URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [testsuite/] [gfortran.dg/] [g77/] [980310-3.f] - Rev 826
Compare with Previous | Blame | View Log
c { dg-do compile } c c This demonstrates a problem with g77 and pic on x86 where c egcs 1.0.1 and earlier will generate bogus assembler output. c unfortunately, gas accepts the bogus acssembler output and c generates code that almost works. c C Date: Wed, 17 Dec 1997 23:20:29 +0000 C From: Joao Cardoso <jcardoso@inescn.pt> C To: egcs-bugs@cygnus.com C Subject: egcs-1.0 f77 bug on OSR5 C When trying to compile the Fortran file that I enclose bellow, C I got an assembler error: C C ./g77 -B./ -fpic -O -c scaleg.f C /usr/tmp/cca002D8.s:123:syntax error at ( C C ./g77 -B./ -fpic -O0 -c scaleg.f C /usr/tmp/cca002EW.s:246:invalid operand combination: leal C C Compiling without the -fpic flag runs OK. subroutine scaleg (n,ma,a,mb,b,low,igh,cscale,cperm,wk) c c *****parameters: integer igh,low,ma,mb,n double precision a(ma,n),b(mb,n),cperm(n),cscale(n),wk(n,6) c c *****local variables: integer i,ir,it,j,jc,kount,nr,nrp2 double precision alpha,basl,beta,cmax,coef,coef2,coef5,cor, * ew,ewc,fi,fj,gamma,pgamma,sum,t,ta,tb,tc c c *****fortran functions: double precision dabs, dlog10, dsign c float c c *****subroutines called: c none c c --------------------------------------------------------------- c c *****purpose: c scales the matrices a and b in the generalized eigenvalue c problem a*x = (lambda)*b*x such that the magnitudes of the c elements of the submatrices of a and b (as specified by low c and igh) are close to unity in the least squares sense. c ref.: ward, r. c., balancing the generalized eigenvalue c problem, siam j. sci. stat. comput., vol. 2, no. 2, june 1981, c 141-152. c c *****parameter description: c c on input: c c ma,mb integer c row dimensions of the arrays containing matrices c a and b respectively, as declared in the main calling c program dimension statement; c c n integer c order of the matrices a and b; c c a real(ma,n) c contains the a matrix of the generalized eigenproblem c defined above; c c b real(mb,n) c contains the b matrix of the generalized eigenproblem c defined above; c c low integer c specifies the beginning -1 for the rows and c columns of a and b to be scaled; c c igh integer c specifies the ending -1 for the rows and columns c of a and b to be scaled; c c cperm real(n) c work array. only locations low through igh are c referenced and altered by this subroutine; c c wk real(n,6) c work array that must contain at least 6*n locations. c only locations low through igh, n+low through n+igh, c ..., 5*n+low through 5*n+igh are referenced and c altered by this subroutine. c c on output: c c a,b contain the scaled a and b matrices; c c cscale real(n) c contains in its low through igh locations the integer c exponents of 2 used for the column scaling factors. c the other locations are not referenced; c c wk contains in its low through igh locations the integer c exponents of 2 used for the row scaling factors. c c *****algorithm notes: c none. c c *****history: c written by r. c. ward....... c modified 8/86 by bobby bodenheimer so that if c sum = 0 (corresponding to the case where the matrix c doesn't need to be scaled) the routine returns. c c --------------------------------------------------------------- c if (low .eq. igh) go to 410 do 210 i = low,igh wk(i,1) = 0.0d0 wk(i,2) = 0.0d0 wk(i,3) = 0.0d0 wk(i,4) = 0.0d0 wk(i,5) = 0.0d0 wk(i,6) = 0.0d0 cscale(i) = 0.0d0 cperm(i) = 0.0d0 210 continue c c compute right side vector in resulting linear equations c basl = dlog10(2.0d0) do 240 i = low,igh do 240 j = low,igh tb = b(i,j) ta = a(i,j) if (ta .eq. 0.0d0) go to 220 ta = dlog10(dabs(ta)) / basl 220 continue if (tb .eq. 0.0d0) go to 230 tb = dlog10(dabs(tb)) / basl 230 continue wk(i,5) = wk(i,5) - ta - tb wk(j,6) = wk(j,6) - ta - tb 240 continue nr = igh-low+1 coef = 1.0d0/float(2*nr) coef2 = coef*coef coef5 = 0.5d0*coef2 nrp2 = nr+2 beta = 0.0d0 it = 1 c c start generalized conjugate gradient iteration c 250 continue ew = 0.0d0 ewc = 0.0d0 gamma = 0.0d0 do 260 i = low,igh gamma = gamma + wk(i,5)*wk(i,5) + wk(i,6)*wk(i,6) ew = ew + wk(i,5) ewc = ewc + wk(i,6) 260 continue gamma = coef*gamma - coef2*(ew**2 + ewc**2) + - coef5*(ew - ewc)**2 if (it .ne. 1) beta = gamma / pgamma t = coef5*(ewc - 3.0d0*ew) tc = coef5*(ew - 3.0d0*ewc) do 270 i = low,igh wk(i,2) = beta*wk(i,2) + coef*wk(i,5) + t cperm(i) = beta*cperm(i) + coef*wk(i,6) + tc 270 continue c c apply matrix to vector c do 300 i = low,igh kount = 0 sum = 0.0d0 do 290 j = low,igh if (a(i,j) .eq. 0.0d0) go to 280 kount = kount+1 sum = sum + cperm(j) 280 continue if (b(i,j) .eq. 0.0d0) go to 290 kount = kount+1 sum = sum + cperm(j) 290 continue wk(i,3) = float(kount)*wk(i,2) + sum 300 continue do 330 j = low,igh kount = 0 sum = 0.0d0 do 320 i = low,igh if (a(i,j) .eq. 0.0d0) go to 310 kount = kount+1 sum = sum + wk(i,2) 310 continue if (b(i,j) .eq. 0.0d0) go to 320 kount = kount+1 sum = sum + wk(i,2) 320 continue wk(j,4) = float(kount)*cperm(j) + sum 330 continue sum = 0.0d0 do 340 i = low,igh sum = sum + wk(i,2)*wk(i,3) + cperm(i)*wk(i,4) 340 continue if(sum.eq.0.0d0) return alpha = gamma / sum c c determine correction to current iterate c cmax = 0.0d0 do 350 i = low,igh cor = alpha * wk(i,2) if (dabs(cor) .gt. cmax) cmax = dabs(cor) wk(i,1) = wk(i,1) + cor cor = alpha * cperm(i) if (dabs(cor) .gt. cmax) cmax = dabs(cor) cscale(i) = cscale(i) + cor 350 continue if (cmax .lt. 0.5d0) go to 370 do 360 i = low,igh wk(i,5) = wk(i,5) - alpha*wk(i,3) wk(i,6) = wk(i,6) - alpha*wk(i,4) 360 continue pgamma = gamma it = it+1 if (it .le. nrp2) go to 250 c c end generalized conjugate gradient iteration c 370 continue do 380 i = low,igh ir = wk(i,1) + dsign(0.5d0,wk(i,1)) wk(i,1) = ir jc = cscale(i) + dsign(0.5d0,cscale(i)) cscale(i) = jc 380 continue c c scale a and b c do 400 i = 1,igh ir = wk(i,1) fi = 2.0d0**ir if (i .lt. low) fi = 1.0d0 do 400 j =low,n jc = cscale(j) fj = 2.0d0**jc if (j .le. igh) go to 390 if (i .lt. low) go to 400 fj = 1.0d0 390 continue a(i,j) = a(i,j)*fi*fj b(i,j) = b(i,j)*fi*fj 400 continue 410 continue return c c last line of scaleg c end