URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [i386/] [smmintrin.h] - Rev 282
Go to most recent revision | Compare with Previous | Blame | View Log
/* Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. /* Implemented from the specification included in the Intel C++ Compiler User Guide and Reference, version 10.0. */ #ifndef _SMMINTRIN_H_INCLUDED #define _SMMINTRIN_H_INCLUDED #ifndef __SSE4_1__ # error "SSE4.1 instruction set not enabled" #else /* We need definitions from the SSSE3, SSE3, SSE2 and SSE header files. */ #include <tmmintrin.h> /* Rounding mode macros. */ #define _MM_FROUND_TO_NEAREST_INT 0x00 #define _MM_FROUND_TO_NEG_INF 0x01 #define _MM_FROUND_TO_POS_INF 0x02 #define _MM_FROUND_TO_ZERO 0x03 #define _MM_FROUND_CUR_DIRECTION 0x04 #define _MM_FROUND_RAISE_EXC 0x00 #define _MM_FROUND_NO_EXC 0x08 #define _MM_FROUND_NINT \ (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC) #define _MM_FROUND_FLOOR \ (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC) #define _MM_FROUND_CEIL \ (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC) #define _MM_FROUND_TRUNC \ (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC) #define _MM_FROUND_RINT \ (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC) #define _MM_FROUND_NEARBYINT \ (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC) /* Test Instruction */ /* Packed integer 128-bit bitwise comparison. Return 1 if (__V & __M) == 0. */ extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_testz_si128 (__m128i __M, __m128i __V) { return __builtin_ia32_ptestz128 ((__v2di)__M, (__v2di)__V); } /* Packed integer 128-bit bitwise comparison. Return 1 if (__V & ~__M) == 0. */ extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_testc_si128 (__m128i __M, __m128i __V) { return __builtin_ia32_ptestc128 ((__v2di)__M, (__v2di)__V); } /* Packed integer 128-bit bitwise comparison. Return 1 if (__V & __M) != 0 && (__V & ~__M) != 0. */ extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_testnzc_si128 (__m128i __M, __m128i __V) { return __builtin_ia32_ptestnzc128 ((__v2di)__M, (__v2di)__V); } /* Macros for packed integer 128-bit comparison intrinsics. */ #define _mm_test_all_zeros(M, V) _mm_testz_si128 ((M), (V)) #define _mm_test_all_ones(V) \ _mm_testc_si128 ((V), _mm_cmpeq_epi32 ((V), (V))) #define _mm_test_mix_ones_zeros(M, V) _mm_testnzc_si128 ((M), (V)) /* Packed/scalar double precision floating point rounding. */ #ifdef __OPTIMIZE__ extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_round_pd (__m128d __V, const int __M) { return (__m128d) __builtin_ia32_roundpd ((__v2df)__V, __M); } extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_round_sd(__m128d __D, __m128d __V, const int __M) { return (__m128d) __builtin_ia32_roundsd ((__v2df)__D, (__v2df)__V, __M); } #else #define _mm_round_pd(V, M) \ ((__m128d) __builtin_ia32_roundpd ((__v2df)(__m128d)(V), (int)(M))) #define _mm_round_sd(D, V, M) \ ((__m128d) __builtin_ia32_roundsd ((__v2df)(__m128d)(D), \ (__v2df)(__m128d)(V), (int)(M))) #endif /* Packed/scalar single precision floating point rounding. */ #ifdef __OPTIMIZE__ extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_round_ps (__m128 __V, const int __M) { return (__m128) __builtin_ia32_roundps ((__v4sf)__V, __M); } extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_round_ss (__m128 __D, __m128 __V, const int __M) { return (__m128) __builtin_ia32_roundss ((__v4sf)__D, (__v4sf)__V, __M); } #else #define _mm_round_ps(V, M) \ ((__m128) __builtin_ia32_roundps ((__v4sf)(__m128)(V), (int)(M))) #define _mm_round_ss(D, V, M) \ ((__m128) __builtin_ia32_roundss ((__v4sf)(__m128)(D), \ (__v4sf)(__m128)(V), (int)(M))) #endif /* Macros for ceil/floor intrinsics. */ #define _mm_ceil_pd(V) _mm_round_pd ((V), _MM_FROUND_CEIL) #define _mm_ceil_sd(D, V) _mm_round_sd ((D), (V), _MM_FROUND_CEIL) #define _mm_floor_pd(V) _mm_round_pd((V), _MM_FROUND_FLOOR) #define _mm_floor_sd(D, V) _mm_round_sd ((D), (V), _MM_FROUND_FLOOR) #define _mm_ceil_ps(V) _mm_round_ps ((V), _MM_FROUND_CEIL) #define _mm_ceil_ss(D, V) _mm_round_ss ((D), (V), _MM_FROUND_CEIL) #define _mm_floor_ps(V) _mm_round_ps ((V), _MM_FROUND_FLOOR) #define _mm_floor_ss(D, V) _mm_round_ss ((D), (V), _MM_FROUND_FLOOR) /* SSE4.1 */ /* Integer blend instructions - select data from 2 sources using constant/variable mask. */ #ifdef __OPTIMIZE__ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_blend_epi16 (__m128i __X, __m128i __Y, const int __M) { return (__m128i) __builtin_ia32_pblendw128 ((__v8hi)__X, (__v8hi)__Y, __M); } #else #define _mm_blend_epi16(X, Y, M) \ ((__m128i) __builtin_ia32_pblendw128 ((__v8hi)(__m128i)(X), \ (__v8hi)(__m128i)(Y), (int)(M))) #endif extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_blendv_epi8 (__m128i __X, __m128i __Y, __m128i __M) { return (__m128i) __builtin_ia32_pblendvb128 ((__v16qi)__X, (__v16qi)__Y, (__v16qi)__M); } /* Single precision floating point blend instructions - select data from 2 sources using constant/variable mask. */ #ifdef __OPTIMIZE__ extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_blend_ps (__m128 __X, __m128 __Y, const int __M) { return (__m128) __builtin_ia32_blendps ((__v4sf)__X, (__v4sf)__Y, __M); } #else #define _mm_blend_ps(X, Y, M) \ ((__m128) __builtin_ia32_blendps ((__v4sf)(__m128)(X), \ (__v4sf)(__m128)(Y), (int)(M))) #endif extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_blendv_ps (__m128 __X, __m128 __Y, __m128 __M) { return (__m128) __builtin_ia32_blendvps ((__v4sf)__X, (__v4sf)__Y, (__v4sf)__M); } /* Double precision floating point blend instructions - select data from 2 sources using constant/variable mask. */ #ifdef __OPTIMIZE__ extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_blend_pd (__m128d __X, __m128d __Y, const int __M) { return (__m128d) __builtin_ia32_blendpd ((__v2df)__X, (__v2df)__Y, __M); } #else #define _mm_blend_pd(X, Y, M) \ ((__m128d) __builtin_ia32_blendpd ((__v2df)(__m128d)(X), \ (__v2df)(__m128d)(Y), (int)(M))) #endif extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_blendv_pd (__m128d __X, __m128d __Y, __m128d __M) { return (__m128d) __builtin_ia32_blendvpd ((__v2df)__X, (__v2df)__Y, (__v2df)__M); } /* Dot product instructions with mask-defined summing and zeroing parts of result. */ #ifdef __OPTIMIZE__ extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_dp_ps (__m128 __X, __m128 __Y, const int __M) { return (__m128) __builtin_ia32_dpps ((__v4sf)__X, (__v4sf)__Y, __M); } extern __inline __m128d __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_dp_pd (__m128d __X, __m128d __Y, const int __M) { return (__m128d) __builtin_ia32_dppd ((__v2df)__X, (__v2df)__Y, __M); } #else #define _mm_dp_ps(X, Y, M) \ ((__m128) __builtin_ia32_dpps ((__v4sf)(__m128)(X), \ (__v4sf)(__m128)(Y), (int)(M))) #define _mm_dp_pd(X, Y, M) \ ((__m128d) __builtin_ia32_dppd ((__v2df)(__m128d)(X), \ (__v2df)(__m128d)(Y), (int)(M))) #endif /* Packed integer 64-bit comparison, zeroing or filling with ones corresponding parts of result. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpeq_epi64 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pcmpeqq ((__v2di)__X, (__v2di)__Y); } /* Min/max packed integer instructions. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_min_epi8 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pminsb128 ((__v16qi)__X, (__v16qi)__Y); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_max_epi8 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pmaxsb128 ((__v16qi)__X, (__v16qi)__Y); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_min_epu16 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pminuw128 ((__v8hi)__X, (__v8hi)__Y); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_max_epu16 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pmaxuw128 ((__v8hi)__X, (__v8hi)__Y); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_min_epi32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pminsd128 ((__v4si)__X, (__v4si)__Y); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_max_epi32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pmaxsd128 ((__v4si)__X, (__v4si)__Y); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_min_epu32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pminud128 ((__v4si)__X, (__v4si)__Y); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_max_epu32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pmaxud128 ((__v4si)__X, (__v4si)__Y); } /* Packed integer 32-bit multiplication with truncation of upper halves of results. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_mullo_epi32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pmulld128 ((__v4si)__X, (__v4si)__Y); } /* Packed integer 32-bit multiplication of 2 pairs of operands with two 64-bit results. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_mul_epi32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pmuldq128 ((__v4si)__X, (__v4si)__Y); } /* Insert single precision float into packed single precision array element selected by index N. The bits [7-6] of N define S index, the bits [5-4] define D index, and bits [3-0] define zeroing mask for D. */ #ifdef __OPTIMIZE__ extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_insert_ps (__m128 __D, __m128 __S, const int __N) { return (__m128) __builtin_ia32_insertps128 ((__v4sf)__D, (__v4sf)__S, __N); } #else #define _mm_insert_ps(D, S, N) \ ((__m128) __builtin_ia32_insertps128 ((__v4sf)(__m128)(D), \ (__v4sf)(__m128)(S), (int)(N))) #endif /* Helper macro to create the N value for _mm_insert_ps. */ #define _MM_MK_INSERTPS_NDX(S, D, M) (((S) << 6) | ((D) << 4) | (M)) /* Extract binary representation of single precision float from packed single precision array element of X selected by index N. */ #ifdef __OPTIMIZE__ extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_extract_ps (__m128 __X, const int __N) { union { int i; float f; } __tmp; __tmp.f = __builtin_ia32_vec_ext_v4sf ((__v4sf)__X, __N); return __tmp.i; } #else #define _mm_extract_ps(X, N) \ (__extension__ \ ({ \ union { int i; float f; } __tmp; \ __tmp.f = __builtin_ia32_vec_ext_v4sf ((__v4sf)(__m128)(X), (int)(N)); \ __tmp.i; \ })) #endif /* Extract binary representation of single precision float into D from packed single precision array element of S selected by index N. */ #define _MM_EXTRACT_FLOAT(D, S, N) \ { (D) = __builtin_ia32_vec_ext_v4sf ((__v4sf)(S), (N)); } /* Extract specified single precision float element into the lower part of __m128. */ #define _MM_PICK_OUT_PS(X, N) \ _mm_insert_ps (_mm_setzero_ps (), (X), \ _MM_MK_INSERTPS_NDX ((N), 0, 0x0e)) /* Insert integer, S, into packed integer array element of D selected by index N. */ #ifdef __OPTIMIZE__ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_insert_epi8 (__m128i __D, int __S, const int __N) { return (__m128i) __builtin_ia32_vec_set_v16qi ((__v16qi)__D, __S, __N); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_insert_epi32 (__m128i __D, int __S, const int __N) { return (__m128i) __builtin_ia32_vec_set_v4si ((__v4si)__D, __S, __N); } #ifdef __x86_64__ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_insert_epi64 (__m128i __D, long long __S, const int __N) { return (__m128i) __builtin_ia32_vec_set_v2di ((__v2di)__D, __S, __N); } #endif #else #define _mm_insert_epi8(D, S, N) \ ((__m128i) __builtin_ia32_vec_set_v16qi ((__v16qi)(__m128i)(D), \ (int)(S), (int)(N))) #define _mm_insert_epi32(D, S, N) \ ((__m128i) __builtin_ia32_vec_set_v4si ((__v4si)(__m128i)(D), \ (int)(S), (int)(N))) #ifdef __x86_64__ #define _mm_insert_epi64(D, S, N) \ ((__m128i) __builtin_ia32_vec_set_v2di ((__v2di)(__m128i)(D), \ (long long)(S), (int)(N))) #endif #endif /* Extract integer from packed integer array element of X selected by index N. */ #ifdef __OPTIMIZE__ extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_extract_epi8 (__m128i __X, const int __N) { return __builtin_ia32_vec_ext_v16qi ((__v16qi)__X, __N); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_extract_epi32 (__m128i __X, const int __N) { return __builtin_ia32_vec_ext_v4si ((__v4si)__X, __N); } #ifdef __x86_64__ extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_extract_epi64 (__m128i __X, const int __N) { return __builtin_ia32_vec_ext_v2di ((__v2di)__X, __N); } #endif #else #define _mm_extract_epi8(X, N) \ ((int) __builtin_ia32_vec_ext_v16qi ((__v16qi)(__m128i)(X), (int)(N))) #define _mm_extract_epi32(X, N) \ ((int) __builtin_ia32_vec_ext_v4si ((__v4si)(__m128i)(X), (int)(N))) #ifdef __x86_64__ #define _mm_extract_epi64(X, N) \ ((long long) __builtin_ia32_vec_ext_v2di ((__v2di)(__m128i)(X), (int)(N))) #endif #endif /* Return horizontal packed word minimum and its index in bits [15:0] and bits [18:16] respectively. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_minpos_epu16 (__m128i __X) { return (__m128i) __builtin_ia32_phminposuw128 ((__v8hi)__X); } /* Packed integer sign-extension. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepi8_epi32 (__m128i __X) { return (__m128i) __builtin_ia32_pmovsxbd128 ((__v16qi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepi16_epi32 (__m128i __X) { return (__m128i) __builtin_ia32_pmovsxwd128 ((__v8hi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepi8_epi64 (__m128i __X) { return (__m128i) __builtin_ia32_pmovsxbq128 ((__v16qi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepi32_epi64 (__m128i __X) { return (__m128i) __builtin_ia32_pmovsxdq128 ((__v4si)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepi16_epi64 (__m128i __X) { return (__m128i) __builtin_ia32_pmovsxwq128 ((__v8hi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepi8_epi16 (__m128i __X) { return (__m128i) __builtin_ia32_pmovsxbw128 ((__v16qi)__X); } /* Packed integer zero-extension. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepu8_epi32 (__m128i __X) { return (__m128i) __builtin_ia32_pmovzxbd128 ((__v16qi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepu16_epi32 (__m128i __X) { return (__m128i) __builtin_ia32_pmovzxwd128 ((__v8hi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepu8_epi64 (__m128i __X) { return (__m128i) __builtin_ia32_pmovzxbq128 ((__v16qi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepu32_epi64 (__m128i __X) { return (__m128i) __builtin_ia32_pmovzxdq128 ((__v4si)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepu16_epi64 (__m128i __X) { return (__m128i) __builtin_ia32_pmovzxwq128 ((__v8hi)__X); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cvtepu8_epi16 (__m128i __X) { return (__m128i) __builtin_ia32_pmovzxbw128 ((__v16qi)__X); } /* Pack 8 double words from 2 operands into 8 words of result with unsigned saturation. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_packus_epi32 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_packusdw128 ((__v4si)__X, (__v4si)__Y); } /* Sum absolute 8-bit integer difference of adjacent groups of 4 byte integers in the first 2 operands. Starting offsets within operands are determined by the 3rd mask operand. */ #ifdef __OPTIMIZE__ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_mpsadbw_epu8 (__m128i __X, __m128i __Y, const int __M) { return (__m128i) __builtin_ia32_mpsadbw128 ((__v16qi)__X, (__v16qi)__Y, __M); } #else #define _mm_mpsadbw_epu8(X, Y, M) \ ((__m128i) __builtin_ia32_mpsadbw128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #endif /* Load double quadword using non-temporal aligned hint. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_stream_load_si128 (__m128i *__X) { return (__m128i) __builtin_ia32_movntdqa ((__v2di *) __X); } #ifdef __SSE4_2__ /* These macros specify the source data format. */ #define _SIDD_UBYTE_OPS 0x00 #define _SIDD_UWORD_OPS 0x01 #define _SIDD_SBYTE_OPS 0x02 #define _SIDD_SWORD_OPS 0x03 /* These macros specify the comparison operation. */ #define _SIDD_CMP_EQUAL_ANY 0x00 #define _SIDD_CMP_RANGES 0x04 #define _SIDD_CMP_EQUAL_EACH 0x08 #define _SIDD_CMP_EQUAL_ORDERED 0x0c /* These macros specify the the polarity. */ #define _SIDD_POSITIVE_POLARITY 0x00 #define _SIDD_NEGATIVE_POLARITY 0x10 #define _SIDD_MASKED_POSITIVE_POLARITY 0x20 #define _SIDD_MASKED_NEGATIVE_POLARITY 0x30 /* These macros specify the output selection in _mm_cmpXstri (). */ #define _SIDD_LEAST_SIGNIFICANT 0x00 #define _SIDD_MOST_SIGNIFICANT 0x40 /* These macros specify the output selection in _mm_cmpXstrm (). */ #define _SIDD_BIT_MASK 0x00 #define _SIDD_UNIT_MASK 0x40 /* Intrinsics for text/string processing. */ #ifdef __OPTIMIZE__ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpistrm (__m128i __X, __m128i __Y, const int __M) { return (__m128i) __builtin_ia32_pcmpistrm128 ((__v16qi)__X, (__v16qi)__Y, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpistri (__m128i __X, __m128i __Y, const int __M) { return __builtin_ia32_pcmpistri128 ((__v16qi)__X, (__v16qi)__Y, __M); } extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpestrm (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M) { return (__m128i) __builtin_ia32_pcmpestrm128 ((__v16qi)__X, __LX, (__v16qi)__Y, __LY, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpestri (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M) { return __builtin_ia32_pcmpestri128 ((__v16qi)__X, __LX, (__v16qi)__Y, __LY, __M); } #else #define _mm_cmpistrm(X, Y, M) \ ((__m128i) __builtin_ia32_pcmpistrm128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #define _mm_cmpistri(X, Y, M) \ ((int) __builtin_ia32_pcmpistri128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #define _mm_cmpestrm(X, LX, Y, LY, M) \ ((__m128i) __builtin_ia32_pcmpestrm128 ((__v16qi)(__m128i)(X), \ (int)(LX), (__v16qi)(__m128i)(Y), \ (int)(LY), (int)(M))) #define _mm_cmpestri(X, LX, Y, LY, M) \ ((int) __builtin_ia32_pcmpestri128 ((__v16qi)(__m128i)(X), (int)(LX), \ (__v16qi)(__m128i)(Y), (int)(LY), \ (int)(M))) #endif /* Intrinsics for text/string processing and reading values of EFlags. */ #ifdef __OPTIMIZE__ extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpistra (__m128i __X, __m128i __Y, const int __M) { return __builtin_ia32_pcmpistria128 ((__v16qi)__X, (__v16qi)__Y, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpistrc (__m128i __X, __m128i __Y, const int __M) { return __builtin_ia32_pcmpistric128 ((__v16qi)__X, (__v16qi)__Y, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpistro (__m128i __X, __m128i __Y, const int __M) { return __builtin_ia32_pcmpistrio128 ((__v16qi)__X, (__v16qi)__Y, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpistrs (__m128i __X, __m128i __Y, const int __M) { return __builtin_ia32_pcmpistris128 ((__v16qi)__X, (__v16qi)__Y, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpistrz (__m128i __X, __m128i __Y, const int __M) { return __builtin_ia32_pcmpistriz128 ((__v16qi)__X, (__v16qi)__Y, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpestra (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M) { return __builtin_ia32_pcmpestria128 ((__v16qi)__X, __LX, (__v16qi)__Y, __LY, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpestrc (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M) { return __builtin_ia32_pcmpestric128 ((__v16qi)__X, __LX, (__v16qi)__Y, __LY, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpestro (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M) { return __builtin_ia32_pcmpestrio128 ((__v16qi)__X, __LX, (__v16qi)__Y, __LY, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpestrs (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M) { return __builtin_ia32_pcmpestris128 ((__v16qi)__X, __LX, (__v16qi)__Y, __LY, __M); } extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpestrz (__m128i __X, int __LX, __m128i __Y, int __LY, const int __M) { return __builtin_ia32_pcmpestriz128 ((__v16qi)__X, __LX, (__v16qi)__Y, __LY, __M); } #else #define _mm_cmpistra(X, Y, M) \ ((int) __builtin_ia32_pcmpistria128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #define _mm_cmpistrc(X, Y, M) \ ((int) __builtin_ia32_pcmpistric128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #define _mm_cmpistro(X, Y, M) \ ((int) __builtin_ia32_pcmpistrio128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #define _mm_cmpistrs(X, Y, M) \ ((int) __builtin_ia32_pcmpistris128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #define _mm_cmpistrz(X, Y, M) \ ((int) __builtin_ia32_pcmpistriz128 ((__v16qi)(__m128i)(X), \ (__v16qi)(__m128i)(Y), (int)(M))) #define _mm_cmpestra(X, LX, Y, LY, M) \ ((int) __builtin_ia32_pcmpestria128 ((__v16qi)(__m128i)(X), (int)(LX), \ (__v16qi)(__m128i)(Y), (int)(LY), \ (int)(M))) #define _mm_cmpestrc(X, LX, Y, LY, M) \ ((int) __builtin_ia32_pcmpestric128 ((__v16qi)(__m128i)(X), (int)(LX), \ (__v16qi)(__m128i)(Y), (int)(LY), \ (int)(M))) #define _mm_cmpestro(X, LX, Y, LY, M) \ ((int) __builtin_ia32_pcmpestrio128 ((__v16qi)(__m128i)(X), (int)(LX), \ (__v16qi)(__m128i)(Y), (int)(LY), \ (int)(M))) #define _mm_cmpestrs(X, LX, Y, LY, M) \ ((int) __builtin_ia32_pcmpestris128 ((__v16qi)(__m128i)(X), (int)(LX), \ (__v16qi)(__m128i)(Y), (int)(LY), \ (int)(M))) #define _mm_cmpestrz(X, LX, Y, LY, M) \ ((int) __builtin_ia32_pcmpestriz128 ((__v16qi)(__m128i)(X), (int)(LX), \ (__v16qi)(__m128i)(Y), (int)(LY), \ (int)(M))) #endif /* Packed integer 64-bit comparison, zeroing or filling with ones corresponding parts of result. */ extern __inline __m128i __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_cmpgt_epi64 (__m128i __X, __m128i __Y) { return (__m128i) __builtin_ia32_pcmpgtq ((__v2di)__X, (__v2di)__Y); } #ifdef __POPCNT__ #include <popcntintrin.h> #endif /* Accumulate CRC32 (polynomial 0x11EDC6F41) value. */ extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_crc32_u8 (unsigned int __C, unsigned char __V) { return __builtin_ia32_crc32qi (__C, __V); } extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_crc32_u16 (unsigned int __C, unsigned short __V) { return __builtin_ia32_crc32hi (__C, __V); } extern __inline unsigned int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_crc32_u32 (unsigned int __C, unsigned int __V) { return __builtin_ia32_crc32si (__C, __V); } #ifdef __x86_64__ extern __inline unsigned long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) _mm_crc32_u64 (unsigned long long __C, unsigned long long __V) { return __builtin_ia32_crc32di (__C, __V); } #endif #endif /* __SSE4_2__ */ #endif /* __SSE4_1__ */ #endif /* _SMMINTRIN_H_INCLUDED */
Go to most recent revision | Compare with Previous | Blame | View Log