OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [gcc/] [testsuite/] [gfortran.dg/] [g77/] [980310-4.f] - Rev 302

Go to most recent revision | Compare with Previous | Blame | View Log

c { dg-do compile }
C To: egcs-bugs@cygnus.com
C Subject: -fPIC problem showing up with fortran on x86
C From: Dave Love <d.love@dl.ac.uk>
C Date: 19 Dec 1997 19:31:41 +0000
C 
C 
C This illustrates a long-standing problem noted at the end of the g77
C `Actual Bugs' info node and thought to be in the back end.  Although
C the report is against gcc 2.7 I can reproduce it (specifically on
C redhat 4.2) with the 971216 egcs snapshot.
C 
C g77 version 0.5.21
C  gcc -v -fnull-version -o /tmp/gfa00415 -xf77-cpp-input /tmp/gfa00415.f -xnone
C -lf2c -lm
C
 
C ------------
      subroutine dqage(f,a,b,epsabs,epsrel,limit,result,abserr,
     *   neval,ier,alist,blist,rlist,elist,iord,last)
C     --------------------------------------------------
C
C     Modified Feb 1989 by Barry W. Brown to eliminate key
C     as argument (use key=1) and to eliminate all Fortran
C     output.
C
C     Purpose: to make this routine usable from within S.
C
C     --------------------------------------------------
c***begin prologue  dqage
c***date written   800101   (yymmdd)
c***revision date  830518   (yymmdd)
c***category no.  h2a1a1
c***keywords  automatic integrator, general-purpose,
c             integrand examinator, globally adaptive,
c             gauss-kronrod
c***author  piessens,robert,appl. math. & progr. div. - k.u.leuven
c           de doncker,elise,appl. math. & progr. div. - k.u.leuven
c***purpose  the routine calculates an approximation result to a given
c            definite integral   i = integral of f over (a,b),
c            hopefully satisfying following claim for accuracy
c            abs(i-reslt).le.max(epsabs,epsrel*abs(i)).
c***description
c
c        computation of a definite integral
c        standard fortran subroutine
c        double precision version
c
c        parameters
c         on entry
c            f      - double precision
c                     function subprogram defining the integrand
c                     function f(x). the actual name for f needs to be
c                     declared e x t e r n a l in the driver program.
c
c            a      - double precision
c                     lower limit of integration
c
c            b      - double precision
c                     upper limit of integration
c
c            epsabs - double precision
c                     absolute accuracy requested
c            epsrel - double precision
c                     relative accuracy requested
c                     if  epsabs.le.0
c                     and epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                     the routine will end with ier = 6.
c
c            key    - integer
c                     key for choice of local integration rule
c                     a gauss-kronrod pair is used with
c                          7 - 15 points if key.lt.2,
c                         10 - 21 points if key = 2,
c                         15 - 31 points if key = 3,
c                         20 - 41 points if key = 4,
c                         25 - 51 points if key = 5,
c                         30 - 61 points if key.gt.5.
c
c            limit  - integer
c                     gives an upperbound on the number of subintervals
c                     in the partition of (a,b), limit.ge.1.
c
c         on return
c            result - double precision
c                     approximation to the integral
c
c            abserr - double precision
c                     estimate of the modulus of the absolute error,
c                     which should equal or exceed abs(i-result)
c
c            neval  - integer
c                     number of integrand evaluations
c
c            ier    - integer
c                     ier = 0 normal and reliable termination of the
c                             routine. it is assumed that the requested
c                             accuracy has been achieved.
c                     ier.gt.0 abnormal termination of the routine
c                             the estimates for result and error are
c                             less reliable. it is assumed that the
c                             requested accuracy has not been achieved.
c            error messages
c                     ier = 1 maximum number of subdivisions allowed
c                             has been achieved. one can allow more
c                             subdivisions by increasing the value
c                             of limit.
c                             however, if this yields no improvement it
c                             is rather advised to analyze the integrand
c                             in order to determine the integration
c                             difficulties. if the position of a local
c                             difficulty can be determined(e.g.
c                             singularity, discontinuity within the
c                             interval) one will probably gain from
c                             splitting up the interval at this point
c                             and calling the integrator on the
c                             subranges. if possible, an appropriate
c                             special-purpose integrator should be used
c                             which is designed for handling the type of
c                             difficulty involved.
c                         = 2 the occurrence of roundoff error is
c                             detected, which prevents the requested
c                             tolerance from being achieved.
c                         = 3 extremely bad integrand behavior occurs
c                             at some points of the integration
c                             interval.
c                         = 6 the input is invalid, because
c                             (epsabs.le.0 and
c                              epsrel.lt.max(50*rel.mach.acc.,0.5d-28),
c                             result, abserr, neval, last, rlist(1) ,
c                             elist(1) and iord(1) are set to zero.
c                             alist(1) and blist(1) are set to a and b
c                             respectively.
c
c            alist   - double precision
c                      vector of dimension at least limit, the first
c                       last  elements of which are the left
c                      end points of the subintervals in the partition
c                      of the given integration range (a,b)
c
c            blist   - double precision
c                      vector of dimension at least limit, the first
c                       last  elements of which are the right
c                      end points of the subintervals in the partition
c                      of the given integration range (a,b)
c
c            rlist   - double precision
c                      vector of dimension at least limit, the first
c                       last  elements of which are the
c                      integral approximations on the subintervals
c
c            elist   - double precision
c                      vector of dimension at least limit, the first
c                       last  elements of which are the moduli of the
c                      absolute error estimates on the subintervals
c
c            iord    - integer
c                      vector of dimension at least limit, the first k
c                      elements of which are pointers to the
c                      error estimates over the subintervals,
c                      such that elist(iord(1)), ...,
c                      elist(iord(k)) form a decreasing sequence,
c                      with k = last if last.le.(limit/2+2), and
c                      k = limit+1-last otherwise
c
c            last    - integer
c                      number of subintervals actually produced in the
c                      subdivision process
c
c***references  (none)
c***routines called  d1mach,dqk15,dqk21,dqk31,
c                    dqk41,dqk51,dqk61,dqpsrt
c***end prologue  dqage
c
      double precision a,abserr,alist,area,area1,area12,area2,a1,a2,b,
     *  blist,b1,b2,dabs,defabs,defab1,defab2,dmax1,d1mach,elist,epmach,
     *  epsabs,epsrel,errbnd,errmax,error1,error2,erro12,errsum,f,
     *  resabs,result,rlist,uflow
      integer ier,iord,iroff1,iroff2,k,last,limit,maxerr,neval,
     *  nrmax
c
      dimension alist(limit),blist(limit),elist(limit),iord(limit),
     *  rlist(limit)
c
      external f
c
c            list of major variables
c            -----------------------
c
c           alist     - list of left end points of all subintervals
c                       considered up to now
c           blist     - list of right end points of all subintervals
c                       considered up to now
c           rlist(i)  - approximation to the integral over
c                      (alist(i),blist(i))
c           elist(i)  - error estimate applying to rlist(i)
c           maxerr    - pointer to the interval with largest
c                       error estimate
c           errmax    - elist(maxerr)
c           area      - sum of the integrals over the subintervals
c           errsum    - sum of the errors over the subintervals
c           errbnd    - requested accuracy max(epsabs,epsrel*
c                       abs(result))
c           *****1    - variable for the left subinterval
c           *****2    - variable for the right subinterval
c           last      - index for subdivision
c
c
c           machine dependent constants
c           ---------------------------
c
c           epmach  is the largest relative spacing.
c           uflow  is the smallest positive magnitude.
c
c***first executable statement  dqage
      epmach = d1mach(4)
      uflow = d1mach(1)
c
c           test on validity of parameters
c           ------------------------------
c
      ier = 0
      neval = 0
      last = 0
      result = 0.0d+00
      abserr = 0.0d+00
      alist(1) = a
      blist(1) = b
      rlist(1) = 0.0d+00
      elist(1) = 0.0d+00
      iord(1) = 0
      if(epsabs.le.0.0d+00.and.
     *  epsrel.lt.dmax1(0.5d+02*epmach,0.5d-28)) ier = 6
      if(ier.eq.6) go to 999
c
c           first approximation to the integral
c           -----------------------------------
c
      neval = 0
      call dqk15(f,a,b,result,abserr,defabs,resabs)
      last = 1
      rlist(1) = result
      elist(1) = abserr
      iord(1) = 1
c
c           test on accuracy.
c
      errbnd = dmax1(epsabs,epsrel*dabs(result))
      if(abserr.le.0.5d+02*epmach*defabs.and.abserr.gt.errbnd) ier = 2
      if(limit.eq.1) ier = 1
      if(ier.ne.0.or.(abserr.le.errbnd.and.abserr.ne.resabs)
     *  .or.abserr.eq.0.0d+00) go to 60
c
c           initialization
c           --------------
c
c
      errmax = abserr
      maxerr = 1
      area = result
      errsum = abserr
      nrmax = 1
      iroff1 = 0
      iroff2 = 0
c
c           main do-loop
c           ------------
c
      do 30 last = 2,limit
c
c           bisect the subinterval with the largest error estimate.
c
        a1 = alist(maxerr)
        b1 = 0.5d+00*(alist(maxerr)+blist(maxerr))
        a2 = b1
        b2 = blist(maxerr)
        call dqk15(f,a1,b1,area1,error1,resabs,defab1)
        call dqk15(f,a2,b2,area2,error2,resabs,defab2)
c
c           improve previous approximations to integral
c           and error and test for accuracy.
c
        neval = neval+1
        area12 = area1+area2
        erro12 = error1+error2
        errsum = errsum+erro12-errmax
        area = area+area12-rlist(maxerr)
        if(defab1.eq.error1.or.defab2.eq.error2) go to 5
        if(dabs(rlist(maxerr)-area12).le.0.1d-04*dabs(area12)
     *  .and.erro12.ge.0.99d+00*errmax) iroff1 = iroff1+1
        if(last.gt.10.and.erro12.gt.errmax) iroff2 = iroff2+1
    5   rlist(maxerr) = area1
        rlist(last) = area2
        errbnd = dmax1(epsabs,epsrel*dabs(area))
        if(errsum.le.errbnd) go to 8
c
c           test for roundoff error and eventually set error flag.
c
        if(iroff1.ge.6.or.iroff2.ge.20) ier = 2
c
c           set error flag in the case that the number of subintervals
c           equals limit.
c
        if(last.eq.limit) ier = 1
c
c           set error flag in the case of bad integrand behavior
c           at a point of the integration range.
c
        if(dmax1(dabs(a1),dabs(b2)).le.(0.1d+01+0.1d+03*
     *  epmach)*(dabs(a2)+0.1d+04*uflow)) ier = 3
c
c           append the newly-created intervals to the list.
c
    8   if(error2.gt.error1) go to 10
        alist(last) = a2
        blist(maxerr) = b1
        blist(last) = b2
        elist(maxerr) = error1
        elist(last) = error2
        go to 20
   10   alist(maxerr) = a2
        alist(last) = a1
        blist(last) = b1
        rlist(maxerr) = area2
        rlist(last) = area1
        elist(maxerr) = error2
        elist(last) = error1
c
c           call subroutine dqpsrt to maintain the descending ordering
c           in the list of error estimates and select the subinterval
c           with the largest error estimate (to be bisected next).
c
   20   call dqpsrt(limit,last,maxerr,errmax,elist,iord,nrmax)
c ***jump out of do-loop
        if(ier.ne.0.or.errsum.le.errbnd) go to 40
   30 continue
c
c           compute final result.
c           ---------------------
c
   40 result = 0.0d+00
      do 50 k=1,last
        result = result+rlist(k)
   50 continue
      abserr = errsum
   60 neval = 30*neval+15
  999 return
      end
 

Go to most recent revision | Compare with Previous | Blame | View Log

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.