URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [ia64/] [div.md] - Rev 826
Compare with Previous | Blame | View Log
;; Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; For the internal conditional math routines:
;; operand 0 is always the result
;; operand 1 is always the predicate
;; operand 2, 3, and sometimes 4 are the input values.
;; operand 4 or 5 is the floating point status register to use.
;; operand 5 or 6 is the rounding to do. (0 = single, 1 = double, 2 = none)
;;
;; addrf3_cond - F0 = F2 + F3
;; subrf3_cond - F0 = F2 - F3
;; mulrf3_cond - F0 = F2 * F3
;; nmulrf3_cond - F0 = - (F2 * F3)
;; m1addrf4_cond - F0 = (F2 * F3) + F4
;; m1subrf4_cond - F0 = (F2 * F3) - F4
;; m2addrf4_cond - F0 = F2 + (F3 * F4)
;; m2subrf4_cond - F0 = F2 - (F3 * F4)
;; Basic plus/minus/mult operations
(define_insn "addrf3_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(plus:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG"))
(match_operand:RF 4 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 5 "const_int_operand" ""))
(use (match_operand:SI 6 "const_int_operand" ""))]
""
"(%1) fadd%R6.s%5 %0 = %F2, %F3"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
(define_insn "subrf3_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(minus:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG"))
(match_operand:RF 4 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 5 "const_int_operand" ""))
(use (match_operand:SI 6 "const_int_operand" ""))]
""
"(%1) fsub%R6.s%5 %0 = %F2, %F3"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
(define_insn "mulrf3_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(mult:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG"))
(match_operand:RF 4 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 5 "const_int_operand" ""))
(use (match_operand:SI 6 "const_int_operand" ""))]
""
"(%1) fmpy%R6.s%5 %0 = %F2, %F3"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
;; neg-mult operation
(define_insn "nmulrf3_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(neg:RF (mult:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")))
(match_operand:RF 4 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 5 "const_int_operand" ""))
(use (match_operand:SI 6 "const_int_operand" ""))]
""
"(%1) fnmpy%R6.s%5 %0 = %F2, %F3"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
;; add-mult/sub-mult operations (mult as op1)
(define_insn "m1addrf4_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(plus:RF
(mult:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG"))
(match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG"))
(match_operand:RF 5 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 6 "const_int_operand" ""))
(use (match_operand:SI 7 "const_int_operand" ""))]
""
"(%1) fma%R7.s%6 %0 = %F2, %F3, %F4"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
(define_insn "m1subrf4_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(minus:RF
(mult:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG"))
(match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG"))
(match_operand:RF 5 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 6 "const_int_operand" ""))
(use (match_operand:SI 7 "const_int_operand" ""))]
""
"(%1) fms%R7.s%6 %0 = %F2, %F3, %F4"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
;; add-mult/sub-mult operations (mult as op2)
(define_insn "m2addrf4_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(plus:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(mult:RF
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG")))
(match_operand:RF 5 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 6 "const_int_operand" ""))
(use (match_operand:SI 7 "const_int_operand" ""))]
""
"(%1) fma%R7.s%6 %0 = %F3, %F4, %F2"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
(define_insn "m2subrf4_cond"
[(set (match_operand:RF 0 "fr_register_operand" "=f,f")
(if_then_else:RF (ne:RF (match_operand:BI 1 "register_operand" "c,c")
(const_int 0))
(minus:RF
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG,fG")
(mult:RF
(match_operand:RF 3 "fr_reg_or_fp01_operand" "fG,fG")
(match_operand:RF 4 "fr_reg_or_fp01_operand" "fG,fG")))
(match_operand:RF 5 "fr_reg_or_0_operand" "0,H")))
(use (match_operand:SI 6 "const_int_operand" ""))
(use (match_operand:SI 7 "const_int_operand" ""))]
""
"(%1) fnma%R7.s%6 %0 = %F3, %F4, %F2"
[(set_attr "itanium_class" "fmac")
(set_attr "predicable" "no")])
;; Conversions to/from RF and SF/DF/XF
;; These conversions should not generate any code but make it possible
;; for all the instructions used to implement floating point division
;; to be written for RFmode only and to not have to handle multiple
;; modes or to have to handle a register in more than one mode.
(define_mode_iterator SDX_F [SF DF XF])
(define_insn "extend<mode>rf2"
[(set (match_operand:RF 0 "fr_register_operand" "=f")
(float_extend:RF (match_operand:SDX_F 1 "fr_reg_or_fp01_operand" "fG")))]
""
"#"
[(set_attr "itanium_class" "fmisc")
(set_attr "predicable" "yes")])
(define_split
[(set (match_operand:RF 0 "fr_register_operand" "")
(float_extend:RF (match_operand:SDX_F 1 "fr_reg_or_fp01_operand" "")))]
"reload_completed"
[(set (match_dup 0) (match_dup 2))]
{
if (operands[1] == CONST0_RTX (<MODE>mode))
operands[2] = gen_rtx_REG (RFmode, FR_REG (0));
else if (operands[1] == CONST1_RTX (<MODE>mode))
operands[2] = gen_rtx_REG (RFmode, FR_REG (1));
else
operands[2] = gen_rtx_REG (RFmode, REGNO (operands[1]));
})
(define_insn "truncrf<mode>2"
[(set (match_operand:SDX_F 0 "fr_register_operand" "=f")
(float_truncate:SDX_F (match_operand:RF 1 "fr_reg_or_fp01_operand" "fG")))]
""
"#"
[(set_attr "itanium_class" "fmisc")
(set_attr "predicable" "yes")])
(define_split
[(set (match_operand:SDX_F 0 "fr_register_operand" "")
(float_truncate:SDX_F (match_operand:RF 1 "fr_reg_or_fp01_operand" "")))]
"reload_completed"
[(set (match_dup 0) (match_dup 2))]
{
if (operands[1] == CONST0_RTX (RFmode))
operands[2] = gen_rtx_REG (<MODE>mode, FR_REG (0));
else if (operands[1] == CONST1_RTX (RFmode))
operands[2] = gen_rtx_REG (<MODE>mode, FR_REG (1));
else
operands[2] = gen_rtx_REG (<MODE>mode, REGNO (operands[1]));
})
;; Float to integer truncations using an alternative status register.
(define_insn "fix_truncrfdi2_alts"
[(set (match_operand:DI 0 "fr_register_operand" "=f")
(fix:DI (match_operand:RF 1 "fr_register_operand" "f")))
(use (match_operand:SI 2 "const_int_operand" ""))]
""
"fcvt.fx.trunc.s%2 %0 = %1"
[(set_attr "itanium_class" "fcvtfx")])
(define_insn "fixuns_truncrfdi2_alts"
[(set (match_operand:DI 0 "fr_register_operand" "=f")
(unsigned_fix:DI (match_operand:RF 1 "fr_register_operand" "f")))
(use (match_operand:SI 2 "const_int_operand" ""))]
""
"fcvt.fxu.trunc.s%2 %0 = %1"
[(set_attr "itanium_class" "fcvtfx")])
(define_insn "setf_exp_rf"
[(set (match_operand:RF 0 "fr_register_operand" "=f")
(unspec:RF [(match_operand:DI 1 "register_operand" "r")]
UNSPEC_SETF_EXP))]
""
"setf.exp %0 = %1"
[(set_attr "itanium_class" "frfr")])
;; Reciprocal approximation
(define_insn "recip_approx_rf"
[(set (match_operand:RF 0 "fr_register_operand" "=f")
(unspec:RF [(match_operand:RF 1 "fr_reg_or_fp01_operand" "fG")
(match_operand:RF 2 "fr_reg_or_fp01_operand" "fG")]
UNSPEC_FR_RECIP_APPROX_RES))
(set (match_operand:BI 3 "register_operand" "=c")
(unspec:BI [(match_dup 1) (match_dup 2)] UNSPEC_FR_RECIP_APPROX))
(use (match_operand:SI 4 "const_int_operand" ""))]
""
"frcpa.s%4 %0, %3 = %F1, %F2"
[(set_attr "itanium_class" "fmisc")
(set_attr "predicable" "no")])
;; Single precision floating point division
(define_expand "divsf3"
[(set (match_operand:SF 0 "fr_register_operand" "")
(div:SF (match_operand:SF 1 "fr_reg_or_fp01_operand" "")
(match_operand:SF 2 "fr_reg_or_fp01_operand" "")))]
"TARGET_INLINE_FLOAT_DIV"
{
rtx insn;
if (TARGET_INLINE_FLOAT_DIV == INL_MIN_LAT)
insn = gen_divsf3_internal_lat (operands[0], operands[1], operands[2]);
else
insn = gen_divsf3_internal_thr (operands[0], operands[1], operands[2]);
emit_insn (insn);
DONE;
})
;; Single precision floating point division (maximum throughput algorithm).
(define_expand "divsf3_internal_thr"
[(set (match_operand:SF 0 "fr_register_operand" "")
(div:SF (match_operand:SF 1 "fr_reg_or_fp01_operand" "")
(match_operand:SF 2 "fr_reg_or_fp01_operand" "")))]
"TARGET_INLINE_FLOAT_DIV"
{
rtx y = gen_reg_rtx (RFmode);
rtx a = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx y2 = gen_reg_rtx (RFmode);
rtx q = gen_reg_rtx (RFmode);
rtx r = gen_reg_rtx (RFmode);
rtx q_res = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_sgl = CONST0_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Empty conversions to put inputs into RFmode. */
emit_insn (gen_extendsfrf2 (a, operands[1]));
emit_insn (gen_extendsfrf2 (b, operands[2]));
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status0));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* y1 = y + (y * e) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off));
/* y2 = y + (y1 * e) */
emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e, zero, status1, trunc_off));
/* q = single(a * y2) */
emit_insn (gen_mulrf3_cond (q, cond, a, y2, zero, status1, trunc_sgl));
/* r = a - (q * b) */
emit_insn (gen_m2subrf4_cond (r, cond, a, q, b, zero, status1, trunc_off));
/* Q = single (q + (r * y2)) */
emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y2, y, status0, trunc_sgl));
/* Conversion back into SFmode. */
emit_insn (gen_truncrfsf2 (operands[0], q_res));
DONE;
})
;; Single precision floating point division (minimum latency algorithm).
(define_expand "divsf3_internal_lat"
[(set (match_operand:SF 0 "fr_register_operand" "")
(div:SF (match_operand:SF 1 "fr_reg_or_fp01_operand" "")
(match_operand:SF 2 "fr_reg_or_fp01_operand" "")))]
"TARGET_INLINE_FLOAT_DIV"
{
rtx y = gen_reg_rtx (RFmode);
rtx a = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx q = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx q1 = gen_reg_rtx (RFmode);
rtx r = gen_reg_rtx (RFmode);
rtx q_res = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_sgl = CONST0_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Empty conversions to put inputs into RFmode. */
emit_insn (gen_extendsfrf2 (a, operands[1]));
emit_insn (gen_extendsfrf2 (b, operands[2]));
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status0));
/* q = a * y */
emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* e1 = e + (e * e) */
emit_insn (gen_m2addrf4_cond (e1, cond, e, e, e, zero, status1, trunc_off));
/* q1 = single(q + (q * e1)) */
emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e1, zero, status1, trunc_sgl));
/* y1 = y + (y * e1) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e1, zero, status1, trunc_off));
/* r = a - (q1 * b) */
emit_insn (gen_m2subrf4_cond (r, cond, a, q1, b, zero, status1, trunc_off));
/* Q = single (q1 + (r * y1)) */
emit_insn (gen_m2addrf4_cond (q_res, cond, q1, r, y1, y, status0, trunc_sgl));
/* Conversion back into SFmode. */
emit_insn (gen_truncrfsf2 (operands[0], q_res));
DONE;
})
;; Double precision floating point division
(define_expand "divdf3"
[(set (match_operand:DF 0 "fr_register_operand" "")
(div:DF (match_operand:DF 1 "fr_reg_or_fp01_operand" "")
(match_operand:DF 2 "fr_reg_or_fp01_operand" "")))]
"TARGET_INLINE_FLOAT_DIV"
{
rtx insn;
if (TARGET_INLINE_FLOAT_DIV == INL_MIN_LAT)
insn = gen_divdf3_internal_lat (operands[0], operands[1], operands[2]);
else
insn = gen_divdf3_internal_thr (operands[0], operands[1], operands[2]);
emit_insn (insn);
DONE;
})
;; Double precision floating point division (maximum throughput algorithm).
(define_expand "divdf3_internal_thr"
[(set (match_operand:DF 0 "fr_register_operand" "")
(div:DF (match_operand:DF 1 "fr_reg_or_fp01_operand" "")
(match_operand:DF 2 "fr_reg_or_fp01_operand" "")))]
"TARGET_INLINE_FLOAT_DIV"
{
rtx q_res = gen_reg_rtx (RFmode);
rtx a = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx y = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx y2 = gen_reg_rtx (RFmode);
rtx e2 = gen_reg_rtx (RFmode);
rtx y3 = gen_reg_rtx (RFmode);
rtx q = gen_reg_rtx (RFmode);
rtx r = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_dbl = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Empty conversions to put inputs into RFmode */
emit_insn (gen_extenddfrf2 (a, operands[1]));
emit_insn (gen_extenddfrf2 (b, operands[2]));
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status0));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* y1 = y + (y * e) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off));
/* e1 = e * e */
emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off));
/* y2 = y1 + (y1 * e1) */
emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off));
/* e2 = e1 * e1 */
emit_insn (gen_mulrf3_cond (e2, cond, e1, e1, zero, status1, trunc_off));
/* y3 = y2 + (y2 * e2) */
emit_insn (gen_m2addrf4_cond (y3, cond, y2, y2, e2, zero, status1, trunc_off));
/* q = double (a * y3) */
emit_insn (gen_mulrf3_cond (q, cond, a, y3, zero, status1, trunc_dbl));
/* r = a - (b * q) */
emit_insn (gen_m2subrf4_cond (r, cond, a, b, q, zero, status1, trunc_off));
/* Q = double (q + (r * y3)) */
emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y3, y, status0, trunc_dbl));
/* Conversion back into DFmode */
emit_insn (gen_truncrfdf2 (operands[0], q_res));
DONE;
})
;; Double precision floating point division (minimum latency algorithm).
(define_expand "divdf3_internal_lat"
[(set (match_operand:DF 0 "fr_register_operand" "")
(div:DF (match_operand:DF 1 "fr_reg_or_fp01_operand" "")
(match_operand:DF 2 "fr_reg_or_fp01_operand" "")))]
"TARGET_INLINE_FLOAT_DIV"
{
rtx q_res = gen_reg_rtx (RFmode);
rtx a = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx y = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx q1 = gen_reg_rtx (RFmode);
rtx y2 = gen_reg_rtx (RFmode);
rtx e2 = gen_reg_rtx (RFmode);
rtx q2 = gen_reg_rtx (RFmode);
rtx e3 = gen_reg_rtx (RFmode);
rtx q = gen_reg_rtx (RFmode);
rtx r1 = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_dbl = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Empty conversions to put inputs into RFmode */
emit_insn (gen_extenddfrf2 (a, operands[1]));
emit_insn (gen_extenddfrf2 (b, operands[2]));
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status0));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* q = a * y */
emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off));
/* e2 = e + (e * e) */
emit_insn (gen_m2addrf4_cond (e2, cond, e, e, e, zero, status1, trunc_off));
/* e1 = e * e */
emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off));
/* e3 = e + (e1 * e1) */
emit_insn (gen_m2addrf4_cond (e3, cond, e, e1, e1, zero, status1, trunc_off));
/* q1 = q + (q * e2) */
emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e2, zero, status1, trunc_off));
/* y1 = y + (y * e2) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e2, zero, status1, trunc_off));
/* q2 = double(q + (q1 * e3)) */
emit_insn (gen_m2addrf4_cond (q2, cond, q, q1, e3, zero, status1, trunc_dbl));
/* y2 = y + (y1 * e3) */
emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e3, zero, status1, trunc_off));
/* r1 = a - (b * q2) */
emit_insn (gen_m2subrf4_cond (r1, cond, a, b, q2, zero, status1, trunc_off));
/* Q = double (q2 + (r1 * y2)) */
emit_insn (gen_m2addrf4_cond (q_res, cond, q2, r1, y2, y, status0, trunc_dbl));
/* Conversion back into DFmode */
emit_insn (gen_truncrfdf2 (operands[0], q_res));
DONE;
})
;; Extended precision floating point division.
(define_expand "divxf3"
[(set (match_operand:XF 0 "fr_register_operand" "")
(div:XF (match_operand:XF 1 "fr_reg_or_fp01_operand" "")
(match_operand:XF 2 "fr_reg_or_fp01_operand" "")))]
"TARGET_INLINE_FLOAT_DIV"
{
rtx q_res = gen_reg_rtx (RFmode);
rtx a = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx y = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx q1 = gen_reg_rtx (RFmode);
rtx y2 = gen_reg_rtx (RFmode);
rtx e2 = gen_reg_rtx (RFmode);
rtx y3 = gen_reg_rtx (RFmode);
rtx e3 = gen_reg_rtx (RFmode);
rtx e4 = gen_reg_rtx (RFmode);
rtx q = gen_reg_rtx (RFmode);
rtx r = gen_reg_rtx (RFmode);
rtx r1 = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Empty conversions to put inputs into RFmode */
emit_insn (gen_extendxfrf2 (a, operands[1]));
emit_insn (gen_extendxfrf2 (b, operands[2]));
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status0));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* q = a * y */
emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off));
/* e2 = e + (e * e) */
emit_insn (gen_m2addrf4_cond (e2, cond, e, e, e, zero, status1, trunc_off));
/* e1 = e * e */
emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off));
/* y1 = y + (y * e2) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e2, zero, status1, trunc_off));
/* e3 = e + (e1 * e1) */
emit_insn (gen_m2addrf4_cond (e3, cond, e, e1, e1, zero, status1, trunc_off));
/* y2 = y + (y1 * e3) */
emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e3, zero, status1, trunc_off));
/* r = a - (b * q) */
emit_insn (gen_m2subrf4_cond (r, cond, a, b, q, zero, status1, trunc_off));
/* e4 = 1 - (b * y2) */
emit_insn (gen_m2subrf4_cond (e4, cond, one, b, y2, zero, status1, trunc_off));
/* q1 = q + (r * y2) */
emit_insn (gen_m2addrf4_cond (q1, cond, q, r, y2, zero, status1, trunc_off));
/* y3 = y2 + (y2 * e4) */
emit_insn (gen_m2addrf4_cond (y3, cond, y2, y2, e4, zero, status1, trunc_off));
/* r1 = a - (b * q1) */
emit_insn (gen_m2subrf4_cond (r1, cond, a, b, q1, zero, status1, trunc_off));
/* Q = q1 + (r1 * y3) */
emit_insn (gen_m2addrf4_cond (q_res, cond, q1, r1, y3, y, status0, trunc_off));
/* Conversion back into XFmode */
emit_insn (gen_truncrfxf2 (operands[0], q_res));
DONE;
})
;; Integer division operations
(define_expand "divsi3"
[(set (match_operand:SI 0 "register_operand" "")
(div:SI (match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op1_rf, op2_rf, op0_rf, op0_di;
op0_rf = gen_reg_rtx (RFmode);
op0_di = gen_reg_rtx (DImode);
if (! register_operand (operands[1], SImode))
operands[1] = force_reg (SImode, operands[1]);
op1_rf = gen_reg_rtx (RFmode);
expand_float (op1_rf, operands[1], 0);
if (! register_operand (operands[2], SImode))
operands[2] = force_reg (SImode, operands[2]);
op2_rf = gen_reg_rtx (RFmode);
expand_float (op2_rf, operands[2], 0);
emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (SImode),
CONST1_RTX (SImode)));
emit_insn (gen_divsi3_internal (op0_rf, op1_rf, op2_rf));
emit_insn (gen_fix_truncrfdi2_alts (op0_di, op0_rf, const1_rtx));
emit_move_insn (operands[0], gen_lowpart (SImode, op0_di));
DONE;
})
(define_expand "modsi3"
[(set (match_operand:SI 0 "register_operand" "")
(mod:SI (match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op2_neg, op1_di, div;
div = gen_reg_rtx (SImode);
emit_insn (gen_divsi3 (div, operands[1], operands[2]));
op2_neg = expand_unop (SImode, neg_optab, operands[2], NULL_RTX, 0);
/* This is a trick to get us to reuse the value that we're sure to
have already copied to the FP regs. */
op1_di = gen_reg_rtx (DImode);
convert_move (op1_di, operands[1], 0);
emit_insn (gen_maddsi4 (operands[0], div, op2_neg,
gen_lowpart (SImode, op1_di)));
DONE;
})
(define_expand "udivsi3"
[(set (match_operand:SI 0 "register_operand" "")
(udiv:SI (match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op1_rf, op2_rf, op0_rf, op0_di;
op0_rf = gen_reg_rtx (RFmode);
op0_di = gen_reg_rtx (DImode);
if (! register_operand (operands[1], SImode))
operands[1] = force_reg (SImode, operands[1]);
op1_rf = gen_reg_rtx (RFmode);
expand_float (op1_rf, operands[1], 1);
if (! register_operand (operands[2], SImode))
operands[2] = force_reg (SImode, operands[2]);
op2_rf = gen_reg_rtx (RFmode);
expand_float (op2_rf, operands[2], 1);
emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (SImode),
CONST1_RTX (SImode)));
emit_insn (gen_divsi3_internal (op0_rf, op1_rf, op2_rf));
emit_insn (gen_fixuns_truncrfdi2_alts (op0_di, op0_rf, const1_rtx));
emit_move_insn (operands[0], gen_lowpart (SImode, op0_di));
DONE;
})
(define_expand "umodsi3"
[(set (match_operand:SI 0 "register_operand" "")
(umod:SI (match_operand:SI 1 "general_operand" "")
(match_operand:SI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op2_neg, op1_di, div;
div = gen_reg_rtx (SImode);
emit_insn (gen_udivsi3 (div, operands[1], operands[2]));
op2_neg = expand_unop (SImode, neg_optab, operands[2], NULL_RTX, 0);
/* This is a trick to get us to reuse the value that we're sure to
have already copied to the FP regs. */
op1_di = gen_reg_rtx (DImode);
convert_move (op1_di, operands[1], 1);
emit_insn (gen_maddsi4 (operands[0], div, op2_neg,
gen_lowpart (SImode, op1_di)));
DONE;
})
(define_expand "divsi3_internal"
[(set (match_operand:RF 0 "fr_register_operand" "")
(float:RF (div:SI (match_operand:RF 1 "fr_register_operand" "")
(match_operand:RF 2 "fr_register_operand" ""))))]
"TARGET_INLINE_INT_DIV"
{
rtx a = operands[1];
rtx b = operands[2];
rtx y = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx q = gen_reg_rtx (RFmode);
rtx q1 = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
rtx twon34_exp = gen_reg_rtx (DImode);
rtx twon34 = gen_reg_rtx (RFmode);
/* Load cosntant 2**(-34) */
emit_move_insn (twon34_exp, GEN_INT (65501));
emit_insn (gen_setf_exp_rf (twon34, twon34_exp));
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status1));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* q = a * y */
emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off));
/* q1 = q + (q * e) */
emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e, zero, status1, trunc_off));
/* e1 = (2**-34) + (e * e) */
emit_insn (gen_m2addrf4_cond (e1, cond, twon34, e, e, zero, status1, trunc_off));
/* q2 = q1 + (e1 * q1) */
emit_insn (gen_m2addrf4_cond (operands[0], cond, q1, e1, q1, y, status1, trunc_off));
DONE;
})
(define_expand "divdi3"
[(set (match_operand:DI 0 "register_operand" "")
(div:DI (match_operand:DI 1 "general_operand" "")
(match_operand:DI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op1_rf, op2_rf, op0_rf;
op0_rf = gen_reg_rtx (RFmode);
if (! register_operand (operands[1], DImode))
operands[1] = force_reg (DImode, operands[1]);
op1_rf = gen_reg_rtx (RFmode);
expand_float (op1_rf, operands[1], 0);
if (! register_operand (operands[2], DImode))
operands[2] = force_reg (DImode, operands[2]);
op2_rf = gen_reg_rtx (RFmode);
expand_float (op2_rf, operands[2], 0);
emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (DImode),
CONST1_RTX (DImode)));
if (TARGET_INLINE_INT_DIV == INL_MIN_LAT)
emit_insn (gen_divdi3_internal_lat (op0_rf, op1_rf, op2_rf));
else
emit_insn (gen_divdi3_internal_thr (op0_rf, op1_rf, op2_rf));
emit_insn (gen_fix_truncrfdi2_alts (operands[0], op0_rf, const1_rtx));
DONE;
})
(define_expand "moddi3"
[(set (match_operand:DI 0 "register_operand" "")
(mod:SI (match_operand:DI 1 "general_operand" "")
(match_operand:DI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op2_neg, div;
div = gen_reg_rtx (DImode);
emit_insn (gen_divdi3 (div, operands[1], operands[2]));
op2_neg = expand_unop (DImode, neg_optab, operands[2], NULL_RTX, 0);
emit_insn (gen_madddi4 (operands[0], div, op2_neg, operands[1]));
DONE;
})
(define_expand "udivdi3"
[(set (match_operand:DI 0 "register_operand" "")
(udiv:DI (match_operand:DI 1 "general_operand" "")
(match_operand:DI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op1_rf, op2_rf, op0_rf;
op0_rf = gen_reg_rtx (RFmode);
if (! register_operand (operands[1], DImode))
operands[1] = force_reg (DImode, operands[1]);
op1_rf = gen_reg_rtx (RFmode);
expand_float (op1_rf, operands[1], 1);
if (! register_operand (operands[2], DImode))
operands[2] = force_reg (DImode, operands[2]);
op2_rf = gen_reg_rtx (RFmode);
expand_float (op2_rf, operands[2], 1);
emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (DImode),
CONST1_RTX (DImode)));
if (TARGET_INLINE_INT_DIV == INL_MIN_LAT)
emit_insn (gen_divdi3_internal_lat (op0_rf, op1_rf, op2_rf));
else
emit_insn (gen_divdi3_internal_thr (op0_rf, op1_rf, op2_rf));
emit_insn (gen_fixuns_truncrfdi2_alts (operands[0], op0_rf, const1_rtx));
DONE;
})
(define_expand "umoddi3"
[(set (match_operand:DI 0 "register_operand" "")
(umod:DI (match_operand:DI 1 "general_operand" "")
(match_operand:DI 2 "general_operand" "")))]
"TARGET_INLINE_INT_DIV"
{
rtx op2_neg, div;
div = gen_reg_rtx (DImode);
emit_insn (gen_udivdi3 (div, operands[1], operands[2]));
op2_neg = expand_unop (DImode, neg_optab, operands[2], NULL_RTX, 0);
emit_insn (gen_madddi4 (operands[0], div, op2_neg, operands[1]));
DONE;
})
(define_expand "divdi3_internal_lat"
[(set (match_operand:RF 0 "fr_register_operand" "")
(float:RF (div:DI (match_operand:RF 1 "fr_register_operand" "")
(match_operand:RF 2 "fr_register_operand" ""))))]
"TARGET_INLINE_INT_DIV"
{
rtx a = operands[1];
rtx b = operands[2];
rtx y = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx y2 = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx q = gen_reg_rtx (RFmode);
rtx q1 = gen_reg_rtx (RFmode);
rtx q2 = gen_reg_rtx (RFmode);
rtx r = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status1));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* q = a * y */
emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off));
/* q1 = q + (q * e) */
emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e, zero, status1, trunc_off));
/* e1 = e * e */
emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off));
/* q2 = q1 + (e1 * q1) */
emit_insn (gen_m2addrf4_cond (q2, cond, q1, e1, q1, zero, status1, trunc_off));
/* y1 = y + (y * e) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off));
/* r = a - (b * q2) */
emit_insn (gen_m2subrf4_cond (r, cond, a, b, q2, zero, status1, trunc_off));
/* y2 = y1 + (y1 * e1) */
emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off));
/* q3 = q2 + (r * y2) */
emit_insn (gen_m2addrf4_cond (operands[0], cond, q2, r, y2, y, status1, trunc_off));
DONE;
})
(define_expand "divdi3_internal_thr"
[(set (match_operand:RF 0 "fr_register_operand" "")
(float:RF (div:DI (match_operand:RF 1 "fr_register_operand" "")
(match_operand:RF 2 "fr_register_operand" ""))))]
"TARGET_INLINE_INT_DIV"
{
rtx a = operands[1];
rtx b = operands[2];
rtx y = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx y2 = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx q2 = gen_reg_rtx (RFmode);
rtx r = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* y = 1 / b */
emit_insn (gen_recip_approx_rf (y, a, b, cond, status1));
/* e = 1 - (b * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off));
/* y1 = y + (y * e) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off));
/* e1 = e * e */
emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off));
/* y2 = y1 + (y1 * e1) */
emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off));
/* q2 = y2 * a */
emit_insn (gen_mulrf3_cond (q2, cond, y2, a, zero, status1, trunc_off));
/* r = a - (b * q2) */
emit_insn (gen_m2subrf4_cond (r, cond, a, b, q2, zero, status1, trunc_off));
/* q3 = q2 + (r * y2) */
emit_insn (gen_m2addrf4_cond (operands[0], cond, q2, r, y2, y, status1, trunc_off));
DONE;
})
;; SQRT operations
(define_insn "sqrt_approx_rf"
[(set (match_operand:RF 0 "fr_register_operand" "=f")
(unspec:RF [(match_operand:RF 1 "fr_reg_or_fp01_operand" "fG")]
UNSPEC_FR_SQRT_RECIP_APPROX_RES))
(set (match_operand:BI 2 "register_operand" "=c")
(unspec:BI [(match_dup 1)] UNSPEC_FR_SQRT_RECIP_APPROX))
(use (match_operand:SI 3 "const_int_operand" ""))]
""
"frsqrta.s%3 %0, %2 = %F1"
[(set_attr "itanium_class" "fmisc")
(set_attr "predicable" "no")])
(define_expand "sqrtsf2"
[(set (match_operand:SF 0 "fr_register_operand" "=&f")
(sqrt:SF (match_operand:SF 1 "fr_reg_or_fp01_operand" "fG")))]
"TARGET_INLINE_SQRT"
{
rtx insn;
if (TARGET_INLINE_SQRT == INL_MIN_LAT)
insn = gen_sqrtsf2_internal_lat (operands[0], operands[1]);
else
insn = gen_sqrtsf2_internal_thr (operands[0], operands[1]);
emit_insn (insn);
DONE;
})
(define_expand "sqrtsf2_internal_thr"
[(set (match_operand:SF 0 "fr_register_operand" "")
(sqrt:SF (match_operand:SF 1 "fr_register_operand" "")))]
"TARGET_INLINE_SQRT"
{
rtx y = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx g = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx s = gen_reg_rtx (RFmode);
rtx f = gen_reg_rtx (RFmode);
rtx y1 = gen_reg_rtx (RFmode);
rtx g1 = gen_reg_rtx (RFmode);
rtx h = gen_reg_rtx (RFmode);
rtx d = gen_reg_rtx (RFmode);
rtx g2 = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx c1 = ia64_dconst_0_5();
rtx c2 = ia64_dconst_0_375();
rtx reg_df_c1 = gen_reg_rtx (DFmode);
rtx reg_df_c2 = gen_reg_rtx (DFmode);
rtx reg_rf_c1 = gen_reg_rtx (RFmode);
rtx reg_rf_c2 = gen_reg_rtx (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_sgl = CONST0_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Put needed constants into registers. */
emit_insn (gen_movdf (reg_df_c1, c1));
emit_insn (gen_movdf (reg_df_c2, c2));
emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1));
emit_insn (gen_extenddfrf2 (reg_rf_c2, reg_df_c2));
/* Empty conversion to put input into RFmode. */
emit_insn (gen_extendsfrf2 (b, operands[1]));
/* y = sqrt (1 / b) */
emit_insn (gen_sqrt_approx_rf (y, b, cond, status0));
/* g = b * y */
emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off));
/* e = 1 - (g * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, g, y, zero, status1, trunc_off));
/* s = 0.5 + (0.375 * e) */
emit_insn (gen_m2addrf4_cond (s, cond, reg_rf_c1, reg_rf_c2, e, zero, status1, trunc_off));
/* f = y * e */
emit_insn (gen_mulrf3_cond (f, cond, y, e, zero, status1, trunc_off));
/* y1 = y + (f * s) */
emit_insn (gen_m2addrf4_cond (y1, cond, y, f, s, zero, status1, trunc_off));
/* g1 = single (b * y1) */
emit_insn (gen_mulrf3_cond (g1, cond, b, y1, zero, status1, trunc_sgl));
/* h = 0.5 * y1 */
emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y1, zero, status1, trunc_off));
/* d = b - g1 * g1 */
emit_insn (gen_m2subrf4_cond (d, cond, b, g1, g1, zero, status1, trunc_off));
/* g2 = single(g1 + (d * h)) */
emit_insn (gen_m2addrf4_cond (g2, cond, g1, d, h, y, status0, trunc_sgl));
/* Conversion back into SFmode. */
emit_insn (gen_truncrfsf2 (operands[0], g2));
DONE;
})
(define_expand "sqrtsf2_internal_lat"
[(set (match_operand:SF 0 "fr_register_operand" "")
(sqrt:SF (match_operand:SF 1 "fr_register_operand" "")))]
"TARGET_INLINE_SQRT"
{
rtx y = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx g = gen_reg_rtx (RFmode);
rtx g1 = gen_reg_rtx (RFmode);
rtx g2 = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx s = gen_reg_rtx (RFmode);
rtx f = gen_reg_rtx (RFmode);
rtx f1 = gen_reg_rtx (RFmode);
rtx h = gen_reg_rtx (RFmode);
rtx h1 = gen_reg_rtx (RFmode);
rtx d = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx one = CONST1_RTX (RFmode);
rtx c1 = ia64_dconst_0_5();
rtx c2 = ia64_dconst_0_375();
rtx reg_df_c1 = gen_reg_rtx (DFmode);
rtx reg_df_c2 = gen_reg_rtx (DFmode);
rtx reg_rf_c1 = gen_reg_rtx (RFmode);
rtx reg_rf_c2 = gen_reg_rtx (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_sgl = CONST0_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Put needed constants into registers. */
emit_insn (gen_movdf (reg_df_c1, c1));
emit_insn (gen_movdf (reg_df_c2, c2));
emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1));
emit_insn (gen_extenddfrf2 (reg_rf_c2, reg_df_c2));
/* Empty conversion to put input into RFmode. */
emit_insn (gen_extendsfrf2 (b, operands[1]));
/* y = sqrt (1 / b) */
emit_insn (gen_sqrt_approx_rf (y, b, cond, status0));
/* g = b * y */
emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off));
/* e = 1 - (g * y) */
emit_insn (gen_m2subrf4_cond (e, cond, one, g, y, zero, status1, trunc_off));
/* h = 0.5 * y */
emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y, zero, status1, trunc_off));
/* s = 0.5 + (0.375 * e) */
emit_insn (gen_m2addrf4_cond (s, cond, reg_rf_c1, reg_rf_c2, e, zero, status1, trunc_off));
/* f = e * g */
emit_insn (gen_mulrf3_cond (f, cond, e, g, zero, status1, trunc_off));
/* g1 = single (g + (f * s)) */
emit_insn (gen_m2addrf4_cond (g1, cond, g, f, s, zero, status1, trunc_sgl));
/* f1 = e * h */
emit_insn (gen_mulrf3_cond (f1, cond, e, h, zero, status1, trunc_off));
/* d = b - g1 * g1 */
emit_insn (gen_m2subrf4_cond (d, cond, b, g1, g1, zero, status1, trunc_off));
/* h1 = h + (f1 * s) */
emit_insn (gen_m2addrf4_cond (h1, cond, h, f1, s, zero, status1, trunc_off));
/* g2 = single(g1 + (d * h1)) */
emit_insn (gen_m2addrf4_cond (g2, cond, g1, d, h1, y, status0, trunc_sgl));
/* Conversion back into SFmode. */
emit_insn (gen_truncrfsf2 (operands[0], g2));
DONE;
})
(define_expand "sqrtdf2"
[(set (match_operand:DF 0 "fr_register_operand" "=&f")
(sqrt:DF (match_operand:DF 1 "fr_reg_or_fp01_operand" "fG")))]
"TARGET_INLINE_SQRT"
{
rtx insn;
#if 0
if (TARGET_INLINE_SQRT == INL_MIN_LAT)
insn = gen_sqrtdf2_internal_lat (operands[0], operands[1]);
else
#endif
insn = gen_sqrtdf2_internal_thr (operands[0], operands[1]);
emit_insn (insn);
DONE;
})
(define_expand "sqrtdf2_internal_thr"
[(set (match_operand:DF 0 "fr_register_operand" "")
(sqrt:DF (match_operand:DF 1 "fr_register_operand" "")))]
"TARGET_INLINE_SQRT"
{
rtx y = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx g = gen_reg_rtx (RFmode);
rtx g1 = gen_reg_rtx (RFmode);
rtx g2 = gen_reg_rtx (RFmode);
rtx g3 = gen_reg_rtx (RFmode);
rtx g4 = gen_reg_rtx (RFmode);
rtx r = gen_reg_rtx (RFmode);
rtx r1 = gen_reg_rtx (RFmode);
rtx h = gen_reg_rtx (RFmode);
rtx h1 = gen_reg_rtx (RFmode);
rtx h2 = gen_reg_rtx (RFmode);
rtx d = gen_reg_rtx (RFmode);
rtx d1 = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx c1 = ia64_dconst_0_5();
rtx reg_df_c1 = gen_reg_rtx (DFmode);
rtx reg_rf_c1 = gen_reg_rtx (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_dbl = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Put needed constants into registers. */
emit_insn (gen_movdf (reg_df_c1, c1));
emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1));
/* Empty conversion to put input into RFmode. */
emit_insn (gen_extenddfrf2 (b, operands[1]));
/* y = sqrt (1 / b) */
emit_insn (gen_sqrt_approx_rf (y, b, cond, status0));
/* g = b * y */
emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off));
/* h = 0.5 * y */
emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y, zero, status1, trunc_off));
/* r = 0.5 - (g * h) */
emit_insn (gen_m2subrf4_cond (r, cond, reg_rf_c1, g, h, zero, status1, trunc_off));
/* g1 = g + (g * r) */
emit_insn (gen_m2addrf4_cond (g1, cond, g, g, r, zero, status1, trunc_off));
/* h1 = h + (h * r) */
emit_insn (gen_m2addrf4_cond (h1, cond, h, h, r, zero, status1, trunc_off));
/* r1 = 0.5 - (g1 * h1) */
emit_insn (gen_m2subrf4_cond (r1, cond, reg_rf_c1, g1, h1, zero, status1, trunc_off));
/* g2 = g1 + (g1 * r1) */
emit_insn (gen_m2addrf4_cond (g2, cond, g1, g1, r1, zero, status1, trunc_off));
/* h2 = h1 + (h1 * r1) */
emit_insn (gen_m2addrf4_cond (h2, cond, h1, h1, r1, zero, status1, trunc_off));
/* d = b - (g2 * g2) */
emit_insn (gen_m2subrf4_cond (d, cond, b, g2, g2, zero, status1, trunc_off));
/* g3 = g2 + (d * h2) */
emit_insn (gen_m2addrf4_cond (g3, cond, g2, d, h2, zero, status1, trunc_off));
/* d1 = b - (g3 * g3) */
emit_insn (gen_m2subrf4_cond (d1, cond, b, g3, g3, zero, status1, trunc_off));
/* g4 = g3 + (d1 * h2) */
emit_insn (gen_m2addrf4_cond (g4, cond, g3, d1, h2, y, status1, trunc_dbl));
/* Conversion back into SFmode. */
emit_insn (gen_truncrfdf2 (operands[0], g4));
DONE;
})
(define_expand "sqrtxf2"
[(set (match_operand:XF 0 "fr_register_operand" "")
(sqrt:XF (match_operand:XF 1 "fr_register_operand" "")))]
"TARGET_INLINE_SQRT"
{
rtx y = gen_reg_rtx (RFmode);
rtx b = gen_reg_rtx (RFmode);
rtx g = gen_reg_rtx (RFmode);
rtx g1 = gen_reg_rtx (RFmode);
rtx g2 = gen_reg_rtx (RFmode);
rtx g3 = gen_reg_rtx (RFmode);
rtx g4 = gen_reg_rtx (RFmode);
rtx e = gen_reg_rtx (RFmode);
rtx e1 = gen_reg_rtx (RFmode);
rtx e2 = gen_reg_rtx (RFmode);
rtx h = gen_reg_rtx (RFmode);
rtx h1 = gen_reg_rtx (RFmode);
rtx h2 = gen_reg_rtx (RFmode);
rtx h3 = gen_reg_rtx (RFmode);
rtx d = gen_reg_rtx (RFmode);
rtx d1 = gen_reg_rtx (RFmode);
rtx cond = gen_reg_rtx (BImode);
rtx zero = CONST0_RTX (RFmode);
rtx c1 = ia64_dconst_0_5();
rtx reg_df_c1 = gen_reg_rtx (DFmode);
rtx reg_rf_c1 = gen_reg_rtx (RFmode);
rtx status0 = CONST0_RTX (SImode);
rtx status1 = CONST1_RTX (SImode);
rtx trunc_off = CONST2_RTX (SImode);
/* Put needed constants into registers. */
emit_insn (gen_movdf (reg_df_c1, c1));
emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1));
/* Empty conversion to put input into RFmode. */
emit_insn (gen_extendxfrf2 (b, operands[1]));
/* y = sqrt (1 / b) */
emit_insn (gen_sqrt_approx_rf (y, b, cond, status0));
/* g = b * y */
emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off));
/* h = 0.5 * y */
emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y, zero, status1, trunc_off));
/* e = 0.5 - (g * h) */
emit_insn (gen_m2subrf4_cond (e, cond, reg_rf_c1, g, h, zero, status1, trunc_off));
/* g1 = g + (g * e) */
emit_insn (gen_m2addrf4_cond (g1, cond, g, g, e, zero, status1, trunc_off));
/* h1 = h + (h * e) */
emit_insn (gen_m2addrf4_cond (h1, cond, h, h, e, zero, status1, trunc_off));
/* e1 = 0.5 - (g1 * h1) */
emit_insn (gen_m2subrf4_cond (e1, cond, reg_rf_c1, g1, h1, zero, status1, trunc_off));
/* g2 = g1 + (g1 * e1) */
emit_insn (gen_m2addrf4_cond (g2, cond, g1, g1, e1, zero, status1, trunc_off));
/* h2 = h1 + (h1 * e1) */
emit_insn (gen_m2addrf4_cond (h2, cond, h1, h1, e1, zero, status1, trunc_off));
/* d = b - (g2 * g2) */
emit_insn (gen_m2subrf4_cond (d, cond, b, g2, g2, zero, status1, trunc_off));
/* e2 = 0.5 - (g2 * h2) */
emit_insn (gen_m2subrf4_cond (e2, cond, reg_rf_c1, g2, h2, zero, status1, trunc_off));
/* g3 = g2 + (d * h2) */
emit_insn (gen_m2addrf4_cond (g3, cond, g2, d, h2, zero, status1, trunc_off));
/* h3 = h2 + (e2 * h2) */
emit_insn (gen_m2addrf4_cond (h3, cond, h2, e2, h2, zero, status1, trunc_off));
/* d1 = b - (g3 * g3) */
emit_insn (gen_m2subrf4_cond (d1, cond, b, g3, g3, zero, status1, trunc_off));
/* g4 = g3 + (d1 * h3) */
emit_insn (gen_m2addrf4_cond (g4, cond, g3, d1, h3, y, status1, trunc_off));
/* Conversion back into SFmode. */
emit_insn (gen_truncrfxf2 (operands[0], g4));
DONE;
})