmp = gen_rtx_fmt_ee (code, VOIDmode, tmp, const0_rtx); tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp, gen_rtx_LABEL_REF (VOIDmode, label), pc_rtx); tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp)); JUMP_LABEL (tmp) = label; return label; } /* Expand a mask generating SSE comparison instruction comparing OP0 with OP1 using comparison code CODE. Operands are swapped for the comparison if SWAP_OPERANDS is true. Returns a rtx for the generated mask. */ static rtx ix86_expand_sse_compare_mask (enum rtx_code code, rtx op0, rtx op1, bool swap_operands) { enum machine_mode mode = GET_MODE (op0); rtx mask = gen_reg_rtx (mode); if (swap_operands) { rtx tmp = op0; op0 = op1; op1 = tmp; } if (mode == DFmode) emit_insn (gen_sse2_maskcmpdf3 (mask, op0, op1, gen_rtx_fmt_ee (code, mode, op0, op1))); else emit_insn (gen_sse_maskcmpsf3 (mask, op0, op1, gen_rtx_fmt_ee (code, mode, op0, op1))); return mask; } /* Generate and return a rtx of mode MODE for 2**n where n is the number of bits of the mantissa of MODE, which must be one of DFmode or SFmode. */ static rtx ix86_gen_TWO52 (enum machine_mode mode) { REAL_VALUE_TYPE TWO52r; rtx TWO52; real_ldexp (&TWO52r, &dconst1, mode == DFmode ? 52 : 23); TWO52 = const_double_from_real_value (TWO52r, mode); TWO52 = force_reg (mode, TWO52); return TWO52; } /* Expand SSE sequence for computing lround from OP1 storing into OP0. */ void ix86_expand_lround (rtx op0, rtx op1) { /* C code for the stuff we're doing below: tmp = op1 + copysign (nextafter (0.5, 0.0), op1) return (long)tmp; */ enum machine_mode mode = GET_MODE (op1); const struct real_format *fmt; REAL_VALUE_TYPE pred_half, half_minus_pred_half; rtx adj; /* load nextafter (0.5, 0.0) */ fmt = REAL_MODE_FORMAT (mode); real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode); REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); /* adj = copysign (0.5, op1) */ adj = force_reg (mode, const_double_from_real_value (pred_half, mode)); ix86_sse_copysign_to_positive (adj, adj, force_reg (mode, op1), NULL_RTX); /* adj = op1 + adj */ adj = expand_simple_binop (mode, PLUS, adj, op1, NULL_RTX, 0, OPTAB_DIRECT); /* op0 = (imode)adj */ expand_fix (op0, adj, 0); } /* Expand SSE2 sequence for computing lround from OPERAND1 storing into OPERAND0. */ void ix86_expand_lfloorceil (rtx op0, rtx op1, bool do_floor) { /* C code for the stuff we're doing below (for do_floor): xi = (long)op1; xi -= (double)xi > op1 ? 1 : 0; return xi; */ enum machine_mode fmode = GET_MODE (op1); enum machine_mode imode = GET_MODE (op0); rtx ireg, freg, label, tmp; /* reg = (long)op1 */ ireg = gen_reg_rtx (imode); expand_fix (ireg, op1, 0); /* freg = (double)reg */ freg = gen_reg_rtx (fmode); expand_float (freg, ireg, 0); /* ireg = (freg > op1) ? ireg - 1 : ireg */ label = ix86_expand_sse_compare_and_jump (UNLE, freg, op1, !do_floor); tmp = expand_simple_binop (imode, do_floor ? MINUS : PLUS, ireg, const1_rtx, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (ireg, tmp); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (op0, ireg); } /* Expand rint (IEEE round to nearest) rounding OPERAND1 and storing the result in OPERAND0. */ void ix86_expand_rint (rtx operand0, rtx operand1) { /* C code for the stuff we're doing below: xa = fabs (operand1); if (!isless (xa, 2**52)) return operand1; xa = xa + 2**52 - 2**52; return copysign (xa, operand1); */ enum machine_mode mode = GET_MODE (operand0); rtx res, xa, label, TWO52, mask; res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ TWO52 = ix86_gen_TWO52 (mode); label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT); ix86_sse_copysign_to_positive (res, xa, res, mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing into OPERAND0. */ void ix86_expand_floorceildf_32 (rtx operand0, rtx operand1, bool do_floor) { /* C code for the stuff we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; xa = xa + TWO52 - TWO52; x2 = copysign (xa, x); Compensate. Floor: if (x2 > x) x2 -= 1; Compensate. Ceil: if (x2 < x) x2 -= -1; return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, TWO52, tmp, label, one, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* xa = xa + TWO52 - TWO52; */ xa = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); xa = expand_simple_binop (mode, MINUS, xa, TWO52, xa, 0, OPTAB_DIRECT); /* xa = copysign (xa, operand1) */ ix86_sse_copysign_to_positive (xa, xa, res, mask); /* generate 1.0 or -1.0 */ one = force_reg (mode, const_double_from_real_value (do_floor ? dconst1 : dconstm1, mode)); /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); /* We always need to subtract here to preserve signed zero. */ tmp = expand_simple_binop (mode, MINUS, xa, tmp, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE2 sequence for computing floor or ceil from OPERAND1 storing into OPERAND0. */ void ix86_expand_floorceil (rtx operand0, rtx operand1, bool do_floor) { /* C code for the stuff we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; x2 = (double)(long)x; Compensate. Floor: if (x2 > x) x2 -= 1; Compensate. Ceil: if (x2 < x) x2 += 1; if (HONOR_SIGNED_ZEROS (mode)) return copysign (x2, x); return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, xi, TWO52, tmp, label, one, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* xa = (double)(long)x */ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); expand_fix (xi, res, 0); expand_float (xa, xi, 0); /* generate 1.0 */ one = force_reg (mode, const_double_from_real_value (dconst1, mode)); /* Compensate: xa = xa - (xa > operand1 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGT, xa, res, !do_floor); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); tmp = expand_simple_binop (mode, do_floor ? MINUS : PLUS, xa, tmp, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); if (HONOR_SIGNED_ZEROS (mode)) ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing round from OPERAND1 storing into OPERAND0. Sequence that works without relying on DImode truncation via cvttsd2siq that is only available on 64bit targets. */ void ix86_expand_rounddf_32 (rtx operand0, rtx operand1) { /* C code for the stuff we expand below. double xa = fabs (x), xa2, x2; if (!isless (xa, TWO52)) return x; Using the absolute value and copying back sign makes -0.0 -> -0.0 correct. xa2 = xa + TWO52 - TWO52; Compensate. dxa = xa2 - xa; if (dxa <= -0.5) xa2 += 1; else if (dxa > 0.5) xa2 -= 1; x2 = copysign (xa2, x); return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, xa2, dxa, TWO52, tmp, label, half, mhalf, one, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* xa2 = xa + TWO52 - TWO52; */ xa2 = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); xa2 = expand_simple_binop (mode, MINUS, xa2, TWO52, xa2, 0, OPTAB_DIRECT); /* dxa = xa2 - xa; */ dxa = expand_simple_binop (mode, MINUS, xa2, xa, NULL_RTX, 0, OPTAB_DIRECT); /* generate 0.5, 1.0 and -0.5 */ half = force_reg (mode, const_double_from_real_value (dconsthalf, mode)); one = expand_simple_binop (mode, PLUS, half, half, NULL_RTX, 0, OPTAB_DIRECT); mhalf = expand_simple_binop (mode, MINUS, half, one, NULL_RTX, 0, OPTAB_DIRECT); /* Compensate. */ tmp = gen_reg_rtx (mode); /* xa2 = xa2 - (dxa > 0.5 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGT, dxa, half, false); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); xa2 = expand_simple_binop (mode, MINUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT); /* xa2 = xa2 + (dxa <= -0.5 ? 1 : 0) */ tmp = ix86_expand_sse_compare_mask (UNGE, mhalf, dxa, false); emit_insn (gen_rtx_SET (VOIDmode, tmp, gen_rtx_AND (mode, one, tmp))); xa2 = expand_simple_binop (mode, PLUS, xa2, tmp, NULL_RTX, 0, OPTAB_DIRECT); /* res = copysign (xa2, operand1) */ ix86_sse_copysign_to_positive (res, xa2, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing trunc from OPERAND1 storing into OPERAND0. */ void ix86_expand_trunc (rtx operand0, rtx operand1) { /* C code for SSE variant we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; x2 = (double)(long)x; if (HONOR_SIGNED_ZEROS (mode)) return copysign (x2, x); return x2; */ enum machine_mode mode = GET_MODE (operand0); rtx xa, xi, TWO52, label, res, mask; TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &mask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* x = (double)(long)x */ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); expand_fix (xi, res, 0); expand_float (res, xi, 0); if (HONOR_SIGNED_ZEROS (mode)) ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing trunc from OPERAND1 storing into OPERAND0. */ void ix86_expand_truncdf_32 (rtx operand0, rtx operand1) { enum machine_mode mode = GET_MODE (operand0); rtx xa, mask, TWO52, label, one, res, smask, tmp; /* C code for SSE variant we expand below. double xa = fabs (x), x2; if (!isless (xa, TWO52)) return x; xa2 = xa + TWO52 - TWO52; Compensate: if (xa2 > xa) xa2 -= 1.0; x2 = copysign (xa2, x); return x2; */ TWO52 = ix86_gen_TWO52 (mode); /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); /* xa = abs (operand1) */ xa = ix86_expand_sse_fabs (res, &smask); /* if (!isless (xa, TWO52)) goto label; */ label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* res = xa + TWO52 - TWO52; */ tmp = expand_simple_binop (mode, PLUS, xa, TWO52, NULL_RTX, 0, OPTAB_DIRECT); tmp = expand_simple_binop (mode, MINUS, tmp, TWO52, tmp, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); /* generate 1.0 */ one = force_reg (mode, const_double_from_real_value (dconst1, mode)); /* Compensate: res = xa2 - (res > xa ? 1 : 0) */ mask = ix86_expand_sse_compare_mask (UNGT, res, xa, false); emit_insn (gen_rtx_SET (VOIDmode, mask, gen_rtx_AND (mode, mask, one))); tmp = expand_simple_binop (mode, MINUS, res, mask, NULL_RTX, 0, OPTAB_DIRECT); emit_move_insn (res, tmp); /* res = copysign (res, operand1) */ ix86_sse_copysign_to_positive (res, res, force_reg (mode, operand1), smask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Expand SSE sequence for computing round from OPERAND1 storing into OPERAND0. */ void ix86_expand_round (rtx operand0, rtx operand1) { /* C code for the stuff we're doing below: double xa = fabs (x); if (!isless (xa, TWO52)) return x; xa = (double)(long)(xa + nextafter (0.5, 0.0)); return copysign (xa, x); */ enum machine_mode mode = GET_MODE (operand0); rtx res, TWO52, xa, label, xi, half, mask; const struct real_format *fmt; REAL_VALUE_TYPE pred_half, half_minus_pred_half; /* Temporary for holding the result, initialized to the input operand to ease control flow. */ res = gen_reg_rtx (mode); emit_move_insn (res, operand1); TWO52 = ix86_gen_TWO52 (mode); xa = ix86_expand_sse_fabs (res, &mask); label = ix86_expand_sse_compare_and_jump (UNLE, TWO52, xa, false); /* load nextafter (0.5, 0.0) */ fmt = REAL_MODE_FORMAT (mode); real_2expN (&half_minus_pred_half, -(fmt->p) - 1, mode); REAL_ARITHMETIC (pred_half, MINUS_EXPR, dconsthalf, half_minus_pred_half); /* xa = xa + 0.5 */ half = force_reg (mode, const_double_from_real_value (pred_half, mode)); xa = expand_simple_binop (mode, PLUS, xa, half, NULL_RTX, 0, OPTAB_DIRECT); /* xa = (double)(int64_t)xa */ xi = gen_reg_rtx (mode == DFmode ? DImode : SImode); expand_fix (xi, xa, 0); expand_float (xa, xi, 0); /* res = copysign (xa, operand1) */ ix86_sse_copysign_to_positive (res, xa, force_reg (mode, operand1), mask); emit_label (label); LABEL_NUSES (label) = 1; emit_move_insn (operand0, res); } /* Table of valid machine attributes. */ static const struct attribute_spec ix86_attribute_table[] = { /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ /* Stdcall attribute says callee is responsible for popping arguments if they are not variable. */ { "stdcall", 0, 0, false, true, true, ix86_handle_cconv_attribute }, /* Fastcall attribute says callee is responsible for popping arguments if they are not variable. */ { "fastcall", 0, 0, false, true, true, ix86_handle_cconv_attribute }, /* Cdecl attribute says the callee is a normal C declaration */ { "cdecl", 0, 0, false, true, true, ix86_handle_cconv_attribute }, /* Regparm attribute specifies how many integer arguments are to be passed in registers. */ { "regparm", 1, 1, false, true, true, ix86_handle_cconv_attribute }, /* Sseregparm attribute says we are using x86_64 calling conventions for FP arguments. */ { "sseregparm", 0, 0, false, true, true, ix86_handle_cconv_attribute }, /* force_align_arg_pointer says this function realigns the stack at entry. */ { (const char *)&ix86_force_align_arg_pointer_string, 0, 0, false, true, true, ix86_handle_cconv_attribute }, #if TARGET_DLLIMPORT_DECL_ATTRIBUTES { "dllimport", 0, 0, false, false, false, handle_dll_attribute }, { "dllexport", 0, 0, false, false, false, handle_dll_attribute }, { "shared", 0, 0, true, false, false, ix86_handle_shared_attribute }, #endif { "ms_struct", 0, 0, false, false, false, ix86_handle_struct_attribute }, { "gcc_struct", 0, 0, false, false, false, ix86_handle_struct_attribute }, #ifdef SUBTARGET_ATTRIBUTE_TABLE SUBTARGET_ATTRIBUTE_TABLE, #endif /* ms_abi and sysv_abi calling convention function attributes. */ { "ms_abi", 0, 0, false, true, true, ix86_handle_abi_attribute }, { "sysv_abi", 0, 0, false, true, true, ix86_handle_abi_attribute }, { "ms_hook_prologue", 0, 0, true, false, false, ix86_handle_fndecl_attribute }, /* End element. */ { NULL, 0, 0, false, false, false, NULL } }; /* Implement targetm.vectorize.builtin_vectorization_cost. */ static int ix86_builtin_vectorization_cost (bool runtime_test) { /* If the branch of the runtime test is taken - i.e. - the vectorized version is skipped - this incurs a misprediction cost (because the vectorized version is expected to be the fall-through). So we subtract the latency of a mispredicted branch from the costs that are incured when the vectorized version is executed. TODO: The values in individual target tables have to be tuned or new fields may be needed. For eg. on K8, the default branch path is the not-taken path. If the taken path is predicted correctly, the minimum penalty of going down the taken-path is 1 cycle. If the taken-path is not predicted correctly, then the minimum penalty is 10 cycles. */ if (runtime_test) { return (-(ix86_cost->cond_taken_branch_cost)); } else return 0; } /* Implement targetm.vectorize.builtin_vec_perm. */ static tree ix86_vectorize_builtin_vec_perm (tree vec_type, tree *mask_type) { tree itype = TREE_TYPE (vec_type); bool u = TYPE_UNSIGNED (itype); enum machine_mode vmode = TYPE_MODE (vec_type); enum ix86_builtins fcode = fcode; /* Silence bogus warning. */ bool ok = TARGET_SSE2; switch (vmode) { case V4DFmode: ok = TARGET_AVX; fcode = IX86_BUILTIN_VEC_PERM_V4DF; goto get_di; case V2DFmode: fcode = IX86_BUILTIN_VEC_PERM_V2DF; get_di: itype = ix86_get_builtin_type (IX86_BT_DI); break; case V8SFmode: ok = TARGET_AVX; fcode = IX86_BUILTIN_VEC_PERM_V8SF; goto get_si; case V4SFmode: ok = TARGET_SSE; fcode = IX86_BUILTIN_VEC_PERM_V4SF; get_si: itype = ix86_get_builtin_type (IX86_BT_SI); break; case V2DImode: fcode = u ? IX86_BUILTIN_VEC_PERM_V2DI_U : IX86_BUILTIN_VEC_PERM_V2DI; break; case V4SImode: fcode = u ? IX86_BUILTIN_VEC_PERM_V4SI_U : IX86_BUILTIN_VEC_PERM_V4SI; break; case V8HImode: fcode = u ? IX86_BUILTIN_VEC_PERM_V8HI_U : IX86_BUILTIN_VEC_PERM_V8HI; break; case V16QImode: fcode = u ? IX86_BUILTIN_VEC_PERM_V16QI_U : IX86_BUILTIN_VEC_PERM_V16QI; break; default: ok = false; break; } if (!ok) return NULL_TREE; *mask_type = itype; return ix86_builtins[(int) fcode]; } /* Return a vector mode with twice as many elements as VMODE. */ /* ??? Consider moving this to a table generated by genmodes.c. */ static enum machine_mode doublesize_vector_mode (enum machine_mode vmode) { switch (vmode) { case V2SFmode: return V4SFmode; case V1DImode: return V2DImode; case V2SImode: return V4SImode; case V4HImode: return V8HImode; case V8QImode: return V16QImode; case V2DFmode: return V4DFmode; case V4SFmode: return V8SFmode; case V2DImode: return V4DImode; case V4SImode: return V8SImode; case V8HImode: return V16HImode; case V16QImode: return V32QImode; case V4DFmode: return V8DFmode; case V8SFmode: return V16SFmode; case V4DImode: return V8DImode; case V8SImode: return V16SImode; case V16HImode: return V32HImode; case V32QImode: return V64QImode; default: gcc_unreachable (); } } /* Construct (set target (vec_select op0 (parallel perm))) and return true if that's a valid instruction in the active ISA. */ static bool expand_vselect (rtx target, rtx op0, const unsigned char *perm, unsigned nelt) { rtx rperm[MAX_VECT_LEN], x; unsigned i; for (i = 0; i < nelt; ++i) rperm[i] = GEN_INT (perm[i]); x = gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelt, rperm)); x = gen_rtx_VEC_SELECT (GET_MODE (target), op0, x); x = gen_rtx_SET (VOIDmode, target, x); x = emit_insn (x); if (recog_memoized (x) < 0) { remove_insn (x); return false; } return true; } /* Similar, but generate a vec_concat from op0 and op1 as well. */ static bool expand_vselect_vconcat (rtx target, rtx op0, rtx op1, const unsigned char *perm, unsigned nelt) { enum machine_mode v2mode; rtx x; v2mode = doublesize_vector_mode (GET_MODE (op0)); x = gen_rtx_VEC_CONCAT (v2mode, op0, op1); return expand_vselect (target, x, perm, nelt); } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of blendp[sd] / pblendw / pblendvb. */ static bool expand_vec_perm_blend (struct expand_vec_perm_d *d) { enum machine_mode vmode = d->vmode; unsigned i, mask, nelt = d->nelt; rtx target, op0, op1, x; if (!TARGET_SSE4_1 || d->op0 == d->op1) return false; if (!(GET_MODE_SIZE (vmode) == 16 || vmode == V4DFmode || vmode == V8SFmode)) return false; /* This is a blend, not a permute. Elements must stay in their respective lanes. */ for (i = 0; i < nelt; ++i) { unsigned e = d->perm[i]; if (!(e == i || e == i + nelt)) return false; } if (d->testing_p) return true; /* ??? Without SSE4.1, we could implement this with and/andn/or. This decision should be extracted elsewhere, so that we only try that sequence once all budget==3 options have been tried. */ /* For bytes, see if bytes move in pairs so we can use pblendw with an immediate argument, rather than pblendvb with a vector argument. */ if (vmode == V16QImode) { bool pblendw_ok = true; for (i = 0; i < 16 && pblendw_ok; i += 2) pblendw_ok = (d->perm[i] + 1 == d->perm[i + 1]); if (!pblendw_ok) { rtx rperm[16], vperm; for (i = 0; i < nelt; ++i) rperm[i] = (d->perm[i] < nelt ? const0_rtx : constm1_rtx); vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm)); vperm = force_reg (V16QImode, vperm); emit_insn (gen_sse4_1_pblendvb (d->target, d->op0, d->op1, vperm)); return true; } } target = d->target; op0 = d->op0; op1 = d->op1; mask = 0; switch (vmode) { case V4DFmode: case V8SFmode: case V2DFmode: case V4SFmode: case V8HImode: for (i = 0; i < nelt; ++i) mask |= (d->perm[i] >= nelt) << i; break; case V2DImode: for (i = 0; i < 2; ++i) mask |= (d->perm[i] >= 2 ? 15 : 0) << (i * 4); goto do_subreg; case V4SImode: for (i = 0; i < 4; ++i) mask |= (d->perm[i] >= 4 ? 3 : 0) << (i * 2); goto do_subreg; case V16QImode: for (i = 0; i < 8; ++i) mask |= (d->perm[i * 2] >= 16) << i; do_subreg: vmode = V8HImode; target = gen_lowpart (vmode, target); op0 = gen_lowpart (vmode, op0); op1 = gen_lowpart (vmode, op1); break; default: gcc_unreachable (); } /* This matches five different patterns with the different modes. */ x = gen_rtx_VEC_MERGE (vmode, op1, op0, GEN_INT (mask)); x = gen_rtx_SET (VOIDmode, target, x); emit_insn (x); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of the variable form of vpermilps. Note that we will have already failed the immediate input vpermilps, which requires that the high and low part shuffle be identical; the variable form doesn't require that. */ static bool expand_vec_perm_vpermil (struct expand_vec_perm_d *d) { rtx rperm[8], vperm; unsigned i; if (!TARGET_AVX || d->vmode != V8SFmode || d->op0 != d->op1) return false; /* We can only permute within the 128-bit lane. */ for (i = 0; i < 8; ++i) { unsigned e = d->perm[i]; if (i < 4 ? e >= 4 : e < 4) return false; } if (d->testing_p) return true; for (i = 0; i < 8; ++i) { unsigned e = d->perm[i]; /* Within each 128-bit lane, the elements of op0 are numbered from 0 and the elements of op1 are numbered from 4. */ if (e >= 8 + 4) e -= 8; else if (e >= 4) e -= 4; rperm[i] = GEN_INT (e); } vperm = gen_rtx_CONST_VECTOR (V8SImode, gen_rtvec_v (8, rperm)); vperm = force_reg (V8SImode, vperm); emit_insn (gen_avx_vpermilvarv8sf3 (d->target, d->op0, vperm)); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of pshufb or vpperm. */ static bool expand_vec_perm_pshufb (struct expand_vec_perm_d *d) { unsigned i, nelt, eltsz; rtx rperm[16], vperm, target, op0, op1; if (!(d->op0 == d->op1 ? TARGET_SSSE3 : TARGET_XOP)) return false; if (GET_MODE_SIZE (d->vmode) != 16) return false; if (d->testing_p) return true; nelt = d->nelt; eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); for (i = 0; i < nelt; ++i) { unsigned j, e = d->perm[i]; for (j = 0; j < eltsz; ++j) rperm[i * eltsz + j] = GEN_INT (e * eltsz + j); } vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm)); vperm = force_reg (V16QImode, vperm); target = gen_lowpart (V16QImode, d->target); op0 = gen_lowpart (V16QImode, d->op0); if (d->op0 == d->op1) emit_insn (gen_ssse3_pshufbv16qi3 (target, op0, vperm)); else { op1 = gen_lowpart (V16QImode, d->op1); emit_insn (gen_xop_pperm (target, op0, op1, vperm)); } return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to instantiate D in a single instruction. */ static bool expand_vec_perm_1 (struct expand_vec_perm_d *d) { unsigned i, nelt = d->nelt; unsigned char perm2[MAX_VECT_LEN]; /* Check plain VEC_SELECT first, because AVX has instructions that could match both SEL and SEL+CONCAT, but the plain SEL will allow a memory input where SEL+CONCAT may not. */ if (d->op0 == d->op1) { int mask = nelt - 1; for (i = 0; i < nelt; i++) perm2[i] = d->perm[i] & mask; if (expand_vselect (d->target, d->op0, perm2, nelt)) return true; /* There are plenty of patterns in sse.md that are written for SEL+CONCAT and are not replicated for a single op. Perhaps that should be changed, to avoid the nastiness here. */ /* Recognize interleave style patterns, which means incrementing every other permutation operand. */ for (i = 0; i < nelt; i += 2) { perm2[i] = d->perm[i] & mask; perm2[i + 1] = (d->perm[i + 1] & mask) + nelt; } if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt)) return true; /* Recognize shufps, which means adding {0, 0, nelt, nelt}. */ if (nelt >= 4) { for (i = 0; i < nelt; i += 4) { perm2[i + 0] = d->perm[i + 0] & mask; perm2[i + 1] = d->perm[i + 1] & mask; perm2[i + 2] = (d->perm[i + 2] & mask) + nelt; perm2[i + 3] = (d->perm[i + 3] & mask) + nelt; } if (expand_vselect_vconcat (d->target, d->op0, d->op0, perm2, nelt)) return true; } } /* Finally, try the fully general two operand permute. */ if (expand_vselect_vconcat (d->target, d->op0, d->op1, d->perm, nelt)) return true; /* Recognize interleave style patterns with reversed operands. */ if (d->op0 != d->op1) { for (i = 0; i < nelt; ++i) { unsigned e = d->perm[i]; if (e >= nelt) e -= nelt; else e += nelt; perm2[i] = e; } if (expand_vselect_vconcat (d->target, d->op1, d->op0, perm2, nelt)) return true; } /* Try the SSE4.1 blend variable merge instructions. */ if (expand_vec_perm_blend (d)) return true; /* Try one of the AVX vpermil variable permutations. */ if (expand_vec_perm_vpermil (d)) return true; /* Try the SSSE3 pshufb or XOP vpperm variable permutation. */ if (expand_vec_perm_pshufb (d)) return true; return false; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to implement D in terms of a pair of pshuflw + pshufhw instructions. */ static bool expand_vec_perm_pshuflw_pshufhw (struct expand_vec_perm_d *d) { unsigned char perm2[MAX_VECT_LEN]; unsigned i; bool ok; if (d->vmode != V8HImode || d->op0 != d->op1) return false; /* The two permutations only operate in 64-bit lanes. */ for (i = 0; i < 4; ++i) if (d->perm[i] >= 4) return false; for (i = 4; i < 8; ++i) if (d->perm[i] < 4) return false; if (d->testing_p) return true; /* Emit the pshuflw. */ memcpy (perm2, d->perm, 4); for (i = 4; i < 8; ++i) perm2[i] = i; ok = expand_vselect (d->target, d->op0, perm2, 8); gcc_assert (ok); /* Emit the pshufhw. */ memcpy (perm2 + 4, d->perm + 4, 4); for (i = 0; i < 4; ++i) perm2[i] = i; ok = expand_vselect (d->target, d->target, perm2, 8); gcc_assert (ok); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify the permutation using the SSSE3 palignr instruction. This succeeds when all of the elements in PERM fit within one vector and we merely need to shift them down so that a single vector permutation has a chance to succeed. */ static bool expand_vec_perm_palignr (struct expand_vec_perm_d *d) { unsigned i, nelt = d->nelt; unsigned min, max; bool in_order, ok; rtx shift; /* Even with AVX, palignr only operates on 128-bit vectors. */ if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16) return false; min = nelt, max = 0; for (i = 0; i < nelt; ++i) { unsigned e = d->perm[i]; if (e < min) min = e; if (e > max) max = e; } if (min == 0 || max - min >= nelt) return false; /* Given that we have SSSE3, we know we'll be able to implement the single operand permutation after the palignr with pshufb. */ if (d->testing_p) return true; shift = GEN_INT (min * GET_MODE_BITSIZE (GET_MODE_INNER (d->vmode))); emit_insn (gen_ssse3_palignrti (gen_lowpart (TImode, d->target), gen_lowpart (TImode, d->op1), gen_lowpart (TImode, d->op0), shift)); d->op0 = d->op1 = d->target; in_order = true; for (i = 0; i < nelt; ++i) { unsigned e = d->perm[i] - min; if (e != i) in_order = false; d->perm[i] = e; } /* Test for the degenerate case where the alignment by itself produces the desired permutation. */ if (in_order) return true; ok = expand_vec_perm_1 (d); gcc_assert (ok); return ok; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Try to simplify a two vector permutation into a single vector permutation by using an interleave operation to merge the vectors. */ static bool expand_vec_perm_interleave2 (struct expand_vec_perm_d *d) { struct expand_vec_perm_d dremap, dfinal; unsigned i, nelt = d->nelt, nelt2 = nelt / 2; unsigned contents, h1, h2, h3, h4; unsigned char remap[2 * MAX_VECT_LEN]; rtx seq; bool ok; if (d->op0 == d->op1) return false; /* The 256-bit unpck[lh]p[sd] instructions only operate within the 128-bit lanes. We can use similar techniques with the vperm2f128 instruction, but it requires slightly different logic. */ if (GET_MODE_SIZE (d->vmode) != 16) return false; /* Examine from whence the elements come. */ contents = 0; for (i = 0; i < nelt; ++i) contents |= 1u << d->perm[i]; /* Split the two input vectors into 4 halves. */ h1 = (1u << nelt2) - 1; h2 = h1 << nelt2; h3 = h2 << nelt2; h4 = h3 << nelt2; memset (remap, 0xff, sizeof (remap)); dremap = *d; /* If the elements from the low halves use interleave low, and similarly for interleave high. If the elements are from mis-matched halves, we can use shufps for V4SF/V4SI or do a DImode shuffle. */ if ((contents & (h1 | h3)) == contents) { for (i = 0; i < nelt2; ++i) { remap[i] = i * 2; remap[i + nelt] = i * 2 + 1; dremap.perm[i * 2] = i; dremap.perm[i * 2 + 1] = i + nelt; } } else if ((contents & (h2 | h4)) == contents) { for (i = 0; i < nelt2; ++i) { remap[i + nelt2] = i * 2; remap[i + nelt + nelt2] = i * 2 + 1; dremap.perm[i * 2] = i + nelt2; dremap.perm[i * 2 + 1] = i + nelt + nelt2; } } else if ((contents & (h1 | h4)) == contents) { for (i = 0; i < nelt2; ++i) { remap[i] = i; remap[i + nelt + nelt2] = i + nelt2; dremap.perm[i] = i; dremap.perm[i + nelt2] = i + nelt + nelt2; } if (nelt != 4) { dremap.vmode = V2DImode; dremap.nelt = 2; dremap.perm[0] = 0; dremap.perm[1] = 3; } } else if ((contents & (h2 | h3)) == contents) { for (i = 0; i < nelt2; ++i) { remap[i + nelt2] = i; remap[i + nelt] = i + nelt2; dremap.perm[i] = i + nelt2; dremap.perm[i + nelt2] = i + nelt; } if (nelt != 4) { dremap.vmode = V2DImode; dremap.nelt = 2; dremap.perm[0] = 1; dremap.perm[1] = 2; } } else return false; /* Use the remapping array set up above to move the elements from their swizzled locations into their final destinations. */ dfinal = *d; for (i = 0; i < nelt; ++i) { unsigned e = remap[d->perm[i]]; gcc_assert (e < nelt); dfinal.perm[i] = e; } dfinal.op0 = gen_reg_rtx (dfinal.vmode); dfinal.op1 = dfinal.op0; dremap.target = dfinal.op0; /* Test if the final remap can be done with a single insn. For V4SFmode or V4SImode this *will* succeed. For V8HImode or V16QImode it may not. */ start_sequence (); ok = expand_vec_perm_1 (&dfinal); seq = get_insns (); end_sequence (); if (!ok) return false; if (dremap.vmode != dfinal.vmode) { dremap.target = gen_lowpart (dremap.vmode, dremap.target); dremap.op0 = gen_lowpart (dremap.vmode, dremap.op0); dremap.op1 = gen_lowpart (dremap.vmode, dremap.op1); } ok = expand_vec_perm_1 (&dremap); gcc_assert (ok); emit_insn (seq); return true; } /* A subroutine of expand_vec_perm_even_odd_1. Implement the double-word permutation with two pshufb insns and an ior. We should have already failed all two instruction sequences. */ static bool expand_vec_perm_pshufb2 (struct expand_vec_perm_d *d) { rtx rperm[2][16], vperm, l, h, op, m128; unsigned int i, nelt, eltsz; if (!TARGET_SSSE3 || GET_MODE_SIZE (d->vmode) != 16) return false; gcc_assert (d->op0 != d->op1); nelt = d->nelt; eltsz = GET_MODE_SIZE (GET_MODE_INNER (d->vmode)); /* Generate two permutation masks. If the required element is within the given vector it is shuffled into the proper lane. If the required element is in the other vector, force a zero into the lane by setting bit 7 in the permutation mask. */ m128 = GEN_INT (-128); for (i = 0; i < nelt; ++i) { unsigned j, e = d->perm[i]; unsigned which = (e >= nelt); if (e >= nelt) e -= nelt; for (j = 0; j < eltsz; ++j) { rperm[which][i*eltsz + j] = GEN_INT (e*eltsz + j); rperm[1-which][i*eltsz + j] = m128; } } vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[0])); vperm = force_reg (V16QImode, vperm); l = gen_reg_rtx (V16QImode); op = gen_lowpart (V16QImode, d->op0); emit_insn (gen_ssse3_pshufbv16qi3 (l, op, vperm)); vperm = gen_rtx_CONST_VECTOR (V16QImode, gen_rtvec_v (16, rperm[1])); vperm = force_reg (V16QImode, vperm); h = gen_reg_rtx (V16QImode); op = gen_lowpart (V16QImode, d->op1); emit_insn (gen_ssse3_pshufbv16qi3 (h, op, vperm)); op = gen_lowpart (V16QImode, d->target); emit_insn (gen_iorv16qi3 (op, l, h)); return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Implement extract-even and extract-odd permutations. */ static bool expand_vec_perm_even_odd_1 (struct expand_vec_perm_d *d, unsigned odd) { rtx t1, t2, t3, t4; switch (d->vmode) { case V4DFmode: t1 = gen_reg_rtx (V4DFmode); t2 = gen_reg_rtx (V4DFmode); /* Shuffle the lanes around into { 0 1 4 5 } and { 2 3 6 7 }. */ emit_insn (gen_avx_vperm2f128v4df3 (t1, d->op0, d->op1, GEN_INT (0x20))); emit_insn (gen_avx_vperm2f128v4df3 (t2, d->op0, d->op1, GEN_INT (0x31))); /* Now an unpck[lh]pd will produce the result required. */ if (odd) t3 = gen_avx_unpckhpd256 (d->target, t1, t2); else t3 = gen_avx_unpcklpd256 (d->target, t1, t2); emit_insn (t3); break; case V8SFmode: { static const unsigned char perm1[8] = { 0, 2, 1, 3, 5, 6, 5, 7 }; static const unsigned char perme[8] = { 0, 1, 8, 9, 4, 5, 12, 13 }; static const unsigned char permo[8] = { 2, 3, 10, 11, 6, 7, 14, 15 }; t1 = gen_reg_rtx (V8SFmode); t2 = gen_reg_rtx (V8SFmode); t3 = gen_reg_rtx (V8SFmode); t4 = gen_reg_rtx (V8SFmode); /* Shuffle within the 128-bit lanes to produce: { 0 2 1 3 4 6 5 7 } and { 8 a 9 b c e d f }. */ expand_vselect (t1, d->op0, perm1, 8); expand_vselect (t2, d->op1, perm1, 8); /* Shuffle the lanes around to produce: { 0 2 1 3 8 a 9 b } and { 4 6 5 7 c e d f }. */ emit_insn (gen_avx_vperm2f128v8sf3 (t3, t1, t2, GEN_INT (0x20))); emit_insn (gen_avx_vperm2f128v8sf3 (t4, t1, t2, GEN_INT (0x31))); /* Now a vpermil2p will produce the result required. */ /* ??? The vpermil2p requires a vector constant. Another option is a unpck[lh]ps to merge the two vectors to produce { 0 4 2 6 8 c a e } or { 1 5 3 7 9 d b f }. Then use another vpermilps to get the elements into the final order. */ d->op0 = t3; d->op1 = t4; memcpy (d->perm, odd ? permo: perme, 8); expand_vec_perm_vpermil (d); } break; case V2DFmode: case V4SFmode: case V2DImode: case V4SImode: /* These are always directly implementable by expand_vec_perm_1. */ gcc_unreachable (); case V8HImode: if (TARGET_SSSE3) return expand_vec_perm_pshufb2 (d); else { /* We need 2*log2(N)-1 operations to achieve odd/even with interleave. */ t1 = gen_reg_rtx (V8HImode); t2 = gen_reg_rtx (V8HImode); emit_insn (gen_vec_interleave_highv8hi (t1, d->op0, d->op1)); emit_insn (gen_vec_interleave_lowv8hi (d->target, d->op0, d->op1)); emit_insn (gen_vec_interleave_highv8hi (t2, d->target, t1)); emit_insn (gen_vec_interleave_lowv8hi (d->target, d->target, t1)); if (odd) t3 = gen_vec_interleave_highv8hi (d->target, d->target, t2); else t3 = gen_vec_interleave_lowv8hi (d->target, d->target, t2); emit_insn (t3); } break; case V16QImode: if (TARGET_SSSE3) return expand_vec_perm_pshufb2 (d); else { t1 = gen_reg_rtx (V16QImode); t2 = gen_reg_rtx (V16QImode); t3 = gen_reg_rtx (V16QImode); emit_insn (gen_vec_interleave_highv16qi (t1, d->op0, d->op1)); emit_insn (gen_vec_interleave_lowv16qi (d->target, d->op0, d->op1)); emit_insn (gen_vec_interleave_highv16qi (t2, d->target, t1)); emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t1)); emit_insn (gen_vec_interleave_highv16qi (t3, d->target, t2)); emit_insn (gen_vec_interleave_lowv16qi (d->target, d->target, t2)); if (odd) t3 = gen_vec_interleave_highv16qi (d->target, d->target, t3); else t3 = gen_vec_interleave_lowv16qi (d->target, d->target, t3); emit_insn (t3); } break; default: gcc_unreachable (); } return true; } /* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match extract-even and extract-odd permutations. */ static bool expand_vec_perm_even_odd (struct expand_vec_perm_d *d) { unsigned i, odd, nelt = d->nelt; odd = d->perm[0]; if (odd != 0 && odd != 1) return false; for (i = 1; i < nelt; ++i) if (d->perm[i] != 2 * i + odd) return false; return expand_vec_perm_even_odd_1 (d, odd); } /* A subroutine of ix86_expand_vec_perm_builtin_1. Implement broadcast permutations. We assume that expand_vec_perm_1 has already failed. */ static bool expand_vec_perm_broadcast_1 (struct expand_vec_perm_d *d) { unsigned elt = d->perm[0], nelt2 = d->nelt / 2; enum machine_mode vmode = d->vmode; unsigned char perm2[4]; rtx op0 = d->op0; bool ok; switch (vmode) { case V4DFmode: case V8SFmode: /* These are special-cased in sse.md so that we can optionally use the vbroadcast instruction. They expand to two insns if the input happens to be in a register. */ gcc_unreachable (); case V2DFmode: case V2DImode: case V4SFmode: case V4SImode: /* These are always implementable using standard shuffle patterns. */ gcc_unreachable (); case V8HImode: case V16QImode: /* These can be implemented via interleave. We save one insn by stopping once we have promoted to V4SImode and then use pshufd. */ do { optab otab = vec_interleave_low_optab; if (elt >= nelt2) { otab = vec_interleave_high_optab; elt -= nelt2; } nelt2 /= 2; op0 = expand_binop (vmode, otab, op0, op0, NULL, 0, OPTAB_DIRECT); vmode = get_mode_wider_vector (vmode); op0 = gen_lowpart (vmode, op0); } while (vmode != V4SImode); memset (perm2, elt, 4); ok = expand_vselect (gen_lowpart (V4SImode, d->target), op0, perm2, 4); gcc_assert (ok); return true; default: gcc_unreachable (); } } /* A subroutine of ix86_expand_vec_perm_builtin_1. Pattern match broadcast permutations. */ static bool expand_vec_perm_broadcast (struct expand_vec_perm_d *d) { unsigned i, elt, nelt = d->nelt; if (d->op0 != d->op1) return false; elt = d->perm[0]; for (i = 1; i < nelt; ++i) if (d->perm[i] != elt) return false; return expand_vec_perm_broadcast_1 (d); } /* The guts of ix86_expand_vec_perm_builtin, also used by the ok hook. With all of the interface bits taken care of, perform the expansion in D and return true on success. */ static bool ix86_expand_vec_perm_builtin_1 (struct expand_vec_perm_d *d) { /* Try a single instruction expansion. */ if (expand_vec_perm_1 (d)) return true; /* Try sequences of two instructions. */ if (expand_vec_perm_pshuflw_pshufhw (d)) return true; if (expand_vec_perm_palignr (d)) return true; if (expand_vec_perm_interleave2 (d)) return true; if (expand_vec_perm_broadcast (d)) return true; /* Try sequences of three instructions. */ if (expand_vec_perm_pshufb2 (d)) return true; /* ??? Look for narrow permutations whose element orderings would allow the promotion to a wider mode. */ /* ??? Look for sequences of interleave or a wider permute that place the data into the correct lanes for a half-vector shuffle like pshuf[lh]w or vpermilps. */ /* ??? Look for sequences of interleave that produce the desired results. The combinatorics of punpck[lh] get pretty ugly... */ if (expand_vec_perm_even_odd (d)) return true; return false; } /* Extract the values from the vector CST into the permutation array in D. Return 0 on error, 1 if all values from the permutation come from the first vector, 2 if all values from the second vector, and 3 otherwise. */ static int extract_vec_perm_cst (struct expand_vec_perm_d *d, tree cst) { tree list = TREE_VECTOR_CST_ELTS (cst); unsigned i, nelt = d->nelt; int ret = 0; for (i = 0; i < nelt; ++i, list = TREE_CHAIN (list)) { unsigned HOST_WIDE_INT e; if (!host_integerp (TREE_VALUE (list), 1)) return 0; e = tree_low_cst (TREE_VALUE (list), 1); if (e >= 2 * nelt) return 0; ret |= (e < nelt ? 1 : 2); d->perm[i] = e; } gcc_assert (list == NULL); /* For all elements from second vector, fold the elements to first. */ if (ret == 2) for (i = 0; i < nelt; ++i) d->perm[i] -= nelt; return ret; } static rtx ix86_expand_vec_perm_builtin (tree exp) { struct expand_vec_perm_d d; tree arg0, arg1, arg2; arg0 = CALL_EXPR_ARG (exp, 0); arg1 = CALL_EXPR_ARG (exp, 1); arg2 = CALL_EXPR_ARG (exp, 2); d.vmode = TYPE_MODE (TREE_TYPE (arg0)); d.nelt = GET_MODE_NUNITS (d.vmode); d.testing_p = false; gcc_assert (VECTOR_MODE_P (d.vmode)); if (TREE_CODE (arg2) != VECTOR_CST) { error_at (EXPR_LOCATION (exp), "vector permutation requires vector constant"); goto exit_error; } switch (extract_vec_perm_cst (&d, arg2)) { default: gcc_unreachable(); case 0: error_at (EXPR_LOCATION (exp), "invalid vector permutation constant"); goto exit_error; case 3: if (!operand_equal_p (arg0, arg1, 0)) { d.op0 = expand_expr (arg0, NULL_RTX, d.vmode, EXPAND_NORMAL); d.op0 = force_reg (d.vmode, d.op0); d.op1 = expand_expr (arg1, NULL_RTX, d.vmode, EXPAND_NORMAL); d.op1 = force_reg (d.vmode, d.op1); break; } /* The elements of PERM do not suggest that only the first operand is used, but both operands are identical. Allow easier matching of the permutation by folding the permutation into the single input vector. */ { unsigned i, nelt = d.nelt; for (i = 0; i < nelt; ++i) if (d.perm[i] >= nelt) d.perm[i] -= nelt; } /* FALLTHRU */ case 1: d.op0 = expand_expr (arg0, NULL_RTX, d.vmode, EXPAND_NORMAL); d.op0 = force_reg (d.vmode, d.op0); d.op1 = d.op0; break; case 2: d.op0 = expand_expr (arg1, NULL_RTX, d.vmode, EXPAND_NORMAL); d.op0 = force_reg (d.vmode, d.op0); d.op1 = d.op0; break; } d.target = gen_reg_rtx (d.vmode); if (ix86_expand_vec_perm_builtin_1 (&d)) return d.target; /* For compiler generated permutations, we should never got here, because the compiler should also be checking the ok hook. But since this is a builtin the user has access too, so don't abort. */ switch (d.nelt) { case 2: sorry ("vector permutation (%d %d)", d.perm[0], d.perm[1]); break; case 4: sorry ("vector permutation (%d %d %d %d)", d.perm[0], d.perm[1], d.perm[2], d.perm[3]); break; case 8: sorry ("vector permutation (%d %d %d %d %d %d %d %d)", d.perm[0], d.perm[1], d.perm[2], d.perm[3], d.perm[4], d.perm[5], d.perm[6], d.perm[7]); break; case 16: sorry ("vector permutation " "(%d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d)", d.perm[0], d.perm[1], d.perm[2], d.perm[3], d.perm[4], d.perm[5], d.perm[6], d.perm[7], d.perm[8], d.perm[9], d.perm[10], d.perm[11], d.perm[12], d.perm[13], d.perm[14], d.perm[15]); break; default: gcc_unreachable (); } exit_error: return CONST0_RTX (d.vmode); } /* Implement targetm.vectorize.builtin_vec_perm_ok. */ static bool ix86_vectorize_builtin_vec_perm_ok (tree vec_type, tree mask) { struct expand_vec_perm_d d; int vec_mask; bool ret, one_vec; d.vmode = TYPE_MODE (vec_type); d.nelt = GET_MODE_NUNITS (d.vmode); d.testing_p = true; /* Given sufficient ISA support we can just return true here for selected vector modes. */ if (GET_MODE_SIZE (d.vmode) == 16) { /* All implementable with a single vpperm insn. */ if (TARGET_XOP) return true; /* All implementable with 2 pshufb + 1 ior. */ if (TARGET_SSSE3) return true; /* All implementable with shufpd or unpck[lh]pd. */ if (d.nelt == 2) return true; } vec_mask = extract_vec_perm_cst (&d, mask); /* This hook is cannot be called in response to something that the user does (unlike the builtin expander) so we shouldn't ever see an error generated from the extract. */ gcc_assert (vec_mask > 0 && vec_mask <= 3); one_vec = (vec_mask != 3); /* Implementable with shufps or pshufd. */ if (one_vec && (d.vmode == V4SFmode || d.vmode == V4SImode)) return true; /* Otherwise we have to go through the motions and see if we can figure out how to generate the requested permutation. */ d.target = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 1); d.op1 = d.op0 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 2); if (!one_vec) d.op1 = gen_raw_REG (d.vmode, LAST_VIRTUAL_REGISTER + 3); start_sequence (); ret = ix86_expand_vec_perm_builtin_1 (&d); end_sequence (); return ret; } void ix86_expand_vec_extract_even_odd (rtx targ, rtx op0, rtx op1, unsigned odd) { struct expand_vec_perm_d d; unsigned i, nelt; d.target = targ; d.op0 = op0; d.op1 = op1; d.vmode = GET_MODE (targ); d.nelt = nelt = GET_MODE_NUNITS (d.vmode); d.testing_p = false; for (i = 0; i < nelt; ++i) d.perm[i] = i * 2 + odd; /* We'll either be able to implement the permutation directly... */ if (expand_vec_perm_1 (&d)) return; /* ... or we use the special-case patterns. */ expand_vec_perm_even_odd_1 (&d, odd); } /* This function returns the calling abi specific va_list type node. It returns the FNDECL specific va_list type. */ tree ix86_fn_abi_va_list (tree fndecl) { if (!TARGET_64BIT) return va_list_type_node; gcc_assert (fndecl != NULL_TREE); if (ix86_function_abi ((const_tree) fndecl) == MS_ABI) return ms_va_list_type_node; else return sysv_va_list_type_node; } /* Returns the canonical va_list type specified by TYPE. If there is no valid TYPE provided, it return NULL_TREE. */ tree ix86_canonical_va_list_type (tree type) { tree wtype, htype; /* Resolve references and pointers to va_list type. */ if (INDIRECT_REF_P (type)) type = TREE_TYPE (type); else if (POINTER_TYPE_P (type) && POINTER_TYPE_P (TREE_TYPE(type))) type = TREE_TYPE (type); if (TARGET_64BIT) { wtype = va_list_type_node; gcc_assert (wtype != NULL_TREE); htype = type; if (TREE_CODE (wtype) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (htype) == ARRAY_TYPE || POINTER_TYPE_P (htype)) { wtype = TREE_TYPE (wtype); htype = TREE_TYPE (htype); } } if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) return va_list_type_node; wtype = sysv_va_list_type_node; gcc_assert (wtype != NULL_TREE); htype = type; if (TREE_CODE (wtype) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (htype) == ARRAY_TYPE || POINTER_TYPE_P (htype)) { wtype = TREE_TYPE (wtype); htype = TREE_TYPE (htype); } } if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) return sysv_va_list_type_node; wtype = ms_va_list_type_node; gcc_assert (wtype != NULL_TREE); htype = type; if (TREE_CODE (wtype) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (htype) == ARRAY_TYPE || POINTER_TYPE_P (htype)) { wtype = TREE_TYPE (wtype); htype = TREE_TYPE (htype); } } if (TYPE_MAIN_VARIANT (wtype) == TYPE_MAIN_VARIANT (htype)) return ms_va_list_type_node; return NULL_TREE; } return std_canonical_va_list_type (type); } /* Iterate through the target-specific builtin types for va_list. IDX denotes the iterator, *PTREE is set to the result type of the va_list builtin, and *PNAME to its internal type. Returns zero if there is no element for this index, otherwise IDX should be increased upon the next call. Note, do not iterate a base builtin's name like __builtin_va_list. Used from c_common_nodes_and_builtins. */ int ix86_enum_va_list (int idx, const char **pname, tree *ptree) { if (!TARGET_64BIT) return 0; switch (idx) { case 0: *ptree = ms_va_list_type_node; *pname = "__builtin_ms_va_list"; break; case 1: *ptree = sysv_va_list_type_node; *pname = "__builtin_sysv_va_list"; break; default: return 0; } return 1; } /* Initialize the GCC target structure. */ #undef TARGET_RETURN_IN_MEMORY #define TARGET_RETURN_IN_MEMORY ix86_return_in_memory #undef TARGET_LEGITIMIZE_ADDRESS #define TARGET_LEGITIMIZE_ADDRESS ix86_legitimize_address #undef TARGET_ATTRIBUTE_TABLE #define TARGET_ATTRIBUTE_TABLE ix86_attribute_table #if TARGET_DLLIMPORT_DECL_ATTRIBUTES # undef TARGET_MERGE_DECL_ATTRIBUTES # define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes #endif #undef TARGET_COMP_TYPE_ATTRIBUTES #define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes #undef TARGET_INIT_BUILTINS #define TARGET_INIT_BUILTINS ix86_init_builtins #undef TARGET_BUILTIN_DECL #define TARGET_BUILTIN_DECL ix86_builtin_decl #undef TARGET_EXPAND_BUILTIN #define TARGET_EXPAND_BUILTIN ix86_expand_builtin #undef TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION #define TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION \ ix86_builtin_vectorized_function #undef TARGET_VECTORIZE_BUILTIN_CONVERSION #define TARGET_VECTORIZE_BUILTIN_CONVERSION ix86_vectorize_builtin_conversion #undef TARGET_BUILTIN_RECIPROCAL #define TARGET_BUILTIN_RECIPROCAL ix86_builtin_reciprocal #undef TARGET_ASM_FUNCTION_EPILOGUE #define TARGET_ASM_FUNCTION_EPILOGUE ix86_output_function_epilogue #undef TARGET_ENCODE_SECTION_INFO #ifndef SUBTARGET_ENCODE_SECTION_INFO #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info #else #define TARGET_ENCODE_SECTION_INFO SUBTARGET_ENCODE_SECTION_INFO #endif #undef TARGET_ASM_OPEN_PAREN #define TARGET_ASM_OPEN_PAREN "" #undef TARGET_ASM_CLOSE_PAREN #define TARGET_ASM_CLOSE_PAREN "" #undef TARGET_ASM_BYTE_OP #define TARGET_ASM_BYTE_OP ASM_BYTE #undef TARGET_ASM_ALIGNED_HI_OP #define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT #undef TARGET_ASM_ALIGNED_SI_OP #define TARGET_ASM_ALIGNED_SI_OP ASM_LONG #ifdef ASM_QUAD #undef TARGET_ASM_ALIGNED_DI_OP #define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD #endif #undef TARGET_ASM_UNALIGNED_HI_OP #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP #undef TARGET_ASM_UNALIGNED_SI_OP #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP #undef TARGET_ASM_UNALIGNED_DI_OP #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP #undef TARGET_SCHED_ADJUST_COST #define TARGET_SCHED_ADJUST_COST ix86_adjust_cost #undef TARGET_SCHED_ISSUE_RATE #define TARGET_SCHED_ISSUE_RATE ix86_issue_rate #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \ ia32_multipass_dfa_lookahead #undef TARGET_FUNCTION_OK_FOR_SIBCALL #define TARGET_FUNCTION_OK_FOR_SIBCALL ix86_function_ok_for_sibcall #ifdef HAVE_AS_TLS #undef TARGET_HAVE_TLS #define TARGET_HAVE_TLS true #endif #undef TARGET_CANNOT_FORCE_CONST_MEM #define TARGET_CANNOT_FORCE_CONST_MEM ix86_cannot_force_const_mem #undef TARGET_USE_BLOCKS_FOR_CONSTANT_P #define TARGET_USE_BLOCKS_FOR_CONSTANT_P hook_bool_mode_const_rtx_true #undef TARGET_DELEGITIMIZE_ADDRESS #define TARGET_DELEGITIMIZE_ADDRESS ix86_delegitimize_address #undef TARGET_MS_BITFIELD_LAYOUT_P #define TARGET_MS_BITFIELD_LAYOUT_P ix86_ms_bitfield_layout_p #if TARGET_MACHO #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P darwin_binds_local_p #endif #if TARGET_DLLIMPORT_DECL_ATTRIBUTES #undef TARGET_BINDS_LOCAL_P #define TARGET_BINDS_LOCAL_P i386_pe_binds_local_p #endif #undef TARGET_ASM_OUTPUT_MI_THUNK #define TARGET_ASM_OUTPUT_MI_THUNK x86_output_mi_thunk #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK #define TARGET_ASM_CAN_OUTPUT_MI_THUNK x86_can_output_mi_thunk #undef TARGET_ASM_FILE_START #define TARGET_ASM_FILE_START x86_file_start #undef TARGET_DEFAULT_TARGET_FLAGS #define TARGET_DEFAULT_TARGET_FLAGS \ (TARGET_DEFAULT \ | TARGET_SUBTARGET_DEFAULT \ | TARGET_TLS_DIRECT_SEG_REFS_DEFAULT \ | MASK_FUSED_MADD) #undef TARGET_HANDLE_OPTION #define TARGET_HANDLE_OPTION ix86_handle_option #undef TARGET_RTX_COSTS #define TARGET_RTX_COSTS ix86_rtx_costs #undef TARGET_ADDRESS_COST #define TARGET_ADDRESS_COST ix86_address_cost #undef TARGET_FIXED_CONDITION_CODE_REGS #define TARGET_FIXED_CONDITION_CODE_REGS ix86_fixed_condition_code_regs #undef TARGET_CC_MODES_COMPATIBLE #define TARGET_CC_MODES_COMPATIBLE ix86_cc_modes_compatible #undef TARGET_MACHINE_DEPENDENT_REORG #define TARGET_MACHINE_DEPENDENT_REORG ix86_reorg #undef TARGET_BUILTIN_SETJMP_FRAME_VALUE #define TARGET_BUILTIN_SETJMP_FRAME_VALUE ix86_builtin_setjmp_frame_value #undef TARGET_BUILD_BUILTIN_VA_LIST #define TARGET_BUILD_BUILTIN_VA_LIST ix86_build_builtin_va_list #undef TARGET_FN_ABI_VA_LIST #define TARGET_FN_ABI_VA_LIST ix86_fn_abi_va_list #undef TARGET_CANONICAL_VA_LIST_TYPE #define TARGET_CANONICAL_VA_LIST_TYPE ix86_canonical_va_list_type #undef TARGET_EXPAND_BUILTIN_VA_START #define TARGET_EXPAND_BUILTIN_VA_START ix86_va_start #undef TARGET_MD_ASM_CLOBBERS #define TARGET_MD_ASM_CLOBBERS ix86_md_asm_clobbers #undef TARGET_PROMOTE_PROTOTYPES #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true #undef TARGET_STRUCT_VALUE_RTX #define TARGET_STRUCT_VALUE_RTX ix86_struct_value_rtx #undef TARGET_SETUP_INCOMING_VARARGS #define TARGET_SETUP_INCOMING_VARARGS ix86_setup_incoming_varargs #undef TARGET_MUST_PASS_IN_STACK #define TARGET_MUST_PASS_IN_STACK ix86_must_pass_in_stack #undef TARGET_PASS_BY_REFERENCE #define TARGET_PASS_BY_REFERENCE ix86_pass_by_reference #undef TARGET_INTERNAL_ARG_POINTER #define TARGET_INTERNAL_ARG_POINTER ix86_internal_arg_pointer #undef TARGET_UPDATE_STACK_BOUNDARY #define TARGET_UPDATE_STACK_BOUNDARY ix86_update_stack_boundary #undef TARGET_GET_DRAP_RTX #define TARGET_GET_DRAP_RTX ix86_get_drap_rtx #undef TARGET_STRICT_ARGUMENT_NAMING #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true #undef TARGET_STATIC_CHAIN #define TARGET_STATIC_CHAIN ix86_static_chain #undef TARGET_TRAMPOLINE_INIT #define TARGET_TRAMPOLINE_INIT ix86_trampoline_init #undef TARGET_GIMPLIFY_VA_ARG_EXPR #define TARGET_GIMPLIFY_VA_ARG_EXPR ix86_gimplify_va_arg #undef TARGET_SCALAR_MODE_SUPPORTED_P #define TARGET_SCALAR_MODE_SUPPORTED_P ix86_scalar_mode_supported_p #undef TARGET_VECTOR_MODE_SUPPORTED_P #define TARGET_VECTOR_MODE_SUPPORTED_P ix86_vector_mode_supported_p #undef TARGET_C_MODE_FOR_SUFFIX #define TARGET_C_MODE_FOR_SUFFIX ix86_c_mode_for_suffix #ifdef HAVE_AS_TLS #undef TARGET_ASM_OUTPUT_DWARF_DTPREL #define TARGET_ASM_OUTPUT_DWARF_DTPREL i386_output_dwarf_dtprel #endif #ifdef SUBTARGET_INSERT_ATTRIBUTES #undef TARGET_INSERT_ATTRIBUTES #define TARGET_INSERT_ATTRIBUTES SUBTARGET_INSERT_ATTRIBUTES #endif #undef TARGET_MANGLE_TYPE #define TARGET_MANGLE_TYPE ix86_mangle_type #undef TARGET_STACK_PROTECT_FAIL #define TARGET_STACK_PROTECT_FAIL ix86_stack_protect_fail #undef TARGET_FUNCTION_VALUE #define TARGET_FUNCTION_VALUE ix86_function_value #undef TARGET_SECONDARY_RELOAD #define TARGET_SECONDARY_RELOAD ix86_secondary_reload #undef TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST #define TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST \ ix86_builtin_vectorization_cost #undef TARGET_VECTORIZE_BUILTIN_VEC_PERM #define TARGET_VECTORIZE_BUILTIN_VEC_PERM \ ix86_vectorize_builtin_vec_perm #undef TARGET_VECTORIZE_BUILTIN_VEC_PERM_OK #define TARGET_VECTORIZE_BUILTIN_VEC_PERM_OK \ ix86_vectorize_builtin_vec_perm_ok #undef TARGET_SET_CURRENT_FUNCTION #define TARGET_SET_CURRENT_FUNCTION ix86_set_current_function #undef TARGET_OPTION_VALID_ATTRIBUTE_P #define TARGET_OPTION_VALID_ATTRIBUTE_P ix86_valid_target_attribute_p #undef TARGET_OPTION_SAVE #define TARGET_OPTION_SAVE ix86_function_specific_save #undef TARGET_OPTION_RESTORE #define TARGET_OPTION_RESTORE ix86_function_specific_restore #undef TARGET_OPTION_PRINT #define TARGET_OPTION_PRINT ix86_function_specific_print #undef TARGET_CAN_INLINE_P #define TARGET_CAN_INLINE_P ix86_can_inline_p #undef TARGET_EXPAND_TO_RTL_HOOK #define TARGET_EXPAND_TO_RTL_HOOK ix86_maybe_switch_abi #undef TARGET_LEGITIMATE_ADDRESS_P #define TARGET_LEGITIMATE_ADDRESS_P ix86_legitimate_address_p #undef TARGET_IRA_COVER_CLASSES #define TARGET_IRA_COVER_CLASSES i386_ira_cover_classes #undef TARGET_FRAME_POINTER_REQUIRED #define TARGET_FRAME_POINTER_REQUIRED ix86_frame_pointer_required #undef TARGET_CAN_ELIMINATE #define TARGET_CAN_ELIMINATE ix86_can_eliminate #undef TARGET_ASM_CODE_END #define TARGET_ASM_CODE_END ix86_code_end struct gcc_target targetm = TARGET_INITIALIZER; #include "gt-i386.h"
Go to most recent revision | Compare with Previous | Blame | View Log