URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gcc-4.5.1/] [libstdc++-v3/] [include/] [bits/] [stl_algobase.h] - Rev 826
Compare with Previous | Blame | View Log
// Core algorithmic facilities -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_algobase.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _STL_ALGOBASE_H #define _STL_ALGOBASE_H 1 #include <bits/c++config.h> #include <cstddef> #include <bits/functexcept.h> #include <bits/cpp_type_traits.h> #include <ext/type_traits.h> #include <ext/numeric_traits.h> #include <bits/stl_pair.h> #include <bits/stl_iterator_base_types.h> #include <bits/stl_iterator_base_funcs.h> #include <bits/stl_iterator.h> #include <bits/concept_check.h> #include <debug/debug.h> #include <bits/move.h> // For std::swap and _GLIBCXX_MOVE _GLIBCXX_BEGIN_NAMESPACE(std) // See http://gcc.gnu.org/ml/libstdc++/2004-08/msg00167.html: in a // nutshell, we are partially implementing the resolution of DR 187, // when it's safe, i.e., the value_types are equal. template<bool _BoolType> struct __iter_swap { template<typename _ForwardIterator1, typename _ForwardIterator2> static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; _ValueType1 __tmp = _GLIBCXX_MOVE(*__a); *__a = _GLIBCXX_MOVE(*__b); *__b = _GLIBCXX_MOVE(__tmp); } }; template<> struct __iter_swap<true> { template<typename _ForwardIterator1, typename _ForwardIterator2> static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { swap(*__a, *__b); } }; /** * @brief Swaps the contents of two iterators. * @ingroup mutating_algorithms * @param a An iterator. * @param b Another iterator. * @return Nothing. * * This function swaps the values pointed to by two iterators, not the * iterators themselves. */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>) __glibcxx_function_requires(_ConvertibleConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_ConvertibleConcept<_ValueType2, _ValueType1>) typedef typename iterator_traits<_ForwardIterator1>::reference _ReferenceType1; typedef typename iterator_traits<_ForwardIterator2>::reference _ReferenceType2; std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value && __are_same<_ValueType1&, _ReferenceType1>::__value && __are_same<_ValueType2&, _ReferenceType2>::__value>:: iter_swap(__a, __b); } /** * @brief Swap the elements of two sequences. * @ingroup mutating_algorithms * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @return An iterator equal to @p first2+(last1-first1). * * Swaps each element in the range @p [first1,last1) with the * corresponding element in the range @p [first2,(last1-first1)). * The ranges must not overlap. */ template<typename _ForwardIterator1, typename _ForwardIterator2> _ForwardIterator2 swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>) __glibcxx_requires_valid_range(__first1, __last1); for (; __first1 != __last1; ++__first1, ++__first2) std::iter_swap(__first1, __first2); return __first2; } /** * @brief This does what you think it does. * @ingroup sorting_algorithms * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The lesser of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template<typename _Tp> inline const _Tp& min(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __b < __a ? __b : __a; if (__b < __a) return __b; return __a; } /** * @brief This does what you think it does. * @ingroup sorting_algorithms * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The greater of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template<typename _Tp> inline const _Tp& max(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __a < __b ? __b : __a; if (__a < __b) return __b; return __a; } /** * @brief This does what you think it does. * @ingroup sorting_algorithms * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link comparison_functors comparison functor@endlink. * @return The lesser of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__b, __a) ? __b : __a; if (__comp(__b, __a)) return __b; return __a; } /** * @brief This does what you think it does. * @ingroup sorting_algorithms * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link comparison_functors comparison functor@endlink. * @return The greater of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template<typename _Tp, typename _Compare> inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__a, __b) ? __b : __a; if (__comp(__a, __b)) return __b; return __a; } // If _Iterator has a base returns it otherwise _Iterator is returned // untouched template<typename _Iterator, bool _HasBase> struct _Iter_base { typedef _Iterator iterator_type; static iterator_type _S_base(_Iterator __it) { return __it; } }; template<typename _Iterator> struct _Iter_base<_Iterator, true> { typedef typename _Iterator::iterator_type iterator_type; static iterator_type _S_base(_Iterator __it) { return __it.base(); } }; // If _Iterator is a __normal_iterator return its base (a plain pointer, // normally) otherwise return it untouched. See copy, fill, ... template<typename _Iterator> struct _Niter_base : _Iter_base<_Iterator, __is_normal_iterator<_Iterator>::__value> { }; template<typename _Iterator> inline typename _Niter_base<_Iterator>::iterator_type __niter_base(_Iterator __it) { return std::_Niter_base<_Iterator>::_S_base(__it); } // Likewise, for move_iterator. template<typename _Iterator> struct _Miter_base : _Iter_base<_Iterator, __is_move_iterator<_Iterator>::__value> { }; template<typename _Iterator> inline typename _Miter_base<_Iterator>::iterator_type __miter_base(_Iterator __it) { return std::_Miter_base<_Iterator>::_S_base(__it); } // All of these auxiliary structs serve two purposes. (1) Replace // calls to copy with memmove whenever possible. (Memmove, not memcpy, // because the input and output ranges are permitted to overlap.) // (2) If we're using random access iterators, then write the loop as // a for loop with an explicit count. template<bool, bool, typename> struct __copy_move { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) *__result = *__first; return __result; } }; #ifdef __GXX_EXPERIMENTAL_CXX0X__ template<typename _Category> struct __copy_move<true, false, _Category> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) *__result = std::move(*__first); return __result; } }; #endif template<> struct __copy_move<false, false, random_access_iterator_tag> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } }; #ifdef __GXX_EXPERIMENTAL_CXX0X__ template<> struct __copy_move<true, false, random_access_iterator_tag> { template<typename _II, typename _OI> static _OI __copy_m(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { *__result = std::move(*__first); ++__first; ++__result; } return __result; } }; #endif template<bool _IsMove> struct __copy_move<_IsMove, true, random_access_iterator_tag> { template<typename _Tp> static _Tp* __copy_m(const _Tp* __first, const _Tp* __last, _Tp* __result) { const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result, __first, sizeof(_Tp) * _Num); return __result + _Num; } }; template<bool _IsMove, typename _II, typename _OI> inline _OI __copy_move_a(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::value_type _ValueTypeI; typedef typename iterator_traits<_OI>::value_type _ValueTypeO; typedef typename iterator_traits<_II>::iterator_category _Category; const bool __simple = (__is_pod(_ValueTypeI) && __is_pointer<_II>::__value && __is_pointer<_OI>::__value && __are_same<_ValueTypeI, _ValueTypeO>::__value); return std::__copy_move<_IsMove, __simple, _Category>::__copy_m(__first, __last, __result); } // Helpers for streambuf iterators (either istream or ostream). // NB: avoid including <iosfwd>, relatively large. template<typename _CharT> struct char_traits; template<typename _CharT, typename _Traits> class istreambuf_iterator; template<typename _CharT, typename _Traits> class ostreambuf_iterator; template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(_CharT*, _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >); template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT, char_traits<_CharT> > >::__type __copy_move_a2(const _CharT*, const _CharT*, ostreambuf_iterator<_CharT, char_traits<_CharT> >); template<bool _IsMove, typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, _CharT*>::__type __copy_move_a2(istreambuf_iterator<_CharT, char_traits<_CharT> >, istreambuf_iterator<_CharT, char_traits<_CharT> >, _CharT*); template<bool _IsMove, typename _II, typename _OI> inline _OI __copy_move_a2(_II __first, _II __last, _OI __result) { return _OI(std::__copy_move_a<_IsMove>(std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); } /** * @brief Copies the range [first,last) into result. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return result + (first - last) * * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). Result may not be contained within * [first,last); the copy_backward function should be used instead. * * Note that the end of the output range is permitted to be contained * within [first,last). */ template<typename _II, typename _OI> inline _OI copy(_II __first, _II __last, _OI __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II>) __glibcxx_function_requires(_OutputIteratorConcept<_OI, typename iterator_traits<_II>::value_type>) __glibcxx_requires_valid_range(__first, __last); return (std::__copy_move_a2<__is_move_iterator<_II>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Moves the range [first,last) into result. * @ingroup mutating_algorithms * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return result + (first - last) * * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). Result may not be contained within * [first,last); the move_backward function should be used instead. * * Note that the end of the output range is permitted to be contained * within [first,last). */ template<typename _II, typename _OI> inline _OI move(_II __first, _II __last, _OI __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II>) __glibcxx_function_requires(_OutputIteratorConcept<_OI, typename iterator_traits<_II>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__copy_move_a2<true>(std::__miter_base(__first), std::__miter_base(__last), __result); } #define _GLIBCXX_MOVE3(_Tp, _Up, _Vp) std::move(_Tp, _Up, _Vp) #else #define _GLIBCXX_MOVE3(_Tp, _Up, _Vp) std::copy(_Tp, _Up, _Vp) #endif template<bool, bool, typename> struct __copy_move_backward { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) *--__result = *--__last; return __result; } }; #ifdef __GXX_EXPERIMENTAL_CXX0X__ template<typename _Category> struct __copy_move_backward<true, false, _Category> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) *--__result = std::move(*--__last); return __result; } }; #endif template<> struct __copy_move_backward<false, false, random_access_iterator_tag> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = *--__last; return __result; } }; #ifdef __GXX_EXPERIMENTAL_CXX0X__ template<> struct __copy_move_backward<true, false, random_access_iterator_tag> { template<typename _BI1, typename _BI2> static _BI2 __copy_move_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = std::move(*--__last); return __result; } }; #endif template<bool _IsMove> struct __copy_move_backward<_IsMove, true, random_access_iterator_tag> { template<typename _Tp> static _Tp* __copy_move_b(const _Tp* __first, const _Tp* __last, _Tp* __result) { const ptrdiff_t _Num = __last - __first; if (_Num) __builtin_memmove(__result - _Num, __first, sizeof(_Tp) * _Num); return __result - _Num; } }; template<bool _IsMove, typename _BI1, typename _BI2> inline _BI2 __copy_move_backward_a(_BI1 __first, _BI1 __last, _BI2 __result) { typedef typename iterator_traits<_BI1>::value_type _ValueType1; typedef typename iterator_traits<_BI2>::value_type _ValueType2; typedef typename iterator_traits<_BI1>::iterator_category _Category; const bool __simple = (__is_pod(_ValueType1) && __is_pointer<_BI1>::__value && __is_pointer<_BI2>::__value && __are_same<_ValueType1, _ValueType2>::__value); return std::__copy_move_backward<_IsMove, __simple, _Category>::__copy_move_b(__first, __last, __result); } template<bool _IsMove, typename _BI1, typename _BI2> inline _BI2 __copy_move_backward_a2(_BI1 __first, _BI1 __last, _BI2 __result) { return _BI2(std::__copy_move_backward_a<_IsMove> (std::__niter_base(__first), std::__niter_base(__last), std::__niter_base(__result))); } /** * @brief Copies the range [first,last) into result. * @ingroup mutating_algorithms * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result A bidirectional iterator. * @return result - (first - last) * * The function has the same effect as copy, but starts at the end of the * range and works its way to the start, returning the start of the result. * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). * * Result may not be in the range [first,last). Use copy instead. Note * that the start of the output range may overlap [first,last). */ template<typename _BI1, typename _BI2> inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last); return (std::__copy_move_backward_a2<__is_move_iterator<_BI1>::__value> (std::__miter_base(__first), std::__miter_base(__last), __result)); } #ifdef __GXX_EXPERIMENTAL_CXX0X__ /** * @brief Moves the range [first,last) into result. * @ingroup mutating_algorithms * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result A bidirectional iterator. * @return result - (first - last) * * The function has the same effect as move, but starts at the end of the * range and works its way to the start, returning the start of the result. * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). * * Result may not be in the range [first,last). Use move instead. Note * that the start of the output range may overlap [first,last). */ template<typename _BI1, typename _BI2> inline _BI2 move_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__copy_move_backward_a2<true>(std::__miter_base(__first), std::__miter_base(__last), __result); } #define _GLIBCXX_MOVE_BACKWARD3(_Tp, _Up, _Vp) std::move_backward(_Tp, _Up, _Vp) #else #define _GLIBCXX_MOVE_BACKWARD3(_Tp, _Up, _Vp) std::copy_backward(_Tp, _Up, _Vp) #endif template<typename _ForwardIterator, typename _Tp> inline typename __gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { for (; __first != __last; ++__first) *__first = __value; } template<typename _ForwardIterator, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, void>::__type __fill_a(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { const _Tp __tmp = __value; for (; __first != __last; ++__first) *__first = __tmp; } // Specialization: for char types we can use memset. template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, void>::__type __fill_a(_Tp* __first, _Tp* __last, const _Tp& __c) { const _Tp __tmp = __c; __builtin_memset(__first, static_cast<unsigned char>(__tmp), __last - __first); } /** * @brief Fills the range [first,last) with copies of value. * @ingroup mutating_algorithms * @param first A forward iterator. * @param last A forward iterator. * @param value A reference-to-const of arbitrary type. * @return Nothing. * * This function fills a range with copies of the same value. For char * types filling contiguous areas of memory, this becomes an inline call * to @c memset or @c wmemset. */ template<typename _ForwardIterator, typename _Tp> inline void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __last); std::__fill_a(std::__niter_base(__first), std::__niter_base(__last), __value); } template<typename _OutputIterator, typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<!__is_scalar<_Tp>::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { for (; __n > 0; --__n, ++__first) *__first = __value; return __first; } template<typename _OutputIterator, typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_scalar<_Tp>::__value, _OutputIterator>::__type __fill_n_a(_OutputIterator __first, _Size __n, const _Tp& __value) { const _Tp __tmp = __value; for (; __n > 0; --__n, ++__first) *__first = __tmp; return __first; } template<typename _Size, typename _Tp> inline typename __gnu_cxx::__enable_if<__is_byte<_Tp>::__value, _Tp*>::__type __fill_n_a(_Tp* __first, _Size __n, const _Tp& __c) { std::__fill_a(__first, __first + __n, __c); return __first + __n; } /** * @brief Fills the range [first,first+n) with copies of value. * @ingroup mutating_algorithms * @param first An output iterator. * @param n The count of copies to perform. * @param value A reference-to-const of arbitrary type. * @return The iterator at first+n. * * This function fills a range with copies of the same value. For char * types filling contiguous areas of memory, this becomes an inline call * to @c memset or @ wmemset. * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 865. More algorithms that throw away information */ template<typename _OI, typename _Size, typename _Tp> inline _OI fill_n(_OI __first, _Size __n, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OI, _Tp>) return _OI(std::__fill_n_a(std::__niter_base(__first), __n, __value)); } template<bool _BoolType> struct __equal { template<typename _II1, typename _II2> static bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return true; } }; template<> struct __equal<true> { template<typename _Tp> static bool equal(const _Tp* __first1, const _Tp* __last1, const _Tp* __first2) { return !__builtin_memcmp(__first1, __first2, sizeof(_Tp) * (__last1 - __first1)); } }; template<typename _II1, typename _II2> inline bool __equal_aux(_II1 __first1, _II1 __last1, _II2 __first2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = (__is_integer<_ValueType1>::__value && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value && __are_same<_ValueType1, _ValueType2>::__value); return std::__equal<__simple>::equal(__first1, __last1, __first2); } template<typename, typename> struct __lc_rai { template<typename _II1, typename _II2> static _II1 __newlast1(_II1, _II1 __last1, _II2, _II2) { return __last1; } template<typename _II> static bool __cnd2(_II __first, _II __last) { return __first != __last; } }; template<> struct __lc_rai<random_access_iterator_tag, random_access_iterator_tag> { template<typename _RAI1, typename _RAI2> static _RAI1 __newlast1(_RAI1 __first1, _RAI1 __last1, _RAI2 __first2, _RAI2 __last2) { const typename iterator_traits<_RAI1>::difference_type __diff1 = __last1 - __first1; const typename iterator_traits<_RAI2>::difference_type __diff2 = __last2 - __first2; return __diff2 < __diff1 ? __first1 + __diff2 : __last1; } template<typename _RAI> static bool __cnd2(_RAI, _RAI) { return true; } }; template<bool _BoolType> struct __lexicographical_compare { template<typename _II1, typename _II2> static bool __lc(_II1, _II1, _II2, _II2); }; template<bool _BoolType> template<typename _II1, typename _II2> bool __lexicographical_compare<_BoolType>:: __lc(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { typedef typename iterator_traits<_II1>::iterator_category _Category1; typedef typename iterator_traits<_II2>::iterator_category _Category2; typedef std::__lc_rai<_Category1, _Category2> __rai_type; __last1 = __rai_type::__newlast1(__first1, __last1, __first2, __last2); for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2); ++__first1, ++__first2) { if (*__first1 < *__first2) return true; if (*__first2 < *__first1) return false; } return __first1 == __last1 && __first2 != __last2; } template<> struct __lexicographical_compare<true> { template<typename _Tp, typename _Up> static bool __lc(const _Tp* __first1, const _Tp* __last1, const _Up* __first2, const _Up* __last2) { const size_t __len1 = __last1 - __first1; const size_t __len2 = __last2 - __first2; const int __result = __builtin_memcmp(__first1, __first2, std::min(__len1, __len2)); return __result != 0 ? __result < 0 : __len1 < __len2; } }; template<typename _II1, typename _II2> inline bool __lexicographical_compare_aux(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; const bool __simple = (__is_byte<_ValueType1>::__value && __is_byte<_ValueType2>::__value && !__gnu_cxx::__numeric_traits<_ValueType1>::__is_signed && !__gnu_cxx::__numeric_traits<_ValueType2>::__is_signed && __is_pointer<_II1>::__value && __is_pointer<_II2>::__value); return std::__lexicographical_compare<__simple>::__lc(__first1, __last1, __first2, __last2); } /** * @brief Finds the first position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An iterator pointing to the first element <em>not less * than</em> @a val, or end() if every element is less than * @a val. * @ingroup binary_search_algorithms */ template<typename _ForwardIterator, typename _Tp> _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType; // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType, _Tp>) __glibcxx_requires_partitioned_lower(__first, __last, __val); _DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } /// This is a helper function for the sort routines and for random.tcc. // Precondition: __n > 0. template<typename _Size> inline _Size __lg(_Size __n) { _Size __k; for (__k = 0; __n != 0; __n >>= 1) ++__k; return __k - 1; } inline int __lg(int __n) { return sizeof(int) * __CHAR_BIT__ - 1 - __builtin_clz(__n); } inline long __lg(long __n) { return sizeof(long) * __CHAR_BIT__ - 1 - __builtin_clzl(__n); } inline long long __lg(long long __n) { return sizeof(long long) * __CHAR_BIT__ - 1 - __builtin_clzll(__n); } _GLIBCXX_END_NAMESPACE _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_P) /** * @brief Tests a range for element-wise equality. * @ingroup non_mutating_algorithms * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A boolean true or false. * * This compares the elements of two ranges using @c == and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template<typename _II1, typename _II2> inline bool equal(_II1 __first1, _II1 __last1, _II2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_II1>::value_type, typename iterator_traits<_II2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); return std::__equal_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2)); } /** * @brief Tests a range for element-wise equality. * @ingroup non_mutating_algorithms * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link functors * functor@endlink. * @return A boolean true or false. * * This compares the elements of two ranges using the binary_pred * parameter, and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template<typename _IIter1, typename _IIter2, typename _BinaryPredicate> inline bool equal(_IIter1 __first1, _IIter1 __last1, _IIter2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_IIter1>) __glibcxx_function_requires(_InputIteratorConcept<_IIter2>) __glibcxx_requires_valid_range(__first1, __last1); for (; __first1 != __last1; ++__first1, ++__first2) if (!bool(__binary_pred(*__first1, *__first2))) return false; return true; } /** * @brief Performs @b dictionary comparison on ranges. * @ingroup sorting_algorithms * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @return A boolean true or false. * * <em>Returns true if the sequence of elements defined by the range * [first1,last1) is lexicographically less than the sequence of elements * defined by the range [first2,last2). Returns false otherwise.</em> * (Quoted from [25.3.8]/1.) If the iterators are all character pointers, * then this is an inline call to @c memcmp. */ template<typename _II1, typename _II2> inline bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2) { // concept requirements typedef typename iterator_traits<_II1>::value_type _ValueType1; typedef typename iterator_traits<_II2>::value_type _ValueType2; __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); return std::__lexicographical_compare_aux(std::__niter_base(__first1), std::__niter_base(__last1), std::__niter_base(__first2), std::__niter_base(__last2)); } /** * @brief Performs @b dictionary comparison on ranges. * @ingroup sorting_algorithms * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @param comp A @link comparison_functors comparison functor@endlink. * @return A boolean true or false. * * The same as the four-parameter @c lexicographical_compare, but uses the * comp parameter instead of @c <. */ template<typename _II1, typename _II2, typename _Compare> bool lexicographical_compare(_II1 __first1, _II1 __last1, _II2 __first2, _II2 __last2, _Compare __comp) { typedef typename iterator_traits<_II1>::iterator_category _Category1; typedef typename iterator_traits<_II2>::iterator_category _Category2; typedef std::__lc_rai<_Category1, _Category2> __rai_type; // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_II1>) __glibcxx_function_requires(_InputIteratorConcept<_II2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); __last1 = __rai_type::__newlast1(__first1, __last1, __first2, __last2); for (; __first1 != __last1 && __rai_type::__cnd2(__first2, __last2); ++__first1, ++__first2) { if (__comp(*__first1, *__first2)) return true; if (__comp(*__first2, *__first1)) return false; } return __first1 == __last1 && __first2 != __last2; } /** * @brief Finds the places in ranges which don't match. * @ingroup non_mutating_algorithms * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using @c == and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2> pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); while (__first1 != __last1 && *__first1 == *__first2) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } /** * @brief Finds the places in ranges which don't match. * @ingroup non_mutating_algorithms * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link functors * functor@endlink. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using the binary_pred * parameter, and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template<typename _InputIterator1, typename _InputIterator2, typename _BinaryPredicate> pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); while (__first1 != __last1 && bool(__binary_pred(*__first1, *__first2))) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } _GLIBCXX_END_NESTED_NAMESPACE // NB: This file is included within many other C++ includes, as a way // of getting the base algorithms. So, make sure that parallel bits // come in too if requested. #ifdef _GLIBCXX_PARALLEL # include <parallel/algobase.h> #endif #endif