URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [config/] [mcore/] [mcore.md] - Rev 282
Go to most recent revision | Compare with Previous | Blame | View Log
;; Machine description the Motorola MCore
;; Copyright (C) 1993, 1999, 2000, 2004, 2005, 2007
;; Free Software Foundation, Inc.
;; Contributed by Motorola.
;; This file is part of GCC.
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.
;; -------------------------------------------------------------------------
;; Attributes
;; -------------------------------------------------------------------------
; Target CPU.
(define_attr "type" "brcond,branch,jmp,load,store,move,alu,shift"
(const_string "alu"))
;; If a branch destination is within -2048..2047 bytes away from the
;; instruction it can be 2 bytes long. All other conditional branches
;; are 10 bytes long, and all other unconditional branches are 8 bytes.
;;
;; the assembler handles the long-branch span case for us if we use
;; the "jb*" mnemonics for jumps/branches. This pushes the span
;; calculations and the literal table placement into the assembler,
;; where their interactions can be managed in a single place.
;; All MCORE instructions are two bytes long.
(define_attr "length" "" (const_int 2))
;; Scheduling. We only model a simple load latency.
(define_insn_reservation "any_insn" 1
(eq_attr "type" "!load")
"nothing")
(define_insn_reservation "memory" 2
(eq_attr "type" "load")
"nothing")
(include "predicates.md")
;; -------------------------------------------------------------------------
;; Test and bit test
;; -------------------------------------------------------------------------
(define_insn ""
[(set (reg:SI 17)
(sign_extract:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(const_int 1)
(match_operand:SI 1 "mcore_literal_K_operand" "K")))]
""
"btsti %0,%1"
[(set_attr "type" "shift")])
(define_insn ""
[(set (reg:SI 17)
(zero_extract:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(const_int 1)
(match_operand:SI 1 "mcore_literal_K_operand" "K")))]
""
"btsti %0,%1"
[(set_attr "type" "shift")])
;;; This is created by combine.
(define_insn ""
[(set (reg:CC 17)
(ne:CC (zero_extract:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(const_int 1)
(match_operand:SI 1 "mcore_literal_K_operand" "K"))
(const_int 0)))]
""
"btsti %0,%1"
[(set_attr "type" "shift")])
;; Created by combine from conditional patterns below (see sextb/btsti rx,31)
(define_insn ""
[(set (reg:CC 17)
(ne:CC (lshiftrt:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(const_int 7))
(const_int 0)))]
"GET_CODE(operands[0]) == SUBREG &&
GET_MODE(SUBREG_REG(operands[0])) == QImode"
"btsti %0,7"
[(set_attr "type" "shift")])
(define_insn ""
[(set (reg:CC 17)
(ne:CC (lshiftrt:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(const_int 15))
(const_int 0)))]
"GET_CODE(operands[0]) == SUBREG &&
GET_MODE(SUBREG_REG(operands[0])) == HImode"
"btsti %0,15"
[(set_attr "type" "shift")])
(define_split
[(set (pc)
(if_then_else (ne (eq:CC (zero_extract:SI
(match_operand:SI 0 "mcore_arith_reg_operand" "")
(const_int 1)
(match_operand:SI 1 "mcore_literal_K_operand" ""))
(const_int 0))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
[(set (reg:CC 17)
(zero_extract:SI (match_dup 0) (const_int 1) (match_dup 1)))
(set (pc) (if_then_else (eq (reg:CC 17) (const_int 0))
(label_ref (match_dup 2))
(pc)))]
"")
(define_split
[(set (pc)
(if_then_else (eq (ne:CC (zero_extract:SI
(match_operand:SI 0 "mcore_arith_reg_operand" "")
(const_int 1)
(match_operand:SI 1 "mcore_literal_K_operand" ""))
(const_int 0))
(const_int 0))
(label_ref (match_operand 2 "" ""))
(pc)))]
""
[(set (reg:CC 17)
(zero_extract:SI (match_dup 0) (const_int 1) (match_dup 1)))
(set (pc) (if_then_else (eq (reg:CC 17) (const_int 0))
(label_ref (match_dup 2))
(pc)))]
"")
;; XXX - disabled by nickc because it fails on libiberty/fnmatch.c
;;
;; ; Experimental - relax immediates for and, andn, or, and tst to allow
;; ; any immediate value (or an immediate at all -- or, andn, & tst).
;; ; This is done to allow bit field masks to fold together in combine.
;; ; The reload phase will force the immediate into a register at the
;; ; very end. This helps in some cases, but hurts in others: we'd
;; ; really like to cse these immediates. However, there is a phase
;; ; ordering problem here. cse picks up individual masks and cse's
;; ; those, but not folded masks (cse happens before combine). It's
;; ; not clear what the best solution is because we really want cse
;; ; before combine (leaving the bit field masks alone). To pick up
;; ; relaxed immediates use -mrelax-immediates. It might take some
;; ; experimenting to see which does better (i.e. regular imms vs.
;; ; arbitrary imms) for a particular code. BRC
;;
;; (define_insn ""
;; [(set (reg:CC 17)
;; (ne:CC (and:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
;; (match_operand:SI 1 "mcore_arith_any_imm_operand" "rI"))
;; (const_int 0)))]
;; "TARGET_RELAX_IMM"
;; "tst %0,%1")
;;
;; (define_insn ""
;; [(set (reg:CC 17)
;; (ne:CC (and:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
;; (match_operand:SI 1 "mcore_arith_M_operand" "r"))
;; (const_int 0)))]
;; "!TARGET_RELAX_IMM"
;; "tst %0,%1")
(define_insn ""
[(set (reg:CC 17)
(ne:CC (and:SI (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_M_operand" "r"))
(const_int 0)))]
""
"tst %0,%1")
(define_split
[(parallel[
(set (reg:CC 17)
(ne:CC (ne:SI (leu:CC (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "mcore_arith_reg_operand" ""))
(const_int 0))
(const_int 0)))
(clobber (match_operand:CC 2 "mcore_arith_reg_operand" ""))])]
""
[(set (reg:CC 17) (ne:SI (match_dup 0) (const_int 0)))
(set (reg:CC 17) (leu:CC (match_dup 0) (match_dup 1)))])
;; -------------------------------------------------------------------------
;; SImode signed integer comparisons
;; -------------------------------------------------------------------------
(define_insn "decne_t"
[(set (reg:CC 17) (ne:CC (plus:SI (match_operand:SI 0 "mcore_arith_reg_operand" "+r")
(const_int -1))
(const_int 0)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
""
"decne %0")
;; The combiner seems to prefer the following to the former.
;;
(define_insn ""
[(set (reg:CC 17) (ne:CC (match_operand:SI 0 "mcore_arith_reg_operand" "+r")
(const_int 1)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(const_int -1)))]
""
"decne %0")
(define_insn "cmpnesi_t"
[(set (reg:CC 17) (ne:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_reg_operand" "r")))]
""
"cmpne %0,%1")
(define_insn "cmpneisi_t"
[(set (reg:CC 17) (ne:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_K_operand" "K")))]
""
"cmpnei %0,%1")
(define_insn "cmpgtsi_t"
[(set (reg:CC 17) (gt:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_reg_operand" "r")))]
""
"cmplt %1,%0")
(define_insn ""
[(set (reg:CC 17) (gt:CC (plus:SI
(match_operand:SI 0 "mcore_arith_reg_operand" "+r")
(const_int -1))
(const_int 0)))
(set (match_dup 0) (plus:SI (match_dup 0) (const_int -1)))]
""
"decgt %0")
(define_insn "cmpltsi_t"
[(set (reg:CC 17) (lt:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_reg_operand" "r")))]
""
"cmplt %0,%1")
; cmplti is 1-32
(define_insn "cmpltisi_t"
[(set (reg:CC 17) (lt:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_J_operand" "J")))]
""
"cmplti %0,%1")
; covers cmplti x,0
(define_insn ""
[(set (reg:CC 17) (lt:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(const_int 0)))]
""
"btsti %0,31")
(define_insn ""
[(set (reg:CC 17) (lt:CC (plus:SI
(match_operand:SI 0 "mcore_arith_reg_operand" "+r")
(const_int -1))
(const_int 0)))
(set (match_dup 0) (plus:SI (match_dup 0) (const_int -1)))]
""
"declt %0")
;; -------------------------------------------------------------------------
;; SImode unsigned integer comparisons
;; -------------------------------------------------------------------------
(define_insn "cmpgeusi_t"
[(set (reg:CC 17) (geu:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_reg_operand" "r")))]
""
"cmphs %0,%1")
(define_insn "cmpgeusi_0"
[(set (reg:CC 17) (geu:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(const_int 0)))]
""
"cmpnei %0, 0")
(define_insn "cmpleusi_t"
[(set (reg:CC 17) (leu:CC (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "mcore_arith_reg_operand" "r")))]
""
"cmphs %1,%0")
;; -------------------------------------------------------------------------
;; Logical operations
;; -------------------------------------------------------------------------
;; Logical AND clearing a single bit. andsi3 knows that we have this
;; pattern and allows the constant literal pass through.
;;
;; RBE 2/97: don't need this pattern any longer...
;; RBE: I don't think we need both "S" and exact_log2() clauses.
;;(define_insn ""
;; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
;; (and:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0")
;; (match_operand:SI 2 "const_int_operand" "S")))]
;; "mcore_arith_S_operand (operands[2])"
;; "bclri %0,%Q2")
;;
(define_insn "andnsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(and:SI (not:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r"))
(match_operand:SI 2 "mcore_arith_reg_operand" "0")))]
""
"andn %0,%1")
(define_expand "andsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(and:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]
""
"
{
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0
&& ! mcore_arith_S_operand (operands[2]))
{
HOST_WIDE_INT not_value = ~ INTVAL (operands[2]);
if ( CONST_OK_FOR_I (not_value)
|| CONST_OK_FOR_M (not_value)
|| CONST_OK_FOR_N (not_value))
{
operands[2] = copy_to_mode_reg (SImode, GEN_INT (not_value));
emit_insn (gen_andnsi3 (operands[0], operands[2], operands[1]));
DONE;
}
}
if (! mcore_arith_K_S_operand (operands[2], SImode))
operands[2] = copy_to_mode_reg (SImode, operands[2]);
}")
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(and:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,0,r,0")
(match_operand:SI 2 "mcore_arith_any_imm_operand" "r,K,0,S")))]
"TARGET_RELAX_IMM"
"*
{
switch (which_alternative)
{
case 0: return \"and %0,%2\";
case 1: return \"andi %0,%2\";
case 2: return \"and %0,%1\";
/* case -1: return \"bclri %0,%Q2\"; will not happen */
case 3: return mcore_output_bclri (operands[0], INTVAL (operands[2]));
default: gcc_unreachable ();
}
}")
;; This was the old "S" which was "!(2^n)" */
;; case -1: return \"bclri %0,%Q2\"; will not happen */
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(and:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,0,r,0")
(match_operand:SI 2 "mcore_arith_K_S_operand" "r,K,0,S")))]
"!TARGET_RELAX_IMM"
"*
{
switch (which_alternative)
{
case 0: return \"and %0,%2\";
case 1: return \"andi %0,%2\";
case 2: return \"and %0,%1\";
case 3: return mcore_output_bclri (operands[0], INTVAL (operands[2]));
default: gcc_unreachable ();
}
}")
;(define_insn "iorsi3"
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
; (ior:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0")
; (match_operand:SI 2 "mcore_arith_reg_operand" "r")))]
; ""
; "or %0,%2")
; need an expand to resolve ambiguity betw. the two iors below.
(define_expand "iorsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(ior:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]
""
"
{
if (! mcore_arith_M_operand (operands[2], SImode))
operands[2] = copy_to_mode_reg (SImode, operands[2]);
}")
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r")
(ior:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0,0,0")
(match_operand:SI 2 "mcore_arith_any_imm_operand" "r,M,T")))]
"TARGET_RELAX_IMM"
"*
{
switch (which_alternative)
{
case 0: return \"or %0,%2\";
case 1: return \"bseti %0,%P2\";
case 2: return mcore_output_bseti (operands[0], INTVAL (operands[2]));
default: gcc_unreachable ();
}
}")
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r")
(ior:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0,0,0")
(match_operand:SI 2 "mcore_arith_M_operand" "r,M,T")))]
"!TARGET_RELAX_IMM"
"*
{
switch (which_alternative)
{
case 0: return \"or %0,%2\";
case 1: return \"bseti %0,%P2\";
case 2: return mcore_output_bseti (operands[0], INTVAL (operands[2]));
default: gcc_unreachable ();
}
}")
;(define_insn ""
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
; (ior:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")
; (match_operand:SI 2 "const_int_operand" "M")))]
; "exact_log2 (INTVAL (operands[2])) >= 0"
; "bseti %0,%P2")
;(define_insn ""
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
; (ior:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")
; (match_operand:SI 2 "const_int_operand" "i")))]
; "mcore_num_ones (INTVAL (operands[2])) < 3"
; "* return mcore_output_bseti (operands[0], INTVAL (operands[2]));")
(define_insn "xorsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(xor:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0")
(match_operand:SI 2 "mcore_arith_reg_operand" "r")))]
""
"xor %0,%2")
; these patterns give better code then gcc invents if
; left to its own devices
(define_insn "anddi3"
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=r")
(and:DI (match_operand:DI 1 "mcore_arith_reg_operand" "%0")
(match_operand:DI 2 "mcore_arith_reg_operand" "r")))]
""
"and %0,%2\;and %R0,%R2"
[(set_attr "length" "4")])
(define_insn "iordi3"
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=r")
(ior:DI (match_operand:DI 1 "mcore_arith_reg_operand" "%0")
(match_operand:DI 2 "mcore_arith_reg_operand" "r")))]
""
"or %0,%2\;or %R0,%R2"
[(set_attr "length" "4")])
(define_insn "xordi3"
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=r")
(xor:DI (match_operand:DI 1 "mcore_arith_reg_operand" "%0")
(match_operand:DI 2 "mcore_arith_reg_operand" "r")))]
""
"xor %0,%2\;xor %R0,%R2"
[(set_attr "length" "4")])
;; -------------------------------------------------------------------------
;; Shifts and rotates
;; -------------------------------------------------------------------------
;; Only allow these if the shift count is a convenient constant.
(define_expand "rotlsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(rotate:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]
""
"if (! mcore_literal_K_operand (operands[2], SImode))
FAIL;
")
;; We can only do constant rotates, which is what this pattern provides.
;; The combiner will put it together for us when we do:
;; (x << N) | (x >> (32 - N))
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(rotate:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")
(match_operand:SI 2 "mcore_literal_K_operand" "K")))]
""
"rotli %0,%2"
[(set_attr "type" "shift")])
(define_insn "ashlsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r")
(ashift:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,0")
(match_operand:SI 2 "mcore_arith_K_operand_not_0" "r,K")))]
""
"@
lsl %0,%2
lsli %0,%2"
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(ashift:SI (const_int 1)
(match_operand:SI 1 "mcore_arith_reg_operand" "r")))]
""
"bgenr %0,%1"
[(set_attr "type" "shift")])
(define_insn "ashrsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r")
(ashiftrt:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,0")
(match_operand:SI 2 "mcore_arith_K_operand_not_0" "r,K")))]
""
"@
asr %0,%2
asri %0,%2"
[(set_attr "type" "shift")])
(define_insn "lshrsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r")
(lshiftrt:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,0")
(match_operand:SI 2 "mcore_arith_K_operand_not_0" "r,K")))]
""
"@
lsr %0,%2
lsri %0,%2"
[(set_attr "type" "shift")])
;(define_expand "ashldi3"
; [(parallel[(set (match_operand:DI 0 "mcore_arith_reg_operand" "")
; (ashift:DI (match_operand:DI 1 "mcore_arith_reg_operand" "")
; (match_operand:DI 2 "immediate_operand" "")))
;
; (clobber (reg:CC 17))])]
;
; ""
; "
;{
; if (GET_CODE (operands[2]) != CONST_INT
; || INTVAL (operands[2]) != 1)
; FAIL;
;}")
;
;(define_insn ""
; [(set (match_operand:DI 0 "mcore_arith_reg_operand" "=r")
; (ashift:DI (match_operand:DI 1 "mcore_arith_reg_operand" "0")
; (const_int 1)))
; (clobber (reg:CC 17))]
; ""
; "lsli %R0,0\;rotli %0,0"
; [(set_attr "length" "4") (set_attr "type" "shift")])
;; -------------------------------------------------------------------------
;; Index instructions
;; -------------------------------------------------------------------------
;; The second of each set of patterns is borrowed from the alpha.md file.
;; These variants of the above insns can occur if the second operand
;; is the frame pointer. This is a kludge, but there doesn't
;; seem to be a way around it. Only recognize them while reloading.
;; We must use reload_operand for some operands in case frame pointer
;; elimination put a MEM with invalid address there. Otherwise,
;; the result of the substitution will not match this pattern, and reload
;; will not be able to correctly fix the result.
;; indexing longlongs or doubles (8 bytes)
(define_insn "indexdi_t"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(plus:SI (mult:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(const_int 8))
(match_operand:SI 2 "mcore_arith_reg_operand" "0")))]
""
"*
if (! mcore_is_same_reg (operands[1], operands[2]))
{
output_asm_insn (\"ixw\\t%0,%1\", operands);
output_asm_insn (\"ixw\\t%0,%1\", operands);
}
else
{
output_asm_insn (\"ixh\\t%0,%1\", operands);
output_asm_insn (\"ixh\\t%0,%1\", operands);
}
return \"\";
"
;; if operands[1] == operands[2], the first option above is wrong! -- dac
;; was this... -- dac
;; ixw %0,%1\;ixw %0,%1"
[(set_attr "length" "4")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_reload_operand" "=r,r,r")
(plus:SI (plus:SI (mult:SI (match_operand:SI 1 "mcore_reload_operand" "r,r,r")
(const_int 8))
(match_operand:SI 2 "mcore_arith_reg_operand" "0,0,0"))
(match_operand:SI 3 "mcore_addsub_operand" "r,J,L")))]
"reload_in_progress"
"@
ixw %0,%1\;ixw %0,%1\;addu %0,%3
ixw %0,%1\;ixw %0,%1\;addi %0,%3
ixw %0,%1\;ixw %0,%1\;subi %0,%M3"
[(set_attr "length" "6")])
;; indexing longs (4 bytes)
(define_insn "indexsi_t"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(plus:SI (mult:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(const_int 4))
(match_operand:SI 2 "mcore_arith_reg_operand" "0")))]
""
"ixw %0,%1")
(define_insn ""
[(set (match_operand:SI 0 "mcore_reload_operand" "=r,r,r")
(plus:SI (plus:SI (mult:SI (match_operand:SI 1 "mcore_reload_operand" "r,r,r")
(const_int 4))
(match_operand:SI 2 "mcore_arith_reg_operand" "0,0,0"))
(match_operand:SI 3 "mcore_addsub_operand" "r,J,L")))]
"reload_in_progress"
"@
ixw %0,%1\;addu %0,%3
ixw %0,%1\;addi %0,%3
ixw %0,%1\;subi %0,%M3"
[(set_attr "length" "4")])
;; indexing shorts (2 bytes)
(define_insn "indexhi_t"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(plus:SI (mult:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(const_int 2))
(match_operand:SI 2 "mcore_arith_reg_operand" "0")))]
""
"ixh %0,%1")
(define_insn ""
[(set (match_operand:SI 0 "mcore_reload_operand" "=r,r,r")
(plus:SI (plus:SI (mult:SI (match_operand:SI 1 "mcore_reload_operand" "r,r,r")
(const_int 2))
(match_operand:SI 2 "mcore_arith_reg_operand" "0,0,0"))
(match_operand:SI 3 "mcore_addsub_operand" "r,J,L")))]
"reload_in_progress"
"@
ixh %0,%1\;addu %0,%3
ixh %0,%1\;addi %0,%3
ixh %0,%1\;subi %0,%M3"
[(set_attr "length" "4")])
;;
;; Other sizes may be handy for indexing.
;; the tradeoffs to consider when adding these are
;; code size, execution time [vs. mul it is easy to win],
;; and register pressure -- these patterns don't use an extra
;; register to build the offset from the base
;; and whether the compiler will not come up with some other idiom.
;;
;; -------------------------------------------------------------------------
;; Addition, Subtraction instructions
;; -------------------------------------------------------------------------
(define_expand "addsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "nonmemory_operand" "")))]
""
"
{
extern int flag_omit_frame_pointer;
/* If this is an add to the frame pointer, then accept it as is so
that we can later fold in the fp/sp offset from frame pointer
elimination. */
if (flag_omit_frame_pointer
&& GET_CODE (operands[1]) == REG
&& (REGNO (operands[1]) == VIRTUAL_STACK_VARS_REGNUM
|| REGNO (operands[1]) == FRAME_POINTER_REGNUM))
{
emit_insn (gen_addsi3_fp (operands[0], operands[1], operands[2]));
DONE;
}
/* Convert adds to subtracts if this makes loading the constant cheaper.
But only if we are allowed to generate new pseudos. */
if (! (reload_in_progress || reload_completed)
&& GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) < -32)
{
HOST_WIDE_INT neg_value = - INTVAL (operands[2]);
if ( CONST_OK_FOR_I (neg_value)
|| CONST_OK_FOR_M (neg_value)
|| CONST_OK_FOR_N (neg_value))
{
operands[2] = copy_to_mode_reg (SImode, GEN_INT (neg_value));
emit_insn (gen_subsi3 (operands[0], operands[1], operands[2]));
DONE;
}
}
if (! mcore_addsub_operand (operands[2], SImode))
operands[2] = copy_to_mode_reg (SImode, operands[2]);
}")
;; RBE: for some constants which are not in the range which allows
;; us to do a single operation, we will try a paired addi/addi instead
;; of a movi/addi. This relieves some register pressure at the expense
;; of giving away some potential constant reuse.
;;
;; RBE 6/17/97: this didn't buy us anything, but I keep the pattern
;; for later reference
;;
;; (define_insn "addsi3_i2"
;; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
;; (plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0")
;; (match_operand:SI 2 "const_int_operand" "g")))]
;; "GET_CODE(operands[2]) == CONST_INT
;; && ((INTVAL (operands[2]) > 32 && INTVAL(operands[2]) <= 64)
;; || (INTVAL (operands[2]) < -32 && INTVAL(operands[2]) >= -64))"
;; "*
;; {
;; HOST_WIDE_INT n = INTVAL(operands[2]);
;; if (n > 0)
;; {
;; operands[2] = GEN_INT(n - 32);
;; return \"addi\\t%0,32\;addi\\t%0,%2\";
;; }
;; else
;; {
;; n = (-n);
;; operands[2] = GEN_INT(n - 32);
;; return \"subi\\t%0,32\;subi\\t%0,%2\";
;; }
;; }"
;; [(set_attr "length" "4")])
(define_insn "addsi3_i"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r")
(plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0,0,0")
(match_operand:SI 2 "mcore_addsub_operand" "r,J,L")))]
""
"@
addu %0,%2
addi %0,%2
subi %0,%M2")
;; This exists so that address computations based on the frame pointer
;; can be folded in when frame pointer elimination occurs. Ordinarily
;; this would be bad because it allows insns which would require reloading,
;; but without it, we get multiple adds where one would do.
(define_insn "addsi3_fp"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r")
(plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0,0,0")
(match_operand:SI 2 "immediate_operand" "r,J,L")))]
"flag_omit_frame_pointer
&& (reload_in_progress || reload_completed || REGNO (operands[1]) == FRAME_POINTER_REGNUM)"
"@
addu %0,%2
addi %0,%2
subi %0,%M2")
;; RBE: for some constants which are not in the range which allows
;; us to do a single operation, we will try a paired addi/addi instead
;; of a movi/addi. This relieves some register pressure at the expense
;; of giving away some potential constant reuse.
;;
;; RBE 6/17/97: this didn't buy us anything, but I keep the pattern
;; for later reference
;;
;; (define_insn "subsi3_i2"
;; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
;; (plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0")
;; (match_operand:SI 2 "const_int_operand" "g")))]
;; "TARGET_RBETEST && GET_CODE(operands[2]) == CONST_INT
;; && ((INTVAL (operands[2]) > 32 && INTVAL(operands[2]) <= 64)
;; || (INTVAL (operands[2]) < -32 && INTVAL(operands[2]) >= -64))"
;; "*
;; {
;; HOST_WIDE_INT n = INTVAL(operands[2]);
;; if ( n > 0)
;; {
;; operands[2] = GEN_INT( n - 32);
;; return \"subi\\t%0,32\;subi\\t%0,%2\";
;; }
;; else
;; {
;; n = (-n);
;; operands[2] = GEN_INT(n - 32);
;; return \"addi\\t%0,32\;addi\\t%0,%2\";
;; }
;; }"
;; [(set_attr "length" "4")])
;(define_insn "subsi3"
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
; (minus:SI (match_operand:SI 1 "mcore_arith_K_operand" "0,0,r,K")
; (match_operand:SI 2 "mcore_arith_J_operand" "r,J,0,0")))]
; ""
; "@
; sub %0,%2
; subi %0,%2
; rsub %0,%1
; rsubi %0,%1")
(define_insn "subsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r")
(minus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,0,r")
(match_operand:SI 2 "mcore_arith_J_operand" "r,J,0")))]
""
"@
subu %0,%2
subi %0,%2
rsub %0,%1")
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(minus:SI (match_operand:SI 1 "mcore_literal_K_operand" "K")
(match_operand:SI 2 "mcore_arith_reg_operand" "0")))]
""
"rsubi %0,%1")
(define_insn "adddi3"
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
(plus:DI (match_operand:DI 1 "mcore_arith_reg_operand" "%0")
(match_operand:DI 2 "mcore_arith_reg_operand" "r")))
(clobber (reg:CC 17))]
""
"*
{
if (TARGET_LITTLE_END)
return \"cmplt %0,%0\;addc %0,%2\;addc %R0,%R2\";
return \"cmplt %R0,%R0\;addc %R0,%R2\;addc %0,%2\";
}"
[(set_attr "length" "6")])
;; special case for "longlong += 1"
(define_insn ""
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
(plus:DI (match_operand:DI 1 "mcore_arith_reg_operand" "0")
(const_int 1)))
(clobber (reg:CC 17))]
""
"*
{
if (TARGET_LITTLE_END)
return \"addi %0,1\;cmpnei %0,0\;incf %R0\";
return \"addi %R0,1\;cmpnei %R0,0\;incf %0\";
}"
[(set_attr "length" "6")])
;; special case for "longlong -= 1"
(define_insn ""
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
(plus:DI (match_operand:DI 1 "mcore_arith_reg_operand" "0")
(const_int -1)))
(clobber (reg:CC 17))]
""
"*
{
if (TARGET_LITTLE_END)
return \"cmpnei %0,0\;decf %R0\;subi %0,1\";
return \"cmpnei %R0,0\;decf %0\;subi %R0,1\";
}"
[(set_attr "length" "6")])
;; special case for "longlong += const_int"
;; we have to use a register for the const_int because we don't
;; have an unsigned compare immediate... only +/- 1 get to
;; play the no-extra register game because they compare with 0.
;; This winds up working out for any literal that is synthesized
;; with a single instruction. The more complicated ones look
;; like the get broken into subreg's to get initialized too soon
;; for us to catch here. -- RBE 4/25/96
;; only allow for-sure positive values.
(define_insn ""
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
(plus:DI (match_operand:DI 1 "mcore_arith_reg_operand" "0")
(match_operand:SI 2 "const_int_operand" "r")))
(clobber (reg:CC 17))]
"GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) > 0 && ! (INTVAL (operands[2]) & 0x80000000)"
"*
{
gcc_assert (GET_MODE (operands[2]) == SImode);
if (TARGET_LITTLE_END)
return \"addu %0,%2\;cmphs %0,%2\;incf %R0\";
return \"addu %R0,%2\;cmphs %R0,%2\;incf %0\";
}"
[(set_attr "length" "6")])
;; optimize "long long" + "unsigned long"
;; won't trigger because of how the extension is expanded upstream.
;; (define_insn ""
;; [(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
;; (plus:DI (match_operand:DI 1 "mcore_arith_reg_operand" "%0")
;; (zero_extend:DI (match_operand:SI 2 "mcore_arith_reg_operand" "r"))))
;; (clobber (reg:CC 17))]
;; "0"
;; "cmplt %R0,%R0\;addc %R0,%2\;inct %0"
;; [(set_attr "length" "6")])
;; optimize "long long" + "signed long"
;; won't trigger because of how the extension is expanded upstream.
;; (define_insn ""
;; [(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
;; (plus:DI (match_operand:DI 1 "mcore_arith_reg_operand" "%0")
;; (sign_extend:DI (match_operand:SI 2 "mcore_arith_reg_operand" "r"))))
;; (clobber (reg:CC 17))]
;; "0"
;; "cmplt %R0,%R0\;addc %R0,%2\;inct %0\;btsti %2,31\;dect %0"
;; [(set_attr "length" "6")])
(define_insn "subdi3"
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
(minus:DI (match_operand:DI 1 "mcore_arith_reg_operand" "0")
(match_operand:DI 2 "mcore_arith_reg_operand" "r")))
(clobber (reg:CC 17))]
""
"*
{
if (TARGET_LITTLE_END)
return \"cmphs %0,%0\;subc %0,%2\;subc %R0,%R2\";
return \"cmphs %R0,%R0\;subc %R0,%R2\;subc %0,%2\";
}"
[(set_attr "length" "6")])
;; -------------------------------------------------------------------------
;; Multiplication instructions
;; -------------------------------------------------------------------------
(define_insn "mulsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(mult:SI (match_operand:SI 1 "mcore_arith_reg_operand" "%0")
(match_operand:SI 2 "mcore_arith_reg_operand" "r")))]
""
"mult %0,%2")
;;
;; 32/32 signed division -- added to the MCORE instruction set spring 1997
;;
;; Different constraints based on the architecture revision...
;;
(define_expand "divsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(div:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))]
"TARGET_DIV"
"")
;; MCORE Revision 1.50: restricts the divisor to be in r1. (6/97)
;;
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(div:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")
(match_operand:SI 2 "mcore_arith_reg_operand" "b")))]
"TARGET_DIV"
"divs %0,%2")
;;
;; 32/32 signed division -- added to the MCORE instruction set spring 1997
;;
;; Different constraints based on the architecture revision...
;;
(define_expand "udivsi3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(udiv:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))]
"TARGET_DIV"
"")
;; MCORE Revision 1.50: restricts the divisor to be in r1. (6/97)
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(udiv:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")
(match_operand:SI 2 "mcore_arith_reg_operand" "b")))]
"TARGET_DIV"
"divu %0,%2")
;; -------------------------------------------------------------------------
;; Unary arithmetic
;; -------------------------------------------------------------------------
(define_insn "negsi2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(neg:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")))]
""
"*
{
return \"rsubi %0,0\";
}")
(define_insn "abssi2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(abs:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")))]
""
"abs %0")
(define_insn "negdi2"
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=&r")
(neg:DI (match_operand:DI 1 "mcore_arith_reg_operand" "0")))
(clobber (reg:CC 17))]
""
"*
{
if (TARGET_LITTLE_END)
return \"cmpnei %0,0\\n\\trsubi %0,0\\n\\tnot %R0\\n\\tincf %R0\";
return \"cmpnei %R0,0\\n\\trsubi %R0,0\\n\\tnot %0\\n\\tincf %0\";
}"
[(set_attr "length" "8")])
(define_insn "one_cmplsi2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(not:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")))]
""
"not %0")
;; -------------------------------------------------------------------------
;; Zero extension instructions
;; -------------------------------------------------------------------------
(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(zero_extend:SI (match_operand:HI 1 "mcore_arith_reg_operand" "")))]
""
"")
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r")
(zero_extend:SI (match_operand:HI 1 "general_operand" "0,m")))]
""
"@
zexth %0
ld.h %0,%1"
[(set_attr "type" "shift,load")])
;; ldh gives us a free zero-extension. The combiner picks up on this.
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(zero_extend:SI (mem:HI (match_operand:SI 1 "mcore_arith_reg_operand" "r"))))]
""
"ld.h %0,(%1)"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(zero_extend:SI (mem:HI (plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "")))))]
"(INTVAL (operands[2]) >= 0) &&
(INTVAL (operands[2]) < 32) &&
((INTVAL (operands[2])&1) == 0)"
"ld.h %0,(%1,%2)"
[(set_attr "type" "load")])
(define_expand "zero_extendqisi2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(zero_extend:SI (match_operand:QI 1 "general_operand" "")))]
""
"")
;; RBE: XXX: we don't recognize that the xtrb3 kills the CC register.
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,b,r")
(zero_extend:SI (match_operand:QI 1 "general_operand" "0,r,m")))]
""
"@
zextb %0
xtrb3 %0,%1
ld.b %0,%1"
[(set_attr "type" "shift,shift,load")])
;; ldb gives us a free zero-extension. The combiner picks up on this.
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(zero_extend:SI (mem:QI (match_operand:SI 1 "mcore_arith_reg_operand" "r"))))]
""
"ld.b %0,(%1)"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(zero_extend:SI (mem:QI (plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "")))))]
"(INTVAL (operands[2]) >= 0) &&
(INTVAL (operands[2]) < 16)"
"ld.b %0,(%1,%2)"
[(set_attr "type" "load")])
(define_expand "zero_extendqihi2"
[(set (match_operand:HI 0 "mcore_arith_reg_operand" "")
(zero_extend:HI (match_operand:QI 1 "general_operand" "")))]
""
"")
;; RBE: XXX: we don't recognize that the xtrb3 kills the CC register.
(define_insn ""
[(set (match_operand:HI 0 "mcore_arith_reg_operand" "=r,b,r")
(zero_extend:HI (match_operand:QI 1 "general_operand" "0,r,m")))]
""
"@
zextb %0
xtrb3 %0,%1
ld.b %0,%1"
[(set_attr "type" "shift,shift,load")])
;; ldb gives us a free zero-extension. The combiner picks up on this.
;; this doesn't catch references that are into a structure.
;; note that normally the compiler uses the above insn, unless it turns
;; out that we're dealing with a volatile...
(define_insn ""
[(set (match_operand:HI 0 "mcore_arith_reg_operand" "=r")
(zero_extend:HI (mem:QI (match_operand:SI 1 "mcore_arith_reg_operand" "r"))))]
""
"ld.b %0,(%1)"
[(set_attr "type" "load")])
(define_insn ""
[(set (match_operand:HI 0 "mcore_arith_reg_operand" "=r")
(zero_extend:HI (mem:QI (plus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(match_operand:SI 2 "const_int_operand" "")))))]
"(INTVAL (operands[2]) >= 0) &&
(INTVAL (operands[2]) < 16)"
"ld.b %0,(%1,%2)"
[(set_attr "type" "load")])
;; -------------------------------------------------------------------------
;; Sign extension instructions
;; -------------------------------------------------------------------------
(define_expand "extendsidi2"
[(set (match_operand:DI 0 "mcore_arith_reg_operand" "=r")
(match_operand:SI 1 "mcore_arith_reg_operand" "r"))]
""
"
{
int low, high;
if (TARGET_LITTLE_END)
low = 0, high = 4;
else
low = 4, high = 0;
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_SUBREG (SImode, operands[0], low),
operands[1]));
emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_SUBREG (SImode, operands[0], high),
gen_rtx_ASHIFTRT (SImode,
gen_rtx_SUBREG (SImode, operands[0], low),
GEN_INT (31))));
DONE;
}"
)
(define_insn "extendhisi2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(sign_extend:SI (match_operand:HI 1 "mcore_arith_reg_operand" "0")))]
""
"sexth %0")
(define_insn "extendqisi2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(sign_extend:SI (match_operand:QI 1 "mcore_arith_reg_operand" "0")))]
""
"sextb %0")
(define_insn "extendqihi2"
[(set (match_operand:HI 0 "mcore_arith_reg_operand" "=r")
(sign_extend:HI (match_operand:QI 1 "mcore_arith_reg_operand" "0")))]
""
"sextb %0")
;; -------------------------------------------------------------------------
;; Move instructions
;; -------------------------------------------------------------------------
;; SImode
(define_expand "movsi"
[(set (match_operand:SI 0 "general_operand" "")
(match_operand:SI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (SImode, operands[1]);
}")
(define_insn ""
[(set (match_operand:SI 0 "mcore_general_movdst_operand" "=r,r,a,r,a,r,m")
(match_operand:SI 1 "mcore_general_movsrc_operand" "r,P,i,c,R,m,r"))]
"(register_operand (operands[0], SImode)
|| register_operand (operands[1], SImode))"
"* return mcore_output_move (insn, operands, SImode);"
[(set_attr "type" "move,move,move,move,load,load,store")])
;;
;; HImode
;;
(define_expand "movhi"
[(set (match_operand:HI 0 "general_operand" "")
(match_operand:HI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (HImode, operands[1]);
else if (CONSTANT_P (operands[1])
&& (GET_CODE (operands[1]) != CONST_INT
|| (! CONST_OK_FOR_I (INTVAL (operands[1]))
&& ! CONST_OK_FOR_M (INTVAL (operands[1]))
&& ! CONST_OK_FOR_N (INTVAL (operands[1]))))
&& ! reload_completed && ! reload_in_progress)
{
rtx reg = gen_reg_rtx (SImode);
emit_insn (gen_movsi (reg, operands[1]));
operands[1] = gen_lowpart (HImode, reg);
}
}")
(define_insn ""
[(set (match_operand:HI 0 "mcore_general_movdst_operand" "=r,r,a,r,r,m")
(match_operand:HI 1 "mcore_general_movsrc_operand" "r,P,i,c,m,r"))]
"(register_operand (operands[0], HImode)
|| register_operand (operands[1], HImode))"
"* return mcore_output_move (insn, operands, HImode);"
[(set_attr "type" "move,move,move,move,load,store")])
;;
;; QImode
;;
(define_expand "movqi"
[(set (match_operand:QI 0 "general_operand" "")
(match_operand:QI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (QImode, operands[1]);
else if (CONSTANT_P (operands[1])
&& (GET_CODE (operands[1]) != CONST_INT
|| (! CONST_OK_FOR_I (INTVAL (operands[1]))
&& ! CONST_OK_FOR_M (INTVAL (operands[1]))
&& ! CONST_OK_FOR_N (INTVAL (operands[1]))))
&& ! reload_completed && ! reload_in_progress)
{
rtx reg = gen_reg_rtx (SImode);
emit_insn (gen_movsi (reg, operands[1]));
operands[1] = gen_lowpart (QImode, reg);
}
}")
(define_insn ""
[(set (match_operand:QI 0 "mcore_general_movdst_operand" "=r,r,a,r,r,m")
(match_operand:QI 1 "mcore_general_movsrc_operand" "r,P,i,c,m,r"))]
"(register_operand (operands[0], QImode)
|| register_operand (operands[1], QImode))"
"* return mcore_output_move (insn, operands, QImode);"
[(set_attr "type" "move,move,move,move,load,store")])
;; DImode
(define_expand "movdi"
[(set (match_operand:DI 0 "general_operand" "")
(match_operand:DI 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DImode, operands[1]);
else if (GET_CODE (operands[1]) == CONST_INT
&& ! CONST_OK_FOR_I (INTVAL (operands[1]))
&& ! CONST_OK_FOR_M (INTVAL (operands[1]))
&& ! CONST_OK_FOR_N (INTVAL (operands[1])))
{
int i;
for (i = 0; i < UNITS_PER_WORD * 2; i += UNITS_PER_WORD)
emit_move_insn (simplify_gen_subreg (SImode, operands[0], DImode, i),
simplify_gen_subreg (SImode, operands[1], DImode, i));
DONE;
}
}")
(define_insn "movdi_i"
[(set (match_operand:DI 0 "general_operand" "=r,r,r,r,a,r,m")
(match_operand:DI 1 "mcore_general_movsrc_operand" "I,M,N,r,R,m,r"))]
""
"* return mcore_output_movedouble (operands, DImode);"
[(set_attr "length" "4") (set_attr "type" "move,move,move,move,load,load,store")])
;; SFmode
(define_expand "movsf"
[(set (match_operand:SF 0 "general_operand" "")
(match_operand:SF 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (SFmode, operands[1]);
}")
(define_insn "movsf_i"
[(set (match_operand:SF 0 "general_operand" "=r,r,m")
(match_operand:SF 1 "general_operand" "r,m,r"))]
""
"@
mov %0,%1
ld.w %0,%1
st.w %1,%0"
[(set_attr "type" "move,load,store")])
;; DFmode
(define_expand "movdf"
[(set (match_operand:DF 0 "general_operand" "")
(match_operand:DF 1 "general_operand" ""))]
""
"
{
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (DFmode, operands[1]);
}")
(define_insn "movdf_k"
[(set (match_operand:DF 0 "general_operand" "=r,r,m")
(match_operand:DF 1 "general_operand" "r,m,r"))]
""
"* return mcore_output_movedouble (operands, DFmode);"
[(set_attr "length" "4") (set_attr "type" "move,load,store")])
;; Load/store multiple
;; ??? This is not currently used.
(define_insn "ldm"
[(set (match_operand:TI 0 "mcore_arith_reg_operand" "=r")
(mem:TI (match_operand:SI 1 "mcore_arith_reg_operand" "r")))]
""
"ldq %U0,(%1)")
;; ??? This is not currently used.
(define_insn "stm"
[(set (mem:TI (match_operand:SI 0 "mcore_arith_reg_operand" "r"))
(match_operand:TI 1 "mcore_arith_reg_operand" "r"))]
""
"stq %U1,(%0)")
(define_expand "load_multiple"
[(match_par_dup 3 [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))
(use (match_operand:SI 2 "" ""))])]
""
"
{
int regno, count, i;
/* Support only loading a constant number of registers from memory and
only if at least two registers. The last register must be r15. */
if (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) < 2
|| GET_CODE (operands[1]) != MEM
|| XEXP (operands[1], 0) != stack_pointer_rtx
|| GET_CODE (operands[0]) != REG
|| REGNO (operands[0]) + INTVAL (operands[2]) != 16)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[0]);
operands[3] = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
for (i = 0; i < count; i++)
XVECEXP (operands[3], 0, i)
= gen_rtx_SET (VOIDmode,
gen_rtx_REG (SImode, regno + i),
gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx,
i * 4)));
}")
(define_insn ""
[(match_parallel 0 "mcore_load_multiple_operation"
[(set (match_operand:SI 1 "mcore_arith_reg_operand" "=r")
(mem:SI (match_operand:SI 2 "register_operand" "r")))])]
"GET_CODE (operands[2]) == REG && REGNO (operands[2]) == STACK_POINTER_REGNUM"
"ldm %1-r15,(%2)")
(define_expand "store_multiple"
[(match_par_dup 3 [(set (match_operand:SI 0 "" "")
(match_operand:SI 1 "" ""))
(use (match_operand:SI 2 "" ""))])]
""
"
{
int regno, count, i;
/* Support only storing a constant number of registers to memory and
only if at least two registers. The last register must be r15. */
if (GET_CODE (operands[2]) != CONST_INT
|| INTVAL (operands[2]) < 2
|| GET_CODE (operands[0]) != MEM
|| XEXP (operands[0], 0) != stack_pointer_rtx
|| GET_CODE (operands[1]) != REG
|| REGNO (operands[1]) + INTVAL (operands[2]) != 16)
FAIL;
count = INTVAL (operands[2]);
regno = REGNO (operands[1]);
operands[3] = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count));
for (i = 0; i < count; i++)
XVECEXP (operands[3], 0, i)
= gen_rtx_SET (VOIDmode,
gen_rtx_MEM (SImode, plus_constant (stack_pointer_rtx,
i * 4)),
gen_rtx_REG (SImode, regno + i));
}")
(define_insn ""
[(match_parallel 0 "mcore_store_multiple_operation"
[(set (mem:SI (match_operand:SI 2 "register_operand" "r"))
(match_operand:SI 1 "mcore_arith_reg_operand" "r"))])]
"GET_CODE (operands[2]) == REG && REGNO (operands[2]) == STACK_POINTER_REGNUM"
"stm %1-r15,(%2)")
;; ------------------------------------------------------------------------
;; Define the real conditional branch instructions.
;; ------------------------------------------------------------------------
;; At top-level, condition test are eq/ne, because we
;; are comparing against the condition register (which
;; has the result of the true relational test
(define_insn "branch_true"
[(set (pc) (if_then_else (ne (reg:CC 17) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jbt %l0"
[(set_attr "type" "brcond")])
(define_insn "branch_false"
[(set (pc) (if_then_else (eq (reg:CC 17) (const_int 0))
(label_ref (match_operand 0 "" ""))
(pc)))]
""
"jbf %l0"
[(set_attr "type" "brcond")])
(define_insn "inverse_branch_true"
[(set (pc) (if_then_else (ne (reg:CC 17) (const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"jbf %l0"
[(set_attr "type" "brcond")])
(define_insn "inverse_branch_false"
[(set (pc) (if_then_else (eq (reg:CC 17) (const_int 0))
(pc)
(label_ref (match_operand 0 "" ""))))]
""
"jbt %l0"
[(set_attr "type" "brcond")])
;; Conditional branch insns
(define_expand "cbranchsi4"
[(set (pc)
(if_then_else (match_operator:SI 0 "ordered_comparison_operator"
[(match_operand:SI 1 "mcore_compare_operand")
(match_operand:SI 2 "nonmemory_operand")])
(label_ref (match_operand 3 ""))
(pc)))]
""
"
{
bool invert;
invert = mcore_gen_compare (GET_CODE (operands[0]),
operands[1], operands[2]);
if (invert)
emit_jump_insn (gen_branch_false (operands[3]));
else
emit_jump_insn (gen_branch_true (operands[3]));
DONE;
}")
;; ------------------------------------------------------------------------
;; Jump and linkage insns
;; ------------------------------------------------------------------------
(define_insn "jump_real"
[(set (pc)
(label_ref (match_operand 0 "" "")))]
""
"jbr %l0"
[(set_attr "type" "branch")])
(define_expand "jump"
[(set (pc) (label_ref (match_operand 0 "" "")))]
""
"
{
emit_jump_insn (gen_jump_real (operand0));
DONE;
}
")
(define_insn "indirect_jump"
[(set (pc)
(match_operand:SI 0 "mcore_arith_reg_operand" "r"))]
""
"jmp %0"
[(set_attr "type" "jmp")])
(define_expand "call"
[(parallel[(call (match_operand:SI 0 "" "")
(match_operand 1 "" ""))
(clobber (reg:SI 15))])]
""
"
{
if (GET_CODE (operands[0]) == MEM
&& ! register_operand (XEXP (operands[0], 0), SImode)
&& ! mcore_symbolic_address_p (XEXP (operands[0], 0)))
operands[0] = gen_rtx_MEM (GET_MODE (operands[0]),
force_reg (Pmode, XEXP (operands[0], 0)));
}")
(define_insn "call_internal"
[(call (mem:SI (match_operand:SI 0 "mcore_call_address_operand" "riR"))
(match_operand 1 "" ""))
(clobber (reg:SI 15))]
""
"* return mcore_output_call (operands, 0);")
(define_expand "call_value"
[(parallel[(set (match_operand 0 "register_operand" "")
(call (match_operand:SI 1 "" "")
(match_operand 2 "" "")))
(clobber (reg:SI 15))])]
""
"
{
if (GET_CODE (operands[0]) == MEM
&& ! register_operand (XEXP (operands[0], 0), SImode)
&& ! mcore_symbolic_address_p (XEXP (operands[0], 0)))
operands[1] = gen_rtx_MEM (GET_MODE (operands[1]),
force_reg (Pmode, XEXP (operands[1], 0)));
}")
(define_insn "call_value_internal"
[(set (match_operand 0 "register_operand" "=r")
(call (mem:SI (match_operand:SI 1 "mcore_call_address_operand" "riR"))
(match_operand 2 "" "")))
(clobber (reg:SI 15))]
""
"* return mcore_output_call (operands, 1);")
(define_insn "call_value_struct"
[(parallel [(set (match_parallel 0 ""
[(expr_list (match_operand 3 "register_operand" "") (match_operand 4 "immediate_operand" ""))
(expr_list (match_operand 5 "register_operand" "") (match_operand 6 "immediate_operand" ""))])
(call (match_operand:SI 1 "" "")
(match_operand 2 "" "")))
(clobber (reg:SI 15))])]
""
"* return mcore_output_call (operands, 1);"
)
;; ------------------------------------------------------------------------
;; Misc insns
;; ------------------------------------------------------------------------
(define_insn "nop"
[(const_int 0)]
""
"or r0,r0")
(define_insn "tablejump"
[(set (pc)
(match_operand:SI 0 "mcore_arith_reg_operand" "r"))
(use (label_ref (match_operand 1 "" "")))]
""
"jmp %0"
[(set_attr "type" "jmp")])
(define_insn "*return"
[(return)]
"reload_completed && ! mcore_naked_function_p ()"
"jmp r15"
[(set_attr "type" "jmp")])
(define_insn "*no_return"
[(return)]
"reload_completed && mcore_naked_function_p ()"
""
[(set_attr "length" "0")]
)
(define_expand "prologue"
[(const_int 0)]
""
"mcore_expand_prolog (); DONE;")
(define_expand "epilogue"
[(return)]
""
"mcore_expand_epilog ();")
;; ------------------------------------------------------------------------
;; Scc instructions
;; ------------------------------------------------------------------------
(define_insn "mvc"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(ne:SI (reg:CC 17) (const_int 0)))]
""
"mvc %0"
[(set_attr "type" "move")])
(define_insn "mvcv"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(eq:SI (reg:CC 17) (const_int 0)))]
""
"mvcv %0"
[(set_attr "type" "move")])
; in 0.97 use (LE 0) with (LT 1) and complement c. BRC
(define_split
[(parallel[
(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(ne:SI (gt:CC (match_operand:SI 1 "mcore_arith_reg_operand" "")
(const_int 0))
(const_int 0)))
(clobber (reg:SI 17))])]
""
[(set (reg:CC 17)
(lt:CC (match_dup 1) (const_int 1)))
(set (match_dup 0) (eq:SI (reg:CC 17) (const_int 0)))])
(define_expand "cstoresi4"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operator:SI 1 "ordered_comparison_operator"
[(match_operand:SI 2 "mcore_compare_operand" "")
(match_operand:SI 3 "nonmemory_operand" "")]))]
""
"
{
bool invert;
invert = mcore_gen_compare (GET_CODE (operands[1]),
operands[2], operands[3]);
if (invert)
emit_insn (gen_mvcv (operands[0]));
else
emit_insn (gen_mvc (operands[0]));
DONE;
}")
(define_insn "incscc"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(plus:SI (ne (reg:CC 17) (const_int 0))
(match_operand:SI 1 "mcore_arith_reg_operand" "0")))]
""
"inct %0")
(define_insn "incscc_false"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(plus:SI (eq (reg:CC 17) (const_int 0))
(match_operand:SI 1 "mcore_arith_reg_operand" "0")))]
""
"incf %0")
(define_insn "decscc"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(minus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")
(ne (reg:CC 17) (const_int 0))))]
""
"dect %0")
(define_insn "decscc_false"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(minus:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0")
(eq (reg:CC 17) (const_int 0))))]
""
"decf %0")
;; ------------------------------------------------------------------------
;; Conditional move patterns.
;; ------------------------------------------------------------------------
(define_expand "smaxsi3"
[(set (reg:CC 17)
(lt:CC (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))
(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(if_then_else:SI (eq (reg:CC 17) (const_int 0))
(match_dup 1) (match_dup 2)))]
""
"")
(define_split
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(smax:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))]
""
[(set (reg:CC 17)
(lt:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0)
(if_then_else:SI (eq (reg:CC 17) (const_int 0))
(match_dup 1) (match_dup 2)))]
"")
; no tstgt in 0.97, so just use cmplti (btsti x,31) and reverse move
; condition BRC
(define_split
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(smax:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(const_int 0)))]
""
[(set (reg:CC 17)
(lt:CC (match_dup 1) (const_int 0)))
(set (match_dup 0)
(if_then_else:SI (eq (reg:CC 17) (const_int 0))
(match_dup 1) (const_int 0)))]
"")
(define_expand "sminsi3"
[(set (reg:CC 17)
(lt:CC (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))
(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(if_then_else:SI (ne (reg:CC 17) (const_int 0))
(match_dup 1) (match_dup 2)))]
""
"")
(define_split
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(smin:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))]
""
[(set (reg:CC 17)
(lt:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0)
(if_then_else:SI (ne (reg:CC 17) (const_int 0))
(match_dup 1) (match_dup 2)))]
"")
;(define_split
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
; (smin:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
; (const_int 0)))]
; ""
; [(set (reg:CC 17)
; (gt:CC (match_dup 1) (const_int 0)))
; (set (match_dup 0)
; (if_then_else:SI (eq (reg:CC 17) (const_int 0))
; (match_dup 1) (const_int 0)))]
; "")
; changed these unsigned patterns to use geu instead of ltu. it appears
; that the c-torture & ssrl test suites didn't catch these! only showed
; up in friedman's clib work. BRC 7/7/95
(define_expand "umaxsi3"
[(set (reg:CC 17)
(geu:CC (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))
(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(if_then_else:SI (eq (reg:CC 17) (const_int 0))
(match_dup 2) (match_dup 1)))]
""
"")
(define_split
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(umax:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))]
""
[(set (reg:CC 17)
(geu:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0)
(if_then_else:SI (eq (reg:CC 17) (const_int 0))
(match_dup 2) (match_dup 1)))]
"")
(define_expand "uminsi3"
[(set (reg:CC 17)
(geu:CC (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))
(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(if_then_else:SI (ne (reg:CC 17) (const_int 0))
(match_dup 2) (match_dup 1)))]
""
"")
(define_split
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(umin:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "mcore_arith_reg_operand" "")))]
""
[(set (reg:CC 17)
(geu:SI (match_dup 1) (match_dup 2)))
(set (match_dup 0)
(if_then_else:SI (ne (reg:CC 17) (const_int 0))
(match_dup 2) (match_dup 1)))]
"")
;; ------------------------------------------------------------------------
;; conditional move patterns really start here
;; ------------------------------------------------------------------------
;; the "movtK" patterns are experimental. they are intended to account for
;; gcc's mucking on code such as:
;;
;; free_ent = ((block_compress) ? 257 : 256 );
;;
;; these patterns help to get a tstne/bgeni/inct (or equivalent) sequence
;; when both arms have constants that are +/- 1 of each other.
;;
;; note in the following patterns that the "movtK" ones should be the first
;; one defined in each sequence. this is because the general pattern also
;; matches, so use ordering to determine priority (it's easier this way than
;; adding conditions to the general patterns). BRC
;;
;; the U and Q constraints are necessary to ensure that reload does the
;; 'right thing'. U constrains the operand to 0 and Q to 1 for use in the
;; clrt & clrf and clrt/inct & clrf/incf patterns. BRC 6/26
;;
;; ??? there appears to be some problems with these movtK patterns for ops
;; other than eq & ne. need to fix. 6/30 BRC
;; ------------------------------------------------------------------------
;; ne
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_1"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(ne (reg:CC 17) (const_int 0))
(match_operand:SI 1 "mcore_arith_O_operand" "O")
(match_operand:SI 2 "mcore_arith_O_operand" "O")))]
" GET_CODE (operands[1]) == CONST_INT
&& GET_CODE (operands[2]) == CONST_INT
&& ( (INTVAL (operands[1]) - INTVAL (operands[2]) == 1)
|| (INTVAL (operands[2]) - INTVAL (operands[1]) == 1))"
"* return mcore_output_cmov (operands, 1, NULL);"
[(set_attr "length" "4")])
(define_insn "movt0"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI
(ne (reg:CC 17) (const_int 0))
(match_operand:SI 1 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 2 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
movt %0,%1
movf %0,%2
clrt %0
clrf %0")
;; ------------------------------------------------------------------------
;; eq
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(eq (reg:CC 17) (const_int 0))
(match_operand:SI 1 "mcore_arith_O_operand" "O")
(match_operand:SI 2 "mcore_arith_O_operand" "O")))]
" GET_CODE (operands[1]) == CONST_INT
&& GET_CODE (operands[2]) == CONST_INT
&& ( (INTVAL (operands[1]) - INTVAL (operands[2]) == 1)
|| (INTVAL (operands[2]) - INTVAL (operands[1]) == 1))"
"* return mcore_output_cmov (operands, 0, NULL);"
[(set_attr "length" "4")])
(define_insn "movf0"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI
(eq (reg:CC 17) (const_int 0))
(match_operand:SI 1 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 2 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
movf %0,%1
movt %0,%2
clrf %0
clrt %0")
; turns lsli rx,imm/btsti rx,31 into btsti rx,imm. not done by a peephole
; because the instructions are not adjacent (peepholes are related by posn -
; not by dataflow). BRC
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (eq (zero_extract:SI
(match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 1)
(match_operand:SI 2 "mcore_literal_K_operand" "K,K,K,K"))
(const_int 0))
(match_operand:SI 3 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 4 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
btsti %1,%2\;movf %0,%3
btsti %1,%2\;movt %0,%4
btsti %1,%2\;clrf %0
btsti %1,%2\;clrt %0"
[(set_attr "length" "4")])
; turns sextb rx/btsti rx,31 into btsti rx,7. must be QImode to be safe. BRC
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (eq (lshiftrt:SI
(match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 7))
(const_int 0))
(match_operand:SI 2 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 3 "mcore_arith_imm_operand" "0,r,0,U")))]
"GET_CODE (operands[1]) == SUBREG &&
GET_MODE (SUBREG_REG (operands[1])) == QImode"
"@
btsti %1,7\;movf %0,%2
btsti %1,7\;movt %0,%3
btsti %1,7\;clrf %0
btsti %1,7\;clrt %0"
[(set_attr "length" "4")])
;; ------------------------------------------------------------------------
;; ne
;; ------------------------------------------------------------------------
;; Combine creates this from an andn instruction in a scc sequence.
;; We must recognize it to get conditional moves generated.
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(ne (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_O_operand" "O")
(match_operand:SI 3 "mcore_arith_O_operand" "O")))]
" GET_CODE (operands[2]) == CONST_INT
&& GET_CODE (operands[3]) == CONST_INT
&& ( (INTVAL (operands[2]) - INTVAL (operands[3]) == 1)
|| (INTVAL (operands[3]) - INTVAL (operands[2]) == 1))"
"*
{
rtx out_operands[4];
out_operands[0] = operands[0];
out_operands[1] = operands[2];
out_operands[2] = operands[3];
out_operands[3] = operands[1];
return mcore_output_cmov (out_operands, 1, \"cmpnei %3,0\");
}"
[(set_attr "length" "6")])
(define_insn "movt2"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (ne (match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 3 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
cmpnei %1,0\;movt %0,%2
cmpnei %1,0\;movf %0,%3
cmpnei %1,0\;clrt %0
cmpnei %1,0\;clrf %0"
[(set_attr "length" "4")])
; turns lsli rx,imm/btsti rx,31 into btsti rx,imm. not done by a peephole
; because the instructions are not adjacent (peepholes are related by posn -
; not by dataflow). BRC
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (ne (zero_extract:SI
(match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 1)
(match_operand:SI 2 "mcore_literal_K_operand" "K,K,K,K"))
(const_int 0))
(match_operand:SI 3 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 4 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
btsti %1,%2\;movt %0,%3
btsti %1,%2\;movf %0,%4
btsti %1,%2\;clrt %0
btsti %1,%2\;clrf %0"
[(set_attr "length" "4")])
; turns sextb rx/btsti rx,31 into btsti rx,7. must be QImode to be safe. BRC
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (ne (lshiftrt:SI
(match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 7))
(const_int 0))
(match_operand:SI 2 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 3 "mcore_arith_imm_operand" "0,r,0,U")))]
"GET_CODE (operands[1]) == SUBREG &&
GET_MODE (SUBREG_REG (operands[1])) == QImode"
"@
btsti %1,7\;movt %0,%2
btsti %1,7\;movf %0,%3
btsti %1,7\;clrt %0
btsti %1,7\;clrf %0"
[(set_attr "length" "4")])
;; ------------------------------------------------------------------------
;; eq/eq
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_4"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(eq (eq:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_O_operand" "O")
(match_operand:SI 2 "mcore_arith_O_operand" "O")))]
"GET_CODE (operands[1]) == CONST_INT &&
GET_CODE (operands[2]) == CONST_INT &&
((INTVAL (operands[1]) - INTVAL (operands[2]) == 1) ||
(INTVAL (operands[2]) - INTVAL (operands[1]) == 1))"
"* return mcore_output_cmov(operands, 1, NULL);"
[(set_attr "length" "4")])
(define_insn "movt3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI
(eq (eq:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 2 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
movt %0,%1
movf %0,%2
clrt %0
clrf %0")
;; ------------------------------------------------------------------------
;; eq/ne
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_5"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(eq (ne:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_O_operand" "O")
(match_operand:SI 2 "mcore_arith_O_operand" "O")))]
"GET_CODE (operands[1]) == CONST_INT &&
GET_CODE (operands[2]) == CONST_INT &&
((INTVAL (operands[1]) - INTVAL (operands[2]) == 1) ||
(INTVAL (operands[2]) - INTVAL (operands[1]) == 1))"
"* return mcore_output_cmov (operands, 0, NULL);"
[(set_attr "length" "4")])
(define_insn "movf1"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI
(eq (ne:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 2 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
movf %0,%1
movt %0,%2
clrf %0
clrt %0")
;; ------------------------------------------------------------------------
;; eq
;; ------------------------------------------------------------------------
;; Combine creates this from an andn instruction in a scc sequence.
;; We must recognize it to get conditional moves generated.
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_6"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(eq (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_O_operand" "O")
(match_operand:SI 3 "mcore_arith_O_operand" "O")))]
"GET_CODE (operands[1]) == CONST_INT &&
GET_CODE (operands[2]) == CONST_INT &&
((INTVAL (operands[2]) - INTVAL (operands[3]) == 1) ||
(INTVAL (operands[3]) - INTVAL (operands[2]) == 1))"
"*
{
rtx out_operands[4];
out_operands[0] = operands[0];
out_operands[1] = operands[2];
out_operands[2] = operands[3];
out_operands[3] = operands[1];
return mcore_output_cmov (out_operands, 0, \"cmpnei %3,0\");
}"
[(set_attr "length" "6")])
(define_insn "movf3"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (eq (match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 3 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
cmpnei %1,0\;movf %0,%2
cmpnei %1,0\;movt %0,%3
cmpnei %1,0\;clrf %0
cmpnei %1,0\;clrt %0"
[(set_attr "length" "4")])
;; ------------------------------------------------------------------------
;; ne/eq
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_7"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(ne (eq:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_O_operand" "O")
(match_operand:SI 2 "mcore_arith_O_operand" "O")))]
"GET_CODE (operands[1]) == CONST_INT &&
GET_CODE (operands[2]) == CONST_INT &&
((INTVAL (operands[1]) - INTVAL (operands[2]) == 1) ||
(INTVAL (operands[2]) - INTVAL (operands[1]) == 1))"
"* return mcore_output_cmov (operands, 0, NULL);"
[(set_attr "length" "4")])
(define_insn "movf4"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI
(ne (eq:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 2 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
movf %0,%1
movt %0,%2
clrf %0
clrt %0")
;; ------------------------------------------------------------------------
;; ne/ne
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_8"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(ne (ne:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_O_operand" "O")
(match_operand:SI 2 "mcore_arith_O_operand" "O")))]
"GET_CODE (operands[1]) == CONST_INT &&
GET_CODE (operands[2]) == CONST_INT &&
((INTVAL (operands[1]) - INTVAL (operands[2]) == 1) ||
(INTVAL (operands[2]) - INTVAL (operands[1]) == 1))"
"* return mcore_output_cmov (operands, 1, NULL);"
[(set_attr "length" "4")])
(define_insn "movt4"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI
(ne (ne:SI (reg:CC 17) (const_int 0)) (const_int 0))
(match_operand:SI 1 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 2 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
movt %0,%1
movf %0,%2
clrt %0
clrf %0")
;; Also need patterns to recognize lt/ge, since otherwise the compiler will
;; try to output not/asri/tstne/movf.
;; ------------------------------------------------------------------------
;; lt
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_9"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(lt (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_O_operand" "O")
(match_operand:SI 3 "mcore_arith_O_operand" "O")))]
"GET_CODE (operands[2]) == CONST_INT &&
GET_CODE (operands[3]) == CONST_INT &&
((INTVAL (operands[2]) - INTVAL (operands[3]) == 1) ||
(INTVAL (operands[3]) - INTVAL (operands[2]) == 1))"
"*
{
rtx out_operands[4];
out_operands[0] = operands[0];
out_operands[1] = operands[2];
out_operands[2] = operands[3];
out_operands[3] = operands[1];
return mcore_output_cmov (out_operands, 1, \"btsti %3,31\");
}"
[(set_attr "length" "6")])
(define_insn "movt5"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (lt (match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 3 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
btsti %1,31\;movt %0,%2
btsti %1,31\;movf %0,%3
btsti %1,31\;clrt %0
btsti %1,31\;clrf %0"
[(set_attr "length" "4")])
;; ------------------------------------------------------------------------
;; ge
;; ------------------------------------------------------------------------
; experimental conditional move with two constants +/- 1 BRC
(define_insn "movtK_10"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(if_then_else:SI
(ge (match_operand:SI 1 "mcore_arith_reg_operand" "r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_O_operand" "O")
(match_operand:SI 3 "mcore_arith_O_operand" "O")))]
"GET_CODE (operands[2]) == CONST_INT &&
GET_CODE (operands[3]) == CONST_INT &&
((INTVAL (operands[2]) - INTVAL (operands[3]) == 1) ||
(INTVAL (operands[3]) - INTVAL (operands[2]) == 1))"
"*
{
rtx out_operands[4];
out_operands[0] = operands[0];
out_operands[1] = operands[2];
out_operands[2] = operands[3];
out_operands[3] = operands[1];
return mcore_output_cmov (out_operands, 0, \"btsti %3,31\");
}"
[(set_attr "length" "6")])
(define_insn "movf5"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,r,r,r")
(if_then_else:SI (ge (match_operand:SI 1 "mcore_arith_reg_operand" "r,r,r,r")
(const_int 0))
(match_operand:SI 2 "mcore_arith_imm_operand" "r,0,U,0")
(match_operand:SI 3 "mcore_arith_imm_operand" "0,r,0,U")))]
""
"@
btsti %1,31\;movf %0,%2
btsti %1,31\;movt %0,%3
btsti %1,31\;clrf %0
btsti %1,31\;clrt %0"
[(set_attr "length" "4")])
;; ------------------------------------------------------------------------
;; Bitfield extract (xtrbN)
;; ------------------------------------------------------------------------
; sometimes we're better off using QI/HI mode and letting the machine indep.
; part expand insv and extv.
;
; e.g., sequences like:a [an insertion]
;
; ldw r8,(r6)
; movi r7,0x00ffffff
; and r8,r7 r7 dead
; stw r8,(r6) r8 dead
;
; become:
;
; movi r8,0
; stb r8,(r6) r8 dead
;
; it looks like always using SI mode is a win except in this type of code
; (when adjacent bit fields collapse on a byte or halfword boundary). when
; expanding with SI mode, non-adjacent bit field masks fold, but with QI/HI
; mode, they do not. one thought is to add some peepholes to cover cases
; like the above, but this is not a general solution.
;
; -mword-bitfields expands/inserts using SI mode. otherwise, do it with
; the smallest mode possible (using the machine indep. expansions). BRC
;(define_expand "extv"
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
; (sign_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
; (match_operand:SI 2 "const_int_operand" "")
; (match_operand:SI 3 "const_int_operand" "")))
; (clobber (reg:CC 17))]
; ""
; "
;{
; if (INTVAL (operands[1]) != 8 || INTVAL (operands[2]) % 8 != 0)
; {
; if (TARGET_W_FIELD)
; {
; rtx lshft = GEN_INT (32 - (INTVAL (operands[2]) + INTVAL (operands[3])));
; rtx rshft = GEN_INT (32 - INTVAL (operands[2]));
;
; emit_insn (gen_rtx_SET (SImode, operands[0], operands[1]));
; emit_insn (gen_rtx_SET (SImode, operands[0],
; gen_rtx_ASHIFT (SImode, operands[0], lshft)));
; emit_insn (gen_rtx_SET (SImode, operands[0],
; gen_rtx_ASHIFTRT (SImode, operands[0], rshft)));
; DONE;
; }
; else
; FAIL;
; }
;}")
(define_expand "extv"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(sign_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "const_int_operand" "")
(match_operand:SI 3 "const_int_operand" "")))
(clobber (reg:CC 17))]
""
"
{
if (INTVAL (operands[2]) == 8 && INTVAL (operands[3]) % 8 == 0)
{
/* 8-bit field, aligned properly, use the xtrb[0123]+sext sequence. */
/* not DONE, not FAIL, but let the RTL get generated.... */
}
else if (TARGET_W_FIELD)
{
/* Arbitrary placement; note that the tree->rtl generator will make
something close to this if we return FAIL */
rtx lshft = GEN_INT (32 - (INTVAL (operands[2]) + INTVAL (operands[3])));
rtx rshft = GEN_INT (32 - INTVAL (operands[2]));
rtx tmp1 = gen_reg_rtx (SImode);
rtx tmp2 = gen_reg_rtx (SImode);
emit_insn (gen_rtx_SET (SImode, tmp1, operands[1]));
emit_insn (gen_rtx_SET (SImode, tmp2,
gen_rtx_ASHIFT (SImode, tmp1, lshft)));
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_ASHIFTRT (SImode, tmp2, rshft)));
DONE;
}
else
{
/* Let the caller choose an alternate sequence. */
FAIL;
}
}")
(define_expand "extzv"
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(zero_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "")
(match_operand:SI 2 "const_int_operand" "")
(match_operand:SI 3 "const_int_operand" "")))
(clobber (reg:CC 17))]
""
"
{
if (INTVAL (operands[2]) == 8 && INTVAL (operands[3]) % 8 == 0)
{
/* 8-bit field, aligned properly, use the xtrb[0123] sequence. */
/* Let the template generate some RTL.... */
}
else if (CONST_OK_FOR_K ((1 << INTVAL (operands[2])) - 1))
{
/* A narrow bit-field (<=5 bits) means we can do a shift to put
it in place and then use an andi to extract it.
This is as good as a shiftleft/shiftright. */
rtx shifted;
rtx mask = GEN_INT ((1 << INTVAL (operands[2])) - 1);
if (INTVAL (operands[3]) == 0)
{
shifted = operands[1];
}
else
{
rtx rshft = GEN_INT (INTVAL (operands[3]));
shifted = gen_reg_rtx (SImode);
emit_insn (gen_rtx_SET (SImode, shifted,
gen_rtx_LSHIFTRT (SImode, operands[1], rshft)));
}
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_AND (SImode, shifted, mask)));
DONE;
}
else if (TARGET_W_FIELD)
{
/* Arbitrary pattern; play shift/shift games to get it.
* this is pretty much what the caller will do if we say FAIL */
rtx lshft = GEN_INT (32 - (INTVAL (operands[2]) + INTVAL (operands[3])));
rtx rshft = GEN_INT (32 - INTVAL (operands[2]));
rtx tmp1 = gen_reg_rtx (SImode);
rtx tmp2 = gen_reg_rtx (SImode);
emit_insn (gen_rtx_SET (SImode, tmp1, operands[1]));
emit_insn (gen_rtx_SET (SImode, tmp2,
gen_rtx_ASHIFT (SImode, tmp1, lshft)));
emit_insn (gen_rtx_SET (SImode, operands[0],
gen_rtx_LSHIFTRT (SImode, tmp2, rshft)));
DONE;
}
else
{
/* Make the compiler figure out some alternative mechanism. */
FAIL;
}
/* Emit the RTL pattern; something will match it later. */
}")
(define_expand "insv"
[(set (zero_extract:SI (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "const_int_operand" "")
(match_operand:SI 2 "const_int_operand" ""))
(match_operand:SI 3 "general_operand" ""))
(clobber (reg:CC 17))]
""
"
{
if (mcore_expand_insv (operands))
{
DONE;
}
else
{
FAIL;
}
}")
;;
;; the xtrb[0123] instructions handily get at 8-bit fields on nice boundaries.
;; but then, they do force you through r1.
;;
;; the combiner will build such patterns for us, so we'll make them available
;; for its use.
;;
;; Note that we have both SIGNED and UNSIGNED versions of these...
;;
;;
;; These no longer worry about the clobbering of CC bit; not sure this is
;; good...
;;
;; the SIGNED versions of these
;;
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,b")
(sign_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,r") (const_int 8) (const_int 24)))]
""
"@
asri %0,24
xtrb0 %0,%1\;sextb %0"
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=b")
(sign_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r") (const_int 8) (const_int 16)))]
""
"xtrb1 %0,%1\;sextb %0"
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=b")
(sign_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r") (const_int 8) (const_int 8)))]
""
"xtrb2 %0,%1\;sextb %0"
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(sign_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0") (const_int 8) (const_int 0)))]
""
"sextb %0"
[(set_attr "type" "shift")])
;; the UNSIGNED uses of xtrb[0123]
;;
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,b")
(zero_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,r") (const_int 8) (const_int 24)))]
""
"@
lsri %0,24
xtrb0 %0,%1"
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=b")
(zero_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r") (const_int 8) (const_int 16)))]
""
"xtrb1 %0,%1"
[(set_attr "type" "shift")])
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=b")
(zero_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "r") (const_int 8) (const_int 8)))]
""
"xtrb2 %0,%1"
[(set_attr "type" "shift")])
;; This can be peepholed if it follows a ldb ...
(define_insn ""
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r,b")
(zero_extract:SI (match_operand:SI 1 "mcore_arith_reg_operand" "0,r") (const_int 8) (const_int 0)))]
""
"@
zextb %0
xtrb3 %0,%1\;zextb %0"
[(set_attr "type" "shift")])
;; ------------------------------------------------------------------------
;; Block move - adapted from m88k.md
;; ------------------------------------------------------------------------
(define_expand "movmemsi"
[(parallel [(set (mem:BLK (match_operand:BLK 0 "" ""))
(mem:BLK (match_operand:BLK 1 "" "")))
(use (match_operand:SI 2 "general_operand" ""))
(use (match_operand:SI 3 "immediate_operand" ""))])]
""
"
{
if (mcore_expand_block_move (operands))
DONE;
else
FAIL;
}")
;; ;;; ??? These patterns are meant to be generated from expand_block_move,
;; ;;; but they currently are not.
;;
;; (define_insn ""
;; [(set (match_operand:QI 0 "mcore_arith_reg_operand" "=r")
;; (match_operand:BLK 1 "mcore_general_movsrc_operand" "m"))]
;; ""
;; "ld.b %0,%1"
;; [(set_attr "type" "load")])
;;
;; (define_insn ""
;; [(set (match_operand:HI 0 "mcore_arith_reg_operand" "=r")
;; (match_operand:BLK 1 "mcore_general_movsrc_operand" "m"))]
;; ""
;; "ld.h %0,%1"
;; [(set_attr "type" "load")])
;;
;; (define_insn ""
;; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
;; (match_operand:BLK 1 "mcore_general_movsrc_operand" "m"))]
;; ""
;; "ld.w %0,%1"
;; [(set_attr "type" "load")])
;;
;; (define_insn ""
;; [(set (match_operand:BLK 0 "mcore_general_movdst_operand" "=m")
;; (match_operand:QI 1 "mcore_arith_reg_operand" "r"))]
;; ""
;; "st.b %1,%0"
;; [(set_attr "type" "store")])
;;
;; (define_insn ""
;; [(set (match_operand:BLK 0 "mcore_general_movdst_operand" "=m")
;; (match_operand:HI 1 "mcore_arith_reg_operand" "r"))]
;; ""
;; "st.h %1,%0"
;; [(set_attr "type" "store")])
;;
;; (define_insn ""
;; [(set (match_operand:BLK 0 "mcore_general_movdst_operand" "=m")
;; (match_operand:SI 1 "mcore_arith_reg_operand" "r"))]
;; ""
;; "st.w %1,%0"
;; [(set_attr "type" "store")])
;; ------------------------------------------------------------------------
;; Misc Optimizing quirks
;; ------------------------------------------------------------------------
;; pair to catch constructs like: (int *)((p+=4)-4) which happen
;; in stdarg/varargs traversal. This changes a 3 insn sequence to a 2
;; insn sequence. -- RBE 11/30/95
(define_insn ""
[(parallel[
(set (match_operand:SI 0 "mcore_arith_reg_operand" "=r")
(match_operand:SI 1 "mcore_arith_reg_operand" "+r"))
(set (match_dup 1) (plus:SI (match_dup 1) (match_operand 2 "mcore_arith_any_imm_operand" "")))])]
"GET_CODE(operands[2]) == CONST_INT"
"#"
[(set_attr "length" "4")])
(define_split
[(parallel[
(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "mcore_arith_reg_operand" ""))
(set (match_dup 1) (plus:SI (match_dup 1) (match_operand 2 "mcore_arith_any_imm_operand" "")))])]
"GET_CODE(operands[2]) == CONST_INT &&
operands[0] != operands[1]"
[(set (match_dup 0) (match_dup 1))
(set (match_dup 1) (plus:SI (match_dup 1) (match_dup 2)))])
;;; Peepholes
; note: in the following patterns, use mcore_is_dead() to ensure that the
; reg we may be trashing really is dead. reload doesn't always mark
; deaths, so mcore_is_dead() (see mcore.c) scans forward to find its death. BRC
;;; A peephole to convert the 3 instruction sequence generated by reload
;;; to load a FP-offset address into a 2 instruction sequence.
;;; ??? This probably never matches anymore.
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "const_int_operand" "J"))
(set (match_dup 0) (neg:SI (match_dup 0)))
(set (match_dup 0)
(plus:SI (match_dup 0)
(match_operand:SI 2 "mcore_arith_reg_operand" "r")))]
"CONST_OK_FOR_J (INTVAL (operands[1]))"
"error\;mov %0,%2\;subi %0,%1")
;; Moves of inlinable constants are done late, so when a 'not' is generated
;; it is never combined with the following 'and' to generate an 'andn' b/c
;; the combiner never sees it. use a peephole to pick up this case (happens
;; mostly with bitfields) BRC
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(match_operand:SI 1 "const_int_operand" "i"))
(set (match_operand:SI 2 "mcore_arith_reg_operand" "r")
(and:SI (match_dup 2) (match_dup 0)))]
"mcore_const_trick_uses_not (INTVAL (operands[1])) &&
operands[0] != operands[2] &&
mcore_is_dead (insn, operands[0])"
"* return mcore_output_andn (insn, operands);")
; when setting or clearing just two bits, it's cheapest to use two bseti's
; or bclri's. only happens when relaxing immediates. BRC
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(set (match_operand:SI 2 "mcore_arith_reg_operand" "")
(ior:SI (match_dup 2) (match_dup 0)))]
"TARGET_HARDLIT
&& mcore_num_ones (INTVAL (operands[1])) == 2
&& mcore_is_dead (insn, operands[0])"
"* return mcore_output_bseti (operands[2], INTVAL (operands[1]));")
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(set (match_operand:SI 2 "mcore_arith_reg_operand" "")
(and:SI (match_dup 2) (match_dup 0)))]
"TARGET_HARDLIT && mcore_num_zeros (INTVAL (operands[1])) == 2 &&
mcore_is_dead (insn, operands[0])"
"* return mcore_output_bclri (operands[2], INTVAL (operands[1]));")
; change an and with a mask that has a single cleared bit into a bclri. this
; handles QI and HI mode values using the knowledge that the most significant
; bits don't matter.
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(set (match_operand:SI 2 "mcore_arith_reg_operand" "")
(and:SI (match_operand:SI 3 "mcore_arith_reg_operand" "")
(match_dup 0)))]
"GET_CODE (operands[3]) == SUBREG &&
GET_MODE (SUBREG_REG (operands[3])) == QImode &&
mcore_num_zeros (INTVAL (operands[1]) | 0xffffff00) == 1 &&
mcore_is_dead (insn, operands[0])"
"*
if (! mcore_is_same_reg (operands[2], operands[3]))
output_asm_insn (\"mov\\t%2,%3\", operands);
return mcore_output_bclri (operands[2], INTVAL (operands[1]) | 0xffffff00);")
/* Do not fold these together -- mode is lost at final output phase. */
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "const_int_operand" ""))
(set (match_operand:SI 2 "mcore_arith_reg_operand" "")
(and:SI (match_operand:SI 3 "mcore_arith_reg_operand" "")
(match_dup 0)))]
"GET_CODE (operands[3]) == SUBREG &&
GET_MODE (SUBREG_REG (operands[3])) == HImode &&
mcore_num_zeros (INTVAL (operands[1]) | 0xffff0000) == 1 &&
operands[2] == operands[3] &&
mcore_is_dead (insn, operands[0])"
"*
if (! mcore_is_same_reg (operands[2], operands[3]))
output_asm_insn (\"mov\\t%2,%3\", operands);
return mcore_output_bclri (operands[2], INTVAL (operands[1]) | 0xffff0000);")
; This peephole helps when using -mwide-bitfields to widen fields so they
; collapse. This, however, has the effect that a narrower mode is not used
; when desirable.
;
; e.g., sequences like:
;
; ldw r8,(r6)
; movi r7,0x00ffffff
; and r8,r7 r7 dead
; stw r8,(r6) r8 dead
;
; get peepholed to become:
;
; movi r8,0
; stb r8,(r6) r8 dead
;
; Do only easy addresses that have no offset. This peephole is also applied
; to halfwords. We need to check that the load is non-volatile before we get
; rid of it.
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "memory_operand" ""))
(set (match_operand:SI 2 "mcore_arith_reg_operand" "")
(match_operand:SI 3 "const_int_operand" ""))
(set (match_dup 0) (and:SI (match_dup 0) (match_dup 2)))
(set (match_operand:SI 4 "memory_operand" "") (match_dup 0))]
"mcore_is_dead (insn, operands[0]) &&
! MEM_VOLATILE_P (operands[1]) &&
mcore_is_dead (insn, operands[2]) &&
(mcore_byte_offset (INTVAL (operands[3])) > -1 ||
mcore_halfword_offset (INTVAL (operands[3])) > -1) &&
! MEM_VOLATILE_P (operands[4]) &&
GET_CODE (XEXP (operands[4], 0)) == REG"
"*
{
int ofs;
enum machine_mode mode;
rtx base_reg = XEXP (operands[4], 0);
if ((ofs = mcore_byte_offset (INTVAL (operands[3]))) > -1)
mode = QImode;
else if ((ofs = mcore_halfword_offset (INTVAL (operands[3]))) > -1)
mode = HImode;
else
gcc_unreachable ();
if (ofs > 0)
operands[4] = gen_rtx_MEM (mode,
gen_rtx_PLUS (SImode, base_reg, GEN_INT(ofs)));
else
operands[4] = gen_rtx_MEM (mode, base_reg);
if (mode == QImode)
return \"movi %0,0\\n\\tst.b %0,%4\";
return \"movi %0,0\\n\\tst.h %0,%4\";
}")
; from sop11. get btsti's for (LT A 0) where A is a QI or HI value
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(sign_extend:SI (match_operand:QI 1 "mcore_arith_reg_operand" "0")))
(set (reg:CC 17)
(lt:CC (match_dup 0)
(const_int 0)))]
"mcore_is_dead (insn, operands[0])"
"btsti %0,7")
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "r")
(sign_extend:SI (match_operand:HI 1 "mcore_arith_reg_operand" "0")))
(set (reg:CC 17)
(lt:CC (match_dup 0)
(const_int 0)))]
"mcore_is_dead (insn, operands[0])"
"btsti %0,15")
; Pick up a tst. This combination happens because the immediate is not
; allowed to fold into one of the operands of the tst. Does not happen
; when relaxing immediates. BRC
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(match_operand:SI 1 "mcore_arith_reg_operand" ""))
(set (match_dup 0)
(and:SI (match_dup 0)
(match_operand:SI 2 "mcore_literal_K_operand" "")))
(set (reg:CC 17) (ne:CC (match_dup 0) (const_int 0)))]
"mcore_is_dead (insn, operands[0])"
"movi %0,%2\;tst %1,%0")
(define_peephole
[(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
(if_then_else:SI (ne (zero_extract:SI
(match_operand:SI 1 "mcore_arith_reg_operand" "")
(const_int 1)
(match_operand:SI 2 "mcore_literal_K_operand" ""))
(const_int 0))
(match_operand:SI 3 "mcore_arith_imm_operand" "")
(match_operand:SI 4 "mcore_arith_imm_operand" "")))
(set (reg:CC 17) (ne:CC (match_dup 0) (const_int 0)))]
""
"*
{
unsigned int op0 = REGNO (operands[0]);
if (GET_CODE (operands[3]) == REG)
{
if (REGNO (operands[3]) == op0 && GET_CODE (operands[4]) == CONST_INT
&& INTVAL (operands[4]) == 0)
return \"btsti %1,%2\\n\\tclrf %0\";
else if (GET_CODE (operands[4]) == REG)
{
if (REGNO (operands[4]) == op0)
return \"btsti %1,%2\\n\\tmovf %0,%3\";
else if (REGNO (operands[3]) == op0)
return \"btsti %1,%2\\n\\tmovt %0,%4\";
}
gcc_unreachable ();
}
else if (GET_CODE (operands[3]) == CONST_INT
&& INTVAL (operands[3]) == 0
&& GET_CODE (operands[4]) == REG)
return \"btsti %1,%2\\n\\tclrt %0\";
gcc_unreachable ();
}")
; experimental - do the constant folding ourselves. note that this isn't
; re-applied like we'd really want. i.e., four ands collapse into two
; instead of one. this is because peepholes are applied as a sliding
; window. the peephole does not generate new rtl's, but instead slides
; across the rtl's generating machine instructions. it would be nice
; if the peephole optimizer is changed to re-apply patterns and to gen
; new rtl's. this is more flexible. the pattern below helps when we're
; not using relaxed immediates. BRC
;(define_peephole
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "")
; (match_operand:SI 1 "const_int_operand" ""))
; (set (match_operand:SI 2 "mcore_arith_reg_operand" "")
; (and:SI (match_dup 2) (match_dup 0)))
; (set (match_dup 0)
; (match_operand:SI 3 "const_int_operand" ""))
; (set (match_dup 2)
; (and:SI (match_dup 2) (match_dup 0)))]
; "!TARGET_RELAX_IMM && mcore_is_dead (insn, operands[0]) &&
; mcore_const_ok_for_inline (INTVAL (operands[1]) & INTVAL (operands[3]))"
; "*
;{
; rtx out_operands[2];
; out_operands[0] = operands[0];
; out_operands[1] = GEN_INT (INTVAL (operands[1]) & INTVAL (operands[3]));
;
; output_inline_const (SImode, out_operands);
;
; output_asm_insn (\"and %2,%0\", operands);
;
; return \"\";
;}")
; BRC: for inlining get rid of extra test - experimental
;(define_peephole
; [(set (match_operand:SI 0 "mcore_arith_reg_operand" "r")
; (ne:SI (reg:CC 17) (const_int 0)))
; (set (reg:CC 17) (ne:CC (match_dup 0) (const_int 0)))
; (set (pc)
; (if_then_else (eq (reg:CC 17) (const_int 0))
; (label_ref (match_operand 1 "" ""))
; (pc)))]
; ""
; "*
;{
; if (get_attr_length (insn) == 10)
; {
; output_asm_insn (\"bt 2f\\n\\tjmpi [1f]\", operands);
; output_asm_insn (\".align 2\\n1:\", operands);
; output_asm_insn (\".long %1\\n2:\", operands);
; return \"\";
; }
; return \"bf %l1\";
;}")
;;; Special patterns for dealing with the constant pool.
;;; 4 byte integer in line.
(define_insn "consttable_4"
[(unspec_volatile [(match_operand:SI 0 "general_operand" "=g")] 0)]
""
"*
{
assemble_integer (operands[0], 4, BITS_PER_WORD, 1);
return \"\";
}"
[(set_attr "length" "4")])
;;; align to a four byte boundary.
(define_insn "align_4"
[(unspec_volatile [(const_int 0)] 1)]
""
".align 2")
;;; Handle extra constant pool entries created during final pass.
(define_insn "consttable_end"
[(unspec_volatile [(const_int 0)] 2)]
""
"* return mcore_output_jump_label_table ();")
;;
;; Stack allocation -- in particular, for alloca().
;; this is *not* what we use for entry into functions.
;;
;; This is how we allocate stack space. If we are allocating a
;; constant amount of space and we know it is less than 4096
;; bytes, we need do nothing.
;;
;; If it is more than 4096 bytes, we need to probe the stack
;; periodically.
;;
;; operands[1], the distance is a POSITIVE number indicating that we
;; are allocating stack space
;;
(define_expand "allocate_stack"
[(set (reg:SI 0)
(plus:SI (reg:SI 0)
(match_operand:SI 1 "general_operand" "")))
(set (match_operand:SI 0 "register_operand" "=r")
(match_dup 2))]
""
"
{
/* If he wants no probing, just do it for him. */
if (mcore_stack_increment == 0)
{
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,operands[1]));
;; emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
DONE;
}
/* For small constant growth, we unroll the code. */
if (GET_CODE (operands[1]) == CONST_INT
&& INTVAL (operands[1]) < 8 * STACK_UNITS_MAXSTEP)
{
HOST_WIDE_INT left = INTVAL(operands[1]);
/* If it's a long way, get close enough for a last shot. */
if (left >= STACK_UNITS_MAXSTEP)
{
rtx tmp = gen_reg_rtx (Pmode);
emit_insn (gen_movsi (tmp, GEN_INT (STACK_UNITS_MAXSTEP)));
do
{
rtx memref = gen_rtx_MEM (SImode, stack_pointer_rtx);
MEM_VOLATILE_P (memref) = 1;
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
emit_insn (gen_movsi (memref, stack_pointer_rtx));
left -= STACK_UNITS_MAXSTEP;
}
while (left > STACK_UNITS_MAXSTEP);
}
/* Perform the final adjustment. */
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, GEN_INT (-left)));
;; emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
DONE;
}
else
{
rtx out_label = 0;
rtx loop_label = gen_label_rtx ();
rtx step = gen_reg_rtx (Pmode);
rtx tmp = gen_reg_rtx (Pmode);
rtx test, memref;
#if 1
emit_insn (gen_movsi (tmp, operands[1]));
emit_insn (gen_movsi (step, GEN_INT (STACK_UNITS_MAXSTEP)));
if (GET_CODE (operands[1]) != CONST_INT)
{
out_label = gen_label_rtx ();
test = gen_rtx_GEU (VOIDmode, step, tmp); /* quick out */
emit_jump_insn (gen_cbranchsi4 (test, step, tmp, out_label));
}
/* Run a loop that steps it incrementally. */
emit_label (loop_label);
/* Extend a step, probe, and adjust remaining count. */
emit_insn(gen_subsi3(stack_pointer_rtx, stack_pointer_rtx, step));
memref = gen_rtx_MEM (SImode, stack_pointer_rtx);
MEM_VOLATILE_P (memref) = 1;
emit_insn(gen_movsi(memref, stack_pointer_rtx));
emit_insn(gen_subsi3(tmp, tmp, step));
/* Loop condition -- going back up. */
test = gen_rtx_LTU (VOIDmode, step, tmp);
emit_jump_insn (gen_cbranchsi4 (test, step, tmp, loop_label));
if (out_label)
emit_label (out_label);
/* Bump the residual. */
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
;; emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
DONE;
#else
/* simple one-shot -- ensure register and do a subtract.
* This does NOT comply with the ABI. */
emit_insn (gen_movsi (tmp, operands[1]));
emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
;; emit_move_insn (operands[0], virtual_stack_dynamic_rtx);
DONE;
#endif
}
}")
Go to most recent revision | Compare with Previous | Blame | View Log