URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [cp/] [cvt.c] - Rev 826
Compare with Previous | Blame | View Log
/* Language-level data type conversion for GNU C++. Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* This file contains the functions for converting C++ expressions to different data types. The only entry point is `convert'. Every language front end must have a `convert' function but what kind of conversions it does will depend on the language. */ #include "config.h" #include "system.h" #include "coretypes.h" #include "tm.h" #include "tree.h" #include "flags.h" #include "cp-tree.h" #include "intl.h" #include "convert.h" #include "toplev.h" #include "decl.h" #include "target.h" static tree cp_convert_to_pointer (tree, tree); static tree convert_to_pointer_force (tree, tree); static tree build_type_conversion (tree, tree); static tree build_up_reference (tree, tree, int, tree); static void warn_ref_binding (tree, tree, tree); /* Change of width--truncation and extension of integers or reals-- is represented with NOP_EXPR. Proper functioning of many things assumes that no other conversions can be NOP_EXPRs. Conversion between integer and pointer is represented with CONVERT_EXPR. Converting integer to real uses FLOAT_EXPR and real to integer uses FIX_TRUNC_EXPR. Here is a list of all the functions that assume that widening and narrowing is always done with a NOP_EXPR: In convert.c, convert_to_integer. In c-typeck.c, build_binary_op_nodefault (boolean ops), and c_common_truthvalue_conversion. In expr.c: expand_expr, for operands of a MULT_EXPR. In fold-const.c: fold. In tree.c: get_narrower and get_unwidened. C++: in multiple-inheritance, converting between pointers may involve adjusting them by a delta stored within the class definition. */ /* Subroutines of `convert'. */ /* if converting pointer to pointer if dealing with classes, check for derived->base or vice versa else if dealing with method pointers, delegate else convert blindly else if converting class, pass off to build_type_conversion else try C-style pointer conversion. */ static tree cp_convert_to_pointer (tree type, tree expr) { tree intype = TREE_TYPE (expr); enum tree_code form; tree rval; if (intype == error_mark_node) return error_mark_node; if (MAYBE_CLASS_TYPE_P (intype)) { intype = complete_type (intype); if (!COMPLETE_TYPE_P (intype)) { error ("can't convert from incomplete type %qT to %qT", intype, type); return error_mark_node; } rval = build_type_conversion (type, expr); if (rval) { if (rval == error_mark_node) error ("conversion of %qE from %qT to %qT is ambiguous", expr, intype, type); return rval; } } /* Handle anachronistic conversions from (::*)() to cv void* or (*)(). */ if (TREE_CODE (type) == POINTER_TYPE && (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE || VOID_TYPE_P (TREE_TYPE (type)))) { if (TYPE_PTRMEMFUNC_P (intype) || TREE_CODE (intype) == METHOD_TYPE) return convert_member_func_to_ptr (type, expr); if (TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE) return build_nop (type, expr); intype = TREE_TYPE (expr); } if (expr == error_mark_node) return error_mark_node; form = TREE_CODE (intype); if (POINTER_TYPE_P (intype)) { intype = TYPE_MAIN_VARIANT (intype); if (TYPE_MAIN_VARIANT (type) != intype && TREE_CODE (type) == POINTER_TYPE && TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE && MAYBE_CLASS_TYPE_P (TREE_TYPE (type)) && MAYBE_CLASS_TYPE_P (TREE_TYPE (intype)) && TREE_CODE (TREE_TYPE (intype)) == RECORD_TYPE) { enum tree_code code = PLUS_EXPR; tree binfo; tree intype_class; tree type_class; bool same_p; intype_class = TREE_TYPE (intype); type_class = TREE_TYPE (type); same_p = same_type_p (TYPE_MAIN_VARIANT (intype_class), TYPE_MAIN_VARIANT (type_class)); binfo = NULL_TREE; /* Try derived to base conversion. */ if (!same_p) binfo = lookup_base (intype_class, type_class, ba_check, NULL); if (!same_p && !binfo) { /* Try base to derived conversion. */ binfo = lookup_base (type_class, intype_class, ba_check, NULL); code = MINUS_EXPR; } if (binfo == error_mark_node) return error_mark_node; if (binfo || same_p) { if (binfo) expr = build_base_path (code, expr, binfo, 0); /* Add any qualifier conversions. */ return build_nop (type, expr); } } if (TYPE_PTRMEMFUNC_P (type)) { error ("cannot convert %qE from type %qT to type %qT", expr, intype, type); return error_mark_node; } return build_nop (type, expr); } else if ((TYPE_PTRMEM_P (type) && TYPE_PTRMEM_P (intype)) || (TYPE_PTRMEMFUNC_P (type) && TYPE_PTRMEMFUNC_P (intype))) return convert_ptrmem (type, expr, /*allow_inverse_p=*/false, /*c_cast_p=*/false); else if (TYPE_PTRMEMFUNC_P (intype)) { if (!warn_pmf2ptr) { if (TREE_CODE (expr) == PTRMEM_CST) return cp_convert_to_pointer (type, PTRMEM_CST_MEMBER (expr)); else if (TREE_CODE (expr) == OFFSET_REF) { tree object = TREE_OPERAND (expr, 0); return get_member_function_from_ptrfunc (&object, TREE_OPERAND (expr, 1)); } } error ("cannot convert %qE from type %qT to type %qT", expr, intype, type); return error_mark_node; } if (integer_zerop (expr)) { if (TYPE_PTRMEMFUNC_P (type)) return build_ptrmemfunc (TYPE_PTRMEMFUNC_FN_TYPE (type), expr, 0, /*c_cast_p=*/false); if (TYPE_PTRMEM_P (type)) { /* A NULL pointer-to-member is represented by -1, not by zero. */ expr = build_int_cst_type (type, -1); } else expr = build_int_cst (type, 0); return expr; } else if (TYPE_PTR_TO_MEMBER_P (type) && INTEGRAL_CODE_P (form)) { error ("invalid conversion from %qT to %qT", intype, type); return error_mark_node; } if (INTEGRAL_CODE_P (form)) { if (TYPE_PRECISION (intype) == POINTER_SIZE) return build1 (CONVERT_EXPR, type, expr); expr = cp_convert (c_common_type_for_size (POINTER_SIZE, 0), expr); /* Modes may be different but sizes should be the same. There is supposed to be some integral type that is the same width as a pointer. */ gcc_assert (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))) == GET_MODE_SIZE (TYPE_MODE (type))); return convert_to_pointer (type, expr); } if (type_unknown_p (expr)) return instantiate_type (type, expr, tf_warning_or_error); error ("cannot convert %qE from type %qT to type %qT", expr, intype, type); return error_mark_node; } /* Like convert, except permit conversions to take place which are not normally allowed due to access restrictions (such as conversion from sub-type to private super-type). */ static tree convert_to_pointer_force (tree type, tree expr) { tree intype = TREE_TYPE (expr); enum tree_code form = TREE_CODE (intype); if (form == POINTER_TYPE) { intype = TYPE_MAIN_VARIANT (intype); if (TYPE_MAIN_VARIANT (type) != intype && TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE && MAYBE_CLASS_TYPE_P (TREE_TYPE (type)) && MAYBE_CLASS_TYPE_P (TREE_TYPE (intype)) && TREE_CODE (TREE_TYPE (intype)) == RECORD_TYPE) { enum tree_code code = PLUS_EXPR; tree binfo; binfo = lookup_base (TREE_TYPE (intype), TREE_TYPE (type), ba_unique, NULL); if (!binfo) { binfo = lookup_base (TREE_TYPE (type), TREE_TYPE (intype), ba_unique, NULL); code = MINUS_EXPR; } if (binfo == error_mark_node) return error_mark_node; if (binfo) { expr = build_base_path (code, expr, binfo, 0); if (expr == error_mark_node) return error_mark_node; /* Add any qualifier conversions. */ if (!same_type_p (TREE_TYPE (TREE_TYPE (expr)), TREE_TYPE (type))) expr = build_nop (type, expr); return expr; } } } return cp_convert_to_pointer (type, expr); } /* We are passing something to a function which requires a reference. The type we are interested in is in TYPE. The initial value we have to begin with is in ARG. FLAGS controls how we manage access checking. DIRECT_BIND in FLAGS controls how any temporaries are generated. If DIRECT_BIND is set, DECL is the reference we're binding to. */ static tree build_up_reference (tree type, tree arg, int flags, tree decl) { tree rval; tree argtype = TREE_TYPE (arg); tree target_type = TREE_TYPE (type); gcc_assert (TREE_CODE (type) == REFERENCE_TYPE); if ((flags & DIRECT_BIND) && ! real_lvalue_p (arg)) { /* Create a new temporary variable. We can't just use a TARGET_EXPR here because it needs to live as long as DECL. */ tree targ = arg; arg = make_temporary_var_for_ref_to_temp (decl, TREE_TYPE (arg)); /* Process the initializer for the declaration. */ DECL_INITIAL (arg) = targ; cp_finish_decl (arg, targ, /*init_const_expr_p=*/false, NULL_TREE, LOOKUP_ONLYCONVERTING|DIRECT_BIND); } else if (!(flags & DIRECT_BIND) && ! lvalue_p (arg)) return get_target_expr (arg); /* If we had a way to wrap this up, and say, if we ever needed its address, transform all occurrences of the register, into a memory reference we could win better. */ rval = cp_build_unary_op (ADDR_EXPR, arg, 1, tf_warning_or_error); if (rval == error_mark_node) return error_mark_node; if ((flags & LOOKUP_PROTECT) && TYPE_MAIN_VARIANT (argtype) != TYPE_MAIN_VARIANT (target_type) && MAYBE_CLASS_TYPE_P (argtype) && MAYBE_CLASS_TYPE_P (target_type)) { /* We go through lookup_base for the access control. */ tree binfo = lookup_base (argtype, target_type, ba_check, NULL); if (binfo == error_mark_node) return error_mark_node; if (binfo == NULL_TREE) return error_not_base_type (target_type, argtype); rval = build_base_path (PLUS_EXPR, rval, binfo, 1); } else rval = convert_to_pointer_force (build_pointer_type (target_type), rval); return build_nop (type, rval); } /* Subroutine of convert_to_reference. REFTYPE is the target reference type. INTYPE is the original rvalue type and DECL is an optional _DECL node for diagnostics. [dcl.init.ref] says that if an rvalue is used to initialize a reference, then the reference must be to a non-volatile const type. */ static void warn_ref_binding (tree reftype, tree intype, tree decl) { tree ttl = TREE_TYPE (reftype); if (!CP_TYPE_CONST_NON_VOLATILE_P (ttl)) { const char *msg; if (CP_TYPE_VOLATILE_P (ttl) && decl) msg = G_("initialization of volatile reference type %q#T from " "rvalue of type %qT"); else if (CP_TYPE_VOLATILE_P (ttl)) msg = G_("conversion to volatile reference type %q#T " "from rvalue of type %qT"); else if (decl) msg = G_("initialization of non-const reference type %q#T from " "rvalue of type %qT"); else msg = G_("conversion to non-const reference type %q#T from " "rvalue of type %qT"); permerror (input_location, msg, reftype, intype); } } /* For C++: Only need to do one-level references, but cannot get tripped up on signed/unsigned differences. DECL is either NULL_TREE or the _DECL node for a reference that is being initialized. It can be error_mark_node if we don't know the _DECL but we know it's an initialization. */ tree convert_to_reference (tree reftype, tree expr, int convtype, int flags, tree decl) { tree type = TYPE_MAIN_VARIANT (TREE_TYPE (reftype)); tree intype; tree rval = NULL_TREE; tree rval_as_conversion = NULL_TREE; bool can_convert_intype_to_type; if (TREE_CODE (type) == FUNCTION_TYPE && TREE_TYPE (expr) == unknown_type_node) expr = instantiate_type (type, expr, (flags & LOOKUP_COMPLAIN) ? tf_warning_or_error : tf_none); if (expr == error_mark_node) return error_mark_node; intype = TREE_TYPE (expr); gcc_assert (TREE_CODE (intype) != REFERENCE_TYPE); gcc_assert (TREE_CODE (reftype) == REFERENCE_TYPE); intype = TYPE_MAIN_VARIANT (intype); can_convert_intype_to_type = can_convert (type, intype); if (!can_convert_intype_to_type && (convtype & CONV_IMPLICIT) && MAYBE_CLASS_TYPE_P (intype) && ! (flags & LOOKUP_NO_CONVERSION)) { /* Look for a user-defined conversion to lvalue that we can use. */ rval_as_conversion = build_type_conversion (reftype, expr); if (rval_as_conversion && rval_as_conversion != error_mark_node && real_lvalue_p (rval_as_conversion)) { expr = rval_as_conversion; rval_as_conversion = NULL_TREE; intype = type; can_convert_intype_to_type = 1; } } if (((convtype & CONV_STATIC) && can_convert (intype, type)) || ((convtype & CONV_IMPLICIT) && can_convert_intype_to_type)) { if (flags & LOOKUP_COMPLAIN) { tree ttl = TREE_TYPE (reftype); tree ttr = lvalue_type (expr); if (! real_lvalue_p (expr)) warn_ref_binding (reftype, intype, decl); if (! (convtype & CONV_CONST) && !at_least_as_qualified_p (ttl, ttr)) permerror (input_location, "conversion from %qT to %qT discards qualifiers", ttr, reftype); } return build_up_reference (reftype, expr, flags, decl); } else if ((convtype & CONV_REINTERPRET) && lvalue_p (expr)) { /* When casting an lvalue to a reference type, just convert into a pointer to the new type and deference it. This is allowed by San Diego WP section 5.2.9 paragraph 12, though perhaps it should be done directly (jason). (int &)ri ---> *(int*)&ri */ /* B* bp; A& ar = (A&)bp; is valid, but it's probably not what they meant. */ if (TREE_CODE (intype) == POINTER_TYPE && (comptypes (TREE_TYPE (intype), type, COMPARE_BASE | COMPARE_DERIVED))) warning (0, "casting %qT to %qT does not dereference pointer", intype, reftype); rval = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error); if (rval != error_mark_node) rval = convert_force (build_pointer_type (TREE_TYPE (reftype)), rval, 0); if (rval != error_mark_node) rval = build1 (NOP_EXPR, reftype, rval); } else { rval = convert_for_initialization (NULL_TREE, type, expr, flags, "converting", 0, 0, tf_warning_or_error); if (rval == NULL_TREE || rval == error_mark_node) return rval; warn_ref_binding (reftype, intype, decl); rval = build_up_reference (reftype, rval, flags, decl); } if (rval) { /* If we found a way to convert earlier, then use it. */ return rval; } if (flags & LOOKUP_COMPLAIN) error ("cannot convert type %qT to type %qT", intype, reftype); return error_mark_node; } /* We are using a reference VAL for its value. Bash that reference all the way down to its lowest form. */ tree convert_from_reference (tree val) { if (TREE_TYPE (val) && TREE_CODE (TREE_TYPE (val)) == REFERENCE_TYPE) { tree t = TREE_TYPE (TREE_TYPE (val)); tree ref = build1 (INDIRECT_REF, t, val); /* We *must* set TREE_READONLY when dereferencing a pointer to const, so that we get the proper error message if the result is used to assign to. Also, &* is supposed to be a no-op. */ TREE_READONLY (ref) = CP_TYPE_CONST_P (t); TREE_THIS_VOLATILE (ref) = CP_TYPE_VOLATILE_P (t); TREE_SIDE_EFFECTS (ref) = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (val)); REFERENCE_REF_P (ref) = 1; val = ref; } return val; } /* Really perform an lvalue-to-rvalue conversion, including copying an argument of class type into a temporary. */ tree force_rvalue (tree expr) { if (MAYBE_CLASS_TYPE_P (TREE_TYPE (expr)) && TREE_CODE (expr) != TARGET_EXPR) expr = ocp_convert (TREE_TYPE (expr), expr, CONV_IMPLICIT|CONV_FORCE_TEMP, LOOKUP_NORMAL); else expr = decay_conversion (expr); return expr; } /* Fold away simple conversions, but make sure the result is an rvalue. */ tree cp_fold_convert (tree type, tree expr) { return rvalue (fold_convert (type, expr)); } /* C++ conversions, preference to static cast conversions. */ tree cp_convert (tree type, tree expr) { return ocp_convert (type, expr, CONV_OLD_CONVERT, LOOKUP_NORMAL); } /* C++ equivalent of convert_and_check but using cp_convert as the conversion function. Convert EXPR to TYPE, warning about conversion problems with constants. Invoke this function on every expression that is converted implicitly, i.e. because of language rules and not because of an explicit cast. */ tree cp_convert_and_check (tree type, tree expr) { tree result; if (TREE_TYPE (expr) == type) return expr; result = cp_convert (type, expr); if (c_inhibit_evaluation_warnings == 0 && !TREE_OVERFLOW_P (expr) && result != error_mark_node) warnings_for_convert_and_check (type, expr, result); return result; } /* Conversion... FLAGS indicates how we should behave. */ tree ocp_convert (tree type, tree expr, int convtype, int flags) { tree e = expr; enum tree_code code = TREE_CODE (type); const char *invalid_conv_diag; tree e1; if (error_operand_p (e) || type == error_mark_node) return error_mark_node; complete_type (type); complete_type (TREE_TYPE (expr)); if ((invalid_conv_diag = targetm.invalid_conversion (TREE_TYPE (expr), type))) { error (invalid_conv_diag); return error_mark_node; } e = integral_constant_value (e); if (MAYBE_CLASS_TYPE_P (type) && (convtype & CONV_FORCE_TEMP)) /* We need a new temporary; don't take this shortcut. */; else if (same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (e))) { if (same_type_p (type, TREE_TYPE (e))) /* The call to fold will not always remove the NOP_EXPR as might be expected, since if one of the types is a typedef; the comparison in fold is just equality of pointers, not a call to comptypes. We don't call fold in this case because that can result in infinite recursion; fold will call convert, which will call ocp_convert, etc. */ return e; /* For complex data types, we need to perform componentwise conversion. */ else if (TREE_CODE (type) == COMPLEX_TYPE) return fold_if_not_in_template (convert_to_complex (type, e)); else if (TREE_CODE (e) == TARGET_EXPR) { /* Don't build a NOP_EXPR of class type. Instead, change the type of the temporary. */ TREE_TYPE (e) = TREE_TYPE (TARGET_EXPR_SLOT (e)) = type; return e; } else { /* We shouldn't be treating objects of ADDRESSABLE type as rvalues. */ gcc_assert (!TREE_ADDRESSABLE (type)); return fold_if_not_in_template (build_nop (type, e)); } } e1 = targetm.convert_to_type (type, e); if (e1) return e1; if (code == VOID_TYPE && (convtype & CONV_STATIC)) { e = convert_to_void (e, /*implicit=*/NULL, tf_warning_or_error); return e; } if (INTEGRAL_CODE_P (code)) { tree intype = TREE_TYPE (e); if (TREE_CODE (type) == ENUMERAL_TYPE) { /* enum = enum, enum = int, enum = float, (enum)pointer are all errors. */ if (((INTEGRAL_OR_ENUMERATION_TYPE_P (intype) || TREE_CODE (intype) == REAL_TYPE) && ! (convtype & CONV_STATIC)) || TREE_CODE (intype) == POINTER_TYPE) { if (flags & LOOKUP_COMPLAIN) permerror (input_location, "conversion from %q#T to %q#T", intype, type); if (!flag_permissive) return error_mark_node; } /* [expr.static.cast] 8. A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is unchanged if the original value is within the range of the enumeration values. Otherwise, the resulting enumeration value is unspecified. */ if (TREE_CODE (expr) == INTEGER_CST && !int_fits_type_p (expr, type)) warning (OPT_Wconversion, "the result of the conversion is unspecified because " "%qE is outside the range of type %qT", expr, type); } if (MAYBE_CLASS_TYPE_P (intype)) { tree rval; rval = build_type_conversion (type, e); if (rval) return rval; if (flags & LOOKUP_COMPLAIN) error ("%q#T used where a %qT was expected", intype, type); return error_mark_node; } if (code == BOOLEAN_TYPE) return cp_truthvalue_conversion (e); return fold_if_not_in_template (convert_to_integer (type, e)); } if (POINTER_TYPE_P (type) || TYPE_PTR_TO_MEMBER_P (type)) return fold_if_not_in_template (cp_convert_to_pointer (type, e)); if (code == VECTOR_TYPE) { tree in_vtype = TREE_TYPE (e); if (MAYBE_CLASS_TYPE_P (in_vtype)) { tree ret_val; ret_val = build_type_conversion (type, e); if (ret_val) return ret_val; if (flags & LOOKUP_COMPLAIN) error ("%q#T used where a %qT was expected", in_vtype, type); return error_mark_node; } return fold_if_not_in_template (convert_to_vector (type, e)); } if (code == REAL_TYPE || code == COMPLEX_TYPE) { if (MAYBE_CLASS_TYPE_P (TREE_TYPE (e))) { tree rval; rval = build_type_conversion (type, e); if (rval) return rval; else if (flags & LOOKUP_COMPLAIN) error ("%q#T used where a floating point value was expected", TREE_TYPE (e)); } if (code == REAL_TYPE) return fold_if_not_in_template (convert_to_real (type, e)); else if (code == COMPLEX_TYPE) return fold_if_not_in_template (convert_to_complex (type, e)); } /* New C++ semantics: since assignment is now based on memberwise copying, if the rhs type is derived from the lhs type, then we may still do a conversion. */ if (RECORD_OR_UNION_CODE_P (code)) { tree dtype = TREE_TYPE (e); tree ctor = NULL_TREE; dtype = TYPE_MAIN_VARIANT (dtype); /* Conversion between aggregate types. New C++ semantics allow objects of derived type to be cast to objects of base type. Old semantics only allowed this between pointers. There may be some ambiguity between using a constructor vs. using a type conversion operator when both apply. */ ctor = e; if (abstract_virtuals_error (NULL_TREE, type)) return error_mark_node; if (BRACE_ENCLOSED_INITIALIZER_P (ctor)) ctor = perform_implicit_conversion (type, ctor, tf_warning_or_error); else if ((flags & LOOKUP_ONLYCONVERTING) && ! (CLASS_TYPE_P (dtype) && DERIVED_FROM_P (type, dtype))) /* For copy-initialization, first we create a temp of the proper type with a user-defined conversion sequence, then we direct-initialize the target with the temp (see [dcl.init]). */ ctor = build_user_type_conversion (type, ctor, flags); else { VEC(tree,gc) *ctor_vec = make_tree_vector_single (ctor); ctor = build_special_member_call (NULL_TREE, complete_ctor_identifier, &ctor_vec, type, flags, tf_warning_or_error); release_tree_vector (ctor_vec); } if (ctor) return build_cplus_new (type, ctor); } if (flags & LOOKUP_COMPLAIN) { /* If the conversion failed and expr was an invalid use of pointer to member function, try to report a meaningful error. */ if (invalid_nonstatic_memfn_p (expr, tf_warning_or_error)) /* We displayed the error message. */; else error ("conversion from %qT to non-scalar type %qT requested", TREE_TYPE (expr), type); } return error_mark_node; } /* When an expression is used in a void context, its value is discarded and no lvalue-rvalue and similar conversions happen [expr.static.cast/4, stmt.expr/1, expr.comma/1]. This permits dereferencing an incomplete type in a void context. The C++ standard does not define what an `access' to an object is, but there is reason to believe that it is the lvalue to rvalue conversion -- if it were not, `*&*p = 1' would violate [expr]/4 in that it accesses `*p' not to calculate the value to be stored. But, dcl.type.cv/8 indicates that volatile semantics should be the same between C and C++ where ever possible. C leaves it implementation defined as to what constitutes an access to a volatile. So, we interpret `*vp' as a read of the volatile object `vp' points to, unless that is an incomplete type. For volatile references we do not do this interpretation, because that would make it impossible to ignore the reference return value from functions. We issue warnings in the confusing cases. IMPLICIT is non-NULL iff an expression is being implicitly converted; it is NULL when the user is explicitly converting an expression to void via a cast. When non-NULL, IMPLICIT is a string indicating the context of the implicit conversion. */ tree convert_to_void (tree expr, const char *implicit, tsubst_flags_t complain) { if (expr == error_mark_node || TREE_TYPE (expr) == error_mark_node) return error_mark_node; if (!TREE_TYPE (expr)) return expr; if (invalid_nonstatic_memfn_p (expr, complain)) return error_mark_node; if (TREE_CODE (expr) == PSEUDO_DTOR_EXPR) { if (complain & tf_error) error ("pseudo-destructor is not called"); return error_mark_node; } if (VOID_TYPE_P (TREE_TYPE (expr))) return expr; switch (TREE_CODE (expr)) { case COND_EXPR: { /* The two parts of a cond expr might be separate lvalues. */ tree op1 = TREE_OPERAND (expr,1); tree op2 = TREE_OPERAND (expr,2); bool side_effects = TREE_SIDE_EFFECTS (op1) || TREE_SIDE_EFFECTS (op2); tree new_op1 = convert_to_void (op1, (implicit && !side_effects ? "second operand of conditional" : NULL), complain); tree new_op2 = convert_to_void (op2, (implicit && !side_effects ? "third operand of conditional" : NULL), complain); expr = build3 (COND_EXPR, TREE_TYPE (new_op1), TREE_OPERAND (expr, 0), new_op1, new_op2); break; } case COMPOUND_EXPR: { /* The second part of a compound expr contains the value. */ tree op1 = TREE_OPERAND (expr,1); tree new_op1 = convert_to_void (op1, (implicit && !TREE_NO_WARNING (expr) ? "right-hand operand of comma" : NULL), complain); if (new_op1 != op1) { tree t = build2 (COMPOUND_EXPR, TREE_TYPE (new_op1), TREE_OPERAND (expr, 0), new_op1); expr = t; } break; } case NON_LVALUE_EXPR: case NOP_EXPR: /* These have already decayed to rvalue. */ break; case CALL_EXPR: /* We have a special meaning for volatile void fn(). */ break; case INDIRECT_REF: { tree type = TREE_TYPE (expr); int is_reference = TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE; int is_volatile = TYPE_VOLATILE (type); int is_complete = COMPLETE_TYPE_P (complete_type (type)); /* Can't load the value if we don't know the type. */ if (is_volatile && !is_complete) { if (complain & tf_warning) warning (0, "object of incomplete type %qT will not be accessed in %s", type, implicit ? implicit : "void context"); } /* Don't load the value if this is an implicit dereference, or if the type needs to be handled by ctors/dtors. */ else if (is_volatile && (is_reference || TREE_ADDRESSABLE (type))) { if (complain & tf_warning) warning (0, "object of type %qT will not be accessed in %s", TREE_TYPE (TREE_OPERAND (expr, 0)), implicit ? implicit : "void context"); } if (is_reference || !is_volatile || !is_complete || TREE_ADDRESSABLE (type)) { /* Emit a warning (if enabled) when the "effect-less" INDIRECT_REF operation is stripped off. Note that we don't warn about - an expression with TREE_NO_WARNING set. (For an example of such expressions, see build_over_call in call.c.) - automatic dereferencing of references, since the user cannot control it. (See also warn_if_unused_value() in stmt.c.) */ if (warn_unused_value && implicit && (complain & tf_warning) && !TREE_NO_WARNING (expr) && !is_reference) warning (OPT_Wunused_value, "value computed is not used"); expr = TREE_OPERAND (expr, 0); } break; } case VAR_DECL: { /* External variables might be incomplete. */ tree type = TREE_TYPE (expr); int is_complete = COMPLETE_TYPE_P (complete_type (type)); if (TYPE_VOLATILE (type) && !is_complete && (complain & tf_warning)) warning (0, "object %qE of incomplete type %qT will not be accessed in %s", expr, type, implicit ? implicit : "void context"); break; } case TARGET_EXPR: /* Don't bother with the temporary object returned from a function if we don't use it and don't need to destroy it. We'll still allocate space for it in expand_call or declare_return_variable, but we don't need to track it through all the tree phases. */ if (TARGET_EXPR_IMPLICIT_P (expr) && TYPE_HAS_TRIVIAL_DESTRUCTOR (TREE_TYPE (expr))) { tree init = TARGET_EXPR_INITIAL (expr); if (TREE_CODE (init) == AGGR_INIT_EXPR && !AGGR_INIT_VIA_CTOR_P (init)) { tree fn = AGGR_INIT_EXPR_FN (init); expr = build_call_array_loc (input_location, TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))), fn, aggr_init_expr_nargs (init), AGGR_INIT_EXPR_ARGP (init)); } } break; default:; } expr = resolve_nondeduced_context (expr); { tree probe = expr; if (TREE_CODE (probe) == ADDR_EXPR) probe = TREE_OPERAND (expr, 0); if (type_unknown_p (probe)) { /* [over.over] enumerates the places where we can take the address of an overloaded function, and this is not one of them. */ if (complain & tf_error) error ("%s cannot resolve address of overloaded function", implicit ? implicit : "void cast"); else return error_mark_node; expr = void_zero_node; } else if (implicit && probe == expr && is_overloaded_fn (probe)) { /* Only warn when there is no &. */ if (complain & tf_warning) warning (OPT_Waddress, "%s is a reference, not call, to function %qE", implicit, expr); if (TREE_CODE (expr) == COMPONENT_REF) expr = TREE_OPERAND (expr, 0); } } if (expr != error_mark_node && !VOID_TYPE_P (TREE_TYPE (expr))) { if (implicit && warn_unused_value && !TREE_NO_WARNING (expr) && !processing_template_decl) { /* The middle end does not warn about expressions that have been explicitly cast to void, so we must do so here. */ if (!TREE_SIDE_EFFECTS (expr)) { if (complain & tf_warning) warning (OPT_Wunused_value, "%s has no effect", implicit); } else { tree e; enum tree_code code; enum tree_code_class tclass; e = expr; /* We might like to warn about (say) "(int) f()", as the cast has no effect, but the compiler itself will generate implicit conversions under some circumstances. (For example a block copy will be turned into a call to "__builtin_memcpy", with a conversion of the return value to an appropriate type.) So, to avoid false positives, we strip conversions. Do not use STRIP_NOPs because it will not strip conversions to "void", as that is not a mode-preserving conversion. */ while (TREE_CODE (e) == NOP_EXPR) e = TREE_OPERAND (e, 0); code = TREE_CODE (e); tclass = TREE_CODE_CLASS (code); if ((tclass == tcc_comparison || tclass == tcc_unary || (tclass == tcc_binary && !(code == MODIFY_EXPR || code == INIT_EXPR || code == PREDECREMENT_EXPR || code == PREINCREMENT_EXPR || code == POSTDECREMENT_EXPR || code == POSTINCREMENT_EXPR))) && (complain & tf_warning)) warning (OPT_Wunused_value, "value computed is not used"); } } expr = build1 (CONVERT_EXPR, void_type_node, expr); } if (! TREE_SIDE_EFFECTS (expr)) expr = void_zero_node; return expr; } /* Create an expression whose value is that of EXPR, converted to type TYPE. The TREE_TYPE of the value is always TYPE. This function implements all reasonable conversions; callers should filter out those that are not permitted by the language being compiled. Most of this routine is from build_reinterpret_cast. The back end cannot call cp_convert (what was convert) because conversions to/from basetypes may involve memory references (vbases) and adding or subtracting small values (multiple inheritance), but it calls convert from the constant folding code on subtrees of already built trees after it has ripped them apart. Also, if we ever support range variables, we'll probably also have to do a little bit more work. */ tree convert (tree type, tree expr) { tree intype; if (type == error_mark_node || expr == error_mark_node) return error_mark_node; intype = TREE_TYPE (expr); if (POINTER_TYPE_P (type) && POINTER_TYPE_P (intype)) return fold_if_not_in_template (build_nop (type, expr)); return ocp_convert (type, expr, CONV_OLD_CONVERT, LOOKUP_NORMAL|LOOKUP_NO_CONVERSION); } /* Like cp_convert, except permit conversions to take place which are not normally allowed due to access restrictions (such as conversion from sub-type to private super-type). */ tree convert_force (tree type, tree expr, int convtype) { tree e = expr; enum tree_code code = TREE_CODE (type); if (code == REFERENCE_TYPE) return (fold_if_not_in_template (convert_to_reference (type, e, CONV_C_CAST, LOOKUP_COMPLAIN, NULL_TREE))); if (code == POINTER_TYPE) return fold_if_not_in_template (convert_to_pointer_force (type, e)); /* From typeck.c convert_for_assignment */ if (((TREE_CODE (TREE_TYPE (e)) == POINTER_TYPE && TREE_CODE (e) == ADDR_EXPR && TREE_CODE (TREE_TYPE (e)) == POINTER_TYPE && TREE_CODE (TREE_TYPE (TREE_TYPE (e))) == METHOD_TYPE) || integer_zerop (e) || TYPE_PTRMEMFUNC_P (TREE_TYPE (e))) && TYPE_PTRMEMFUNC_P (type)) /* compatible pointer to member functions. */ return build_ptrmemfunc (TYPE_PTRMEMFUNC_FN_TYPE (type), e, 1, /*c_cast_p=*/1); return ocp_convert (type, e, CONV_C_CAST|convtype, LOOKUP_NORMAL); } /* Convert an aggregate EXPR to type XTYPE. If a conversion exists, return the attempted conversion. This may return ERROR_MARK_NODE if the conversion is not allowed (references private members, etc). If no conversion exists, NULL_TREE is returned. FIXME: Ambiguity checking is wrong. Should choose one by the implicit object parameter, or by the second standard conversion sequence if that doesn't do it. This will probably wait for an overloading rewrite. (jason 8/9/95) */ static tree build_type_conversion (tree xtype, tree expr) { /* C++: check to see if we can convert this aggregate type into the required type. */ return build_user_type_conversion (xtype, expr, LOOKUP_NORMAL); } /* Convert the given EXPR to one of a group of types suitable for use in an expression. DESIRES is a combination of various WANT_* flags (q.v.) which indicates which types are suitable. If COMPLAIN is true, complain about ambiguity; otherwise, the caller will deal with it. */ tree build_expr_type_conversion (int desires, tree expr, bool complain) { tree basetype = TREE_TYPE (expr); tree conv = NULL_TREE; tree winner = NULL_TREE; if (expr == null_node && (desires & WANT_INT) && !(desires & WANT_NULL)) warning_at (input_location, OPT_Wconversion_null, "converting NULL to non-pointer type"); basetype = TREE_TYPE (expr); if (basetype == error_mark_node) return error_mark_node; if (! MAYBE_CLASS_TYPE_P (basetype)) switch (TREE_CODE (basetype)) { case INTEGER_TYPE: if ((desires & WANT_NULL) && null_ptr_cst_p (expr)) return expr; /* else fall through... */ case BOOLEAN_TYPE: return (desires & WANT_INT) ? expr : NULL_TREE; case ENUMERAL_TYPE: return (desires & WANT_ENUM) ? expr : NULL_TREE; case REAL_TYPE: return (desires & WANT_FLOAT) ? expr : NULL_TREE; case POINTER_TYPE: return (desires & WANT_POINTER) ? expr : NULL_TREE; case FUNCTION_TYPE: case ARRAY_TYPE: return (desires & WANT_POINTER) ? decay_conversion (expr) : NULL_TREE; case COMPLEX_TYPE: case VECTOR_TYPE: if ((desires & WANT_VECTOR_OR_COMPLEX) == 0) return NULL_TREE; switch (TREE_CODE (TREE_TYPE (basetype))) { case INTEGER_TYPE: case BOOLEAN_TYPE: return (desires & WANT_INT) ? expr : NULL_TREE; case ENUMERAL_TYPE: return (desires & WANT_ENUM) ? expr : NULL_TREE; case REAL_TYPE: return (desires & WANT_FLOAT) ? expr : NULL_TREE; default: return NULL_TREE; } default: return NULL_TREE; } /* The code for conversions from class type is currently only used for delete expressions. Other expressions are handled by build_new_op. */ if (!complete_type_or_else (basetype, expr)) return error_mark_node; if (!TYPE_HAS_CONVERSION (basetype)) return NULL_TREE; for (conv = lookup_conversions (basetype, /*lookup_template_convs_p=*/true); conv; conv = TREE_CHAIN (conv)) { int win = 0; tree candidate; tree cand = TREE_VALUE (conv); cand = OVL_CURRENT (cand); if (winner && winner == cand) continue; if (DECL_NONCONVERTING_P (cand)) continue; candidate = non_reference (TREE_TYPE (TREE_TYPE (cand))); switch (TREE_CODE (candidate)) { case BOOLEAN_TYPE: case INTEGER_TYPE: win = (desires & WANT_INT); break; case ENUMERAL_TYPE: win = (desires & WANT_ENUM); break; case REAL_TYPE: win = (desires & WANT_FLOAT); break; case POINTER_TYPE: win = (desires & WANT_POINTER); break; case COMPLEX_TYPE: case VECTOR_TYPE: if ((desires & WANT_VECTOR_OR_COMPLEX) == 0) break; switch (TREE_CODE (TREE_TYPE (candidate))) { case BOOLEAN_TYPE: case INTEGER_TYPE: win = (desires & WANT_INT); break; case ENUMERAL_TYPE: win = (desires & WANT_ENUM); break; case REAL_TYPE: win = (desires & WANT_FLOAT); break; default: break; } break; default: break; } if (win) { if (winner) { if (complain) { error ("ambiguous default type conversion from %qT", basetype); error (" candidate conversions include %qD and %qD", winner, cand); } return error_mark_node; } else winner = cand; } } if (winner) { tree type = non_reference (TREE_TYPE (TREE_TYPE (winner))); return build_user_type_conversion (type, expr, LOOKUP_NORMAL); } return NULL_TREE; } /* Implements integral promotion (4.1) and float->double promotion. */ tree type_promotes_to (tree type) { tree promoted_type; if (type == error_mark_node) return error_mark_node; type = TYPE_MAIN_VARIANT (type); /* Check for promotions of target-defined types first. */ promoted_type = targetm.promoted_type (type); if (promoted_type) return promoted_type; /* bool always promotes to int (not unsigned), even if it's the same size. */ if (TREE_CODE (type) == BOOLEAN_TYPE) type = integer_type_node; /* Normally convert enums to int, but convert wide enums to something wider. */ else if (TREE_CODE (type) == ENUMERAL_TYPE || type == char16_type_node || type == char32_type_node || type == wchar_type_node) { int precision = MAX (TYPE_PRECISION (type), TYPE_PRECISION (integer_type_node)); tree totype = c_common_type_for_size (precision, 0); if (TYPE_UNSIGNED (type) && ! int_fits_type_p (TYPE_MAX_VALUE (type), totype)) type = c_common_type_for_size (precision, 1); else type = totype; } else if (c_promoting_integer_type_p (type)) { /* Retain unsignedness if really not getting bigger. */ if (TYPE_UNSIGNED (type) && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)) type = unsigned_type_node; else type = integer_type_node; } else if (type == float_type_node) type = double_type_node; return type; } /* The routines below this point are carefully written to conform to the standard. They use the same terminology, and follow the rules closely. Although they are used only in pt.c at the moment, they should presumably be used everywhere in the future. */ /* Attempt to perform qualification conversions on EXPR to convert it to TYPE. Return the resulting expression, or error_mark_node if the conversion was impossible. */ tree perform_qualification_conversions (tree type, tree expr) { tree expr_type; expr_type = TREE_TYPE (expr); if (same_type_p (type, expr_type)) return expr; else if (TYPE_PTR_P (type) && TYPE_PTR_P (expr_type) && comp_ptr_ttypes (TREE_TYPE (type), TREE_TYPE (expr_type))) return build_nop (type, expr); else if (TYPE_PTR_TO_MEMBER_P (type) && TYPE_PTR_TO_MEMBER_P (expr_type) && same_type_p (TYPE_PTRMEM_CLASS_TYPE (type), TYPE_PTRMEM_CLASS_TYPE (expr_type)) && comp_ptr_ttypes (TYPE_PTRMEM_POINTED_TO_TYPE (type), TYPE_PTRMEM_POINTED_TO_TYPE (expr_type))) return build_nop (type, expr); else return error_mark_node; }