URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [mcore/] [lib1.asm] - Rev 856
Go to most recent revision | Compare with Previous | Blame | View Log
/* libgcc routines for the MCore.
Copyright (C) 1993, 1999, 2000, 2009 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#define CONCAT1(a, b) CONCAT2(a, b)
#define CONCAT2(a, b) a ## b
/* Use the right prefix for global labels. */
#define SYM(x) CONCAT1 (__, x)
#ifdef __ELF__
#define TYPE(x) .type SYM (x),@function
#define SIZE(x) .size SYM (x), . - SYM (x)
#else
#define TYPE(x)
#define SIZE(x)
#endif
.macro FUNC_START name
.text
.globl SYM (\name)
TYPE (\name)
SYM (\name):
.endm
.macro FUNC_END name
SIZE (\name)
.endm
#ifdef L_udivsi3
FUNC_START udiv32
FUNC_START udivsi32
movi r1,0 // r1-r2 form 64 bit dividend
movi r4,1 // r4 is quotient (1 for a sentinel)
cmpnei r3,0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations; skip across high order 0 bits in dividend
mov r7,r2
cmpnei r7,0
bt 8f
movi r2,0 // 0 dividend
jmp r15 // quick return
8:
ff1 r7 // figure distance to skip
lsl r4,r7 // move the sentinel along (with 0's behind)
lsl r2,r7 // and the low 32 bits of numerator
// appears to be wrong...
// tested out incorrectly in our OS work...
// mov r7,r3 // looking at divisor
// ff1 r7 // I can move 32-r7 more bits to left.
// addi r7,1 // ok, one short of that...
// mov r1,r2
// lsr r1,r7 // bits that came from low order...
// rsubi r7,31 // r7 == "32-n" == LEFT distance
// addi r7,1 // this is (32-n)
// lsl r4,r7 // fixes the high 32 (quotient)
// lsl r2,r7
// cmpnei r4,0
// bf 4f // the sentinel went away...
// run the remaining bits
1: lslc r2,1 // 1 bit left shift of r1-r2
addc r1,r1
cmphs r1,r3 // upper 32 of dividend >= divisor?
bf 2f
sub r1,r3 // if yes, subtract divisor
2: addc r4,r4 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
4: mov r2,r4 // return quotient
mov r3,r1 // and piggyback the remainder
jmp r15
FUNC_END udiv32
FUNC_END udivsi32
#endif
#ifdef L_umodsi3
FUNC_START urem32
FUNC_START umodsi3
movi r1,0 // r1-r2 form 64 bit dividend
movi r4,1 // r4 is quotient (1 for a sentinel)
cmpnei r3,0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations; skip across high order 0 bits in dividend
mov r7,r2
cmpnei r7,0
bt 8f
movi r2,0 // 0 dividend
jmp r15 // quick return
8:
ff1 r7 // figure distance to skip
lsl r4,r7 // move the sentinel along (with 0's behind)
lsl r2,r7 // and the low 32 bits of numerator
1: lslc r2,1 // 1 bit left shift of r1-r2
addc r1,r1
cmphs r1,r3 // upper 32 of dividend >= divisor?
bf 2f
sub r1,r3 // if yes, subtract divisor
2: addc r4,r4 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
mov r2,r1 // return remainder
jmp r15
FUNC_END urem32
FUNC_END umodsi3
#endif
#ifdef L_divsi3
FUNC_START div32
FUNC_START divsi3
mov r5,r2 // calc sign of quotient
xor r5,r3
abs r2 // do unsigned divide
abs r3
movi r1,0 // r1-r2 form 64 bit dividend
movi r4,1 // r4 is quotient (1 for a sentinel)
cmpnei r3,0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations; skip across high order 0 bits in dividend
mov r7,r2
cmpnei r7,0
bt 8f
movi r2,0 // 0 dividend
jmp r15 // quick return
8:
ff1 r7 // figure distance to skip
lsl r4,r7 // move the sentinel along (with 0's behind)
lsl r2,r7 // and the low 32 bits of numerator
// tested out incorrectly in our OS work...
// mov r7,r3 // looking at divisor
// ff1 r7 // I can move 32-r7 more bits to left.
// addi r7,1 // ok, one short of that...
// mov r1,r2
// lsr r1,r7 // bits that came from low order...
// rsubi r7,31 // r7 == "32-n" == LEFT distance
// addi r7,1 // this is (32-n)
// lsl r4,r7 // fixes the high 32 (quotient)
// lsl r2,r7
// cmpnei r4,0
// bf 4f // the sentinel went away...
// run the remaining bits
1: lslc r2,1 // 1 bit left shift of r1-r2
addc r1,r1
cmphs r1,r3 // upper 32 of dividend >= divisor?
bf 2f
sub r1,r3 // if yes, subtract divisor
2: addc r4,r4 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
4: mov r2,r4 // return quotient
mov r3,r1 // piggyback the remainder
btsti r5,31 // after adjusting for sign
bf 3f
rsubi r2,0
rsubi r3,0
3: jmp r15
FUNC_END div32
FUNC_END divsi3
#endif
#ifdef L_modsi3
FUNC_START rem32
FUNC_START modsi3
mov r5,r2 // calc sign of remainder
abs r2 // do unsigned divide
abs r3
movi r1,0 // r1-r2 form 64 bit dividend
movi r4,1 // r4 is quotient (1 for a sentinel)
cmpnei r3,0 // look for 0 divisor
bt 9f
trap 3 // divide by 0
9:
// control iterations; skip across high order 0 bits in dividend
mov r7,r2
cmpnei r7,0
bt 8f
movi r2,0 // 0 dividend
jmp r15 // quick return
8:
ff1 r7 // figure distance to skip
lsl r4,r7 // move the sentinel along (with 0's behind)
lsl r2,r7 // and the low 32 bits of numerator
1: lslc r2,1 // 1 bit left shift of r1-r2
addc r1,r1
cmphs r1,r3 // upper 32 of dividend >= divisor?
bf 2f
sub r1,r3 // if yes, subtract divisor
2: addc r4,r4 // shift by 1 and count subtracts
bf 1b // if sentinel falls out of quotient, stop
mov r2,r1 // return remainder
btsti r5,31 // after adjusting for sign
bf 3f
rsubi r2,0
3: jmp r15
FUNC_END rem32
FUNC_END modsi3
#endif
/* GCC expects that {__eq,__ne,__gt,__ge,__le,__lt}{df2,sf2}
will behave as __cmpdf2. So, we stub the implementations to
jump on to __cmpdf2 and __cmpsf2.
All of these shortcircuit the return path so that __cmp{sd}f2
will go directly back to the caller. */
.macro COMPARE_DF_JUMP name
.import SYM (cmpdf2)
FUNC_START \name
jmpi SYM (cmpdf2)
FUNC_END \name
.endm
#ifdef L_eqdf2
COMPARE_DF_JUMP eqdf2
#endif /* L_eqdf2 */
#ifdef L_nedf2
COMPARE_DF_JUMP nedf2
#endif /* L_nedf2 */
#ifdef L_gtdf2
COMPARE_DF_JUMP gtdf2
#endif /* L_gtdf2 */
#ifdef L_gedf2
COMPARE_DF_JUMP gedf2
#endif /* L_gedf2 */
#ifdef L_ltdf2
COMPARE_DF_JUMP ltdf2
#endif /* L_ltdf2 */
#ifdef L_ledf2
COMPARE_DF_JUMP ledf2
#endif /* L_ledf2 */
/* SINGLE PRECISION FLOATING POINT STUBS */
.macro COMPARE_SF_JUMP name
.import SYM (cmpsf2)
FUNC_START \name
jmpi SYM (cmpsf2)
FUNC_END \name
.endm
#ifdef L_eqsf2
COMPARE_SF_JUMP eqsf2
#endif /* L_eqsf2 */
#ifdef L_nesf2
COMPARE_SF_JUMP nesf2
#endif /* L_nesf2 */
#ifdef L_gtsf2
COMPARE_SF_JUMP gtsf2
#endif /* L_gtsf2 */
#ifdef L_gesf2
COMPARE_SF_JUMP __gesf2
#endif /* L_gesf2 */
#ifdef L_ltsf2
COMPARE_SF_JUMP __ltsf2
#endif /* L_ltsf2 */
#ifdef L_lesf2
COMPARE_SF_JUMP lesf2
#endif /* L_lesf2 */
Go to most recent revision | Compare with Previous | Blame | View Log