URL
https://opencores.org/ocsvn/openrisc/openrisc/trunk
Subversion Repositories openrisc
[/] [openrisc/] [trunk/] [gnu-stable/] [gdb-7.2/] [sim/] [arm/] [armsupp.c] - Rev 861
Go to most recent revision | Compare with Previous | Blame | View Log
/* armsupp.c -- ARMulator support code: ARM6 Instruction Emulator. Copyright (C) 1994 Advanced RISC Machines Ltd. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include "armdefs.h" #include "armemu.h" #include "ansidecl.h" /* Definitions for the support routines. */ static ARMword ModeToBank (ARMword); static void EnvokeList (ARMul_State *, unsigned long, unsigned long); struct EventNode { /* An event list node. */ unsigned (*func) (ARMul_State *); /* The function to call. */ struct EventNode *next; }; /* This routine returns the value of a register from a mode. */ ARMword ARMul_GetReg (ARMul_State * state, unsigned mode, unsigned reg) { mode &= MODEBITS; if (mode != state->Mode) return (state->RegBank[ModeToBank ((ARMword) mode)][reg]); else return (state->Reg[reg]); } /* This routine sets the value of a register for a mode. */ void ARMul_SetReg (ARMul_State * state, unsigned mode, unsigned reg, ARMword value) { mode &= MODEBITS; if (mode != state->Mode) state->RegBank[ModeToBank ((ARMword) mode)][reg] = value; else state->Reg[reg] = value; } /* This routine returns the value of the PC, mode independently. */ ARMword ARMul_GetPC (ARMul_State * state) { if (state->Mode > SVC26MODE) return state->Reg[15]; else return R15PC; } /* This routine returns the value of the PC, mode independently. */ ARMword ARMul_GetNextPC (ARMul_State * state) { if (state->Mode > SVC26MODE) return state->Reg[15] + isize; else return (state->Reg[15] + isize) & R15PCBITS; } /* This routine sets the value of the PC. */ void ARMul_SetPC (ARMul_State * state, ARMword value) { if (ARMul_MODE32BIT) state->Reg[15] = value & PCBITS; else state->Reg[15] = R15CCINTMODE | (value & R15PCBITS); FLUSHPIPE; } /* This routine returns the value of register 15, mode independently. */ ARMword ARMul_GetR15 (ARMul_State * state) { if (state->Mode > SVC26MODE) return (state->Reg[15]); else return (R15PC | ECC | ER15INT | EMODE); } /* This routine sets the value of Register 15. */ void ARMul_SetR15 (ARMul_State * state, ARMword value) { if (ARMul_MODE32BIT) state->Reg[15] = value & PCBITS; else { state->Reg[15] = value; ARMul_R15Altered (state); } FLUSHPIPE; } /* This routine returns the value of the CPSR. */ ARMword ARMul_GetCPSR (ARMul_State * state) { return (CPSR | state->Cpsr); } /* This routine sets the value of the CPSR. */ void ARMul_SetCPSR (ARMul_State * state, ARMword value) { state->Cpsr = value; ARMul_CPSRAltered (state); } /* This routine does all the nasty bits involved in a write to the CPSR, including updating the register bank, given a MSR instruction. */ void ARMul_FixCPSR (ARMul_State * state, ARMword instr, ARMword rhs) { state->Cpsr = ARMul_GetCPSR (state); if (state->Mode != USER26MODE && state->Mode != USER32MODE) { /* In user mode, only write flags. */ if (BIT (16)) SETPSR_C (state->Cpsr, rhs); if (BIT (17)) SETPSR_X (state->Cpsr, rhs); if (BIT (18)) SETPSR_S (state->Cpsr, rhs); } if (BIT (19)) SETPSR_F (state->Cpsr, rhs); ARMul_CPSRAltered (state); } /* Get an SPSR from the specified mode. */ ARMword ARMul_GetSPSR (ARMul_State * state, ARMword mode) { ARMword bank = ModeToBank (mode & MODEBITS); if (! BANK_CAN_ACCESS_SPSR (bank)) return ARMul_GetCPSR (state); return state->Spsr[bank]; } /* This routine does a write to an SPSR. */ void ARMul_SetSPSR (ARMul_State * state, ARMword mode, ARMword value) { ARMword bank = ModeToBank (mode & MODEBITS); if (BANK_CAN_ACCESS_SPSR (bank)) state->Spsr[bank] = value; } /* This routine does a write to the current SPSR, given an MSR instruction. */ void ARMul_FixSPSR (ARMul_State * state, ARMword instr, ARMword rhs) { if (BANK_CAN_ACCESS_SPSR (state->Bank)) { if (BIT (16)) SETPSR_C (state->Spsr[state->Bank], rhs); if (BIT (17)) SETPSR_X (state->Spsr[state->Bank], rhs); if (BIT (18)) SETPSR_S (state->Spsr[state->Bank], rhs); if (BIT (19)) SETPSR_F (state->Spsr[state->Bank], rhs); } } /* This routine updates the state of the emulator after the Cpsr has been changed. Both the processor flags and register bank are updated. */ void ARMul_CPSRAltered (ARMul_State * state) { ARMword oldmode; if (state->prog32Sig == LOW) state->Cpsr &= (CCBITS | INTBITS | R15MODEBITS); oldmode = state->Mode; if (state->Mode != (state->Cpsr & MODEBITS)) { state->Mode = ARMul_SwitchMode (state, state->Mode, state->Cpsr & MODEBITS); state->NtransSig = (state->Mode & 3) ? HIGH : LOW; } state->Cpsr &= ~MODEBITS; ASSIGNINT (state->Cpsr & INTBITS); state->Cpsr &= ~INTBITS; ASSIGNN ((state->Cpsr & NBIT) != 0); state->Cpsr &= ~NBIT; ASSIGNZ ((state->Cpsr & ZBIT) != 0); state->Cpsr &= ~ZBIT; ASSIGNC ((state->Cpsr & CBIT) != 0); state->Cpsr &= ~CBIT; ASSIGNV ((state->Cpsr & VBIT) != 0); state->Cpsr &= ~VBIT; ASSIGNS ((state->Cpsr & SBIT) != 0); state->Cpsr &= ~SBIT; #ifdef MODET ASSIGNT ((state->Cpsr & TBIT) != 0); state->Cpsr &= ~TBIT; #endif if (oldmode > SVC26MODE) { if (state->Mode <= SVC26MODE) { state->Emulate = CHANGEMODE; state->Reg[15] = ECC | ER15INT | EMODE | R15PC; } } else { if (state->Mode > SVC26MODE) { state->Emulate = CHANGEMODE; state->Reg[15] = R15PC; } else state->Reg[15] = ECC | ER15INT | EMODE | R15PC; } } /* This routine updates the state of the emulator after register 15 has been changed. Both the processor flags and register bank are updated. This routine should only be called from a 26 bit mode. */ void ARMul_R15Altered (ARMul_State * state) { if (state->Mode != R15MODE) { state->Mode = ARMul_SwitchMode (state, state->Mode, R15MODE); state->NtransSig = (state->Mode & 3) ? HIGH : LOW; } if (state->Mode > SVC26MODE) state->Emulate = CHANGEMODE; ASSIGNR15INT (R15INT); ASSIGNN ((state->Reg[15] & NBIT) != 0); ASSIGNZ ((state->Reg[15] & ZBIT) != 0); ASSIGNC ((state->Reg[15] & CBIT) != 0); ASSIGNV ((state->Reg[15] & VBIT) != 0); } /* This routine controls the saving and restoring of registers across mode changes. The regbank matrix is largely unused, only rows 13 and 14 are used across all modes, 8 to 14 are used for FIQ, all others use the USER column. It's easier this way. old and new parameter are modes numbers. Notice the side effect of changing the Bank variable. */ ARMword ARMul_SwitchMode (ARMul_State * state, ARMword oldmode, ARMword newmode) { unsigned i; ARMword oldbank; ARMword newbank; oldbank = ModeToBank (oldmode); newbank = state->Bank = ModeToBank (newmode); /* Do we really need to do it? */ if (oldbank != newbank) { /* Save away the old registers. */ switch (oldbank) { case USERBANK: case IRQBANK: case SVCBANK: case ABORTBANK: case UNDEFBANK: if (newbank == FIQBANK) for (i = 8; i < 13; i++) state->RegBank[USERBANK][i] = state->Reg[i]; state->RegBank[oldbank][13] = state->Reg[13]; state->RegBank[oldbank][14] = state->Reg[14]; break; case FIQBANK: for (i = 8; i < 15; i++) state->RegBank[FIQBANK][i] = state->Reg[i]; break; case DUMMYBANK: for (i = 8; i < 15; i++) state->RegBank[DUMMYBANK][i] = 0; break; default: abort (); } /* Restore the new registers. */ switch (newbank) { case USERBANK: case IRQBANK: case SVCBANK: case ABORTBANK: case UNDEFBANK: if (oldbank == FIQBANK) for (i = 8; i < 13; i++) state->Reg[i] = state->RegBank[USERBANK][i]; state->Reg[13] = state->RegBank[newbank][13]; state->Reg[14] = state->RegBank[newbank][14]; break; case FIQBANK: for (i = 8; i < 15; i++) state->Reg[i] = state->RegBank[FIQBANK][i]; break; case DUMMYBANK: for (i = 8; i < 15; i++) state->Reg[i] = 0; break; default: abort (); } } return newmode; } /* Given a processor mode, this routine returns the register bank that will be accessed in that mode. */ static ARMword ModeToBank (ARMword mode) { static ARMword bankofmode[] = { USERBANK, FIQBANK, IRQBANK, SVCBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, USERBANK, FIQBANK, IRQBANK, SVCBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, ABORTBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, UNDEFBANK, DUMMYBANK, DUMMYBANK, DUMMYBANK, SYSTEMBANK }; if (mode >= (sizeof (bankofmode) / sizeof (bankofmode[0]))) return DUMMYBANK; return bankofmode[mode]; } /* Returns the register number of the nth register in a reg list. */ unsigned ARMul_NthReg (ARMword instr, unsigned number) { unsigned bit, upto; for (bit = 0, upto = 0; upto <= number; bit ++) if (BIT (bit)) upto ++; return (bit - 1); } /* Assigns the N and Z flags depending on the value of result. */ void ARMul_NegZero (ARMul_State * state, ARMword result) { if (NEG (result)) { SETN; CLEARZ; } else if (result == 0) { CLEARN; SETZ; } else { CLEARN; CLEARZ; } } /* Compute whether an addition of A and B, giving RESULT, overflowed. */ int AddOverflow (ARMword a, ARMword b, ARMword result) { return ((NEG (a) && NEG (b) && POS (result)) || (POS (a) && POS (b) && NEG (result))); } /* Compute whether a subtraction of A and B, giving RESULT, overflowed. */ int SubOverflow (ARMword a, ARMword b, ARMword result) { return ((NEG (a) && POS (b) && POS (result)) || (POS (a) && NEG (b) && NEG (result))); } /* Assigns the C flag after an addition of a and b to give result. */ void ARMul_AddCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNC ((NEG (a) && NEG (b)) || (NEG (a) && POS (result)) || (NEG (b) && POS (result))); } /* Assigns the V flag after an addition of a and b to give result. */ void ARMul_AddOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNV (AddOverflow (a, b, result)); } /* Assigns the C flag after an subtraction of a and b to give result. */ void ARMul_SubCarry (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNC ((NEG (a) && POS (b)) || (NEG (a) && POS (result)) || (POS (b) && POS (result))); } /* Assigns the V flag after an subtraction of a and b to give result. */ void ARMul_SubOverflow (ARMul_State * state, ARMword a, ARMword b, ARMword result) { ASSIGNV (SubOverflow (a, b, result)); } /* This function does the work of generating the addresses used in an LDC instruction. The code here is always post-indexed, it's up to the caller to get the input address correct and to handle base register modification. It also handles the Busy-Waiting. */ void ARMul_LDC (ARMul_State * state, ARMword instr, ARMword address) { unsigned cpab; ARMword data; UNDEF_LSCPCBaseWb; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } if (ADDREXCEPT (address)) INTERNALABORT (address); cpab = (state->LDC[CPNum]) (state, ARMul_FIRST, instr, 0); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->LDC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return; } else cpab = (state->LDC[CPNum]) (state, ARMul_BUSY, instr, 0); } if (cpab == ARMul_CANT) { CPTAKEABORT; return; } cpab = (state->LDC[CPNum]) (state, ARMul_TRANSFER, instr, 0); data = ARMul_LoadWordN (state, address); BUSUSEDINCPCN; if (BIT (21)) LSBase = state->Base; cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); while (cpab == ARMul_INC) { address += 4; data = ARMul_LoadWordN (state, address); cpab = (state->LDC[CPNum]) (state, ARMul_DATA, instr, data); } if (state->abortSig || state->Aborted) TAKEABORT; } /* This function does the work of generating the addresses used in an STC instruction. The code here is always post-indexed, it's up to the caller to get the input address correct and to handle base register modification. It also handles the Busy-Waiting. */ void ARMul_STC (ARMul_State * state, ARMword instr, ARMword address) { unsigned cpab; ARMword data; UNDEF_LSCPCBaseWb; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } if (ADDREXCEPT (address) || VECTORACCESS (address)) INTERNALABORT (address); cpab = (state->STC[CPNum]) (state, ARMul_FIRST, instr, &data); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->STC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return; } else cpab = (state->STC[CPNum]) (state, ARMul_BUSY, instr, &data); } if (cpab == ARMul_CANT) { CPTAKEABORT; return; } #ifndef MODE32 if (ADDREXCEPT (address) || VECTORACCESS (address)) INTERNALABORT (address); #endif BUSUSEDINCPCN; if (BIT (21)) LSBase = state->Base; cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); ARMul_StoreWordN (state, address, data); while (cpab == ARMul_INC) { address += 4; cpab = (state->STC[CPNum]) (state, ARMul_DATA, instr, &data); ARMul_StoreWordN (state, address, data); } if (state->abortSig || state->Aborted) TAKEABORT; } /* This function does the Busy-Waiting for an MCR instruction. */ void ARMul_MCR (ARMul_State * state, ARMword instr, ARMword source) { unsigned cpab; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } cpab = (state->MCR[CPNum]) (state, ARMul_FIRST, instr, source); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->MCR[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return; } else cpab = (state->MCR[CPNum]) (state, ARMul_BUSY, instr, source); } if (cpab == ARMul_CANT) ARMul_Abort (state, ARMul_UndefinedInstrV); else { BUSUSEDINCPCN; ARMul_Ccycles (state, 1, 0); } } /* This function does the Busy-Waiting for an MRC instruction. */ ARMword ARMul_MRC (ARMul_State * state, ARMword instr) { unsigned cpab; ARMword result = 0; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } cpab = (state->MRC[CPNum]) (state, ARMul_FIRST, instr, &result); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->MRC[CPNum]) (state, ARMul_INTERRUPT, instr, 0); return (0); } else cpab = (state->MRC[CPNum]) (state, ARMul_BUSY, instr, &result); } if (cpab == ARMul_CANT) { ARMul_Abort (state, ARMul_UndefinedInstrV); /* Parent will destroy the flags otherwise. */ result = ECC; } else { BUSUSEDINCPCN; ARMul_Ccycles (state, 1, 0); ARMul_Icycles (state, 1, 0); } return result; } /* This function does the Busy-Waiting for an CDP instruction. */ void ARMul_CDP (ARMul_State * state, ARMword instr) { unsigned cpab; if (! CP_ACCESS_ALLOWED (state, CPNum)) { ARMul_UndefInstr (state, instr); return; } cpab = (state->CDP[CPNum]) (state, ARMul_FIRST, instr); while (cpab == ARMul_BUSY) { ARMul_Icycles (state, 1, 0); if (IntPending (state)) { cpab = (state->CDP[CPNum]) (state, ARMul_INTERRUPT, instr); return; } else cpab = (state->CDP[CPNum]) (state, ARMul_BUSY, instr); } if (cpab == ARMul_CANT) ARMul_Abort (state, ARMul_UndefinedInstrV); else BUSUSEDN; } /* This function handles Undefined instructions, as CP isntruction. */ void ARMul_UndefInstr (ARMul_State * state, ARMword instr ATTRIBUTE_UNUSED) { ARMul_Abort (state, ARMul_UndefinedInstrV); } /* Return TRUE if an interrupt is pending, FALSE otherwise. */ unsigned IntPending (ARMul_State * state) { if (state->Exception) { /* Any exceptions. */ if (state->NresetSig == LOW) { ARMul_Abort (state, ARMul_ResetV); return TRUE; } else if (!state->NfiqSig && !FFLAG) { ARMul_Abort (state, ARMul_FIQV); return TRUE; } else if (!state->NirqSig && !IFLAG) { ARMul_Abort (state, ARMul_IRQV); return TRUE; } } return FALSE; } /* Align a word access to a non word boundary. */ ARMword ARMul_Align (state, address, data) ARMul_State * state ATTRIBUTE_UNUSED; ARMword address; ARMword data; { /* This code assumes the address is really unaligned, as a shift by 32 is undefined in C. */ address = (address & 3) << 3; /* Get the word address. */ return ((data >> address) | (data << (32 - address))); /* rot right */ } /* This routine is used to call another routine after a certain number of cycles have been executed. The first parameter is the number of cycles delay before the function is called, the second argument is a pointer to the function. A delay of zero doesn't work, just call the function. */ void ARMul_ScheduleEvent (ARMul_State * state, unsigned long delay, unsigned (*what) (ARMul_State *)) { unsigned long when; struct EventNode *event; if (state->EventSet++ == 0) state->Now = ARMul_Time (state); when = (state->Now + delay) % EVENTLISTSIZE; event = (struct EventNode *) malloc (sizeof (struct EventNode)); event->func = what; event->next = *(state->EventPtr + when); *(state->EventPtr + when) = event; } /* This routine is called at the beginning of every cycle, to envoke scheduled events. */ void ARMul_EnvokeEvent (ARMul_State * state) { static unsigned long then; then = state->Now; state->Now = ARMul_Time (state) % EVENTLISTSIZE; if (then < state->Now) /* Schedule events. */ EnvokeList (state, then, state->Now); else if (then > state->Now) { /* Need to wrap around the list. */ EnvokeList (state, then, EVENTLISTSIZE - 1L); EnvokeList (state, 0L, state->Now); } } /* Envokes all the entries in a range. */ static void EnvokeList (ARMul_State * state, unsigned long from, unsigned long to) { for (; from <= to; from++) { struct EventNode *anevent; anevent = *(state->EventPtr + from); while (anevent) { (anevent->func) (state); state->EventSet--; anevent = anevent->next; } *(state->EventPtr + from) = NULL; } } /* This routine is returns the number of clock ticks since the last reset. */ unsigned long ARMul_Time (ARMul_State * state) { return (state->NumScycles + state->NumNcycles + state->NumIcycles + state->NumCcycles + state->NumFcycles); }
Go to most recent revision | Compare with Previous | Blame | View Log