URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [fortran/] [dump-parse-tree.c] - Rev 856
Go to most recent revision | Compare with Previous | Blame | View Log
/* Parse tree dumper Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by Steven Bosscher This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see <http://www.gnu.org/licenses/>. */ /* Actually this is just a collection of routines that used to be scattered around the sources. Now that they are all in a single file, almost all of them can be static, and the other files don't have this mess in them. As a nice side-effect, this file can act as documentation of the gfc_code and gfc_expr structures and all their friends and relatives. TODO: Dump DATA. */ #include "config.h" #include "gfortran.h" /* Keep track of indentation for symbol tree dumps. */ static int show_level = 0; /* The file handle we're dumping to is kept in a static variable. This is not too cool, but it avoids a lot of passing it around. */ static FILE *dumpfile; /* Forward declaration of some of the functions. */ static void show_expr (gfc_expr *p); static void show_code_node (int, gfc_code *); static void show_namespace (gfc_namespace *ns); /* Do indentation for a specific level. */ static inline void code_indent (int level, gfc_st_label *label) { int i; if (label != NULL) fprintf (dumpfile, "%-5d ", label->value); else fputs (" ", dumpfile); for (i = 0; i < 2 * level; i++) fputc (' ', dumpfile); } /* Simple indentation at the current level. This one is used to show symbols. */ static inline void show_indent (void) { fputc ('\n', dumpfile); code_indent (show_level, NULL); } /* Show type-specific information. */ static void show_typespec (gfc_typespec *ts) { fprintf (dumpfile, "(%s ", gfc_basic_typename (ts->type)); switch (ts->type) { case BT_DERIVED: fprintf (dumpfile, "%s", ts->u.derived->name); break; case BT_CHARACTER: show_expr (ts->u.cl->length); break; default: fprintf (dumpfile, "%d", ts->kind); break; } fputc (')', dumpfile); } /* Show an actual argument list. */ static void show_actual_arglist (gfc_actual_arglist *a) { fputc ('(', dumpfile); for (; a; a = a->next) { fputc ('(', dumpfile); if (a->name != NULL) fprintf (dumpfile, "%s = ", a->name); if (a->expr != NULL) show_expr (a->expr); else fputs ("(arg not-present)", dumpfile); fputc (')', dumpfile); if (a->next != NULL) fputc (' ', dumpfile); } fputc (')', dumpfile); } /* Show a gfc_array_spec array specification structure. */ static void show_array_spec (gfc_array_spec *as) { const char *c; int i; if (as == NULL) { fputs ("()", dumpfile); return; } fprintf (dumpfile, "(%d", as->rank); if (as->rank != 0) { switch (as->type) { case AS_EXPLICIT: c = "AS_EXPLICIT"; break; case AS_DEFERRED: c = "AS_DEFERRED"; break; case AS_ASSUMED_SIZE: c = "AS_ASSUMED_SIZE"; break; case AS_ASSUMED_SHAPE: c = "AS_ASSUMED_SHAPE"; break; default: gfc_internal_error ("show_array_spec(): Unhandled array shape " "type."); } fprintf (dumpfile, " %s ", c); for (i = 0; i < as->rank; i++) { show_expr (as->lower[i]); fputc (' ', dumpfile); show_expr (as->upper[i]); fputc (' ', dumpfile); } } fputc (')', dumpfile); } /* Show a gfc_array_ref array reference structure. */ static void show_array_ref (gfc_array_ref * ar) { int i; fputc ('(', dumpfile); switch (ar->type) { case AR_FULL: fputs ("FULL", dumpfile); break; case AR_SECTION: for (i = 0; i < ar->dimen; i++) { /* There are two types of array sections: either the elements are identified by an integer array ('vector'), or by an index range. In the former case we only have to print the start expression which contains the vector, in the latter case we have to print any of lower and upper bound and the stride, if they're present. */ if (ar->start[i] != NULL) show_expr (ar->start[i]); if (ar->dimen_type[i] == DIMEN_RANGE) { fputc (':', dumpfile); if (ar->end[i] != NULL) show_expr (ar->end[i]); if (ar->stride[i] != NULL) { fputc (':', dumpfile); show_expr (ar->stride[i]); } } if (i != ar->dimen - 1) fputs (" , ", dumpfile); } break; case AR_ELEMENT: for (i = 0; i < ar->dimen; i++) { show_expr (ar->start[i]); if (i != ar->dimen - 1) fputs (" , ", dumpfile); } break; case AR_UNKNOWN: fputs ("UNKNOWN", dumpfile); break; default: gfc_internal_error ("show_array_ref(): Unknown array reference"); } fputc (')', dumpfile); } /* Show a list of gfc_ref structures. */ static void show_ref (gfc_ref *p) { for (; p; p = p->next) switch (p->type) { case REF_ARRAY: show_array_ref (&p->u.ar); break; case REF_COMPONENT: fprintf (dumpfile, " %% %s", p->u.c.component->name); break; case REF_SUBSTRING: fputc ('(', dumpfile); show_expr (p->u.ss.start); fputc (':', dumpfile); show_expr (p->u.ss.end); fputc (')', dumpfile); break; default: gfc_internal_error ("show_ref(): Bad component code"); } } /* Display a constructor. Works recursively for array constructors. */ static void show_constructor (gfc_constructor *c) { for (; c; c = c->next) { if (c->iterator == NULL) show_expr (c->expr); else { fputc ('(', dumpfile); show_expr (c->expr); fputc (' ', dumpfile); show_expr (c->iterator->var); fputc ('=', dumpfile); show_expr (c->iterator->start); fputc (',', dumpfile); show_expr (c->iterator->end); fputc (',', dumpfile); show_expr (c->iterator->step); fputc (')', dumpfile); } if (c->next != NULL) fputs (" , ", dumpfile); } } static void show_char_const (const gfc_char_t *c, int length) { int i; fputc ('\'', dumpfile); for (i = 0; i < length; i++) { if (c[i] == '\'') fputs ("''", dumpfile); else fputs (gfc_print_wide_char (c[i]), dumpfile); } fputc ('\'', dumpfile); } /* Show a component-call expression. */ static void show_compcall (gfc_expr* p) { gcc_assert (p->expr_type == EXPR_COMPCALL); fprintf (dumpfile, "%s", p->symtree->n.sym->name); show_ref (p->ref); fprintf (dumpfile, "%s", p->value.compcall.name); show_actual_arglist (p->value.compcall.actual); } /* Show an expression. */ static void show_expr (gfc_expr *p) { const char *c; int i; if (p == NULL) { fputs ("()", dumpfile); return; } switch (p->expr_type) { case EXPR_SUBSTRING: show_char_const (p->value.character.string, p->value.character.length); show_ref (p->ref); break; case EXPR_STRUCTURE: fprintf (dumpfile, "%s(", p->ts.u.derived->name); show_constructor (p->value.constructor); fputc (')', dumpfile); break; case EXPR_ARRAY: fputs ("(/ ", dumpfile); show_constructor (p->value.constructor); fputs (" /)", dumpfile); show_ref (p->ref); break; case EXPR_NULL: fputs ("NULL()", dumpfile); break; case EXPR_CONSTANT: switch (p->ts.type) { case BT_INTEGER: mpz_out_str (stdout, 10, p->value.integer); if (p->ts.kind != gfc_default_integer_kind) fprintf (dumpfile, "_%d", p->ts.kind); break; case BT_LOGICAL: if (p->value.logical) fputs (".true.", dumpfile); else fputs (".false.", dumpfile); break; case BT_REAL: mpfr_out_str (stdout, 10, 0, p->value.real, GFC_RND_MODE); if (p->ts.kind != gfc_default_real_kind) fprintf (dumpfile, "_%d", p->ts.kind); break; case BT_CHARACTER: show_char_const (p->value.character.string, p->value.character.length); break; case BT_COMPLEX: fputs ("(complex ", dumpfile); mpfr_out_str (stdout, 10, 0, mpc_realref (p->value.complex), GFC_RND_MODE); if (p->ts.kind != gfc_default_complex_kind) fprintf (dumpfile, "_%d", p->ts.kind); fputc (' ', dumpfile); mpfr_out_str (stdout, 10, 0, mpc_imagref (p->value.complex), GFC_RND_MODE); if (p->ts.kind != gfc_default_complex_kind) fprintf (dumpfile, "_%d", p->ts.kind); fputc (')', dumpfile); break; case BT_HOLLERITH: fprintf (dumpfile, "%dH", p->representation.length); c = p->representation.string; for (i = 0; i < p->representation.length; i++, c++) { fputc (*c, dumpfile); } break; default: fputs ("???", dumpfile); break; } if (p->representation.string) { fputs (" {", dumpfile); c = p->representation.string; for (i = 0; i < p->representation.length; i++, c++) { fprintf (dumpfile, "%.2x", (unsigned int) *c); if (i < p->representation.length - 1) fputc (',', dumpfile); } fputc ('}', dumpfile); } break; case EXPR_VARIABLE: if (p->symtree->n.sym->ns && p->symtree->n.sym->ns->proc_name) fprintf (dumpfile, "%s:", p->symtree->n.sym->ns->proc_name->name); fprintf (dumpfile, "%s", p->symtree->n.sym->name); show_ref (p->ref); break; case EXPR_OP: fputc ('(', dumpfile); switch (p->value.op.op) { case INTRINSIC_UPLUS: fputs ("U+ ", dumpfile); break; case INTRINSIC_UMINUS: fputs ("U- ", dumpfile); break; case INTRINSIC_PLUS: fputs ("+ ", dumpfile); break; case INTRINSIC_MINUS: fputs ("- ", dumpfile); break; case INTRINSIC_TIMES: fputs ("* ", dumpfile); break; case INTRINSIC_DIVIDE: fputs ("/ ", dumpfile); break; case INTRINSIC_POWER: fputs ("** ", dumpfile); break; case INTRINSIC_CONCAT: fputs ("// ", dumpfile); break; case INTRINSIC_AND: fputs ("AND ", dumpfile); break; case INTRINSIC_OR: fputs ("OR ", dumpfile); break; case INTRINSIC_EQV: fputs ("EQV ", dumpfile); break; case INTRINSIC_NEQV: fputs ("NEQV ", dumpfile); break; case INTRINSIC_EQ: case INTRINSIC_EQ_OS: fputs ("= ", dumpfile); break; case INTRINSIC_NE: case INTRINSIC_NE_OS: fputs ("/= ", dumpfile); break; case INTRINSIC_GT: case INTRINSIC_GT_OS: fputs ("> ", dumpfile); break; case INTRINSIC_GE: case INTRINSIC_GE_OS: fputs (">= ", dumpfile); break; case INTRINSIC_LT: case INTRINSIC_LT_OS: fputs ("< ", dumpfile); break; case INTRINSIC_LE: case INTRINSIC_LE_OS: fputs ("<= ", dumpfile); break; case INTRINSIC_NOT: fputs ("NOT ", dumpfile); break; case INTRINSIC_PARENTHESES: fputs ("parens", dumpfile); break; default: gfc_internal_error ("show_expr(): Bad intrinsic in expression!"); } show_expr (p->value.op.op1); if (p->value.op.op2) { fputc (' ', dumpfile); show_expr (p->value.op.op2); } fputc (')', dumpfile); break; case EXPR_FUNCTION: if (p->value.function.name == NULL) { fprintf (dumpfile, "%s", p->symtree->n.sym->name); if (gfc_is_proc_ptr_comp (p, NULL)) show_ref (p->ref); fputc ('[', dumpfile); show_actual_arglist (p->value.function.actual); fputc (']', dumpfile); } else { fprintf (dumpfile, "%s", p->value.function.name); if (gfc_is_proc_ptr_comp (p, NULL)) show_ref (p->ref); fputc ('[', dumpfile); fputc ('[', dumpfile); show_actual_arglist (p->value.function.actual); fputc (']', dumpfile); fputc (']', dumpfile); } break; case EXPR_COMPCALL: show_compcall (p); break; default: gfc_internal_error ("show_expr(): Don't know how to show expr"); } } /* Show symbol attributes. The flavor and intent are followed by whatever single bit attributes are present. */ static void show_attr (symbol_attribute *attr) { fprintf (dumpfile, "(%s %s %s %s %s", gfc_code2string (flavors, attr->flavor), gfc_intent_string (attr->intent), gfc_code2string (access_types, attr->access), gfc_code2string (procedures, attr->proc), gfc_code2string (save_status, attr->save)); if (attr->allocatable) fputs (" ALLOCATABLE", dumpfile); if (attr->asynchronous) fputs (" ASYNCHRONOUS", dumpfile); if (attr->dimension) fputs (" DIMENSION", dumpfile); if (attr->external) fputs (" EXTERNAL", dumpfile); if (attr->intrinsic) fputs (" INTRINSIC", dumpfile); if (attr->optional) fputs (" OPTIONAL", dumpfile); if (attr->pointer) fputs (" POINTER", dumpfile); if (attr->is_protected) fputs (" PROTECTED", dumpfile); if (attr->value) fputs (" VALUE", dumpfile); if (attr->volatile_) fputs (" VOLATILE", dumpfile); if (attr->threadprivate) fputs (" THREADPRIVATE", dumpfile); if (attr->target) fputs (" TARGET", dumpfile); if (attr->dummy) fputs (" DUMMY", dumpfile); if (attr->result) fputs (" RESULT", dumpfile); if (attr->entry) fputs (" ENTRY", dumpfile); if (attr->is_bind_c) fputs (" BIND(C)", dumpfile); if (attr->data) fputs (" DATA", dumpfile); if (attr->use_assoc) fputs (" USE-ASSOC", dumpfile); if (attr->in_namelist) fputs (" IN-NAMELIST", dumpfile); if (attr->in_common) fputs (" IN-COMMON", dumpfile); if (attr->abstract) fputs (" ABSTRACT", dumpfile); if (attr->function) fputs (" FUNCTION", dumpfile); if (attr->subroutine) fputs (" SUBROUTINE", dumpfile); if (attr->implicit_type) fputs (" IMPLICIT-TYPE", dumpfile); if (attr->sequence) fputs (" SEQUENCE", dumpfile); if (attr->elemental) fputs (" ELEMENTAL", dumpfile); if (attr->pure) fputs (" PURE", dumpfile); if (attr->recursive) fputs (" RECURSIVE", dumpfile); fputc (')', dumpfile); } /* Show components of a derived type. */ static void show_components (gfc_symbol *sym) { gfc_component *c; for (c = sym->components; c; c = c->next) { fprintf (dumpfile, "(%s ", c->name); show_typespec (&c->ts); if (c->attr.pointer) fputs (" POINTER", dumpfile); if (c->attr.proc_pointer) fputs (" PPC", dumpfile); if (c->attr.dimension) fputs (" DIMENSION", dumpfile); fputc (' ', dumpfile); show_array_spec (c->as); if (c->attr.access) fprintf (dumpfile, " %s", gfc_code2string (access_types, c->attr.access)); fputc (')', dumpfile); if (c->next != NULL) fputc (' ', dumpfile); } } /* Show the f2k_derived namespace with procedure bindings. */ static void show_typebound_proc (gfc_typebound_proc* tb, const char* name) { show_indent (); if (tb->is_generic) fputs ("GENERIC", dumpfile); else { fputs ("PROCEDURE, ", dumpfile); if (tb->nopass) fputs ("NOPASS", dumpfile); else { if (tb->pass_arg) fprintf (dumpfile, "PASS(%s)", tb->pass_arg); else fputs ("PASS", dumpfile); } if (tb->non_overridable) fputs (", NON_OVERRIDABLE", dumpfile); } if (tb->access == ACCESS_PUBLIC) fputs (", PUBLIC", dumpfile); else fputs (", PRIVATE", dumpfile); fprintf (dumpfile, " :: %s => ", name); if (tb->is_generic) { gfc_tbp_generic* g; for (g = tb->u.generic; g; g = g->next) { fputs (g->specific_st->name, dumpfile); if (g->next) fputs (", ", dumpfile); } } else fputs (tb->u.specific->n.sym->name, dumpfile); } static void show_typebound_symtree (gfc_symtree* st) { gcc_assert (st->n.tb); show_typebound_proc (st->n.tb, st->name); } static void show_f2k_derived (gfc_namespace* f2k) { gfc_finalizer* f; int op; show_indent (); fputs ("Procedure bindings:", dumpfile); ++show_level; /* Finalizer bindings. */ for (f = f2k->finalizers; f; f = f->next) { show_indent (); fprintf (dumpfile, "FINAL %s", f->proc_sym->name); } /* Type-bound procedures. */ gfc_traverse_symtree (f2k->tb_sym_root, &show_typebound_symtree); --show_level; show_indent (); fputs ("Operator bindings:", dumpfile); ++show_level; /* User-defined operators. */ gfc_traverse_symtree (f2k->tb_uop_root, &show_typebound_symtree); /* Intrinsic operators. */ for (op = GFC_INTRINSIC_BEGIN; op != GFC_INTRINSIC_END; ++op) if (f2k->tb_op[op]) show_typebound_proc (f2k->tb_op[op], gfc_op2string ((gfc_intrinsic_op) op)); --show_level; } /* Show a symbol. If a symbol is an ENTRY, SUBROUTINE or FUNCTION, we show the interface. Information needed to reconstruct the list of specific interfaces associated with a generic symbol is done within that symbol. */ static void show_symbol (gfc_symbol *sym) { gfc_formal_arglist *formal; gfc_interface *intr; if (sym == NULL) return; show_indent (); fprintf (dumpfile, "symbol %s ", sym->name); show_typespec (&sym->ts); show_attr (&sym->attr); if (sym->value) { show_indent (); fputs ("value: ", dumpfile); show_expr (sym->value); } if (sym->as) { show_indent (); fputs ("Array spec:", dumpfile); show_array_spec (sym->as); } if (sym->generic) { show_indent (); fputs ("Generic interfaces:", dumpfile); for (intr = sym->generic; intr; intr = intr->next) fprintf (dumpfile, " %s", intr->sym->name); } if (sym->result) { show_indent (); fprintf (dumpfile, "result: %s", sym->result->name); } if (sym->components) { show_indent (); fputs ("components: ", dumpfile); show_components (sym); } if (sym->f2k_derived) { show_indent (); if (sym->hash_value) fprintf (dumpfile, "hash: %d", sym->hash_value); show_f2k_derived (sym->f2k_derived); } if (sym->formal) { show_indent (); fputs ("Formal arglist:", dumpfile); for (formal = sym->formal; formal; formal = formal->next) { if (formal->sym != NULL) fprintf (dumpfile, " %s", formal->sym->name); else fputs (" [Alt Return]", dumpfile); } } if (sym->formal_ns && (sym->formal_ns->proc_name != sym)) { show_indent (); fputs ("Formal namespace", dumpfile); show_namespace (sym->formal_ns); } fputc ('\n', dumpfile); } /* Show a user-defined operator. Just prints an operator and the name of the associated subroutine, really. */ static void show_uop (gfc_user_op *uop) { gfc_interface *intr; show_indent (); fprintf (dumpfile, "%s:", uop->name); for (intr = uop->op; intr; intr = intr->next) fprintf (dumpfile, " %s", intr->sym->name); } /* Workhorse function for traversing the user operator symtree. */ static void traverse_uop (gfc_symtree *st, void (*func) (gfc_user_op *)) { if (st == NULL) return; (*func) (st->n.uop); traverse_uop (st->left, func); traverse_uop (st->right, func); } /* Traverse the tree of user operator nodes. */ void gfc_traverse_user_op (gfc_namespace *ns, void (*func) (gfc_user_op *)) { traverse_uop (ns->uop_root, func); } /* Function to display a common block. */ static void show_common (gfc_symtree *st) { gfc_symbol *s; show_indent (); fprintf (dumpfile, "common: /%s/ ", st->name); s = st->n.common->head; while (s) { fprintf (dumpfile, "%s", s->name); s = s->common_next; if (s) fputs (", ", dumpfile); } fputc ('\n', dumpfile); } /* Worker function to display the symbol tree. */ static void show_symtree (gfc_symtree *st) { show_indent (); fprintf (dumpfile, "symtree: %s Ambig %d", st->name, st->ambiguous); if (st->n.sym->ns != gfc_current_ns) fprintf (dumpfile, " from namespace %s", st->n.sym->ns->proc_name->name); else show_symbol (st->n.sym); } /******************* Show gfc_code structures **************/ /* Show a list of code structures. Mutually recursive with show_code_node(). */ static void show_code (int level, gfc_code *c) { for (; c; c = c->next) show_code_node (level, c); } static void show_namelist (gfc_namelist *n) { for (; n->next; n = n->next) fprintf (dumpfile, "%s,", n->sym->name); fprintf (dumpfile, "%s", n->sym->name); } /* Show a single OpenMP directive node and everything underneath it if necessary. */ static void show_omp_node (int level, gfc_code *c) { gfc_omp_clauses *omp_clauses = NULL; const char *name = NULL; switch (c->op) { case EXEC_OMP_ATOMIC: name = "ATOMIC"; break; case EXEC_OMP_BARRIER: name = "BARRIER"; break; case EXEC_OMP_CRITICAL: name = "CRITICAL"; break; case EXEC_OMP_FLUSH: name = "FLUSH"; break; case EXEC_OMP_DO: name = "DO"; break; case EXEC_OMP_MASTER: name = "MASTER"; break; case EXEC_OMP_ORDERED: name = "ORDERED"; break; case EXEC_OMP_PARALLEL: name = "PARALLEL"; break; case EXEC_OMP_PARALLEL_DO: name = "PARALLEL DO"; break; case EXEC_OMP_PARALLEL_SECTIONS: name = "PARALLEL SECTIONS"; break; case EXEC_OMP_PARALLEL_WORKSHARE: name = "PARALLEL WORKSHARE"; break; case EXEC_OMP_SECTIONS: name = "SECTIONS"; break; case EXEC_OMP_SINGLE: name = "SINGLE"; break; case EXEC_OMP_TASK: name = "TASK"; break; case EXEC_OMP_TASKWAIT: name = "TASKWAIT"; break; case EXEC_OMP_WORKSHARE: name = "WORKSHARE"; break; default: gcc_unreachable (); } fprintf (dumpfile, "!$OMP %s", name); switch (c->op) { case EXEC_OMP_DO: case EXEC_OMP_PARALLEL: case EXEC_OMP_PARALLEL_DO: case EXEC_OMP_PARALLEL_SECTIONS: case EXEC_OMP_SECTIONS: case EXEC_OMP_SINGLE: case EXEC_OMP_WORKSHARE: case EXEC_OMP_PARALLEL_WORKSHARE: case EXEC_OMP_TASK: omp_clauses = c->ext.omp_clauses; break; case EXEC_OMP_CRITICAL: if (c->ext.omp_name) fprintf (dumpfile, " (%s)", c->ext.omp_name); break; case EXEC_OMP_FLUSH: if (c->ext.omp_namelist) { fputs (" (", dumpfile); show_namelist (c->ext.omp_namelist); fputc (')', dumpfile); } return; case EXEC_OMP_BARRIER: case EXEC_OMP_TASKWAIT: return; default: break; } if (omp_clauses) { int list_type; if (omp_clauses->if_expr) { fputs (" IF(", dumpfile); show_expr (omp_clauses->if_expr); fputc (')', dumpfile); } if (omp_clauses->num_threads) { fputs (" NUM_THREADS(", dumpfile); show_expr (omp_clauses->num_threads); fputc (')', dumpfile); } if (omp_clauses->sched_kind != OMP_SCHED_NONE) { const char *type; switch (omp_clauses->sched_kind) { case OMP_SCHED_STATIC: type = "STATIC"; break; case OMP_SCHED_DYNAMIC: type = "DYNAMIC"; break; case OMP_SCHED_GUIDED: type = "GUIDED"; break; case OMP_SCHED_RUNTIME: type = "RUNTIME"; break; case OMP_SCHED_AUTO: type = "AUTO"; break; default: gcc_unreachable (); } fprintf (dumpfile, " SCHEDULE (%s", type); if (omp_clauses->chunk_size) { fputc (',', dumpfile); show_expr (omp_clauses->chunk_size); } fputc (')', dumpfile); } if (omp_clauses->default_sharing != OMP_DEFAULT_UNKNOWN) { const char *type; switch (omp_clauses->default_sharing) { case OMP_DEFAULT_NONE: type = "NONE"; break; case OMP_DEFAULT_PRIVATE: type = "PRIVATE"; break; case OMP_DEFAULT_SHARED: type = "SHARED"; break; case OMP_DEFAULT_FIRSTPRIVATE: type = "FIRSTPRIVATE"; break; default: gcc_unreachable (); } fprintf (dumpfile, " DEFAULT(%s)", type); } if (omp_clauses->ordered) fputs (" ORDERED", dumpfile); if (omp_clauses->untied) fputs (" UNTIED", dumpfile); if (omp_clauses->collapse) fprintf (dumpfile, " COLLAPSE(%d)", omp_clauses->collapse); for (list_type = 0; list_type < OMP_LIST_NUM; list_type++) if (omp_clauses->lists[list_type] != NULL && list_type != OMP_LIST_COPYPRIVATE) { const char *type; if (list_type >= OMP_LIST_REDUCTION_FIRST) { switch (list_type) { case OMP_LIST_PLUS: type = "+"; break; case OMP_LIST_MULT: type = "*"; break; case OMP_LIST_SUB: type = "-"; break; case OMP_LIST_AND: type = ".AND."; break; case OMP_LIST_OR: type = ".OR."; break; case OMP_LIST_EQV: type = ".EQV."; break; case OMP_LIST_NEQV: type = ".NEQV."; break; case OMP_LIST_MAX: type = "MAX"; break; case OMP_LIST_MIN: type = "MIN"; break; case OMP_LIST_IAND: type = "IAND"; break; case OMP_LIST_IOR: type = "IOR"; break; case OMP_LIST_IEOR: type = "IEOR"; break; default: gcc_unreachable (); } fprintf (dumpfile, " REDUCTION(%s:", type); } else { switch (list_type) { case OMP_LIST_PRIVATE: type = "PRIVATE"; break; case OMP_LIST_FIRSTPRIVATE: type = "FIRSTPRIVATE"; break; case OMP_LIST_LASTPRIVATE: type = "LASTPRIVATE"; break; case OMP_LIST_SHARED: type = "SHARED"; break; case OMP_LIST_COPYIN: type = "COPYIN"; break; default: gcc_unreachable (); } fprintf (dumpfile, " %s(", type); } show_namelist (omp_clauses->lists[list_type]); fputc (')', dumpfile); } } fputc ('\n', dumpfile); if (c->op == EXEC_OMP_SECTIONS || c->op == EXEC_OMP_PARALLEL_SECTIONS) { gfc_code *d = c->block; while (d != NULL) { show_code (level + 1, d->next); if (d->block == NULL) break; code_indent (level, 0); fputs ("!$OMP SECTION\n", dumpfile); d = d->block; } } else show_code (level + 1, c->block->next); if (c->op == EXEC_OMP_ATOMIC) return; code_indent (level, 0); fprintf (dumpfile, "!$OMP END %s", name); if (omp_clauses != NULL) { if (omp_clauses->lists[OMP_LIST_COPYPRIVATE]) { fputs (" COPYPRIVATE(", dumpfile); show_namelist (omp_clauses->lists[OMP_LIST_COPYPRIVATE]); fputc (')', dumpfile); } else if (omp_clauses->nowait) fputs (" NOWAIT", dumpfile); } else if (c->op == EXEC_OMP_CRITICAL && c->ext.omp_name) fprintf (dumpfile, " (%s)", c->ext.omp_name); } /* Show a single code node and everything underneath it if necessary. */ static void show_code_node (int level, gfc_code *c) { gfc_forall_iterator *fa; gfc_open *open; gfc_case *cp; gfc_alloc *a; gfc_code *d; gfc_close *close; gfc_filepos *fp; gfc_inquire *i; gfc_dt *dt; code_indent (level, c->here); switch (c->op) { case EXEC_END_PROCEDURE: break; case EXEC_NOP: fputs ("NOP", dumpfile); break; case EXEC_CONTINUE: fputs ("CONTINUE", dumpfile); break; case EXEC_ENTRY: fprintf (dumpfile, "ENTRY %s", c->ext.entry->sym->name); break; case EXEC_INIT_ASSIGN: case EXEC_ASSIGN: fputs ("ASSIGN ", dumpfile); show_expr (c->expr1); fputc (' ', dumpfile); show_expr (c->expr2); break; case EXEC_LABEL_ASSIGN: fputs ("LABEL ASSIGN ", dumpfile); show_expr (c->expr1); fprintf (dumpfile, " %d", c->label1->value); break; case EXEC_POINTER_ASSIGN: fputs ("POINTER ASSIGN ", dumpfile); show_expr (c->expr1); fputc (' ', dumpfile); show_expr (c->expr2); break; case EXEC_GOTO: fputs ("GOTO ", dumpfile); if (c->label1) fprintf (dumpfile, "%d", c->label1->value); else { show_expr (c->expr1); d = c->block; if (d != NULL) { fputs (", (", dumpfile); for (; d; d = d ->block) { code_indent (level, d->label1); if (d->block != NULL) fputc (',', dumpfile); else fputc (')', dumpfile); } } } break; case EXEC_CALL: case EXEC_ASSIGN_CALL: if (c->resolved_sym) fprintf (dumpfile, "CALL %s ", c->resolved_sym->name); else if (c->symtree) fprintf (dumpfile, "CALL %s ", c->symtree->name); else fputs ("CALL ?? ", dumpfile); show_actual_arglist (c->ext.actual); break; case EXEC_COMPCALL: fputs ("CALL ", dumpfile); show_compcall (c->expr1); break; case EXEC_CALL_PPC: fputs ("CALL ", dumpfile); show_expr (c->expr1); show_actual_arglist (c->ext.actual); break; case EXEC_RETURN: fputs ("RETURN ", dumpfile); if (c->expr1) show_expr (c->expr1); break; case EXEC_PAUSE: fputs ("PAUSE ", dumpfile); if (c->expr1 != NULL) show_expr (c->expr1); else fprintf (dumpfile, "%d", c->ext.stop_code); break; case EXEC_STOP: fputs ("STOP ", dumpfile); if (c->expr1 != NULL) show_expr (c->expr1); else fprintf (dumpfile, "%d", c->ext.stop_code); break; case EXEC_ARITHMETIC_IF: fputs ("IF ", dumpfile); show_expr (c->expr1); fprintf (dumpfile, " %d, %d, %d", c->label1->value, c->label2->value, c->label3->value); break; case EXEC_IF: d = c->block; fputs ("IF ", dumpfile); show_expr (d->expr1); fputc ('\n', dumpfile); show_code (level + 1, d->next); d = d->block; for (; d; d = d->block) { code_indent (level, 0); if (d->expr1 == NULL) fputs ("ELSE\n", dumpfile); else { fputs ("ELSE IF ", dumpfile); show_expr (d->expr1); fputc ('\n', dumpfile); } show_code (level + 1, d->next); } code_indent (level, c->label1); fputs ("ENDIF", dumpfile); break; case EXEC_SELECT: d = c->block; fputs ("SELECT CASE ", dumpfile); show_expr (c->expr1); fputc ('\n', dumpfile); for (; d; d = d->block) { code_indent (level, 0); fputs ("CASE ", dumpfile); for (cp = d->ext.case_list; cp; cp = cp->next) { fputc ('(', dumpfile); show_expr (cp->low); fputc (' ', dumpfile); show_expr (cp->high); fputc (')', dumpfile); fputc (' ', dumpfile); } fputc ('\n', dumpfile); show_code (level + 1, d->next); } code_indent (level, c->label1); fputs ("END SELECT", dumpfile); break; case EXEC_WHERE: fputs ("WHERE ", dumpfile); d = c->block; show_expr (d->expr1); fputc ('\n', dumpfile); show_code (level + 1, d->next); for (d = d->block; d; d = d->block) { code_indent (level, 0); fputs ("ELSE WHERE ", dumpfile); show_expr (d->expr1); fputc ('\n', dumpfile); show_code (level + 1, d->next); } code_indent (level, 0); fputs ("END WHERE", dumpfile); break; case EXEC_FORALL: fputs ("FORALL ", dumpfile); for (fa = c->ext.forall_iterator; fa; fa = fa->next) { show_expr (fa->var); fputc (' ', dumpfile); show_expr (fa->start); fputc (':', dumpfile); show_expr (fa->end); fputc (':', dumpfile); show_expr (fa->stride); if (fa->next != NULL) fputc (',', dumpfile); } if (c->expr1 != NULL) { fputc (',', dumpfile); show_expr (c->expr1); } fputc ('\n', dumpfile); show_code (level + 1, c->block->next); code_indent (level, 0); fputs ("END FORALL", dumpfile); break; case EXEC_DO: fputs ("DO ", dumpfile); show_expr (c->ext.iterator->var); fputc ('=', dumpfile); show_expr (c->ext.iterator->start); fputc (' ', dumpfile); show_expr (c->ext.iterator->end); fputc (' ', dumpfile); show_expr (c->ext.iterator->step); fputc ('\n', dumpfile); show_code (level + 1, c->block->next); code_indent (level, 0); fputs ("END DO", dumpfile); break; case EXEC_DO_WHILE: fputs ("DO WHILE ", dumpfile); show_expr (c->expr1); fputc ('\n', dumpfile); show_code (level + 1, c->block->next); code_indent (level, c->label1); fputs ("END DO", dumpfile); break; case EXEC_CYCLE: fputs ("CYCLE", dumpfile); if (c->symtree) fprintf (dumpfile, " %s", c->symtree->n.sym->name); break; case EXEC_EXIT: fputs ("EXIT", dumpfile); if (c->symtree) fprintf (dumpfile, " %s", c->symtree->n.sym->name); break; case EXEC_ALLOCATE: fputs ("ALLOCATE ", dumpfile); if (c->expr1) { fputs (" STAT=", dumpfile); show_expr (c->expr1); } if (c->expr2) { fputs (" ERRMSG=", dumpfile); show_expr (c->expr2); } for (a = c->ext.alloc.list; a; a = a->next) { fputc (' ', dumpfile); show_expr (a->expr); } break; case EXEC_DEALLOCATE: fputs ("DEALLOCATE ", dumpfile); if (c->expr1) { fputs (" STAT=", dumpfile); show_expr (c->expr1); } if (c->expr2) { fputs (" ERRMSG=", dumpfile); show_expr (c->expr2); } for (a = c->ext.alloc.list; a; a = a->next) { fputc (' ', dumpfile); show_expr (a->expr); } break; case EXEC_OPEN: fputs ("OPEN", dumpfile); open = c->ext.open; if (open->unit) { fputs (" UNIT=", dumpfile); show_expr (open->unit); } if (open->iomsg) { fputs (" IOMSG=", dumpfile); show_expr (open->iomsg); } if (open->iostat) { fputs (" IOSTAT=", dumpfile); show_expr (open->iostat); } if (open->file) { fputs (" FILE=", dumpfile); show_expr (open->file); } if (open->status) { fputs (" STATUS=", dumpfile); show_expr (open->status); } if (open->access) { fputs (" ACCESS=", dumpfile); show_expr (open->access); } if (open->form) { fputs (" FORM=", dumpfile); show_expr (open->form); } if (open->recl) { fputs (" RECL=", dumpfile); show_expr (open->recl); } if (open->blank) { fputs (" BLANK=", dumpfile); show_expr (open->blank); } if (open->position) { fputs (" POSITION=", dumpfile); show_expr (open->position); } if (open->action) { fputs (" ACTION=", dumpfile); show_expr (open->action); } if (open->delim) { fputs (" DELIM=", dumpfile); show_expr (open->delim); } if (open->pad) { fputs (" PAD=", dumpfile); show_expr (open->pad); } if (open->decimal) { fputs (" DECIMAL=", dumpfile); show_expr (open->decimal); } if (open->encoding) { fputs (" ENCODING=", dumpfile); show_expr (open->encoding); } if (open->round) { fputs (" ROUND=", dumpfile); show_expr (open->round); } if (open->sign) { fputs (" SIGN=", dumpfile); show_expr (open->sign); } if (open->convert) { fputs (" CONVERT=", dumpfile); show_expr (open->convert); } if (open->asynchronous) { fputs (" ASYNCHRONOUS=", dumpfile); show_expr (open->asynchronous); } if (open->err != NULL) fprintf (dumpfile, " ERR=%d", open->err->value); break; case EXEC_CLOSE: fputs ("CLOSE", dumpfile); close = c->ext.close; if (close->unit) { fputs (" UNIT=", dumpfile); show_expr (close->unit); } if (close->iomsg) { fputs (" IOMSG=", dumpfile); show_expr (close->iomsg); } if (close->iostat) { fputs (" IOSTAT=", dumpfile); show_expr (close->iostat); } if (close->status) { fputs (" STATUS=", dumpfile); show_expr (close->status); } if (close->err != NULL) fprintf (dumpfile, " ERR=%d", close->err->value); break; case EXEC_BACKSPACE: fputs ("BACKSPACE", dumpfile); goto show_filepos; case EXEC_ENDFILE: fputs ("ENDFILE", dumpfile); goto show_filepos; case EXEC_REWIND: fputs ("REWIND", dumpfile); goto show_filepos; case EXEC_FLUSH: fputs ("FLUSH", dumpfile); show_filepos: fp = c->ext.filepos; if (fp->unit) { fputs (" UNIT=", dumpfile); show_expr (fp->unit); } if (fp->iomsg) { fputs (" IOMSG=", dumpfile); show_expr (fp->iomsg); } if (fp->iostat) { fputs (" IOSTAT=", dumpfile); show_expr (fp->iostat); } if (fp->err != NULL) fprintf (dumpfile, " ERR=%d", fp->err->value); break; case EXEC_INQUIRE: fputs ("INQUIRE", dumpfile); i = c->ext.inquire; if (i->unit) { fputs (" UNIT=", dumpfile); show_expr (i->unit); } if (i->file) { fputs (" FILE=", dumpfile); show_expr (i->file); } if (i->iomsg) { fputs (" IOMSG=", dumpfile); show_expr (i->iomsg); } if (i->iostat) { fputs (" IOSTAT=", dumpfile); show_expr (i->iostat); } if (i->exist) { fputs (" EXIST=", dumpfile); show_expr (i->exist); } if (i->opened) { fputs (" OPENED=", dumpfile); show_expr (i->opened); } if (i->number) { fputs (" NUMBER=", dumpfile); show_expr (i->number); } if (i->named) { fputs (" NAMED=", dumpfile); show_expr (i->named); } if (i->name) { fputs (" NAME=", dumpfile); show_expr (i->name); } if (i->access) { fputs (" ACCESS=", dumpfile); show_expr (i->access); } if (i->sequential) { fputs (" SEQUENTIAL=", dumpfile); show_expr (i->sequential); } if (i->direct) { fputs (" DIRECT=", dumpfile); show_expr (i->direct); } if (i->form) { fputs (" FORM=", dumpfile); show_expr (i->form); } if (i->formatted) { fputs (" FORMATTED", dumpfile); show_expr (i->formatted); } if (i->unformatted) { fputs (" UNFORMATTED=", dumpfile); show_expr (i->unformatted); } if (i->recl) { fputs (" RECL=", dumpfile); show_expr (i->recl); } if (i->nextrec) { fputs (" NEXTREC=", dumpfile); show_expr (i->nextrec); } if (i->blank) { fputs (" BLANK=", dumpfile); show_expr (i->blank); } if (i->position) { fputs (" POSITION=", dumpfile); show_expr (i->position); } if (i->action) { fputs (" ACTION=", dumpfile); show_expr (i->action); } if (i->read) { fputs (" READ=", dumpfile); show_expr (i->read); } if (i->write) { fputs (" WRITE=", dumpfile); show_expr (i->write); } if (i->readwrite) { fputs (" READWRITE=", dumpfile); show_expr (i->readwrite); } if (i->delim) { fputs (" DELIM=", dumpfile); show_expr (i->delim); } if (i->pad) { fputs (" PAD=", dumpfile); show_expr (i->pad); } if (i->convert) { fputs (" CONVERT=", dumpfile); show_expr (i->convert); } if (i->asynchronous) { fputs (" ASYNCHRONOUS=", dumpfile); show_expr (i->asynchronous); } if (i->decimal) { fputs (" DECIMAL=", dumpfile); show_expr (i->decimal); } if (i->encoding) { fputs (" ENCODING=", dumpfile); show_expr (i->encoding); } if (i->pending) { fputs (" PENDING=", dumpfile); show_expr (i->pending); } if (i->round) { fputs (" ROUND=", dumpfile); show_expr (i->round); } if (i->sign) { fputs (" SIGN=", dumpfile); show_expr (i->sign); } if (i->size) { fputs (" SIZE=", dumpfile); show_expr (i->size); } if (i->id) { fputs (" ID=", dumpfile); show_expr (i->id); } if (i->err != NULL) fprintf (dumpfile, " ERR=%d", i->err->value); break; case EXEC_IOLENGTH: fputs ("IOLENGTH ", dumpfile); show_expr (c->expr1); goto show_dt_code; break; case EXEC_READ: fputs ("READ", dumpfile); goto show_dt; case EXEC_WRITE: fputs ("WRITE", dumpfile); show_dt: dt = c->ext.dt; if (dt->io_unit) { fputs (" UNIT=", dumpfile); show_expr (dt->io_unit); } if (dt->format_expr) { fputs (" FMT=", dumpfile); show_expr (dt->format_expr); } if (dt->format_label != NULL) fprintf (dumpfile, " FMT=%d", dt->format_label->value); if (dt->namelist) fprintf (dumpfile, " NML=%s", dt->namelist->name); if (dt->iomsg) { fputs (" IOMSG=", dumpfile); show_expr (dt->iomsg); } if (dt->iostat) { fputs (" IOSTAT=", dumpfile); show_expr (dt->iostat); } if (dt->size) { fputs (" SIZE=", dumpfile); show_expr (dt->size); } if (dt->rec) { fputs (" REC=", dumpfile); show_expr (dt->rec); } if (dt->advance) { fputs (" ADVANCE=", dumpfile); show_expr (dt->advance); } if (dt->id) { fputs (" ID=", dumpfile); show_expr (dt->id); } if (dt->pos) { fputs (" POS=", dumpfile); show_expr (dt->pos); } if (dt->asynchronous) { fputs (" ASYNCHRONOUS=", dumpfile); show_expr (dt->asynchronous); } if (dt->blank) { fputs (" BLANK=", dumpfile); show_expr (dt->blank); } if (dt->decimal) { fputs (" DECIMAL=", dumpfile); show_expr (dt->decimal); } if (dt->delim) { fputs (" DELIM=", dumpfile); show_expr (dt->delim); } if (dt->pad) { fputs (" PAD=", dumpfile); show_expr (dt->pad); } if (dt->round) { fputs (" ROUND=", dumpfile); show_expr (dt->round); } if (dt->sign) { fputs (" SIGN=", dumpfile); show_expr (dt->sign); } show_dt_code: fputc ('\n', dumpfile); for (c = c->block->next; c; c = c->next) show_code_node (level + (c->next != NULL), c); return; case EXEC_TRANSFER: fputs ("TRANSFER ", dumpfile); show_expr (c->expr1); break; case EXEC_DT_END: fputs ("DT_END", dumpfile); dt = c->ext.dt; if (dt->err != NULL) fprintf (dumpfile, " ERR=%d", dt->err->value); if (dt->end != NULL) fprintf (dumpfile, " END=%d", dt->end->value); if (dt->eor != NULL) fprintf (dumpfile, " EOR=%d", dt->eor->value); break; case EXEC_OMP_ATOMIC: case EXEC_OMP_BARRIER: case EXEC_OMP_CRITICAL: case EXEC_OMP_FLUSH: case EXEC_OMP_DO: case EXEC_OMP_MASTER: case EXEC_OMP_ORDERED: case EXEC_OMP_PARALLEL: case EXEC_OMP_PARALLEL_DO: case EXEC_OMP_PARALLEL_SECTIONS: case EXEC_OMP_PARALLEL_WORKSHARE: case EXEC_OMP_SECTIONS: case EXEC_OMP_SINGLE: case EXEC_OMP_TASK: case EXEC_OMP_TASKWAIT: case EXEC_OMP_WORKSHARE: show_omp_node (level, c); break; default: gfc_internal_error ("show_code_node(): Bad statement code"); } fputc ('\n', dumpfile); } /* Show an equivalence chain. */ static void show_equiv (gfc_equiv *eq) { show_indent (); fputs ("Equivalence: ", dumpfile); while (eq) { show_expr (eq->expr); eq = eq->eq; if (eq) fputs (", ", dumpfile); } } /* Show a freakin' whole namespace. */ static void show_namespace (gfc_namespace *ns) { gfc_interface *intr; gfc_namespace *save; int op; gfc_equiv *eq; int i; save = gfc_current_ns; show_level++; show_indent (); fputs ("Namespace:", dumpfile); if (ns != NULL) { i = 0; do { int l = i; while (i < GFC_LETTERS - 1 && gfc_compare_types(&ns->default_type[i+1], &ns->default_type[l])) i++; if (i > l) fprintf (dumpfile, " %c-%c: ", l+'A', i+'A'); else fprintf (dumpfile, " %c: ", l+'A'); show_typespec(&ns->default_type[l]); i++; } while (i < GFC_LETTERS); if (ns->proc_name != NULL) { show_indent (); fprintf (dumpfile, "procedure name = %s", ns->proc_name->name); } gfc_current_ns = ns; gfc_traverse_symtree (ns->common_root, show_common); gfc_traverse_symtree (ns->sym_root, show_symtree); for (op = GFC_INTRINSIC_BEGIN; op != GFC_INTRINSIC_END; op++) { /* User operator interfaces */ intr = ns->op[op]; if (intr == NULL) continue; show_indent (); fprintf (dumpfile, "Operator interfaces for %s:", gfc_op2string ((gfc_intrinsic_op) op)); for (; intr; intr = intr->next) fprintf (dumpfile, " %s", intr->sym->name); } if (ns->uop_root != NULL) { show_indent (); fputs ("User operators:\n", dumpfile); gfc_traverse_user_op (ns, show_uop); } } for (eq = ns->equiv; eq; eq = eq->next) show_equiv (eq); fputc ('\n', dumpfile); fputc ('\n', dumpfile); show_code (0, ns->code); for (ns = ns->contained; ns; ns = ns->sibling) { show_indent (); fputs ("CONTAINS\n", dumpfile); show_namespace (ns); } show_level--; fputc ('\n', dumpfile); gfc_current_ns = save; } /* Main function for dumping a parse tree. */ void gfc_dump_parse_tree (gfc_namespace *ns, FILE *file) { dumpfile = file; show_namespace (ns); }
Go to most recent revision | Compare with Previous | Blame | View Log