URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [testsuite/] [ada/] [acats/] [tests/] [cxg/] [cxg1005.a] - Rev 826
Compare with Previous | Blame | View Log
-- CXG1005.A
--
-- Grant of Unlimited Rights
--
-- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
-- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
-- unlimited rights in the software and documentation contained herein.
-- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
-- this public release, the Government intends to confer upon all
-- recipients unlimited rights equal to those held by the Government.
-- These rights include rights to use, duplicate, release or disclose the
-- released technical data and computer software in whole or in part, in
-- any manner and for any purpose whatsoever, and to have or permit others
-- to do so.
--
-- DISCLAIMER
--
-- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
-- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
-- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
-- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
-- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
-- PARTICULAR PURPOSE OF SAID MATERIAL.
--*
--
-- OBJECTIVE:
-- Check that the subprograms defined in the package
-- Ada.Numerics.Generic_Complex_Elementary_Functions provide correct
-- results.
--
-- TEST DESCRIPTION:
-- This test checks that specific subprograms defined in the generic
-- package Generic_Complex_Elementary_Functions are available, and that
-- they provide prescribed results given specific input values.
-- The generic package Ada.Numerics.Generic_Complex_Types is instantiated
-- with a real type (new Float). The resulting new package is used as
-- the generic actual to package Complex_IO.
--
-- SPECIAL REQUIREMENTS:
-- Implementations for which Float'Signed_Zeros is True must provide
-- a body for ImpDef.Annex_G.Negative_Zero which returns a negative
-- zero.
--
-- APPLICABILITY CRITERIA
-- This test only applies to implementations that support the
-- numerics annex.
--
--
--
-- CHANGE HISTORY:
-- 06 Dec 94 SAIC ACVC 2.0
-- 16 Nov 95 SAIC Corrected visibility problems for ACVC 2.0.1.
-- 21 Feb 96 SAIC Incorporated new structure for package Impdef.
-- 29 Sep 96 SAIC Incorporated reviewer comments.
--
--!
with Ada.Numerics.Generic_Complex_Types;
with Ada.Numerics.Generic_Complex_Elementary_Functions;
with ImpDef.Annex_G;
with Report;
procedure CXG1005 is
begin
Report.Test ("CXG1005", "Check that the subprograms defined in " &
"the package Generic_Complex_Elementary_" &
"Functions provide correct results");
Test_Block:
declare
type Real_Type is new Float;
TC_Signed_Zeros : Boolean := Real_Type'Signed_Zeros;
package Complex_Pack is new
Ada.Numerics.Generic_Complex_Types(Real_Type);
package CEF is
new Ada.Numerics.Generic_Complex_Elementary_Functions(Complex_Pack);
use Ada.Numerics, Complex_Pack, CEF;
Complex_Zero : constant Complex := Compose_From_Cartesian( 0.0, 0.0);
Plus_One : constant Complex := Compose_From_Cartesian( 1.0, 0.0);
Minus_One : constant Complex := Compose_From_Cartesian(-1.0, 0.0);
Plus_i : constant Complex := Compose_From_Cartesian(i);
Minus_i : constant Complex := Compose_From_Cartesian(-i);
Complex_Positive_Real : constant Complex :=
Compose_From_Cartesian(4.0, 2.0);
Complex_Positive_Imaginary : constant Complex :=
Compose_From_Cartesian(3.0, 5.0);
Complex_Negative_Real : constant Complex :=
Compose_From_Cartesian(-4.0, 2.0);
Complex_Negative_Imaginary : constant Complex :=
Compose_From_Cartesian(3.0, -5.0);
function A_Zero_Result (Z : Complex) return Boolean is
begin
return (Re(Z) = 0.0 and Im(Z) = 0.0);
end A_Zero_Result;
-- In order to evaluate complex elementary functions that are
-- prescribed to return a "real" result (meaning that the imaginary
-- component is zero), the Function A_Real_Result is defined.
function A_Real_Result (Z : Complex) return Boolean is
begin
return Im(Z) = 0.0;
end A_Real_Result;
-- In order to evaluate complex elementary functions that are
-- prescribed to return an "imaginary" result (meaning that the real
-- component of the complex number is zero, and the imaginary
-- component is non-zero), the Function An_Imaginary_Result is defined.
function An_Imaginary_Result (Z : Complex) return Boolean is
begin
return (Re(Z) = 0.0 and Im(Z) /= 0.0);
end An_Imaginary_Result;
begin
-- Check that when the input parameter value is zero, the following
-- functions yield a zero result.
if not A_Zero_Result( Sqrt(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Sqrt with zero input");
end if;
if not A_Zero_Result( Sin(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Sin with zero input");
end if;
if not A_Zero_Result( Arcsin(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Arcsin with zero " &
"input");
end if;
if not A_Zero_Result( Tan(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Tan with zero input");
end if;
if not A_Zero_Result( Arctan(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Arctan with zero " &
"input");
end if;
if not A_Zero_Result( Sinh(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Sinh with zero input");
end if;
if not A_Zero_Result( Arcsinh(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Arcsinh with zero " &
"input");
end if;
if not A_Zero_Result( Tanh(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Tanh with zero input");
end if;
if not A_Zero_Result( Arctanh(Complex_Zero) ) then
Report.Failed("Non-zero result from Function Arctanh with zero " &
"input");
end if;
-- Check that when the input parameter value is zero, the following
-- functions yield a result of one.
if Exp(Complex_Zero) /= Plus_One
then
Report.Failed("Non-zero result from Function Exp with zero input");
end if;
if Cos(Complex_Zero) /= Plus_One
then
Report.Failed("Non-zero result from Function Cos with zero input");
end if;
if Cosh(Complex_Zero) /= Plus_One
then
Report.Failed("Non-zero result from Function Cosh with zero input");
end if;
-- Check that when the input parameter value is zero, the following
-- functions yield a real result.
if not A_Real_Result( Arccos(Complex_Zero) ) then
Report.Failed("Non-real result from Function Arccos with zero input");
end if;
if not A_Real_Result( Arccot(Complex_Zero) ) then
Report.Failed("Non-real result from Function Arccot with zero input");
end if;
-- Check that when the input parameter value is zero, the following
-- functions yield an imaginary result.
if not An_Imaginary_Result( Arccoth(Complex_Zero) ) then
Report.Failed("Non-imaginary result from Function Arccoth with " &
"zero input");
end if;
-- Check that when the input parameter value is one, the Sqrt function
-- yields a result of one.
if Sqrt(Plus_One) /= Plus_One then
Report.Failed("Incorrect result from Function Sqrt with input " &
"value of one");
end if;
-- Check that when the input parameter value is one, the following
-- functions yield a result of zero.
if not A_Zero_Result( Log(Plus_One) ) then
Report.Failed("Non-zero result from Function Log with input " &
"value of one");
end if;
if not A_Zero_Result( Arccos(Plus_One) ) then
Report.Failed("Non-zero result from Function Arccos with input " &
"value of one");
end if;
if not A_Zero_Result( Arccosh(Plus_One) ) then
Report.Failed("Non-zero result from Function Arccosh with input " &
"value of one");
end if;
-- Check that when the input parameter value is one, the Arcsin
-- function yields a real result.
if not A_Real_Result( Arcsin(Plus_One) ) then
Report.Failed("Non-real result from Function Arcsin with input " &
"value of one");
end if;
-- Check that when the input parameter value is minus one, the Sqrt
-- function yields a result of "i", when the sign of the imaginary
-- component of the input parameter is positive (and yields "-i", if
-- the sign on the imaginary component is negative), and the
-- Complex_Types.Real'Signed_Zeros attribute is True.
if TC_Signed_Zeros then
declare
Minus_One_With_Pos_Zero_Im_Component : Complex :=
Compose_From_Cartesian(-1.0, +0.0);
Minus_One_With_Neg_Zero_Im_Component : Complex :=
Compose_From_Cartesian
(-1.0, Real_Type(ImpDef.Annex_G.Negative_Zero));
begin
if Sqrt(Minus_One_With_Pos_Zero_Im_Component) /= Plus_i then
Report.Failed("Incorrect result from Function Sqrt, when " &
"input value is minus one with a positive " &
"imaginary component, Signed_Zeros being True");
end if;
if Sqrt(Minus_One_With_Neg_Zero_Im_Component) /= Minus_i then
Report.Failed("Incorrect result from Function Sqrt, when " &
"input value is minus one with a negative " &
"imaginary component, Signed_Zeros being True");
end if;
end;
else -- Signed_Zeros is False.
-- Check that when the input parameter value is minus one, the Sqrt
-- function yields a result of "i", when the
-- Complex_Types.Real'Signed_Zeros attribute is False.
if Sqrt(Minus_One) /= Plus_i then
Report.Failed("Incorrect result from Function Sqrt, when " &
"input value is minus one, Signed_Zeros being " &
"False");
end if;
end if;
-- Check that when the input parameter value is minus one, the Log
-- function yields an imaginary result.
if not An_Imaginary_Result( Log(Minus_One) ) then
Report.Failed("Non-imaginary result from Function Log with a " &
"minus one input value");
end if;
-- Check that when the input parameter is minus one, the following
-- functions yield a real result.
if not A_Real_Result( Arcsin(Minus_One) ) then
Report.Failed("Non-real result from Function Arcsin with a " &
"minus one input value");
end if;
if not A_Real_Result( Arccos(Minus_One) ) then
Report.Failed("Non-real result from Function Arccos with a " &
"minus one input value");
end if;
-- Check that when the input parameter has a value of +i or -i, the
-- Log function yields an imaginary result.
if not An_Imaginary_Result( Log(Plus_i) ) then
Report.Failed("Non-imaginary result from Function Log with an " &
"input value of ""+i""");
end if;
if not An_Imaginary_Result( Log(Minus_i) ) then
Report.Failed("Non-imaginary result from Function Log with an " &
"input value of ""-i""");
end if;
-- Check that exponentiation by a zero exponent yields the value one.
if "**"(Left => Compose_From_Cartesian(5.0, 3.0),
Right => Complex_Zero) /= Plus_One or
Complex_Negative_Real**0.0 /= Plus_One or
15.0**Complex_Zero /= Plus_One
then
Report.Failed("Incorrect result from exponentiation with a zero " &
"exponent");
end if;
-- Check that exponentiation by a unit exponent yields the value of
-- the left operand (as a complex value).
-- Note: a "unit exponent" is considered the complex number (1.0, 0.0)
if "**"(Complex_Negative_Real, Plus_One) /=
Complex_Negative_Real or
Complex_Negative_Imaginary**Plus_One /=
Complex_Negative_Imaginary or
4.0**Plus_One /=
Compose_From_Cartesian(4.0, 0.0)
then
Report.Failed("Incorrect result from exponentiation with a unit " &
"exponent");
end if;
-- Check that exponentiation of the value one yields the value one.
if "**"(Plus_One, Complex_Negative_Imaginary) /= Plus_One or
Plus_One**9.0 /= Plus_One or
1.0**Complex_Negative_Real /= Plus_One
then
Report.Failed("Incorrect result from exponentiation of the value " &
"One");
end if;
-- Check that exponentiation of the value zero yields the value zero.
begin
if not A_Zero_Result("**"(Complex_Zero,
Complex_Positive_Imaginary)) or
not A_Zero_Result(Complex_Zero**4.0) or
not A_Zero_Result(0.0**Complex_Positive_Real)
then
Report.Failed("Incorrect result from exponentiation of the " &
"value zero");
end if;
exception
when others =>
Report.Failed("Exception raised during the exponentiation of " &
"the complex value zero");
end;
exception
when others => Report.Failed ("Exception raised in Test_Block");
end Test_Block;
Report.Result;
end CXG1005;